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Outline

* Logical Agents

* First-Order Logic

* Inference in First-Order Logic
 Knowledge Representation
 Automated Planning



Stuart Russell and Peter Norvig (2020),
Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

russell SAtificial Intelligence
Norvig A Modern Approach

’p Fourth Edition

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
https://www.amazon.com/Atrtificial-Intelligence-A-Modern-Approach/dp/0134610997/



https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

N O O B W N

Artificial Intelligence:
A Modern Approach

. Artificial Intelligence

. Problem Solving

. Knowledge and Reasoning

. Uncertain Knowledge and Reasoning

. Machine Learning

. Communicating, Perceiving, and Acting
. Philosophy and Ethics of Al



Artificial Intelligence:
Knowledge

and Reasoning

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Artificial Intelligence:
3. Knowledge and Reasoning

Logical Agents

First-Order Logic

Inference in First-Order Logic
Knowledge Representation
Automated Planning

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Intelligent Agents



4 Approaches of Al

3.
2. . .
Thinking Humanly: Thinking Rationally:
.. The “Laws of Thought”
The Cognitive Approach
Modeling Approach
1. 4.
Acting Humanly: Acting Rationally:
The Turing Test The Rational Agent

Approach s

Approach

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Reinforcement Learning (DL)

Agent

{ EnvironmentJ




Reinforcement Learning (DL)

1 observation 2 action
Agent

3 reward T

Environment
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Reinforcement Learning (DL)

1 observation 2 action
Agent
0, A,

3 reward TRt

Environment
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Agents interact with environments
through sensors and actuators

/Px gent Sensors s

' Percepts

?

' Actions

\ Actuators -

JUSWIUOITAUH




Logical Agents



Logical Agents

Knowledge-based Agents
KB Agents

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Knowledge-based Agent
(KB Agent)

function KB-AGENT( percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially O, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
action < ASK(KB, MAKE-ACTION-QUERY(?))

TELL(KB, MAKE-ACTION-SENTENCE(action,t))
t+—t+1

return action

19



Sentences are
physical configurations of the agent

Aspects ofthe ~~_ "7~ = Aspect of the
real world Follows real world

Reasoning is a process of
constructing new physical configurations from old ones

Logical reasoning should ensure that the new configurations
represent aspects of the world that actually follow from the
aspects that the old configurations represent.

20



A BNF (Backus—Naur Form)
grammar of sentences in
propositional logic

Sentence — AtomicSentence | ComplexSentence

AtomicSentence — True| False | P| Q| R| ...

ComplexSentence — ( Sentence)
- Sentence
Sentence N\ Sentence
Sentence V Sentence

Sentence = Sentence

Sentence < Sentence

OPERATOR PRECEDENCE : —,A,V,=>,&

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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P

false
false
true
true

Truth Tables (TT)
for the Five Logical Connectives

Q

false
true
false

true

Source: Stuart Russe

-P PAQ PvQ P=4Q
true false false true
true false true true
false false true false
false true true true

[l and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

P&s(Q

true
false
false

true
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A Truth Table constructed for the
knowledge base given in the text

Bin Bs1 Pin P Py Py P31 Ry Ry Rs Ry Rs KB
false false false false false false false true true true true false false
false false false false false false true true true false true false false
false true false false false false false true true false true true false
false true false false false false true true true true true true true
false true false false false true false true true true true true true
false true false false false true true true true true true true true
false true false false true false false true false false true true false
true true true true true true true false true true false true false

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A Truth-Table (TT)
enumeration algorithm for deciding
propositional entailment

function TT-ENTAILS?(K B, o) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
a, the query, a sentence in propositional logic

symbols < a list of the proposition symbols in KB and «
return TT-CHECK-ALL(KB, o, symbols,{ })

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(K B, model) then return PL-TRUE?(«, model)

else return true // when KB is false, always return true
else

P < FIRST(symbols)

rest <— REST(symbols)

return (TT-CHECK-ALL(KB, a, rest, model U {P = true})

and
TT-CHECK-ALL(KB, o, rest, model U{P = false }))

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 24



Standard Logical Equivalences

The symbols a, 3, and y stand for
arbitrary sentences of propositional logic.

