

(Artificial Intelligence in Finance and Quantitative Analysis)

AI 金融科技: 金融服務創新應用 (AI in FinTech: Financial Services Innovation and Application)

1101AIFQA02 MBA, IM, NTPU (M6132) (Fall 2021) Tue 2, 3, 4 (9:10-12:00) (8F40)

<u>戴敏育</u>副教授 <u>Min-Yuh Day, Ph.D, Associate Professor</u>

國立臺北大學 資訊管理研究所

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2021-10-05

週次(Week) 日期(Date) 內容(Subject/Topics)

- 1 2021/09/28 智慧金融量化分析概論 (Introduction to Artificial Intelligence in Finance and Quantitative Analysis)
- 2 2021/10/05 AI 金融科技: 金融服務創新應用 (AI in FinTech: Financial Services Innovation and Application)
- 3 2021/10/12 投資心理學與行為財務學 (Investing Psychology and Behavioral Finance)
- 4 2021/10/19 財務金融事件研究法 (Event Studies in Finance)
- 5 2021/10/26 智慧金融量化分析個案研究 I (Case Study on AI in Finance and Quantitative Analysis I)
- 6 2021/11/02 財務金融理論 (Finance Theory)

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 7 2021/11/09 數據驅動財務金融 (Data-Driven Finance)
- 8 2021/11/16 期中報告 (Midterm Project Report)
- 9 2021/11/23 金融計量經濟學 (Financial Econometrics)
- 10 2021/11/30 人工智慧優先金融 (AI-First Finance)
- 11 2021/12/07 智慧金融量化分析產業實務 (Industry Practices of AI in Finance and Quantitative Analysis)
- 12 2021/12/14 智慧金融量化分析個案研究 II (Case Study on AI in Finance and Quantitative Analysis II)

週次(Week) 日期(Date) 內容(Subject/Topics)

- 13 2021/12/21 財務金融深度學習(Deep Learning in Finance); 財務金融強化學習 (Reinforcement Learning in Finance)
- 14 2021/12/28 演算法交易 (Algorithmic Trading); 風險管理 (Risk Management); 交易機器人與基於事件的回測 (Trading Bot and Event-Based Backtesting)
- 15 2022/01/04 期末報告 I (Final Project Report I)
- 16 2022/01/11 期末報告 II (Final Project Report II)
- 17 2022/01/18 學生自主學習 (Self-learning)
- 18 2022/01/25 學生自主學習 (Self-learning)

Al in FinTech: **Financial Services** Innovation and Application

FinTech ABCD

Cloud Computing

Big Data

Decentralized Finance (DeFi) Block Chain Financial Technology

Block Chain & Bitcoin (BTC)

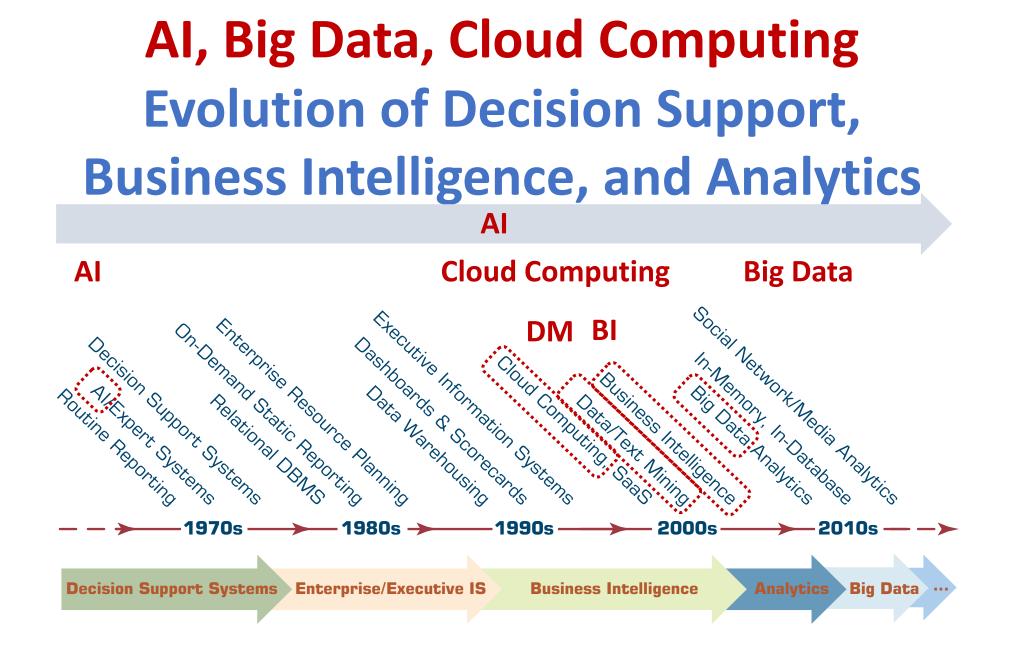
Smart Contract & Ethereum (ETH)

