Q] G

RAEEHE
R AT TEAERE

(Software Architecture: Architectural design, System decomposition,

and Distribution architecture)
1091SEQ5
MBA, IM, NTPU (M5118) (Fall 2020)
Tue 2, 3, 4 (9:10-12:00) (B8F40)

Min-Yuh Day
. BB F
Associate Professor
| 8%
Institute of Information Management, National Taipei University

B2t XE FREEHMIAH %} [=]

https://web.ntpu.edu.tw/~myday
2020-10-13 El [4

https://web.ntpu.edu.tw/~myday/
https://web.ntpu.edu.tw/~myday/cindex.htm
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday

#4#2 A4 (Syllabus) G

nnnnnnnnnnnnnnnnnnnnnnnn

B &k (Week) B #f (Date) ™M & (Subject/Topics)
1 2020/09/15 k% T #2483 (Introduction to Software Engineering)
2 2020/09/22 #kf & oL H AT ¢ shEE E 2539, B Akt

(Software Products and Project Management:
Software product management and prototyping)

3 2020/09/29 &I #kAE T A2 ¢ Bk H ik > Scrum ~ ARRAE %3
(Agile Software Engineering: Agile methods, Scrum,
and Extreme Programming)

4 2020/10/06 szh#E 35 & Fu 3 F (Features, Scenarios, and Stories)

5 2020/10/13 #RBE224 © ZEMEREt AR > X EHE
(Software Architecture: Architectural design,
System decomposition, and Distribution architecture)

6 2020/10/20 #kgg T R X% |
(Case Study on Software Engineering |)

#4#2 A4 (Syllabus) G

nnnnnnnnnnnnnnnnnnnnnnnn

Xk (Week) B Bj (Date) M2 (Subject/Topics)

7 2020/10/27 KT 0 EHEIAEF RS AP ARF
(Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service)

8 2020/11/03 EshiE K 1 F R 4 4
(Cloud Computing and Cloud Software Architecture)
9 2020/11/10 27 ¥ 3% & (Midterm Project Report)

10 2020/11/17 #ARFSZE4% : RESTfUlBRFS ~ ARG F

(Microservices Architecture, RESTful services,
Service deployment)

11 2020/11/24 #1222 X 5%
(Industry Practices of Software Engineering)
12 2020/12/01 424 Ful& 44 (Security and Privacy)

B R (Week)

13

14
15

16

17
18

#4#2 A4 (Syllabus) G

2020/12/08

2020/12/15
2020/12/22

2020/12/29

2021/01/05
2021/01/12

B ¥ or X B
National Taipei University

H 25 (Date) M 2 (Subject/Topics)

BT REETR I

(Case Study on Software Engineering Il)

=] 5 69 #2 X, 2% :+ (Reliable Programming)

A ZhRE R Al B #hik

RIRBEE BB - R XBF L

(Testing: Functional testing, Test automation,
Test-driven development, and Code reviews)

DevOps#v 2 X 75 & 3% :

#2 X 75 % 32 fuDevOps B 1L

(DevOps and Code Management:

Code management and DevOps automation)

B K3k & | (Final Project Report |)
BA R #k & 1l (Final Project Report 1)

Software Engineering and
Project Management

é N\ [N\ [N\ [)
Analyze Design Build Test
Requirements System and Implementation Integration

definition Software and and
design unit testing system testing

. J J O\ O\ J

r

G

Deliver

Operation
and
maintenance

~

J

Project Management

Product ma nagement concerns

Business
needs

Product
manager

Technology Customer
constraints experience

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technical interactions of
product managers

| management |

Product
vision

Product
backlog

| management |

Acceptance
testing

Product

manager

User
interface
design

J

User stories
and
scenarios

Customer
testing

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software Development Life Cycle (sowq)
The waterfall model

Requirements
definition
7\
System and
Software design
7y
Implementation
and unit testing
7\
Integration and
system testing

‘ ﬁperation and
Kmaintenance

Source :lan Sommerv ille (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

c -, - TS sEmEEEEEEEEEEEEEEEEEEEEESEE \

Plan-based development

Requirements Requirements Design and
engineering specification implementation

\ -~

Requirements change requests

Agile development

Requirements Design and
engineering mplementatlon

Source: lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

- A
Incremental Agile
-
()
2
o
a
©
>
5
=2
S
t | Predictive Iterative
>
Low High
Degree of Change

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute 10

Predictive Life Cycle

[AnalyzeH Design H Build H Test H Deliver]