(aNB) = (BAa) commutativity of A
(aVpB) = (BVa) commutativity of V
((aANB)A7y) = (AN (BA7)) associativity of A
((aVPB)Vy) = (Vv (BV7y)) associativity of V
—(-a) = a double-negation elimination
(o = B) = (-8 = —a) contraposition
(e = B) = (—~aV ) implication elimination
(o & B) = ((¢ = B)A(B = «)) biconditional elimination
(e AB) = (—aV -B) DeMorgan
-(aVpB) = (—aA—-B) DeMorgan
(@A (BVY) = (tAB)V (axAy)) distributivity of A over V
) = (

(aV B)A(aV~y)) distributivity of V over A

25



A grammar for
Conjunctive Normal Form (CNF),
Horn clauses, and definite clauses

CNFSentence — Clause; N\--- N\ Clause,,
Clause — Lateraly V---V Literal,,
Fact — Symbol

Literal — Symbol | —~Symbol

Symbol — P| Q| R| ...
HornClauseForm — DefiniteClauseForm | GoalClauseForm

DefiniteClauseForm — Fact | (Symbol, A--- A Symbol;) = Symbol

GoalClauseForm — (Symbol; A--- A Symbol;) = False

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 26



A simple resolution algorithm
for propositional logic

function PL-RESOLUTION(K B, ) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
a, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB A —«
new < { }
while irue do
for each pair of clauses C;, C; in clauses do
resolvents <— PL-RESOLVE(C;, C})
if resolvents contains the empty clause then return true
new < new U resolvents
if new C clauses then return false
clauses < clauses U new

27



The forward-chaining algorithm
for propositional logic

function PL-FC-ENTAILS?( KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses
q, the query, a proposition symbol
count <— a table, where count[c] is initially the number of symbols in clause c¢’s premise
inferred < a table, where inferred|s] is initially false for all symbols
queue <— a queue of symbols, initially symbols known to be true in KB

while queue is not empty do
p < POP(queue)
if p = ¢ then return true
if inferred[p] = false then
inferred[p] < true
for each clause c in KB where p is in c.PREMISE do
decrement count|c]
if count[c] = 0 then add c.CONCLUSION to queue

return false

28



A set of Horn clauses
0

P = Q
LANM = P P
BANL = M
AANP = L M
AANB = L L
A L
B
A B

(a) (b)
The corresponding AND-OR graph

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 29



First-Order Logic



Formal languages and their

ontological and epistemological

commitments
Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)
Propositional logic  facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory ~ facts degree of belief € [0, 1]
Fuzzy logic facts with degree of truth € [0,1] ~ known interval value

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A model containing five objects

two binary relations (brother and on-head), three unary relations
(person, king, and crown), and one unary function (left-leg).

crown

on head

brother

person
king

brother

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



The syntax of first-order logic

with equality

Sentence
AtomicSentence

ComplexSentence

Term

Quantifier
Constant
Variable
Predicate

Function

OPERATOR PRECEDENCE

_)
_)

—

— 4

L1441

AtomicSentence | ComplexSentence
Predicate | Predicate(Term,...) | Term = Term

( Sentence)

- Sentence

Sentence A Sentence
Sentence V Sentence
Sentence = Sentence
Sentence < Sentence

Quantifier Variable,... Sentence

Function(Term, . ..)
Constant

Variable

V| 3

Al Xy | John | ---

al z| s| -

True | False | After | Loves | Raining | ---
Mother | LeftLeg | ---

ﬁ7 =’ /\, V’=>7<=>

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Some members of the set of all
models for a language with two
constant symbols, R and J, and one
binary relation symbol

00O ¢

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 34
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Some members of the set of all
models for a language with two
constant symbols, R and J, and one
binary relation symbol, under

database semantics
1;% J 1;3 J 1;3 J 1;% J 1;3 J

°D) 30 () (V) By

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A digital circuit C1, purporting to be
a one-bit full adder.