Decentralized Application (DApp)

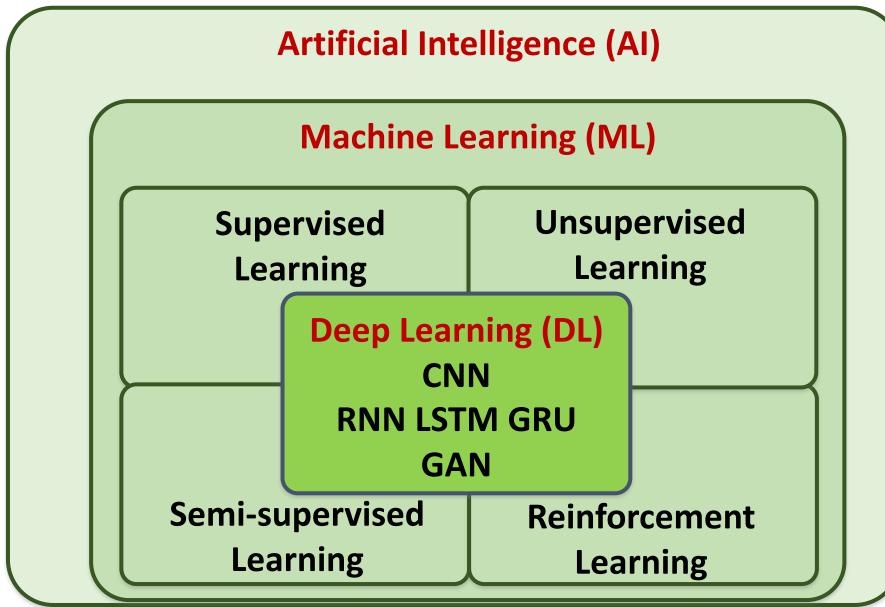
FinTech

Financial Technology FinTech

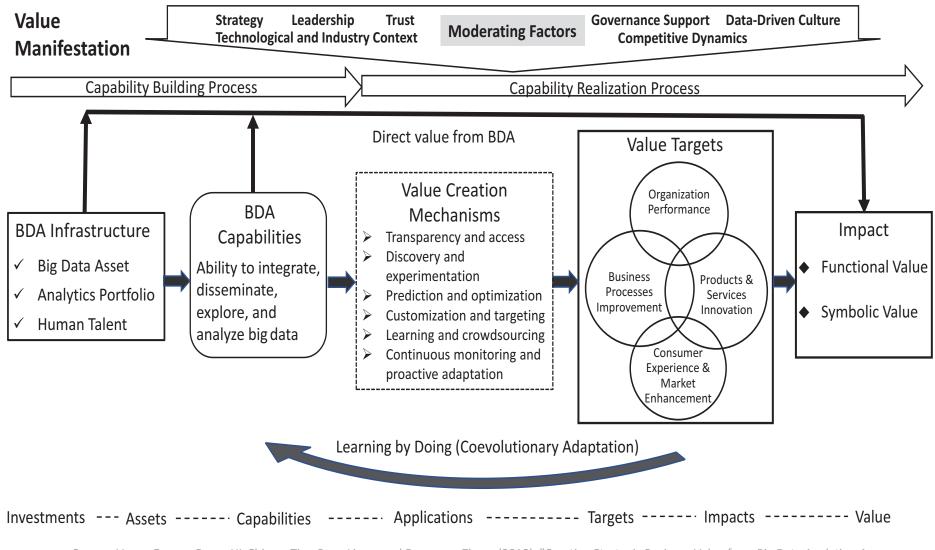
"providing financial services by making use of software and modern technology"