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

11

Analyze

Iterative Life Cycle

Prototype

Analyze
Design

Refine

7

r

Build
Test

‘

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Deliver

12

A Life Cycle of

Varying-Sized Increments

Analyze
Design
Build
Test
Deliver

r

_

Analyze
Design
Build
Test
Deliver

~

J

-

_

Analyze
Design
Build
Test
Deliver

\

J

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

13

Ilteration-Based and Flow-Based
Agile Life Cycles

Iteration-Based Agile

4 Y Y Y Y Y Y A
Requirements | Requirements | Requirements | Requirements Requirements | Requirements
Analysis Analysis Analysis Analysis Repeat Analysis Analysis
Design Design Design Design as needed Design Design
Build Build Build Build Build Build
Test Test Test Test Test Test
. AL Al AL Al AL Al J

Flow-Based Agile
4 Y Y Y Y Y N
Requirements |Requirements Requirements Requirements Requirements
Analysis Analysis Analysis Analysis Analysis
Design Design Design Design Design
Build Build Build asR:ep:;: . Build Build
Test Test Test Test Test
the number of |the number of the number of the number of the number of
features in the features in features in the WIP features in the| featuresinthe WIP
WIP limit the WIP limit limit WIP limit limit
_ A A A A A J
Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute 14

From personas to features

0{ Personas | Away of representing users

inspire

Natural language descriptions of a user
interacting with a software product

Scenarios

are-developed-into

©

Inspire

Stories

O

[Features

Fragments of product functionality

define

Natural language
descriptions of
something that is
needed or wanted
by users

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 15

Software

Architecture:

Architectural design,
System decomposition,
and

Distribution architecture

Software architecture

* To create a reliable, secure and efficient product,
you need to pay attention to architectural design
which includes:

— its overall organization,
— how the software is decomposed into components,
— the server organization

— the technologies that you use to build the software.
The architecture of a software product affects its
performance, usability, security, reliability and
maintainability.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

17

Software architecture

* There are many different interpretations of the
term ‘software architecture’.

—Some focus on ‘architecture’ as a noun
- the structure of a system
and others consider ‘architecture’ to be a verb
- the process of defining these structures.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

18

The IEEE definition of
software architecture

* Architecture is the
fundamental organization of a software system
embodied in its components, their
relationships to each other and
to the environment, and
the principles guiding its design and evolution.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 19

Software architecture and
components

A component is an element that implements a coherent
set of functionality or features.

Software component can be considered as a collection
of one or more services that may be used by other
components.

When designing software architecture, you don’t have
to decide how an architectural element or component is
to be implemented.

Rather, you design the component interface and leave
the implementation of that interface to a later stage of
the development process.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

20

Access to services provided by
software components

Services accessed directly
by other components

]
|

S1 S2 S3

Component 1

Services accessed through
the component API

-

API

\4 \ 4 Y

S4 S5 S6

Component 2

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 21

Why is architecture important?

* Architecture is important because the architecture of
a system has a fundamental influence on the non-
functional system properties.

* Architectural design involves understanding the
issues that affect the architecture of your product
and creating an architectural description that shows
the critical components and their relationships.

* Minimizing complexity should be an important goal
for architectural designers.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

22

Non-functional system quality
attributes

Responsiveness
Does the system return results to users in a reasonable time?

Reliability
Do the system features behave as expected by both
developers and users?

Availability
Can the system deliver its services when requested by users?

Security
Does the system protect itself and users’ data from
unauthorized attacks and intrusions?

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

23

Non-functional system quality
attributes

e Usability
Can system users access the features that they need and
use them quickly and without errors?

* Maintainability
Can the system be readily updated and new features
added without undue costs?

* Resilience
Can the system continue to deliver user services in the
event of partial failure or external attack?

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

24

Centralized security architectures

The benefits of a centralized security architecture are
that it is easier to design and build protection and
that the protected information can be accessed more
efficiently.

However, if your security is breached, you lose
everything.

If you distribute information, it takes longer to access
all of the information and costs more to protect it.

If security is breached in one location, you only lose
the information that you have stored there.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

25

Shared database architecture

User interface

I I

Cl C2

||

Shared database

SSSSSS : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Multiple database architecture

User interface

i i

Cl C2

{ {

C1 database C2 database

P

C3

Database reconciliation

SSSSSS : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Maintainability and performance

e Shared database architecture:

— system with two components (C1 and C2) that share a common
database.

* Multiple database architecture:

— each component has its own copy of the parts of the database
that it needs.

— If one component needs to change the database organization,
this does not affect the other component.

* A multi-database architecture may run more slowly and may cost
more to implement and change.