1@ o
2@ o E ? ﬁ ol
A

3. [,

>
E B 'Y)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 36



Inference in
First-Order Logic



The unification algorithm

function UNIFY(z, y, 0=empty) returns a substitution to make z and y identical, or failure
if 0 = failure then return failure
else if x = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, v, 0)
else if VARIABLE?(y) then return UNIFY-VAR(y, z,6)
else if CoMPOUND?(z) and COMPOUND?(y) then
return UNIFY(ARGS(z), ARGS(y), UNIFY(OP(z), OP(y), #))
else if L1ST?(x) and LIST?(y) then
return UNIFY(REST(z), REST(y), UNIFY(FIRST(z), FIRST(y), #))
else return failure

function UNIFY-VAR(var, z, ) returns a substitution
if {var/val} € 0 for some val then return UNIFY(val, z, 6)
else if {z/val} € 6 for some val then return UNIFY (var, val, )
else if OCCUR-CHECK?(var, z) then return failure
else return add {var/z} to 6

38



The subsumption lattice whose
lowest node is Employs (IBM,
Richard )

The subsumption lattice for the sentence Employs
(John, John)

Employs(x,y) Employs(x,y)
Employs(x,Richard) Employs(IBM,y) Employs(x,John) Employs(x,x) Employs(John,y)
Employs(IBM,Richard) Employs(John,John)
(@) (b)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 39



A conceptually straightforward, but inefficient,
forward-chaining algorithm

function FOL-FC-ASK(KB, o) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
a, the query, an atomic sentence

while ¢{rue do
new < { } / / The set of new sentences inferred on each iteration
for each rule in KB do
(p1 A...N\ p, = q)< STANDARDIZE-VARIABLES(Tule)
for each 6 such that SUBST(6,p1 A ... A p,)=SUBST,p; A ... A pl)
for some p1,...,p, in KB
q' < SUBST(6, q)
if ¢’ does not unify with some sentence already in KB or new then
add ¢’ to new
¢ < UNIFY(q', o)
if ¢ is not failure then return ¢
if new = {} then return false
add new to KB

40



The proof tree generated by
forward chaining on the crime
example

American(West)

Criminal(West)
Weapon(M,) Sells(West,M,,Nono)
Missile(M;) Owns(Nono, M, )

Hostile(Nono)

Enemy(Nono,America)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Constraint graph for coloring the
map of Australia

Diff (wa, nt) A Diff (wa, sa) A
e Diff (nt, q) A Diff (nt, sa) A
@ Diff (¢, nsw) A Diff (q, sa) A
Diff (nsw,v) A Diff (nsw, sa) A
Diff (v, sa) = Colorable()

° Diff (Red, Blue) Diff (Red, Green)
Diff (Green, Red) Diff (Green, Blue)
@ Diff (Blue, Red) Diff (Blue, Green)
(a) (b)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 42



A simple backward-chaining algorithm for
first-order knowledge bases

function FOL-BC-ASK(KB, query) returns a generator of substitutions
return FOL-BC-OR(KB, query,{ })

function FOL-BC-OR(KB, goal, #) returns a substitution
for each rule in FETCH-RULES-FOR-GOAL(KB, goal) do
(lhs = rhs) < STANDARDIZE- VARIABLES(rule)
for each 6’ in FOL-BC-AND(KB, lhs, UNIFY(rhs, goal, 0)) do
yield 6’

function FOL-BC-AND(KB, goals, 0) returns a substitution

if & = failure then return
else if LENGTH(goals) = 0 then yield
else

first,rest < FIRST(goals), REST(goals)

for each 6’ in FOL-BC-OR(KB, SUBST(#, first), 6) do

for each 0" in FOL-BC-AND(KB, rest,0’) do
yield 6"

43



Proof tree constructed by
backward chaining t
o prove that West is a criminal

Criminal(West)
American(West) Weapon(y) Sells(West,M,,z) Hostile(Nono)
{} {z/Nono}
Missile(y) || Missile(M,) | | Owns(Nono,M,) | | Enemy(Nono,America)
WIM; ) U i

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Pseudocode representing the result
of compiling the Append predicate

procedure APPEND(az, y, az, continuation)

trail < GLOBAL-TRAIL-POINTER()

if az =[] and UNIFY(y, az) then CALL(continuation)

RESET-TRAIL(trazl)

a,x, 2 < NEW-VARIABLE(), NEW-VARIABLE(), NEW-VARIABLE()

if UNIFY(az,[a] + ) and UNIFY(az,[a | z]) then APPEND(z, y, 2, continuation)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 45



Finding a path from A to C can lead
Prolog into an infinite loop.

