

(Artificial Intelligence)

深度學習 (Deep Learning)

1092AI08 MBA, IM, NTPU (M5010) (Spring 2021) Wed 2, 3, 4 (9:10-12:00) (B8F40)

<u>Min-Yuh Day</u> 戴敏育

Associate Professor

副教授

Institute of Information Management, National Taipei University

國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday 2021-05-05

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 1 2021/02/24 人工智慧概論 (Introduction to Artificial Intelligence)
- 2 2021/03/03 人工智慧和智慧代理人 (Artificial Intelligence and Intelligent Agents)
- 3 2021/03/10 問題解決 (Problem Solving)
- 4 2021/03/17 知識推理和知識表達 (Knowledge, Reasoning and Knowledge Representation)
- 5 2021/03/24 不確定知識和推理 (Uncertain Knowledge and Reasoning)

6 2021/03/31 人工智慧個案研究 I (Case Study on Artificial Intelligence I)

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 7 2021/04/07 放假一天 (Day off)
- 8 2021/04/14 機器學習與監督式學習 (Machine Learning and Supervised Learning)
- 9 2021/04/21 期中報告 (Midterm Project Report)
- 10 2021/04/28 學習理論與綜合學習 (The Theory of Learning and Ensemble Learning)
- 11 2021/05/05 深度學習 (Deep Learning)
- 12 2021/05/12 人工智慧個案研究 II (Case Study on Artificial Intelligence II)

週次(Week) 日期(Date) 內容(Subject/Topics) 13 2021/05/19 強化學習 (Reinforcement Learning) 14 2021/05/26 深度學習自然語言處理 (Deep Learning for Natural Language Processing) 15 2021/06/02 機器人技術 (Robotics) 16 2021/06/09 人工智慧哲學與倫理,人工智慧的未來 (Philosophy and Ethics of AI, The Future of AI) 17 2021/06/16 期末報告 | (Final Project Report I) 18 2021/06/23 期末報告 || (Final Project Report II)

Deep Learning

Outline

- Deep Learning
- Neural Networks (NN)
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)

Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

Artificial Intelligence: A Modern Approach

- 1. Artificial Intelligence
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- 5. Machine Learning
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of AI

Artificial Intelligence: Machine Learning

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 5. Machine Learning

- Learning from Examples
- Learning Probabilistic Models
- Deep Learning
- Reinforcement Learning

Reinforcement Learning (DL)

Environment

Reinforcement Learning (DL)

Reinforcement Learning (DL)

Agents interact with environments through sensors and actuators

Al Acting Humanly: The Turing Test Approach (Alan Turing, 1950)

- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)
 Deep Learning (DL)
- Computer Vision (Image, Video)
- Natural Language Processing (NLP)
- Robotics

Computer Vision: Image Classification, Object Detection, Object Instance Segmentation

Source: DHL (2018), Artificial Intelligence in Logistics, http://www.globalhha.com/doclib/data/upload/doc con/5e50c53c5bf67.pdf/

Computer Vision: Object Detection

(a) Object Classification

(b) Generic Object Detection (Bounding Box)

(d) Object Instance Segmetation

Source: Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti Pietikäinen. "Deep learning for generic object detection: A survey." International journal of computer vision 128, no. 2 (2020): 261-318.

YOLOv4:

Optimal Speed and Accuracy of Object Detection

MS COCO Object Detection

Source: Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. "YOLOv4: Optimal Speed and Accuracy of Object Detection." arXiv preprint arXiv:2004.10934 (2020).

Text Analytics and Text Mining

Deep learning for financial applications: **A survey Applied Soft Computing (2020)**

Financial time series forecasting with deep learning: **A systematic literature review:** 2005 - 2019**Applied Soft Computing (2020)**

Source:

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

Topic Name

Deep learning for financial applications: Deep Learning Models

Deep learning for financial applications: Topic-Model Heatmap

RNN -	6	0	0	4	1	3	2	8	0	2		. 20 0
LSTM -	15	8	4	6	2	4	13	22	0	0		17 5
GRU -	2	1	1	1	0	0	2	6	0	0		17.5
CNN -	12	7	1	4	1	3	9	11	0	1		15.0
DMLP -	10	11	4	4	6	2	4	7	0	3		12.5
DBN -	0	4	0	1	0	0	0	1	0	2	-	10.0
AE -	3	1	2	0	0	1	0	0	0	2	-	7.5
RL -	6	1	2	1	1	0	0	0	1	1		5.0
RBM -	0	1	0	0	0	0	0	1	0	2		25
Other -	6	2	1	3	1	0	3	10	1	1		2.5
	algorithmic trading -	risk assessment -	fraud detection -	ortfolio management -	asset pricing and derivatives market	cryptocurrency and blockchain studies	financial sentiment analysis	financial text mining -	theoretical or conceptual studies	other financial applications		0.0

Deep learning for financial applications: Topic-Feature Heatmap

price data -	35	3	0	16	10	7	10	22		- 35
technical indicator -	15	0	0	7	1	4	3	7		
index data -	5	1	0	0	0	0	1	1		- 30
market characteristics -	6	2	2	0	9	0	0	0		
fundamental -	2	0	0	2	3	0	0	0		- 25
market microstructure data -	8	4	3	0	0	1	0	1		
sentiment -	1	1	0	0	0	1	7	5		- 20
text -	2	7	2	1	1	0	21	36		
news -	0	1	0	0	0	0	4	22		- 15
company/personal financial data -	0	21	5	2	1	0	2	3		
macroeconomic data -	1	2	2	0	0	1	0	0		- 10
risk measuring features -	0	3	2	0	0	0	0	0		_
blockchain/cryptocurrency specific features -	0	0	0	0	0	6	0	0		- 5
human inputs -	0	0	0	0	0	0	0	2		
	algorithmic trading -	risk assessment -	fraud detection -	vortfolio management -	asset pricing and derivatives market	cryptocurrency and _ blockchain studies ⁻	financial sentiment _ analysis	financial text mining -	. –	0

Deep learning for financial set applications: Topic-Dataset Heatmap

Stock Data -	15	2	0	11	3	0	7	20	2	3	- 35
Index/ETF Data -	35	0	0	3	3	0	9	14	0	1	
Cryptocurrency -	9	0	0	2	0	15	2	0	0	0	- 30
Forex Data -	5	0	0	1	0	0	0	0	0	2	
Commodity Data -	6	0	0	1	0	0	0	0	0	2	- 25
Options Data -	1	0	0	0	4	0	0	0	0	0	
Transaction Data -	2	3	2	0	0	0	0	1	0	0	- 20
News Text -	4	3	0	0	0	0	13	36	0	0	
Tweet/microblog -	1	0	0	0	0	1	8	10	0	1	- 15
Credit Data -	0	10	1	0	0	0	0	0	0	0	
Financial Reports -	0	6	2	3	2	0	4	3	0	3	- 10
Consumer Data -	0	8	6	0	0	0	0	1	0	1	-
Macroeconomic Data -	0	2	1	0	0	0	0	0	0	1	- 5
Other -	5	3	1	1	3	0	0	3	1	0	- 0
	algorithmic trading –	risk assessment -	fraud detection -	ortfolio management -	asset pricing and _ derivatives market [_]	cryptocurrency and blockchain studies	financial sentiment _ analysis	financial text mining -	theoretical or conceptual studies [–]	other financial applications	- 0