Financial

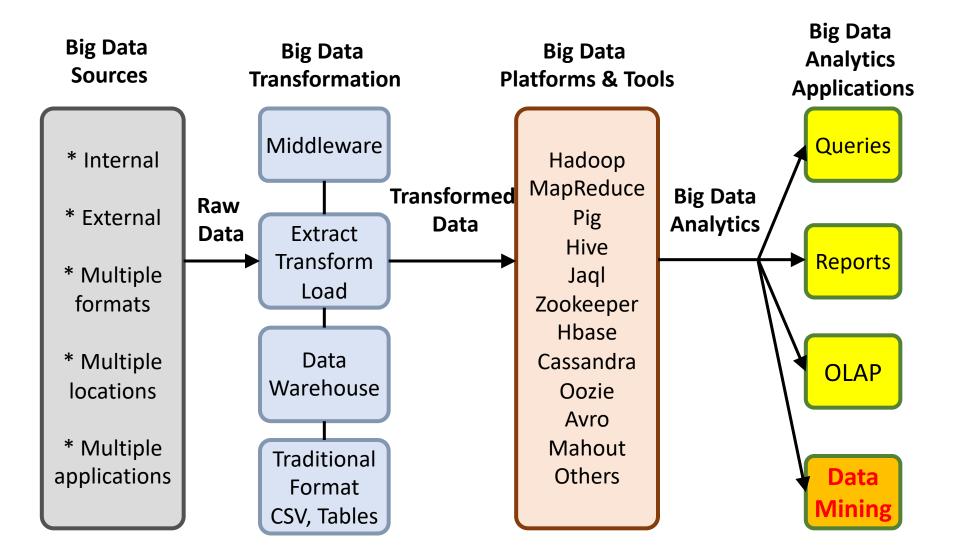
Services


Financial Services

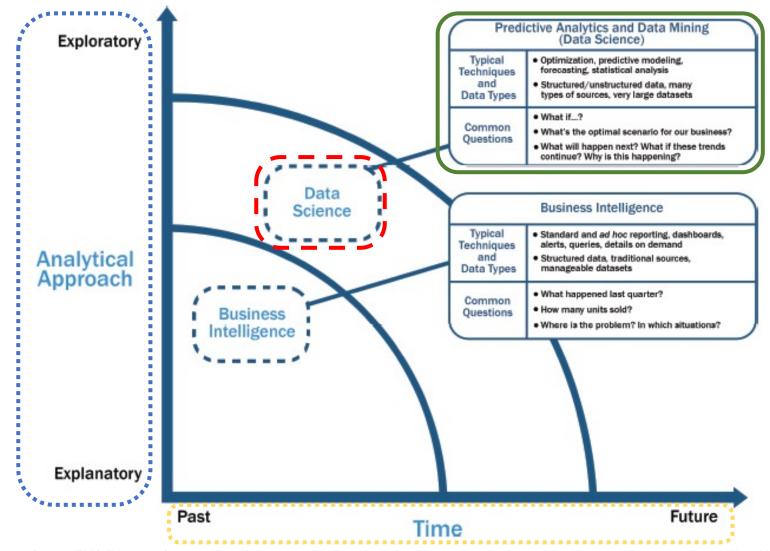
Source: http://www.crackitt.com/7-reasons-why-your-fintech-startup-needs-visual-marketing/


AI, ML, DL

Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html


Value Creation by Big Data Analytics

(Grover et al., 2018)



Source: Varun Grover, Roger HL Chiang, Ting-Peng Liang, and Dongsong Zhang (2018), "Creating Strategic Business Value from Big Data Analytics: A Research Framework", Journal of Management Information Systems, 35, no. 2, pp. 388-423.