()

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Proof that a path exists from A to C.

path (a, c)

P /////K(:f;:i;\\\\
m\ path(a, Y) link (Y, c)
link(a,c) path(a,Y) link (b, c)

fail {}

path(a,Y’") link(Y’,Y)
link(a,¥) /////

{Y/b}
(2) (b)
Infinite proof tree generated

when the clauses are
in the “wrong” order

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 47



A resolution proof that

West is a

criminal

~American(x) v ~Weapon(y) v —Sells(x,y,z) v —Hostile(z) vCriminal(x)

—Criminal(West)

American(West)

—American(West) v ~Weapon(y)v —Sells(West,y,z) v —Hostile(z)

—Missile(x) v Weapon(x)

—Weapon(y) v —Sells(West,y,z) v —Hostile(z)

Missile(M )

—Missile(y)v —Sells(West,y,z) v —Hostile(z)

AN

~Missile(x) V—Owns(Nono, x) Vv Sells(West,x, Nono)

—Sells(West,M,,z) v —Hostlile(z)

Missile(M)

—Missile(M,) v ~Owns(Nono,M,) V —~Hostile(Nono)

Owns(Nono, M,)

—Owns(Nono, M) —Hostile(Nono)

—Enemy(x,America) v Hostile(x)

—Hostile(Nono)

Enemy(Nono, America)

Source: Stuart Russell and Peter Norvig (2020), Artificial

\gnemymlono,America)

Intelligence: A Modern Approach, 4th Edition, Pearson
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A resolution proof that
Curiosity killed the cat

Cat(Tuna) —Cat(x) v Animal(x)

Kills(Jack, Tuna)v Kills(Curiosity, Tuna)| | —Kills(Curiosity, Tuna)

\—

\/

Animal(Tuna) | | ~Loves(y, x)v ~Animal(z) vV —Kills(x, z) | | Kills(Jack, Tuna) | | ~Loves(x, F(x)) v Loves(G(x), x) —Animal(x) \LLoves(Jack, X)

L e

—

—Loves(y, x) V —Kills(x, Tuna) —Animal(F(Jack)) V Loves(G(Jack), Jack)

Animal(F(x)) V Loves(G(x), x)

—Loves(y, Jack) Loves(G(Jack), Jack)

= =

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

49



Structure of a
completeness proof for resolution

Any set of sentences S is representable in clausal form

Assume S 1s unsatisfiable, and in clausal form

l< Herbrand’s theorem
Some set S’ of ground instances is unsatisfiable
l Ground resolution
—
theorem

Resolution can find a contradiction in §’

l< Lifting lemma

There is a resolution proof for the contradiction in '

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 50



Knowledge
Representation



The Upper Ontology of the World

Anything

/\

AbstractObjects GeneralizedEvents

/\ /\

Sets Numbers RepresentationalObjects Intervals  Places  PhysicalObjects Processes

N\ | N

Categories Sentences Measurements Moments Things /Stuﬁ‘x
Times Weights Animals Agents  Solid Liquid Gas
Humans

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 52



Predicates on time intervals

Meet(i, j) i Jj i
Starts(i, j) :
Before(i, j) : : /
After(j,i) ! J
Finishes(i, j) -
l J
During(i, j)
J
.. I
i Equals(i, j)
Overlap(i, j) - J
J

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



A schematic view of the object
President (USA) for the early years




A semantic network

with four objects (John, Mary, 1, and 2) and four categories
Relations are denoted by labeled links

SubsetOf

HasMother

MemberOf

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Semantic network

Representation of the logical assertion
Fly (Shankar, NewYork, NewDelhi, Yesterday)

MemberOf

During

Destination

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The syntax of descriptions in a
subset of the CLASSIC language.

Concept — Thing | ConceptName
And(Concept, .. .)
All(RoleName, Concept)
AtLeast(Integer, RoleName)
AtMost(Integer, RoleName)
Fills( RoleName, IndividualName, . . .)
SameAs( Path, Path)
OneOf(IndividualName, . . .)
Path — [RoleName,...]
ConceptName — Adult | Female | Male | ...
RoleName — Spouse | Daughter | Son | ...