Algo-trading applications embedded with time series forecasting models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[33]	GarantiBank in BIST, Turkey	2016	OCHLV, Spread, Volatility, Turnover, etc.	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, Correlation R-square	Spark
[34]	CSI300, Nifty50, HSI, Nikkei 225, S&P500, DJIA	2010-2016	OCHLV, Technical Indicators	WT, Stacked autoencoders, LSTM	MAPE, Correlation coefficient, THEIL-U	_
[35]	Chinese Stocks	2007-2017	OCHLV	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[36]	50 stocks from NYSE	2007-2016	Price data	SFM	MSE	-
[37]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[38]	300 stocks from SZSE, Commodity	2014-2015	Price data	FDDR, DMLP+RL	Profit, return, SR, profit-loss curves	Keras
[39]	S&P500 Index	1989–2005	Price data, Volume	LSTM	Return, STD, SR, Accuracy	Python, TensorFlow, Keras, R, H2O
[40]	Stock of National Bank of Greece (ETE).	2009–2014	FTSE100, DJIA, GDAX, NIKKEI225, EUR/USD, Gold	GASVR, LSTM	Return, volatility, SR, Accuracy	Tensorflow
[41]	Chinese stock-IF-IH-IC contract	2016-2017	Decisions for price change	MODRL+LSTM	Profit and loss, SR	-
[42]	Singapore Stock Market Index	2010-2017	OCHL of last 10 days of Index	DMLP	RMSE, MAPE, Profit, SR	-
[43]	GBP/USD	2017	Price data	Reinforcement Learning + LSTM + NES	SR, downside deviation ratio, total profit	Python, Keras, Tensorflow
[44]	Commodity, FX future, ETF	1991–2014	Price Data	DMLP	SR, capability ratio, return	C++, Python
[45]	USD/GBP, S&P500, FTSE100, oil, gold	2016	Price data	AE + CNN	SR, % volatility, avg return/trans, rate of return	H2O

Algo-trading applications embedded with time series forecasting models

-						
Art.	Data set	Period	Feature set	Method	Performance	Environment
					criteria	

					iute of return	
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX returns, Euribor interest rates, OCHLV	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[47]	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning, DMLP	Total profit, Correlation	_
[48]	Stocks in the S&P500	1990–2015	Price data	DMLP, GBT, RF	Mean return, MDD, Calmar ratio	H2O
[49]	Fundamental and Technical Data, Economic Data	_	Fundamental , technical and market information	CNN	_	-

Classification (buy-sell signal, or trend detection) based algo-trading models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[51]	Stocks in Dow30	1997-2017	RSI	DMLP with genetic algorithm	Annualized return	Spark MLlib, Java
[52]	SPY ETF, 10 stocks from S&P500	2014-2016	Price data	FFNN	Cumulative gain	MatConvNet, Matlab
[53]	Dow30 stocks	2012-2016	Close data and several technical indicators	LSTM	Accuracy	Python, Keras, Tensorflow, TALIB
[54]	High-frequency record of all orders	2014-2017	Price data, record of all orders, transactions	LSTM	Accuracy	-
[55]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price and volume data in LOB	LSTM	Precision, Recall, F1-score, Cohen's k	-
[56]	17 ETFs	2000-2016	Price data, technical indicators	CNN	Accuracy, MSE, Profit, AUROC	Keras, Tensorflow
[57]	Stocks in Dow30 and 9 Top Volume ETFs	1997–2017	Price data, technical indicators	CNN with feature imaging	Recall, precision, F1-score, annualized return	Python, Keras, Tensorflow, Java
[58]	FTSE100	2000-2017	Price data	CAE	TR, SR, MDD, mean return	-
[59]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price, Volume data, 10 orders of the LOB	CNN	Precision, Recall, F1-score, Cohen's k	Theano, Scikit learn, Python
[60]	Borsa Istanbul 100 Stocks	2011-2015	75 technical indicators and OCHLV	CNN	Accuracy	Keras
[61]	ETFs and Dow30	1997-2007	Price data	CNN with feature imaging	Annualized return	Keras, Tensorflow
[62]	8 experimental assets from bond/derivative market	-	Asset prices data	RL, DMLP, Genetic Algorithm	Learning and genetic algorithm error	-
[63]	10 stocks from S&P500	-	Stock Prices	TDNN, RNN, PNN	Missed opportunities, false alarms ratio	-
[64]	London Stock Exchange	2007-2008	Limit order book state, trades, buy/sell orders, order deletions	CNN	Accuracy, kappa	Caffe
[65]	Cryptocurrencies, Bitcoin	2014-2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	_

Deep learning for financial applications: Stand-alone and/or other algorithmic models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[66]	DAX, FTSE100, call/put options	1991–1998	Price data	Markov model, RNN	Ewa-measure, iv, daily profits' mean and std	-
[67]	Taiwan Stock Index Futures, Mini Index Futures	2012-2014	Price data to image	Visualization method + CNN	Accumulated profits,accuracy	-
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015–2016	Text and Price data	LSTM, RNN, GRU	Return, SR, precision, recall, accuracy	Python, Tweepy API
[69]	CME FIX message	2016	Limit order book, time-stamp, price data	RNN	Precision, recall, F1-measure	Python, TensorFlow, R
[70]	Taiwan stock index futures (TAIFEX)	2017	Price data	Agent based RL with CNN pre-trained	Accuracy	_
[71]	Stocks from S&P500	2010-2016	OCHLV	DCNL	PCC, DTW, VWL	Pytorch
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013–2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[73]	489 stocks from S&P500 and NASDAQ-100	2014-2015	Limit Order Book	Spatial neural network	Cross entropy error	NVIDIA's cuDNN
[74]	Experimental dataset	-	Price data	DRL with CNN, LSTM, GRU, DMLP	Mean profit	Python

Deep learning for financial applications: Credit scoring or classification studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[77]	The XR 14 CDS contracts	2016	Recovery rate, spreads, sector and region	DBN+RBM	AUROC, FN, FP, Accuracy	WEKA
[78]	German, Japanese credit datasets	-	Personal financial variables	SVM + DBN	Weighted- accuracy, TP, TN	-
[79]	Credit data from Kaggle	-	Personal financial variables	DMLP	Accuracy, TP, TN, G-mean	-
[80]	Australian, German credit data	-	Personal financial variables	GP + AE as Boosted DMLP	FP	Python, Scikit-learn
[81]	German, Australian credit dataset	-	Personal financial variables	DCNN, DMLP	Accuracy, False/Missed alarm	-
[82]	Consumer credit data from Chinese finance company	-	Relief algorithm chose the 50 most important features	CNN + Relief	AUROC, K-s statistic, Accuracy	Keras
[83]	Credit approval dataset by UCI Machine Learning repo	-	UCI credit approval dataset	Rectifier, Tanh, Maxout DL	_	AWS EC2, H2O, R

Financial distress, bankruptcy, bank risk, mortgage risk, crisis forecasting studies.

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[84]	966 french firms	-	Financial ratios	RBM+SVM	Precision, Recall	-
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, RF	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[86]	The event data set for large European banks, news articles from Reuters	2007–2014	Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	-
[87]	Event dataset on European banks, news from Reuters	2007–2014	Text, sentence	Sentence vector + DFFN	Usefulness, F1-score, AUROC	-
[88]	News from Reuters, fundamental data	2007-2014	Financial ratios and news text	doc2vec + NN	Relative usefulness	Doc2vec
[89]	Macro/Micro economic variables, Bank charac- teristics/performance variables from BHC	1976–2017	Macro economic variables and bank performances	CGAN, MVN, MV-t, LSTM, VAR, FE-QAR	RMSE, Log likelihood, Loan loss rate	-
[90]	Financial statements of French companies	2002-2006	Financial ratios	DBN	Recall, Precision, F1-score, FP, FN	-
[91]	Stock returns of American publicly-traded companies from CRSP	2001–2011	Price data	DBN	Accuracy	Python, Theano
[92]	Financial statements of several companies from Japanese stock market	2002–2016	Financial ratios	CNN	F1-score, AUROC	-
[93]	Mortgage dataset with local and national economic factors	1995–2014	Mortgage related features	DMLP	Negative average log-likelihood	AWS
[94]	Mortgage data from Norwegian financial service group, DNB	2012-2016	Personal financial variables	CNN	Accuracy, Sensitivity, Specificity, AUROC	-
[95]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	CNN, LSTM	F1-Score	Keras, Tensorflow
[96]	Several datasets combined to create a new one	1996–2017	Index data, 10-year Bond yield, exchange rates,	Logit, CART, RF, SVM, NN, XGBoost, DMLP	AUROC, KS, G-mean, likelihood ratio, DP, BA, WBA	R