Architecture of Big Data Analytics

Data Science and Business Intelligence

Source: EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015

Data Science and Business Intelligence

Predictive Analytics and Data Mining (Data Science)

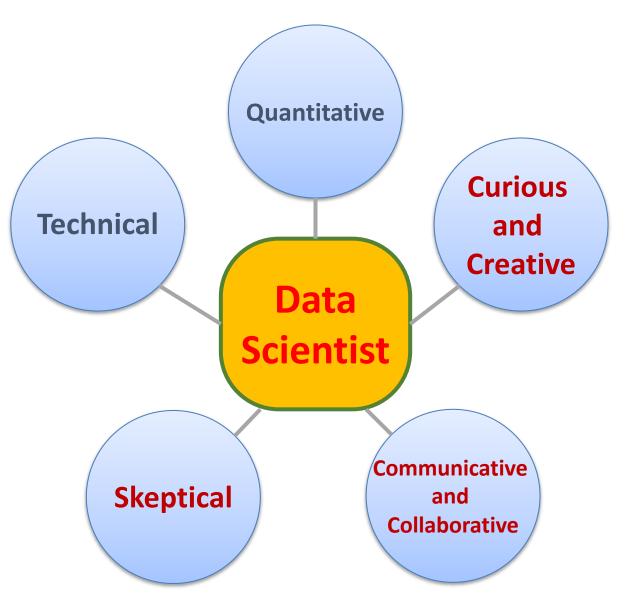
Future

Past

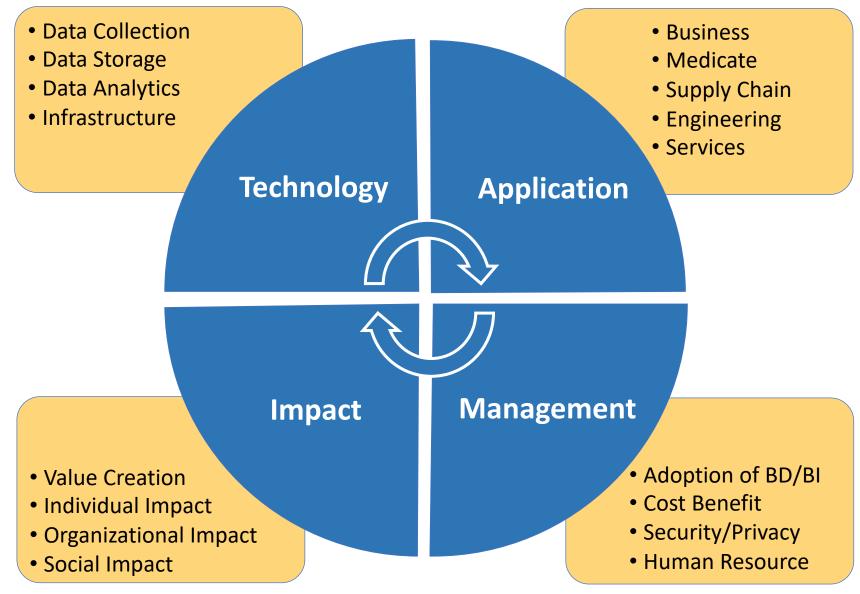
Predictive Analytics and Data Mining (Data Science)

Structured/unstructured data, many types of sources, very large datasets

Optimization, predictive modeling, forecasting statistical analysis

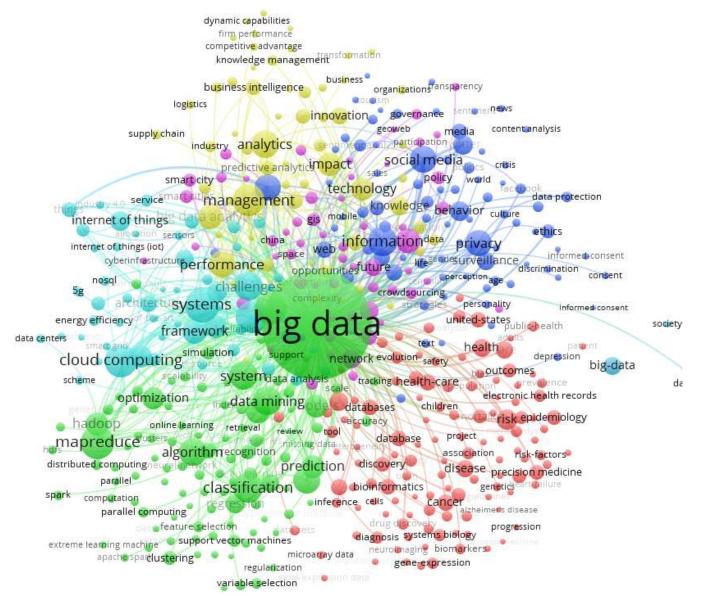

What if...?