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Automated
Planning




A PDDL description of an air cargo
transportation planning problem

Init(At(Cy, SFO) A At(Co, JFK) A At(Pi, SFO) A At(Py, JFK)
A Cargo(C1) A Cargo(C2) A Plane(P1) A Plane(Ps)
A Airport(JFK) A Airport(SFO))
Goal(At(Cy1, JFK) N At(Ca, SFO))
Action(Load(c, p, a),
PRECOND: At(c, a) A At(p, a) A Cargo(c) A Plane(p) N Airport(a)
EFFECT: — At(c, a) A In(c, p))
Action(Unload(c, p, a),
PRECOND: In(c, p) A At(p, a) A Cargo(c) N Plane(p) N Airport(a)
EFFECT: At(c, a) A = In(c, p))
Action(Fly(p, from, to),
PRECOND: At(p, from) A Plane(p) N Airport(from) A Airport(to)
EFFECT: = At(p, from) A At(p, to))

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The simple spare tire problem

Init(Tire(Flat) N Tire(Spare) N At(Flat, Azle) N At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc),
PRECOND: At(obj, loc)
EFFECT: — At(obj, loc) N At(obj, Ground))
Action(PutOn(t, Axle),
PRECOND: Tire(t) A At(t, Ground) N — At(Flat, Azle) N — At(Spare, Azle)
EFFECT: — At(t, Ground) N At(t, Azle))
Action(LeaveOQvernight,
PRECOND:
EFFECT: - At(Spare, Ground) A — At(Spare, Azle) N — At(Spare, Trunk)
A — At(Flat, Ground) N\ — At(Flat, Azle) N — At(Flat, Trunk))

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 60



Diagram of the blocks-world
problem

[ ] I

Start State Goal State

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A planning problem in the blocks
world: building a three-block tower

Init(On(A, Table) N On(B, Table) N On(C,A)

A Block(A) A Block(B) A Block(C) A Clear(B) A Clear(C) N Clear(Table))
Goal(On(A,B) N On(B,(C))
Action(Move (b, z,y),

PRECOND: On(b,z) A Clear(b) A Clear(y) N Block(b) A Block(y) A

(b#z) A (b#y) A (z#Y),

EFFECT: On(b,y) A Clear(x) A =On(b,z) N —Clear(y))
Action(MoveToTable(b, x),

PRECOND: On(b,z) A Clear(b) A Block(b) A Block(x),

EFFECT: On(b, Table) A Clear(z) A =On(b,x))

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 62



Two approaches to searching for a plan

(a) Forward (progression) search
(b) Backward (regression) search

Fly(Ph A’ B)
Al(P;, A)
Al(P,, A) —
F|Y(P2, As B)
At(Ph A)
Al(P2’ D Fly(Ph As B)
At(P'l! PP Fly(PZ! As B)
At(PZ’ A)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 63




Two state spaces from
planning problems with the
ighore-delete-lists heuristic

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Definitions of possible refinements

for two high-level actions

Refinement(Go(Home, SFO),
STEPS: [Drive(Home, SFOLongTermParking),
Shuttle(SFOLongTermParking, SFO)] )
Refinement(Go(Home, SFO),
STEPS: [Taxi(Home, SFO)] )

Refinement( Navigate([a, b], [z,y]),
PRECOND:a=z A b=y
STEPS: [] )

Refinement( Navigate([a, b], [z,y]),
PRECOND: Connected([a, b], [a — 1,b])
STEPS: [Left, Navigate([a — 1,b], [z,y])] )

Refinement( Navigate([a, b], [z,y]),
PRECOND: Connected([a,b],[a + 1, b])
STEPS: [Right, Navigate([a + 1,b], [z,y])] )

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A breadth-first implementation of
hierarchical forward planning search

function HIERARCHICAL-SEARCH( problem, hierarchy) returns a solution or failure

frontier < a FIFO queue with [Act] as the only element
while true do
if IS-EMPTY( frontier) then return failure
plan < POP( frontier) / / chooses the shallowest plan in frontier
hla < the first HLA in plan, or null if none
prefix,suffix < the action subsequences before and after hla in plan
outcome < RESULT(problem INITIAL, prefix)
if hla is null then / / so plan is primitive and outcome is its result
if problem.IS-GOAL(outcome) then return plan
else for each sequence in REFINEMENTS(hla, outcome, hierarchy) do
add APPEND( prefiz, sequence, suffiz) to frontier

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Schematic examples of

reachable sets

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approac

(b)

h, 4th Edition, Pearson
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Goal achievement for high-level
plans with approximate descriptions