Deep learning for financial applications: Fraud detection studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[114]	Debit card transactions by a local Indonesia bank	2016–2017	Financial transaction amount on several time periods	CNN, Stacked-LSTM, CNN-LSTM	AUROC	-
[115]	Credit card transactions from retail banking	2017	Transaction variables and several derived features	LSTM, GRU	Accuracy	Keras
[116]	Card purchases' transactions	2014-2015	Probability of fraud per currency/origin country, other fraud related features	DMLP	AUROC	-
[117]	Transactions made with credit cards by European cardholders	2013	Personal financial variables to PCA	DMLP, RF	Recall, Precision, Accuracy	-
[118]	Credit-card transactions	2015	Transaction and bank features	LSTM	AUROC	Keras, Scikit-learn
[119]	Databases of foreign trade of the Secretariat of Federal Revenue of Brazil	2014	8 Features: Foreign Trade, Tax, Transactions, Employees, Invoices, etc	AE	MSE	H2O, R
[120]	Chamber of Deputies open data, Companies data from Secretariat of Federal Revenue of Brazil	2009–2017	21 features: Brazilian State expense, party name, Type of expense, etc.	Deep Autoencoders	MSE, RMSE	H2O, R
[121]	Real-world data for automobile insurance company labeled as fradulent	-	Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	-
[122]	Transactions from a giant online payment platform	2006	Personal financial variables	GBDT+DMLP	AUROC	-
[123]	Financial transactions	-	Transaction data	LSTM	t-SNE	-
[124]	Empirical data from Greek firms	-	-	DQL	Revenue	Torch

Deep learning for financial applications: Portfolio management studies

	_					
Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-
[127]	Stocks from NYSE, AMEX, NASDAQ	1965-2009	Price data	Autoencoder + RBM	Accuracy, confusion matrix	-
[128]	20 stocks from S&P500	2012-2015	Technical indicators	DMLP	Accuracy	Python, Scikit Learn, Keras, Theano
[129]	Chinese stock data	2012-2013	Technical, fundamental data	Logistic Regression, RF, DMLP	AUC, accuracy, precision, recall, f1, tpr, fpr	Keras, Tensorflow, Python, Scikit learn
[130]	Top 5 companies in S&P500	-	Price data and Financial ratios	LSTM, Auto-encoding, Smart indexing	CAGR	-
[131]	IBB biotechnology index, stocks	2012–2016	Price data	Auto-encoding, Calibrating, Validating, Verifying	Returns	-
[132]	Taiwans stock market	-	Price data	Elman RNN	MSE, return	-
[133]	FOREX (EUR/USD, etc.), Gold	2013	Price data	Evolino RNN	Return	Python
[134]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	LSTM+DMLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[135]	S&P500	1985-2006	monthly and daily log-returns	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[136]	10 stocks in S&P500	1997-2016	OCHLV, Price data	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[137]	Analyst reports on the TSE and Osaka Exchange	2016-2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[138]	Stocks from Chinese/American stock market	2015-2018	OCHLV, Fundamental data	DDPG, PPO	SR, MDD	-
[139]	Hedge fund monthly return data	1996–2015	Return, SR, STD, Skewness, Kurtosis, Omega ratio, Fund alpha	DMLP	Sharpe ratio, Annual return, Cum. return	-
[140]	12 most-volumed cryptocurrency	2015-2016	Price data	CNN + RL	SR, portfolio value, MDD	-

Deep learning for financial applications: Asset pricing and derivatives market studies

Art.	Der. type	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Asset pricing	Analyst reports on the TSE and Osaka Exchange	2016-2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[142]	Options	Simulated a range of call option prices	-	Price data, option strike/maturity, dividend/risk free rates, volatility	DMLP	RMSE, the average percentage pricing error	Tensorflow
[143]	Futures, Options	TAIEX Options	2017	OCHLV, fundamental analysis, option price	DMLP, DMLP with Black scholes	RMSE, MAE, MAPE	-
[144]	Equity returns	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	Fama–French n-factor model DL	R ² ,RMSE	Tensorflow

Deep learning for financial applications: Cryptocurrency and blockchain studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX daily returns, Euribor interest rates, OCHLV of EURO/UK, EURO/USD, US/JPY	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN	Accumulative portfolio value, MDD, SR	_
[140]	12 most-volumed cryptocurrency	2015-2016	Price data	CNN + RL	SR, portfolio value, MDD	
[145]	Bitcoin data	2010–2017	Hash value, bitcoin address, public/private key, digital signature, etc.	Takagi–Sugeno Fuzzy cognitive maps	Analytical hierarchy process	_
[146]	Bitcoin data	2012, 2013, 2016	TransactionId, input/output Addresses, timestamp	Graph embedding using heuristic, laplacian eigen-map, deep AE	F1-score	_
[147]	Bitcoin, Litecoin, StockTwits	2015-2018	OCHLV, technical indicators, sentiment analysis	CNN, LSTM, State Frequency Model	MSE	Keras, Tensorflow
[148]	Bitcoin	2013–2016	Price data	Bayesian optimized RNN, LSTM	Sensitivity, specificity, precision, accuracy, RMSE	Keras, Python, Hyperas
Financial sentiment studies coupled with text mining for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Analyst reports on the TSE and Osaka Exchange	2016-2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[150]	Sina Weibo, Stock market records	2012-2015	Technical indicators, sentences	DRSE	F1-score, precision, recall, accuracy, AUROC	Python
[151]	News from Reuters and Bloomberg for S&P500 stocks	2006–2015	2015 Financial news, DeepClue Accuracy price data		Accuracy	Dynet software
[152]	News from Reuters and Bloomberg, Historical stock security data	2006–2013	News, price data	DMLP	Accuracy	-
[153]	SCI prices	2008–2015	OCHL of change rate, price	Emotional Analysis + LSTM	MSE	-
[154]	SCI prices	2013-2016	Text data and Price data	LSTM	Accuracy, F1-Measure	Python, Keras
[155]	Stocks of Google, Microsoft and Apple	2016-2017	Twitter sentiment and stock prices	RNN	-	Spark, Flume,Twitter API,
[156]	30 DJIA stocks, S&P500, DJI, news from Reuters	2002–2016	Price data and features from news articles	LSTM, NN, CNN and word2vec	Accuracy	VADER
[157]	Stocks of CSI300 index, OCHLV of CSI300 index	2009–2014	Sentiment Posts, Price data	Naive Bayes + LSTM	Precision, Recall, F1-score, Accuracy	Python, Keras
[158]	S&P500, NYSE Composite, DJIA, NASDAQ Composite	2009–2011	Twitter moods, index data	DNN, CNN	Error rate	Keras, Theano