— A multi-database architecture needs a mechanism
(component C3) to ensure that the data shared by C1 and C2 is
kept consistent when it is changed.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

28

Issues that influence

architectural decisions

 Nonfunctional)
product
_characteristics /

[Software I Product]

compatibility Architectural lifetime

influences

Number of Software
users reuse

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 29

The importance of
architectural design issues

* Nonfunctional product characteristics

Nonfunctional product characteristics such as security and performance
affect all users. If you get these wrong, your product will is unlikely to be
a commercial success. Unfortunately, some characteristics are opposing,
so you can only optimize the most important.

Product lifetime
If you anticipate a long product lifetime, you will need to create regular
product revisions. You therefore need an architecture that is evolvable,

so that it can be adapted to accommodate new features and technology.

Software reuse

You can save a lot of time and effort, if you can reuse large components
from other products or open-source software. However, this constrains
your architectural choices because you must fit your design around the

software that is being reused.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

30

The importance of
architectural design issues

* Number of users
If you are developing consumer software delivered over
the Internet, the number of users can change very quickly.
This can lead to serious performance degradation unless
you design your architecture so that your system can be
quickly scaled up and down.

e Software compatibility
For some products, it is important to maintain
compatibility with other software so that users can adopt
your product and use data prepared using a different
system. This may limit architectural choices, such as the
database software that you can use.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 31

Trade off:
Maintainability vs performance

* System maintainability is an attribute that reflects how
difficult and expensive it is to make changes to a system after
it has been released to customers.

— You improve maintainability by building a system from
small self-contained parts, each of which can be replaced
or enhanced if changes are required.

* In architectural terms, this means that the system should be
decomposed into fine-grain components, each of which does
one thing and one thing only.

— However, it takes time for components to communicate
with each other. Consequently, if many components are
involved in implementing a product feature, the software
will be slower.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

32

Trade off:
Security vs usability

You can achieve security by designing the system
protection as a series of layers.

An attacker has to penetrate all of those layers before
the system is compromised.

Layers might include system authentication layers, a
separate critical feature authentication layer, an
encryption layer and so on.

Architecturally, you can implement each of these layers
as separate components so that if one of these
components is compromised by an attacker, then the
other layers remain intact.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 33

Authentication layers

IP authentication

Application authentication

Feature authentication

Encryption

Protect asset such as a
database of user’s credit card

Usability issues

* Alayered approach to security affects the usability of
the software.

— Users have to remember information, like passwords, that is
needed to penetrate a security layer. Their interaction with
the system is inevitably slowed down by its security features.

— Many users find this irritating and often look for work-arounds
so that they do not have to re-authenticate to access system
features or data.

e To avoid this, you need an architecture:

— that doesn’t have too many security layers

— that doesn’t enforce unnecessary security

— that provides helper components that reduce the load on
users

An architectural model of a
document retrieval system

Local input

Web browser i i
User interaction validation

Local printing

User interface Authenticationand Form and query Web page

management authorization manager generation
Information i
. Search Docu.ment A Payments Accounting
retrieval retrieval management
. Index Index Index
Document index : .
management guerying creation
- : Database Quer : User account

Basic services e Logging

Query validation management

Databases DB1 DB2 DB3 DB4 DB5

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of

component relationships

C1 is part of C2 C1 uses C2
C1
c2 l calls
C1
C2

C1l is-located-with C2

C1 shared-data-with C2

Cl [~ Data [— C2

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

37

Architectural design guidelines

Separation of concerns
Organize your architecture
into components that
focus on a single concern

Design

guidelines
Stable interfaces Implement once
Design component interfaces Avoid duplicating
that are coherent and functionality at different

that changes slowly places in your architecture

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

38

Cross-cutting concerns

Security Performance Reliability

User interface * 1
Application
Infrastructure
Operating System
Hardware

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A generic layered architecture for
a web-based application

Browser-based or mobile user interface

Authentication and user interaction management

Application-specific functionality

Basic shared services

Transaction and database management

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

40

A layered architectural model of
the iLearn system

User interface Web browser iLearn app
User interface Interface Forms Interface .
management creation Management delivery oeln
Configu ration Group Application Security User interface Setup

configuration configuration configuration configuration service

services

Appllcat|0n Archive access Word processor Video conf. Email and User installed
services Blog Wiki Spreadsheet Presentation Drawing messaging application

Integrated Resource User Virtual Learning Authentication
services discovery analytics environment and authorization

S ELCEE AT S mdl (=] Authentication Logging and monitoring Application interfacing

services User storage Application storage Search

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

41

Distribution architecture

* The distribution architecture of a software system

defines the servers in the system and the allocation of
components to these servers.

e Client-server architectures are a type of distribution
architecture that is suited to applications where clients

access a shared database and business logic operations
on that data.

* |In this architecture, the user interface is implemented
on the user’s own computer or mobile device.