What's the optimal scenario for our business? What will happen next? What if these trends countinue? Why is this happening?

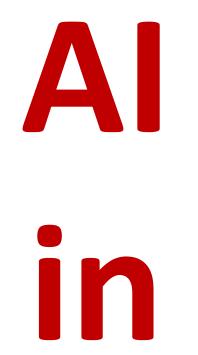

Profile of a Data Scientist

- Quantitative
 - mathematics or statistics
- Technical
 - software engineering, machine learning, and programming skills
- Skeptical mind-set and critical thinking
- Curious and creative
- Communicative and collaborative

Data Scientist Profile

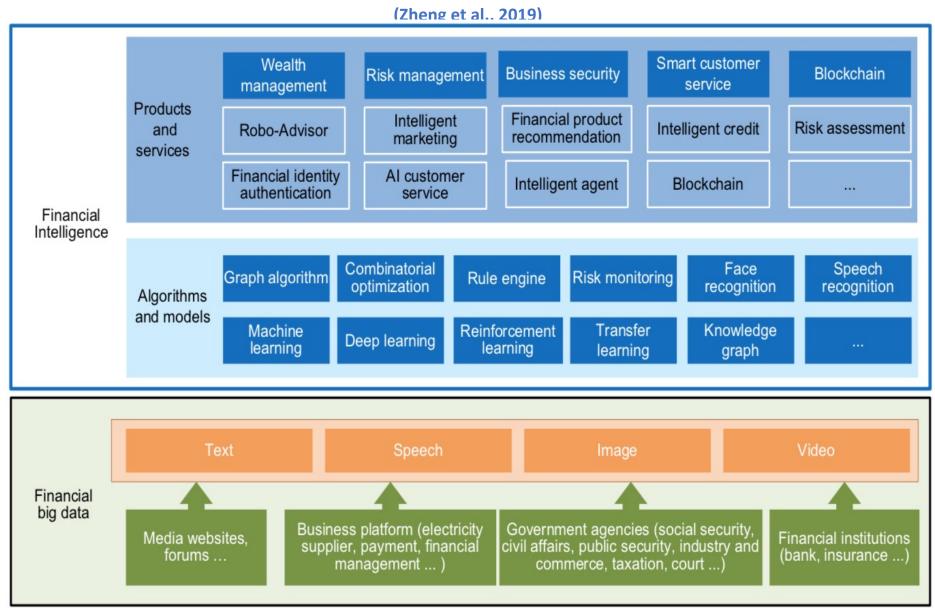


Framework for BD and BI Research



Source: Ting-Peng Liang and Yu-Hsi Liu (2018), "Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study", Expert Systems with Applications, Volume 111, 30, 2018, pp. 2-10

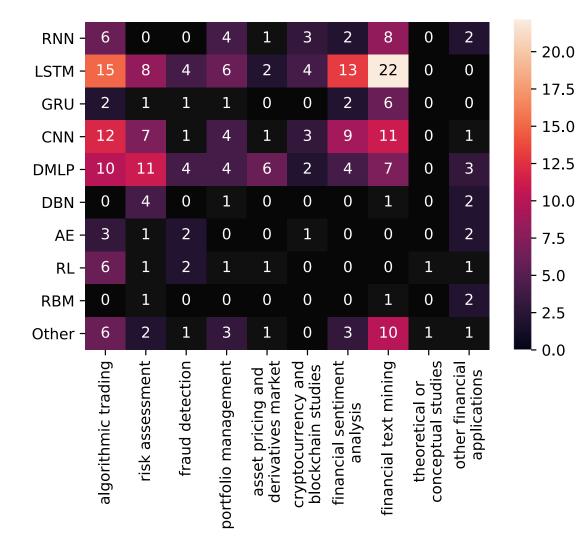
Business Intelligence and Big Data analytics



Source: Ting-Peng Liang and Yu-Hsi Liu (2018), "Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study", Expert Systems with Applications, Volume 111, 30, 2018, pp. 2-10