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015-2016	Text and Price data	RNN, KNN, SVR, LinR	Return, SR, precision, recall, accuracy	Python, Tweepy API
[165]	News from Reuters, Bloomberg	2006–2013	Financial news, price data	Bi-GRU	Accuracy	Python, Keras
[166]	News from Sina.com, ACE2005 Chinese corpus	2012-2016	A set of news text	Their unique algorithm	Precision, Recall, F1-score	-
[167]	CDAX stock market data 2010–2013 Financial news, stock market dat		Financial news, stock market data	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Python, Scikit-Learn
[168]	Apple, Airbus, Amazon news from Reuters, Bloomberg, S&P500 stock prices	2006-2013	Price data, news, technical indicators	TGRU, stock2vec	Accuracy, precision, AUROC	Keras, Python
[169]	S&P500 Index, 15 stocks in S&P500	2006-2013	News from Reuters and Bloomberg	CNN	Accuracy, MCC	-
[170]	S&P500 index news from Reuters	2006-2013	Financial news titles, Technical indicators	SI-RCNN (LSTM + CNN)	Accuracy	-
[171]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	Paragraph Vector + LSTM	Profit	-
[172]	NIFTY50 Index, NIFTY Bank/Auto/IT/Energy Index, News	2013-2017	Index data, news	LSTM	MCC, Accuracy	-
[173]	Price data, index data, news, social media data	2015	Price data, news from articles and social media	Coupled matrix and tensor	Accuracy, MCC	Jieba
[174]	HS300	2015-2017	Social media news, price data	RNN-Boost with LDA	Accuracy, MAE, MAPE, RMSE	Python, Scikit-learn

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	iod Feature set Method		Performance Env. criteria	
[175]	News and Chinese stock data	2014–2017	Selected words in a news	HAN	Accuracy, Annual return	-
[176]	News, stock prices from Hong Kong Stock Exchange	2001	Price data and TF-IDF from news	ELM, DLR, PCA, BELM, KELM, NN	Accuracy	Matlab
[177]	TWSE index, 4 stocks in TWSE	2001–2017	Technical indicators, Price data, News	CNN + LSTM	NN + LSTM RMSE, Profit	
[178]	Stock of Tsugami Corporation	2013	Price data	LSTM	RMSE	Keras, Tensorflow
[179]	News, Nikkei Stock Average and 10-Nikkei companies	1999–2008	news, MACD	RNN, RBM+DBN	Accuracy, P-value	_
[180]	ISMIS 2017 Data Mining Competition dataset	_	Expert identifier, classes	LSTM + GRU + FFNN	Accuracy	-
[181]	Reuters, Bloomberg News, S&P500 price	2006-2013	News and sentences	LSTM	Accuracy	-
[182]	APPL from S&P500 and news from Reuters	2011–2017	Input news, OCHLV, Technical indicators	CNN + LSTM, CNN+SVM	Accuracy, F1-score	Tensorflow
[183]	Nikkei225, S&P500, news from Reuters and Bloomberg	2001–2013	Stock price data and news	DGM	Accuracy, MCC, %profit	-
[184]	Stocks from S&P500	2006–2013	Text (news) and Price data	LAR+News, RF+News	MAPE, RMSE	-

Financial sentiment studies coupled with text mining without forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[85]	883 BHC from EDGAR 2006–2017 Tokens, weigh sentiment po leverage and		Tokens, weighted sentiment polarity, leverage and ROA	ns, weighted CNN, LSTM, SVM, Accent polarity, Random Forest Preage and ROA F1		Keras, Python, Scikit-learn
[185]	SemEval-2017 dataset, financial text, news, stock market data	2017	Sentiments in Tweets, News headlines	Ensemble SVR, CNN, LSTM, GRU	Cosine similarity score, agreement score, class score	Python, Keras, Scikit Learn
[186]	Financial news from Reuters	2006–2015	Word vector, Lexical and Contextual input	vector, Targeted Cumulative l and dependency tree abnormal return xtual input LSTM		-
[187]	Stock sentiment analysis from StockTwits	entiment analysis 2015 StockTwits LSTM, Doc2Vec, Accura tockTwits messages CNN precisi f-meas		Accuracy, precision, recall, f-measure, AUC	-	
[188]	Sina Weibo, Stock market records	2012-2015	Technical indicators, sentences	DRSE	F1-score, precision, recall, accuracy, AUROC	Python
[189]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	NowNews, 2013–2014 Text, Sent LTN, or 18 stocks		xt, Sentiment LSTM, CNN Return		Python, Tensorflow
[190]	StockTwits	2008–2016	Sentences, CNN, LSTM, GRU MG StockTwits messages		MCC, WSURT	Keras, Tensorflow
[191]	Financial statements of Japan companies	-	Sentences, text	DMLP	Precision, recall, f-score	-
[192]	Twitter posts, news headlines	-	Sentences, text	ences, text Deep-FASP Act		-
[193]	Forums data	2004–2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
[194]	News from Financial Times related US stocks	-	Sentiment of news headlines	SVR, Bidirectional LSTM	Cosine similarity	Python, Scikit Learn, Keras, Tensorflow

Deep learning for financial applications: Other text mining studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013-2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[86]	The event data set for large European banks, news articles from Reuters	2007–2014	Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	_
[87]	Event dataset on European banks, news from Reuters	2007–2014	Text, sentence	Sentence vector + DFFN	Usefulness, F1-score, AUROC	-
[88]	News from Reuters, fundamental data	2007–2014	Financial ratios and news text	doc2vec + NN	Relative usefulness	Doc2vec
[121]	Real-world data for automobile insurance company labeled as fradulent	-	Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	_
[123]	Financial transactions	-	Transaction data	LSTM	t-SNE	-
[195]	Taiwan's National Pension Insurance	2008–2014	Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
[196]	StockTwits	2015-2016	Sentences, StockTwits messages	Doc2vec, CNN	Accuracy, precision, recall, f-measure, AUC	Python, Tensorflow

Deep learning for financial applications: Other theoretical or conceptual studies

Art.	SubTopic	IsTimeSeries?	Data set	Period	Feature set	Method
[197]	Analysis of AE, SVD	Yes	Selected stocks from the IBB index and stock of Amgen Inc.	2012-2014	Price data	AE, SVD
[198]	Fraud Detection in Banking	No	Risk Management / Fraud Detection	-	-	DRL

Deep learning for financial applications: Other financial applications

Art.	Subtopic	Data set	Period	Feature set	Method	Performance criteria	Env.
[47]	Improving trading decisions	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning and DMLP	Total profit, Correlation	-
[193]	Identifying Top Sellers In Underground Economy	Forums data	2004–2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
[195]	Predicting Social Ins. Payment Behavior	Taiwan's National Pension Insurance	2008-2014	Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
[199]	Speedup	45 CME listed commodity and FX futures	1991–2014	Price data	DNN	_	-
[200]	Forecasting Fundamentals	Stocks in NYSE, NASDAQ or AMEX exchanges	1970–2017	16 fundamental features from balance sheet	DMLP, LFM	MSE, Compound annual return, SR	-
[201]	Predicting Bank Telemarketing	Phone calls of bank marketing data	2008-2010	16 finance-related attributes	CNN	Accuracy	-
[202]	Corporate Performance Prediction	22 pharmaceutical companies data in US stock market	2000-2015	11 financial and 4 patent indicator	RBM, DBN	RMSE, profit	-