— Functionality is distributed between the client and
one or more server computers.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

42

Client-server architecture

request

<Client 1
response

<Client ZX

request

T — —>

response

request__,

W4

<Client .?DE
response request

Servers

<Client

response

Load
balancer

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The Model-View-Controller (MVC)
pattern

(R
CLIENT
.
View update \ Chgng.e //View refresh
(R
/
Model
SERVER
L J

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Mobile Web App

HTML

5|

43

E

E

Templates

External
Data

Mobile frameworks

F7 jQuery and

mobile

Libraries

Source: Scott Preston, Learn HTML5 and JavaScript for iOS: Web Standards-based Apps for iPhone, iPad, and iPod touch, Apress, 2012 45

MVC Framework of Mobile Apps
(HTML5, CSS3, JavaScript)

Javascript

HTMLS Boilerplate

Templates

r ________________
i . Ul Framework

Javascript) I

(Javascript) I

Framework
(Javascript)

|
|

|
|
== U
Back-end REST API Web Storage API

Source: http://sc5.io/blog/2012/02/anatomy-of-a-html5-app/

46

http://sc5.io/blog/2012/02/anatomy-of-a-html5-app/

Multi-tier client-server architecture

<:éﬁent1
<:?Hent2

Web Application Database
Server Server Server

<:éﬁent3
<:§ﬁent".

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

N

Service-oriented Architecture

e Services in a service-oriented architecture are
stateless components, which means that they
can be replicated and can migrate from one
computer to another.

 Many servers may be involved in providing
services

* Aservice-oriented architecture is usually easier
to scale as demand increases and is resilient to

failure.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 48

Service-oriented Architecture

(ctom?)

Client 2

(Client 3
<Client

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineerin

Web
Server

Service
gateway

Services

g, Pearson

49

Issues in architectural choice

* Data type and data updates

— If you are mostly using structured data that may be updated by different
system features, it is usually best to have a single shared database that
provides locking and transaction management. If data is distributed
across services, you need a way to keep it consistent and this adds
overhead to your system.

 Change frequency
— If you anticipate that system components will be regularly changed or
replaced, then isolating these components as separate services simplifies
those changes.

* The system execution platform
— If you plan to run your system on the cloud with users accessing it over
the Internet, it is usually best to implement it as a service-oriented
architecture because scaling the system is simpler.
— If your product is a business system that runs on local servers, a multi-tier
architecture may be more appropriate.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

50

Technology choices

Database

Should you use a relational SQL database or an unstructured NOSQL
database?

Platform
Should you deliver your product on a mobile app and/or a web platform?

Server

Should you use dedicated in-house servers or design your system to run
on a public cloud? If a public cloud, should you use Amazon, Google,
Microsoft, or some other option?

Open source

Are there suitable open-source components that you could incorporate
into your products?

Development tools

Do your development tools embed architectural assumptions about the
software being developed that limit your architectural choices

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 51

Summary

e Software architecture is the fundamental
organization of a system embodied in its
components, their relationships to each other, and to

the environment, and the principles guiding its
design and evolution.

* The architecture of a software system has a
significant influence on non-functional system
properties such as reliability, efficiency and security.

* Architectural design involves understanding the
issues that are critical for your product and creating
system descriptions that shows components and
their relationships.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 52

Summary

* The principal role of architectural descriptions is to
provide a basis for the development team to discuss
the system organization. Informal architectural
diagrams are effective in architectural description
because they are fast and easy to draw and share.

e System decomposition involves analyzing

architectural components and representing them as
a set of finer-grain components.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 53

Summary

 To minimize complexity, you should separate

concerns, avoid functional duplication and focus on
component interfaces.

* Web-based systems often have a common layered
structure including user interface layers, application-
specific layers and a database layer.

* The distribution architecture in a system defines the
organization of the servers in that system and the
allocation of components to these servers.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 54

Summary

Multi-tier client-server and
service-oriented architectures are the most
commonly used architectures for web-based

systems.

Making decisions on technologies such as database
and cloud technologies are an important part of the
architectural design process.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 55

References

lan Sommerville (2019), Engineering Software Products: An
Introduction to Modern Software Engineering, Pearson.

lan Sommerville (2015), Software Engineering, 10th Edition,
Pearson.

Titus Winters, Tom Manshreck, and Hyrum Wright (2020),
Software Engineering at Google: Lessons Learned from
Programming Over Time, O'Reilly Media.

Project Management Institute (2017), A Guide to the Project
Management Body of Knowledge (PMBOK Guide), Sixth
Edition, Project Management Institute

Project Management Institute (2017), Agile Practice Guide,
Project Management Institute