FinTech

FinBrain: when Finance meets AI 2.0


Source: Xiao-lin Zheng, Meng-ying Zhu, Qi-bing Li, Chao-chao Chen, and Yan-chao Tan (2019), "Finbrain: When finance meets AI 2.0." Frontiers of Information Technology & Electronic Engineering 20, no. 7, pp. 914-924

Technology-driven Financial Industry Development

Development stage	Driving technology	Main landscape	Inclusive finance	Relationship between technology and finance			
Fintech 1.0 (financial IT)	Computer	Credit card, ATM, and CRMS	Low	Technology as a tool			
Fintech 2.0 (Internet finance)	Mobile Internet	Marketplace lending, third-party payment, crowdfunding, and Internet insurance	Medium	Technology- driven change			
Fintech 3.0 (financial intelligence)	Al, Big Data, Cloud Computing, Blockchain	Intelligent finance	High	Deep fusion			

Source: Xiao-lin Zheng, Meng-ying Zhu, Qi-bing Li, Chao-chao Chen, and Yan-chao Tan (2019), "Finbrain: When finance meets AI 2.0." Frontiers of Information Technology & Electronic Engineering 20, no. 7, pp. 914-924

Deep learning for financial applications: Topic-Model Heatmap

RBN

Deep learning for financial applications: Topic-Feature Heatmap

price data -	35	3	0	16	10	7	10	22	- 35
technical indicator -	15	0	0	7	1	4	3	7	
index data -	5	1	0	0	0	0	1	1	- 30
market characteristics -	6	2	2	0	9	0	0	0	
fundamental -	2	0	0	2	3	0	0	0	- 25
market microstructure data -	8	4	3	0	0	1	0	1	
sentiment -	1	1	0	0	0	1	7	5	- 20
text -	2	7	2	1	1	0	21	36	
news -	0	1	0	0	0	0	4	22	- 15
company/personal financial data -	0	21	5	2	1	0	2	3	10
macroeconomic data -	1	2	2	0	0	1	0	0	- 10
risk measuring features -	0	3	2	0	0	0	0	0	-
blockchain/cryptocurrency specific features -	0	0	0	0	0	6	0	0	- 5
human inputs -	0	0	0	0	0	0	0	2	- ₀
	algorithmic trading –	risk assessment -	fraud detection -	portfolio management -	asset pricing andderivatives	cryptocurrency and _ blockchain studies [_]	financial sentiment _ analysis	financial text mining -	- 0

Deep learning for Financial applications: Topic-Dataset Heatmap

Stock Data -	15	2	0	11	3	0	7	20	2	3	- 35
Index/ETF Data -	35	0	0	3	3	0	9	14	0	1	
Cryptocurrency -	9	0	0	2	0	15	2	0	0	0	- 30
Forex Data -	5	0	0	1	0	0	0	0	0	2	
Commodity Data -	6	0	0	1	0	0	0	0	0	2	- 25
Options Data -	1	0	0	0	4	0	0	0	0	0	
Transaction Data -	2	3	2	0	0	0	0	1	0	0	- 20
News Text -	4	3	0	0	0	0	13	36	0	0	
Tweet/microblog -	1	0	0	0	0	1	8	10	0	1	- 15
Credit Data -	0	10	1	0	0	0	0	0	0	0	
Financial Reports -	0	6	2	3	2	0	4	3	0	3	- 10
Consumer Data -	0	8	6	0	0	0	0	1	0	1	_
Macroeconomic Data -	0	2	1	0	0	0	0	0	0	1	- 5
Other -	5	3	1	1	3	0	0	3	1	0	0
	algorithmic trading -	risk assessment -	fraud detection -	portfolio management -	asset pricing and	cryptocurrency and blockchain studies	financial sentiment analysis	financial text mining -	theoretical or conceptual studies	other financial applications	- 0