Financial time series forecasting with deep learning: Topic-model heatmap

Histogram of Publ

Source: Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

Stock price forecasting using only raw time series data

Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[80]	38 stocks in KOSPI	2010-2014	Lagged stock returns	50 min	5 min	DNN	NMSE, RMSE, MAE, MI	-
[81]	China stock market, 3049 Stocks	1990–2015	OCHLV	30 d	3 d	LSTM	Accuracy	Theano, Keras
[82]	Daily returns of 'BRD' stock in Romanian Market	2001–2016	OCHLV	-	1 d	LSTM	RMSE, MAE	Python, Theano
[83]	297 listed companies of CSE	2012-2013	OCHLV	2 d	1 d	LSTM, SRNN, GRU	MAD, MAPE	Keras
[84]	5 stock in NSE	1997–2016	OCHLV, Price data, turnover and number of trades.	200 d	110 d	LSTM, RNN, CNN, MLP	MAPE	-
[85]	Stocks of Infosys, TCS and CIPLA from NSE	2014	Price data	-	_	RNN, LSTM and CNN	Accuracy	-
[86]	10 stocks in S&P500	1997–2016	OCHLV, Price data	36 m	1 m	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[87]	Stocks data from S&P500	2011-2016	OCHLV	1 d	1 d	DBN	MSE, norm-RMSE, MAE	-
[88]	High-frequency transaction data of the CSI300 futures	2017	Price data	-	1 min	DNN, ELM, RBF	RMSE, MAPE, Accuracy	Matlab
[89]	Stocks in the S&P500	1990–2015	Price data	240 d	1 d	DNN, GBT, RF	Mean return, MDD, Calmar ratio	H2O
[90]	ACI Worldwide, Staples, and Seagate in NASDAQ	2006–2010	Daily closing prices	17 d	1 d	RNN, ANN	RMSE	-
[91]	Chinese Stocks	2007–2017	OCHLV	30 d	15 d	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[<mark>9</mark> 2]	20 stocks in S&P500	2010-2015	Price data	-	-	AE + LSTM	Weekly Returns	-
[<mark>9</mark> 3]	S&P500	1985–2006	Monthly and daily log-returns	*	1 d	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[94]	12 stocks from SSE Composite Index	2000-2017	OCHLV	60 d	17 d	DWNN	MSE	Tensorflow
[95]	50 stocks from NYSE	2007-2016	Price data	-	1d, 3 d, 5 d	SFM	MSE	-

Source: Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

Stock price forecasting using various data

Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[96]	Japan Index constituents from WorldScope	1990-2016	25 Fundamental Features	10 d	1 d	DNN	Correlation, Accuracy, MSE	Tensorflow
[97]	Return of S&P500	1926-2016	Fundamental Features:	-	1 s	DNN	MSPE	Tensorflow
[98]	U.S. low-level disaggregated macroeconomic time series	1959–2008	GDP, Unemployment rate, Inventories, etc	-	-	DNN	R ²	-
[99]	CDAX stock market data	2010-2013	Financial news, stock market data	20 d	1 d	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Python, Scikit-Learn
[100]	Stock of Tsugami Corporation	2013	Price data	-	-	LSTM	RMSE	Keras, Tensorflow
[101]	Stocks in China's A-share	2006-2007	11 technical indicators	-	1 d	LSTM	AR, IR, IC	-
[102]	SCI prices	2008-2015	OCHL of change rate, price	7 d	-	EmotionalAnalysis + LSTM	MSE	-
[103]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	10 d	-	Paragraph Vector + LSTM	Profit	-
[104]	TKC stock in NYSE and QQQQ ETF	1999–2006	Technical indicators, Price	50 d	1 d	RNN (Jordan–Elman)	Profit, MSE	Java
[105]	10 Stocks in NYSE	-	Price data, Technical indicators	20 min	1 min	LSTM, MLP	RMSE	-
[106]	42 stocks in China's SSE	2016	OCHLV, Technical Indicators	242 min	1 min	GAN (LSTM, CNN)	RMSRE, DPA, GAN-F, GAN-D	-
[107]	Google's daily stock data	2004-2015	OCHLV, Technical indicators	20 d	1 d	$(2D)^2$ PCA + DNN	SMAPE, PCD, MAPE, RMSE, HR, TR, R ²	R, Matlab
[108]	GarantiBank in BIST, Turkey	2016	OCHLV, Volatility, etc.	-	-	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, R ²	Spark
[109]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	80 d	1 d	LSTM+MLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[110]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	-	-	CNN, LSTM	F1-Score	Keras, Tensorflow
[111]	Fundamental and Technical Data, Economic Data	-	Fundamental , technical and market information	-	-	CNN	-	-
[112]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	-	*	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[113]	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	*	-	Fama–French n-factor model DL	R ² , RMSE	Tensorflow

Source: Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

Stock Market Movement Forecast: Phases of the stock market modeling

Source: O. Bustos and A. Pomares-Quimbaya (2020), "Stock Market Movement Forecast: A Systematic Review." Expert Systems with Applications (2020): 113464.

AI, ML, DL

Artificial Intelligence (AI)

Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html

3 Machine Learning Algorithms

Source: Enrico Galimberti, http://blogs.teradata.com/data-points/tree-machine-learning-algorithms/

Machine Learning (ML)

Source: https://www.mactores.com/services/aws-big-data-machine-learning-cognitive-services/

Machine Learning Models

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing

Machine Learning (ML) / Deep Learning (DL)

Source: Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma (2015), "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.

Machine Learning Tasks and Methods

Note: Several entries in the diagram, e.g. word embedding or multi-armed bandit, refer to specific problem formulations for which a collection of methods exist.

: Tasks that take input data as given

: Tasks that involve interactive data acquisition

Dashed border: methods not elaborated in paper text Bold type: highlights recent developments

Source: Live Ma and Baohong Sun (2020), "Machine learning and AI in marketing – Connecting computing power to human insights." International Journal of Research in Marketing, 37, no. 3, 481-504.

Machine Learning

Scikit-Learn Machine Learning in Python

Scikit-Learn

Open source, commercially usable - BSD license

Classification

Getting Started

Identifying which category an object belongs to.

Release Highlights for 0.24

Applications: Spam detection, image recognition.

Algorithms: SVM, nearest neighbors, random forest, and more...

Regression

GitHub

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, nearest neighbors, random forest, and more...

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, and more...

Go

Machine Learning Supervised Learning (Classification) Learning from Examples

Machine Learning Supervised Learning (Classification) Learning from Examples v = f(x)5.1,3.5,1.4,0.2 Iris-setosa 4.9,3.0,1.4,0.2, Iris-setosa 4.7,3.2,1.3,0.2, Iris-setosa 7.0,3.2,4.7,1.4, Iris-versicolor X 6.4,3.2,4.5,1.5, Iris-versicolor 6.9,3.1,4.9,1.5, Iris-versicolor 6.3,3.3,6.0,2.5, Iris-virginica 5.8,2.7,5.1,1.9, Iris-virginica 7.1,3.0,5.9,2.1, Iris-virginica

Linear function

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Deep Learning

Deep Learning and **Neural Networks**

TensorFlow Playground

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

http://playground.tensorflow.org/

Tensor

- 3
 - # a rank 0 tensor; this is a scalar with shape []
- [1. ,2., 3.]

- # a rank 1 tensor; this is a vector with shape [3]

• [[1., 2., 3.], [4., 5., 6.]]

- # a rank 2 tensor; a matrix with shape [2, 3]

• [[[1., 2., 3.]], [[7., 8., 9.]]]

- # a rank 3 tensor with shape [2, 1, 3]

Tensor

[50 60 70][70 80 90][55 65 75][75 85 95]

Matrix

Vector

 50
 60
 70

 55
 65
 75

[50 60 70]

Deep Learning and **Neural Networks**

Deep Learning Foundations: Neural Networks

Deep Learning and Neural Networks Output Layer Input Layer Hidden Layers (X) (H) (Y) **Deep Neural Networks Deep Learning**

Deep Learning and Deep Neural Networks

Feed Forward (FF) Radial Basis Network (RBF)

Deep Feed Forward (DFF)

Source: http://www.asimovinstitute.org/neural-network-zoo/

Source: http://www.asimovinstitute.org/neural-network-zoo/

Deep Convolutional Inverse Graphics Network (DCIGN)

Generative Adversarial Network (GAN)

Deep Convolutional Network (DCN)

Liquid State Machine (LSM) Ext

Deconvolutional Network (DN)

Extreme Learning Machine (ELM)

Echo State Network (ESN)

Deep Residual Network (DRN)

Convolutional Neural Networks

(CNN or Deep Convolutional Neural Networks, DCNN)

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324. Source: http://www.asimovinstitute.org/neural-network-zoo/

Recurrent Neural Networks (RNN)

Elman, Jeffrey L. "Finding structure in time." Cognitive science 14.2 (1990): 179-211 Source: http://www.asimovinstitute.org/neural-network-zoo/

Long / Short Term Memory (LSTM)

Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

Gated Recurrent Units (GRU)

Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint arXiv:1412.3555 (2014). Source: http://www.asimovinstitute.org/neural-network-zoo/

Generative Adversarial Networks (GAN)

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.