P e o == = m= E= E= E= == == == ==

(2) (b)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 68



A hierarchical planning algorithm

function ANGELIC-SEARCH( problem, hierarchy, initialPlan) returns solution or fail

frontier < a FIFO queue with initialPlan as the only element
while {rue do
if EMPTY?( frontier) then return fa:l
plan < POP( frontier) / / chooses the shallowest node in frontier
if REACH " (problem.INITIAL, plan) intersects problem.GOAL then
if plan is primitive then return plan // REACH™ is exact for primitive plans
guaranteed < REACH™ (problem.INITIAL, plan) N problem.GOAL
if guaranteed#{ } and MAKING-PROGRESS(plan, initialPlan) then
finalState < any element of guaranteed
return DECOMPOSE(hierarchy, problem INITIAL, plan, finalState)
hla < some HLA in plan
prefiz,suffix < the action subsequences before and after hla in plan
outcome < RESULT(problem .INITIAL, prefiz)
for each sequence in REFINEMENTS(hla, outcome, hierarchy) do
frontier < Insert(APPEND( prefix, sequence, suffix), frontier)
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A hierarchical planning algorithm
Decompose solution

function DECOMPOSE(hierarchy, sy, plan, sy) returns a solution

solution < an empty plan
while plan is not empty do
action <~ REMOVE-LAST(plan)
s; «—a state in REACH™ (g, plan) such that s EREACH™ (s;, action)

problem <— a problem with INITIAL = s, and GOAL = s¢
solution <— APPEND(ANGELIC-SEARCH(problem, hierarchy, action), solution)
Sf < 8;

return solution

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 70



At first, the sequence “whole plan”
is expected to
get the agent fromSto G

whole plan

e ——————————————— ——————————————— — —————— — —
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A job-shop scheduling problem for
assembling two cars,
with resource constraints

Jobs({AddEnginel < AddWheels1 < Inspectl },
{AddEngine2 < AddWheels2 < Inspect2})

Resources(EngineHoists(1), WheelStations(1), Inspectors(e2), LugNuts(500))

Action(AddEnginel , DURATION:30,

USE: EngineHoists(1))
Action(AddEngine2, DURATION:60,

USE: EngineHoists(1))
Action(AddWheels1, DURATION:30,

CONSUME: LugNuts(20), USE: WheelStations(1))
Action(AddWheels2, DURATION:15,

CONSUME: LugNuts(20), USE: WheelStations(1))
Action(Inspect;, DURATION:10,

USE: Inspectors(1))

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 72



A representation of the temporal constraints

for the job-shop scheduling problem

[0.15] [30.45] [60.75]
AddEnginel AddWheelsl Inspectl
30 30 10
[0.0] [85.85]
Start Finish
[0,0] [60,60] [75,75]
AddEngine2 [™==$] AddWheels2 [mumjm{ [nspect2
60 15 10

AddWheels1

Aot S
AddWheels2

1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
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A solution to the
job-shop scheduling problem

EngineHoists(1)

WheelStations(1)

Inspectors(2)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 74



AIMA Python

 Artificial Intelligence: A Modern Approach (AIMA)
— http://aima.cs.berkeley.edu/

* AIMA Python
— http://aima.cs.berkeley.edu/python/readme.html

* Logic, KB Agent
— http://aima.cs.berkeley.edu/python/logic.html
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http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/python/readme.html
http://aima.cs.berkeley.edu/python/logic.html

&

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeod4zJ1zTuniMqf2RkCrT

o python101.ipynb - Colaborator X +

c

& https://colab.research.google.com/drive/IFEG6DnGvwfUbeo4zJ1zTunjMgf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3 pA¢ &)

& python101.ipynb ¢

File Edit View Insert Runtime Tools Help

£ CODE

[

Bl COMMENT 2% SHARE o

TEXT 4 CELL ¥ CELL +/ CONNECTED ~ /‘ EDITING A

# Future Value H
pv = 100

0.1

7

r
n
fv = pv * ((1 + (r)) ** n)
print(round(fv, 2))

.87

[11]

[

[12]

[13]

[

194.

AU WN =

194.

AN WN -

amount = 100
interest = 10 #10% = 0.01 * 10
years = 7

future_value = amount * ((1 + (0.0l * interest)) ** years)
print(round(future_value, 2))

87

# Python Function def
def getfv(pv, r, n):
fv = pv * ((1 + (r)) ** n)
return fv
fv = getfv(100, 0.1, 7).
print(round(fv, 2))

87

# Python if else

score = 80

if score >=60 :
print("Pass")

else:
print("Fail").

Pass

https://tinyurl.com/aintpupython101 76
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Summary

* Logical Agents

* First-Order Logic

* Inference in First-Order Logic
 Knowledge Representation
 Automated Planning
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