Source: http://www.asimovinstitute.org/neural-network-zoo/

Support Vector Machines (SVM)

Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297.

Source: http://www.asimovinstitute.org/neural-network-zoo/

From image to text

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

81

From image to text

Image: deep convolution neural network (CNN) Text: recurrent neural network (RNN)

A group of **people** sitting on a boat in the water.

The Neuron

Neuron and Synapse

The Neuron

$y = max (0, -0.21 * x_1 + 0.3 * x_2 + 0.7 * x_3)$

Weights

Neural Networks

Neural Networks

Input Layer (X) Hidden Layers (H) Output Layer (Y)

Deep Neural Networks Deep Learning

Neural Networks

Χ		Υ
Hours Sleep	Hours Study	Score
3	5	75
5	1	82
10	2	93
8	3	?

		X	Y
	Hours Sleep	Hours Study	Score
	3	5	75
Training	5	1	82
	10	2	93
- Testing	8	3	?

Y = W X + b

2.0 W X + b = Y1.0 0.1 Probabilities **Scores**

SoftMAX

$W X + b = Y \begin{vmatrix} 2.0 & -- \\ 1.0 & -- \end{vmatrix} S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} \begin{vmatrix} - & 0.7 \\ - & 0.2 \end{vmatrix}$ $0.1 & -- \end{vmatrix} 0.1$ Logits Probabilities **Scores**

Training a Network = Minimize the Cost Function

Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

Training a Network = Minimize the Cost Function Minimize the Loss Function

Error = Predict Y - Actual Y Error : Cost : Loss

Error = Predict Y - Actual Y Error : Cost : Loss

Error = Predict Y - Actual Y Error : Cost : Loss

Activation Functions

Activation Functions

Activation Functions

Source: http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

Loss Function

Binary Classification: 2 Class

Activation Function: Sigmoid

Loss Function: Binary Cross-Entropy

Multiple Classification: 10 Class

Activation Function: SoftMAX

Loss Function: Categorical Cross-Entropy

Dropout

Dropout: a simple way to prevent neural networks from overfitting

(b) After applying dropout.

113

Learning Algorithm

While not done:

Pick a random training example "(input, label)"

Run neural network on "input"

Adjust weights on edges to make output closer to "label"

$y = max (0, -0.21 * x_1 + 0.3 * x_2 + 0.7 * x_3)$

Weights

This shows a function of 2 variables: real neural nets are functions of hundreds of millions of variables!

Neural Network and Deep Learning

Source: 3Blue1Brown (2017), But what *is* a Neural Network? | Chapter 1, deep learning,

https://www.youtube.com/watch?v=aircAruvnKk

Gradient Descent how neural networks learn

Source: 3Blue1Brown (2017), Gradient descent, how neural networks learn | Chapter 2, deep learning, https://www.youtube.com/watch?v=IHZwWFHWa-w

Backpropagation

Source: 3Blue1Brown (2017), What is backpropagation really doing? | Chapter 3, deep learning, https://www.youtube.com/watch?v=Ilg3gGewQ5U

Learning Algorithm

While not done:

Pick a random training example "(input, label)"

Run neural network on "input"

Adjust weights on edges to make output closer to "label"

Convolutional **Neural Networks** (CNN)

Convolutional Neural Networks (CNN)

Architecture of LeNet-5 (7 Layers) (LeCun et al., 1998)

Source: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Source: LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

"Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86, no. 11 (1998): 2278-2324.

Convolutional Neural Networks (CNN)

- Convolution
- Pooling
- Fully Connection (FC) (Flattening)

Convolution Layer Pooling Layer

Convolution Layer Pooling Layer

Fully Connected Layer

CNN Architecture

Convolution is a mathematical operation to merge two sets of information 3x3 convolution

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Input

Filter / Kernel

CNN Convolution Layer Input x Filter --> Feature Map

receptive field: 3x3

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

Input x Filter

CNN Convolution Layer Input x Filter --> Feature Map

receptive field: 3x3

1	1x1	1x0	0x1	0
0	1x0	1x1	1x0	0
0	0x1	1x0	1x1	1
0	0	1	1	0
0	1	1	0	0

Input x Filter

 1
 0
 1

 0
 1
 0

 1
 0
 1

Input

Filter /	Kernel
muer	Reffici

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

Example convolution operation shown in 2D using a 3x3 filter

10 different filters 10 feature maps of size 32x32x1

CNN Convolution Layer Sliding operation at 4 locations

two feature maps

Stride specifies how much we move the convolution filter at each step

Stride 1

Stride specifies how much we move the convolution filter at each step

Stride 2

Feature Map

Stride 1 with Padding

	I I I			
• ·				
, , ,				
, , ,				
, , ,				

Stride 1 with Padding

Feature Map

CNN Pooling Layer

Max Pooling

CNN Pooling Layer

CNN Architecture 4 convolution + pooling layers, followed by 2 fully connected layers

CNN Architecture 4 convolution + pooling layers, followed by 2 fully connected layers

https://gist.github.com/ardendertat/0fc5515057c47e7386fe04e9334504e3
Dropout

No Dropout

With Dropout

Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks, https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Model Performance

Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks, https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Visual Recognition Image Classification

Convolutional Neural Networks (CNNs / ConvNets)

A regular 3-layer Neural Network

hidden layer 1 hidden layer 2

A ConvNet arranges its neurons in three dimensions (width, height, depth)

The activations of an example ConvNet architecture.

ConvNets

ConvNets

http://cs231n.github.io/convolutional-networks/

Convolution Demo

ConvNets

input volume of size [224x224x64] is pooled with **filter** size 2, **stride** 2 into output volume of size [112x112x64]

224x224x64

ConvNets max pooling

Single depth slice

X

max pool with 2x2 filters and stride 2

6	8
3	4

http://cs231n.github.io/convolutional-networks/

ν

Convolutional Neural Networks (CNN) (LeNet)

Source: http://deeplearning.net/tutorial/lenet.html

Recurrent **Neural Networks** (RNN)

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) Time Series Forecasting

Recurrent Neural Networks (RNN)

Recurrent Neural Network (RNN)

166

RNN long-term dependencies

Vanishing Gradient Exploding Gradient

Exploding Gradient

Recurrent Neural Networks (RNN)

RNN

Vanishing Gradient problem Exploding Gradient problem Error

Source: https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-term-memory-networks-with-math-21477f8e4235 170

RNN

Vanishing Gradient problem

RNN

Exploding Gradient problem

RNN LSTM

Long Short Term Memory (LSTM) tanh σ tanh σ Xt Neural Network Pointwise Vector Concatenate Copy Layer Operation Transfer

Long Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

LSTM

Source: Shi Yan (2016), Understanding LSTM and its diagrams, https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714 178

LSTM vs GRU

LSTM

GRU

i, f and o are the input, forget and output gates, respectively.c and c[~] denote the memory cell and the new memory cell content.

r and z are the reset and update gates, and h and h[~] are the activation and the candidate activation.

Source: Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. "Empirical evaluation of gated recurrent neural networks on sequence modeling." *arXiv preprint arXiv:1412.3555* (2014).

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)

LSTM forget gate (f)

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

LSTM input gate (i)

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

LSTM Memory state (C)

 $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$

LSTM output gate (o)

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

LSTM

forget (f), input (i), output (o) gates

$$f_t = \sigma \left(W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [C_t, h_{t-1}, x_t] + b_o \right)$$

Gated Recurrent Unit (GRU) update (z), reset (r) gates

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$

$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$

$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

LSTM Recurrent Neural Network

Long Short Term Memory (LSTM) for Time Series Forecasting

Time Series Data [100, 110, 120, 130, 140, 150]X [100 110 120 130 140] 150 (\mathbf{X}_{t3}) (\mathbf{X}_{t4}) (\mathbf{X}_{t2}) X_{t1} (\mathbf{X}_{t5})

Long Short Term Memory (LSTM) for Time Series Forecasting

Time Series Data

[10, 20, 30, 40, 50, 60, 70, 80, 90]

	X		Y
[10	20	30]	40
[20	30	40]	50
[30	40	50]	60
[40	50	60]	70
[50	60	70]	80
[60	70	80]	90

https://www.tensorflow.org/

PyTorch

O PyTorch	Get Started	Ecosystem	Mobile	Blog	Tutorials	Docs 🗸	Resources 🗸	GitHub	Q
FROM RESE	ARCI	НТС)						
PRODU	CTIC	N							
An open source machine lear research prototyping to prod	ning framework the luction deployment	at accelerates the	path from						
Install >									
<	In	troducing PyTorch	n Profiler - the	e new and ir	mproved perfor	mance tool		:	>

See all Features >

https://pytorch.org/

- An end-to-end open source machine learning platform.
- The core open source library to help you develop and train ML models.
- Get started quickly by running
 Colab notebooks directly in your browser.

Why TensorFlow 2.0

Why TensorFlow

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications.

About \rightarrow

Easy model building

TensorFlow

Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging.

Robust ML production anywhere

Easily train and deploy models in the cloud, on-prem, in the browser, or ondevice no matter what language you use.

Powerful experimentation for research

A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster.

TensorFlow 2.0 vs. 1.X

TensorFlow 2.0 outputs = f(input)

TensorFlow 1.X

outputs = session.run(f(placeholder), feed_dict={placeholder: input})

TensorFlow 2.0

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
```

https://www.tensorflow.org/overview/

TensorFlow 2 Quick Start

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/quickstart/beginner.ipynb

Image Classification

https://www.tensorflow.org/tutorials/keras/classification

Image Classification Fashion MNIST dataset

https://www.tensorflow.org/tutorials/keras/classification

Text Classification with TF Hub

	I Learn ▼ API ▼ Resources ▼	More 💌	Q Search	Language 🝷 G	itHub Sign in
Overview Tutorials Guide	TF 1				
TensorFlow tutorials Quickstart for beginners Quickstart for experts BEGINNER	TensorFlow > Learn > TensorFlow (Text classification reviews	Core > Tutorials	ಕಿ ಕಿ ಕಿ low Hub: Movie	(☆☆ Co Do IM Ex BL	intents winload the IDB dataset plore the data uild the model
ML basics with Keras Basic image classification Text classification with TF Hub Text classification with preprocessed text Regression Overfit and underfit Save and load	Colab This notebook classifies movie i an example of <i>binary</i> —or two-cla machine learning problem.	View source on GitHub reviews as <i>positive</i> or <i>negative</i> ass—classification, an importa	Download notebook	Tra Ev Fu his is of	Loss function and optimizer ain the model aluate the model irther reading
Load and preprocess data CSV NumPy pandas.DataFrame Images Text Unicode TF.Text TFRecord and tf.Example	The tutorial demonstrates the back We'll use the IMDB dataset that Database. These are split into 22 training and testing sets are back negative reviews. This notebook uses tf.keras, a h TensorFlow Hub, a library and pl tutorial using tf.keras, see th	asic application of transfer lea contains the text of 50,000 mc 5,000 reviews for training and 2 anced, meaning they contain a igh-level API to build and train latform for transfer learning. Fo e MLCC Text Classification Gui	rning with TensorFlow Hub an ovie reviews from the Internet I 25,000 reviews for testing. The n equal number of positive and models in TensorFlow, and or a more advanced text class ide.	d Keras. Movie e d	
Additional formats with tf.io 🛛	<pre>fromfuture import abso</pre>	plute_import, division, pr	int_function, unicode_lite	₽ □ erals	

https://www.tensorflow.org/tutorials/keras/text_classification_with_hub

Text Classification with Pre Text

TensorFlow Install	Learn ▼ API ▼ Resources ▼ More ▼	Q Search	Language 👻 GitHub Sign in
TensorFlow tutorials Quickstart for beginners Quickstart for experts BEGINNER	TensorFlow > Learn > TensorFlow Core > Tutorials Text classification with prepresented to the second	☆☆☆ orocessed text: Mo	☆☆ vie Try the encoder
ML basics with Keras A Basic image classification Text classification with TF Hub	CO Run in Google Colab	n Download notebook	Explore the data Prepare the data for training Build the model Hidden units
Regression Overfit and underfit Save and load	This notebook classifies movie reviews as <i>positive</i> or <i>n</i> an example of <i>binary</i> —or two-class—classification, an in machine learning problem.	<i>egative</i> using the text of the review. The mportant and widely applicable kind of	is is Loss function and optimizer Train the model Evaluate the model
Load and preprocess data CSV NumPy pandas.DataFrame	We'll use the IMDB dataset that contains the text of 50, Database. These are split into 25,000 reviews for training training and testing sets are <i>balanced</i> , meaning they connegative reviews.	,000 movie reviews from the Internet M ng and 25,000 reviews for testing. The ontain an equal number of positive and	Ovie Create a graph of accuracy and loss over time
Images Text Unicode TF.Text	This notebook uses tf.keras, a high-level API to build ar advanced text classification tutorial using tf.keras, s	nd train models in TensorFlow. For a mo see the MLCC Text Classification Guide	ore
TFRecord and tf.Example Additional formats with tf.io	Setup	4	

Estimator

from __future__ import absolute_import, division, print_function, unicode_literals

https://www.tensorflow.org/tutorials/keras/text_classification

in

Regression

https://www.tensorflow.org/tutorials/keras/regression

TensorFlow 2.0 Time Series Forecasting

1 TensorFlow	Install	Learn ▼ API ▼ Resources ▼ More ▼	Q Search	Language 🔻	GitHub Sign in
Overview Tutorials	Guide TF	1			
Quickstart for beginners		TansorFlow & Learn & TansorFlow Core & Tutorials	<u> </u>	~ ~~ ~~	
Quickstart for experts				MM	Contents
BEGINNER		Time series forecasting			The weather dataset
ML basics with Keras	~				Part 1: Forecast a univariate time series
Load and preprocess data	~	Run in Google	Download		Baseline
Entimator		Colab	— потероок		Recurrent neural network
Estimator	~	This tutorial is an introduction to time series forecasting usin	ig Recurrent Neural Networks (R	NNs).	Part 2: Forecast a
ADVANCED		This is covered in two parts: first, you will forecast a univariat	te time series, then you will fore	cast a	series
Customization	~	multivariate time series.			Single step model
Distributed training	~	<pre>fromfuture import absolute_import, division, p import teneorflow on tf</pre>	rint_function, unicode_lite	D Tals	Multi-Step model Next steps
Images	~	<pre>import matplotlib as mpl</pre>			
Text	~	<pre>import matplotlib.pyplot as plt import numpy as np</pre>			
Structured data	~	import os import pandas as pd			
Classify structured data with feature columns		<pre>mpl.rcParams['figure.figsize'] = (8, 6)</pre>			
Classification on imbalanced	data	<pre>mpl.rcParams['axes.grid'] = False</pre>			
Time series forecasting					

https://www.tensorflow.org/tutorials/structured_data/time_series

Basic Classification Fashion MNIST Image Classification

https://colab.research.google.com/drive/19PJOJi1vn1kjcutlzNHjRSLbeVl4kd5z

CO Lassification.ipynb File Edit View Insert Runtime Tools H	Help	E
€ CODE € TEXT	CONNECT 👻 🖉 EDITIN	IG
Table of contents Code snippets Files X		
Copyright 2018 The TensorFlow Authors.	Copyright 2018 The TensorFlow Authors.	
	↔ 2 cells hidden	
Licensed under the Apache License, Version 2.0 (the "License");		
MIT License	 Train your first neural network: basic classification 	
Train your first neural network: basic classification	View on TensorFlow.org Image: Colab Stress Stre	
Import the Fashion MNIST dataset		
Explore the data	the details, this is a fast-paced overview of a complete TensorFlow program with the details explained as we go.	
Preprocess the data	This guide uses tf.keras, a high-level API to build and train models in TensorFlow.	
Build the model	1 # memory footprint support libraries/code 2 Lin _sf (opt(bip(nyidia_smi (ver(bip(nyidia_smi	:
Setup the layers	3 !pip install gputil 4 !pip install psutil	
Compile the model	6 import psutil 7 import humanize	
Train the model	8 import os 9 import GPUtil as GPU	
Evaluate accuracy	10 GPUS - GPUS[0] 11 gpu = GPUS[0] 12 def printm():	
Make predictions	<pre>13 process = psutil.Process(os.getpid()) 14 print("Gen RAM Free: " + humanize.naturalsize(psutil.virtual_memory().available), " Pro 15 print("GPU RAM Free: {0:.0f}MB Used: {1:.0f}MB Util {2:3.0f}% Total {3:.0f}MB".format 16 printm()</pre>	1
➡ SECTION		

Text Classification IMDB Movie Reviews

https://colab.research.google.com/drive/1x16h1GhHsLlrLYtPCvCHaoO1W-i_gror

CO 4 tf02_basic-text-classifica File Edit View Insert Runtime	tion.ipynb 🛣 🔳	COMMENT	SHA	RE A
E CODE E TEXT 🛧 CELL 🔸 C	CELL CC	ONNECT 👻	🖍 EDIT	ING
Table of contents Code snippets Files $ imes$				
	Copyright 2018 The TensorFlow Authors.			
Copyright 2018 The TensorFlow Authors.	ightarrow 2 cells hidden			
Licensed under the Apache License, Version 2.0 (the "License");				
MIT License	 Text classification with movie reviews 			
Text classification with movie reviews				
Download the IMDB dataset				
	This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of bin	ary-or two-cla	ass-	
Explore the data	classification, an important and widely applicable kind of machine learning problem.			
Convert the integers back to words	We'll use the <u>IMDB dataset</u> that contains the text of 50,000 movie reviews from the <u>Internet Movie Database</u> . These reviews for training and 25,000 reviews for testing. The training and testing sets are <i>balanced</i> , meaning they contain positive and negative reviews.	are split into 2 1 an equal num	.5,000 ber of	
Prepare the data	This notebook uses tf.keras, a high-level API to build and train models in TensorFlow. For a more advanced text class	sification tuto	rial using	
Build the model	tf.keras, see the <u>MLCC Text Classification Guide</u> .			
Hidden units	<pre>1 # memory footprint support libraries/code 2 !ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi 3 !lpip install gputil</pre>			:
Loss function and optimizer	4 !pip install psutil 5 !pip install humanize			
Create a validation set	7 import humanize 8 import os			
Train the model	10 GPUs = GPUs[0] 11 gpu = GPUs[0]			
Evaluate the model	12 def printm():			200
Source: <u>https://colab.r</u>	esearch.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_text_classifi	ication.ipynl	<u>0</u>	208

Basic Regression Predict House Prices

https://colab.research.google.com/drive/1v4c8ZHTnRtgd2_25K_AURjR6SCVBRdlj

CO Contraction Con	Dynb ☆ 🔲 Comment 🚓 Shari	
CODE TEXT ▲ CELL	CELL CONNECT - EDITIN	IG 🖍
Table of contents Code snippets Files X		
Copyright 2018 The TensorFlow Authors.	Copyright 2018 The TensorFlow Authors.	
Predict house prices: regression		
The Boston Housing Prices dataset	 Predict house prices: regression 	
Examples and features		
Labels	View on TensorFlow.org	
Normalize features	In a <i>regression</i> problem, we aim to predict the output of a continuous value, like a price or a probability. Contrast this with a <i>classification</i>	
Create the model	This notebook builds a model to predict the median price of homes in a Boston suburb during the mid-1970s. To do this, we'll provide the	
Train the model	model with some data points about the suburb, such as the crime rate and the local property tax rate. This example uses the tf.keras API, see this guide for details.	
Predict		
Conclusion	<pre>1 # memory footprint support libraries/code 2 !ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi 3 !pip install gputil</pre>	•
+ SECTION	4 !pip install psutil 5 !pip install humanize 6 import psutil	
	<pre>7 import humanize 8 import os 9 import GPUtil as GPU 10 GPUs = GPU.getGPUs() 11 gpu = GPUs[0] 12 def printm(): 13 process = psutil.Process(os.getpid()) 14 print("Gen RAM Free: " + humanize.naturalsize(psutil.virtual_memory().available), " Proc size: " 15 print("GPU RAM Free: {0:.0f}MB Used: {1:.0f}MB Util {2:3.0f}% Total {3:.0f}MB".format(gpu.memo </pre>	209
Source: https://co	lab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic regression.ipynb	209

Papers with Code State-of-the-Art (SOTA)

Search for papers, code and tasks

Q

🗠 Browse State-of-the-Art

🔰 Follow

💤 Discuss

Trends About

Log In/Register

Browse State-of-the-Art

🗠 1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

Follow on 🎔 Twitter for updates

Computer Vision

See all 707 tasks

Natural Language Processing

https://paperswithcode.com/sota

Aurélien Géron (2019),

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition O'Reilly Media, 2019

https://github.com/ageron/handson-ml2

Hands-On Machine Learning with

Scikit-Learn, Keras, and TensorFlow

Notebooks

- 1. The Machine Learning landscape
- 2. End-to-end Machine Learning project
- 3. Classification
- 4. Training Models
- 5. Support Vector Machines
- 6. Decision Trees
- 7. Ensemble Learning and Random Forests
- 8. Dimensionality Reduction
- 9. Unsupervised Learning Techniques
- 10. Artificial Neural Nets with Keras
- 11. Training Deep Neural Networks
- 12. Custom Models and Training with TensorFlow
- 13. Loading and Preprocessing Data
- 14. Deep Computer Vision Using Convolutional Neural Networks
- 15. Processing Sequences Using RNNs and CNNs
- 16. Natural Language Processing with RNNs and Attention
- 17. Representation Learning Using Autoencoders
- 18. Reinforcement Learning
- 19. Training and Deploying TensorFlow Models at Scale

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

Summary

- Deep Learning
- Neural Networks (NN)
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)

References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft Computing (2020): 106384.
- Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.
- Deep Learning Basics: Neural Networks Demystified, https://www.youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
- Deep Learning SIMPLIFIED, https://www.youtube.com/playlist?list=PLjJh1vlSEYgvGod9wWiydumYl8hOXixNu
- 3Blue1Brown (2017), But what *is* a Neural Network? | Chapter 1, deep learning, https://www.youtube.com/watch?v=aircAruvnKk
- 3Blue1Brown (2017), Gradient descent, how neural networks learn | Chapter 2, deep learning, https://www.youtube.com/watch?v=IHZwWFHWa-w
- 3Blue1Brown (2017), What is backpropagation really doing? | Chapter 3, deep learning, https://www.youtube.com/watch?v=Ilg3gGewQ5U
- Scikit-learn Machine Learning in Python: <u>https://scikit-learn.org/</u>
- TensorFlow: <u>https://www.tensorflow.org/</u>
- PyTorch: <u>https://pytorch.org/</u>
- Min-Yuh Day (2021), Python 101, https://tinyurl.com/aintpupython101