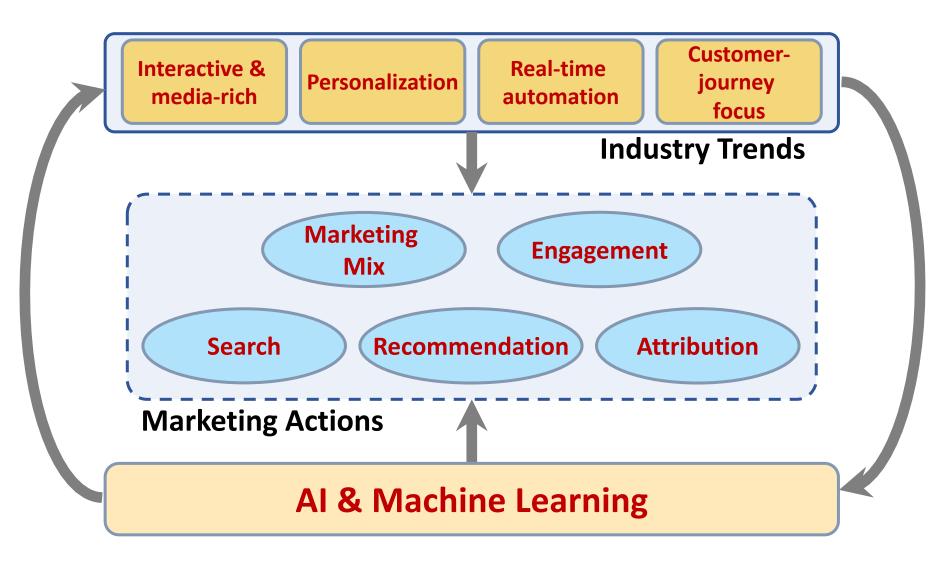
a new generation of Al based on the novel information environment of major changes and the development of new goals.

Yunhe Pan (2016), "Heading toward artificial intelligence 2.0." Engineering 2, no. 4, 409-413.

FinBrain: when Finance meets AI 2.0

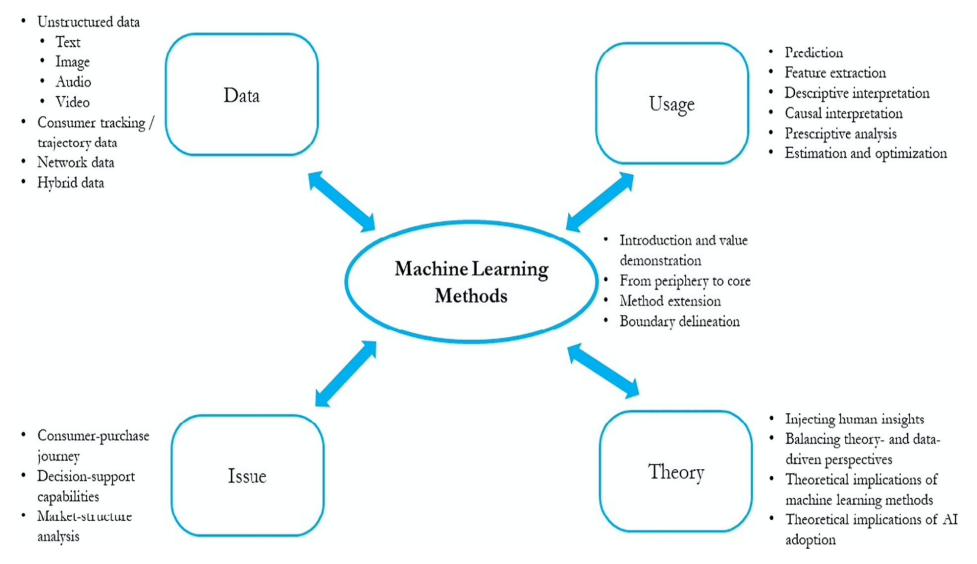
(Zheng et al., 2019) Smart customer Wealth **Business security** Blockchain Risk management management service Products **Financial product** Intelligent Intelligent credit **Risk assessment** and Robo-Advisor recommendation marketing services Financial identity Al customer Intelligent agent Blockchain authentication ... service Financial Intelligence Combinatorial Face Speech Graph algorithm Risk monitoring Rule engine optimization recognition recognition Algorithms and models Knowledge Machine Reinforcement Transfer **Deep learning** learning learning learning graph Video Financial big data Business platform (electricity Government agencies (social security) Media websites. Financial institutions supplier, payment, financial civil affairs, public security, industry and forums ... (bank, insurance ...) commerce, taxation, court ... management ...)

> Source: Xiao-lin Zheng, Meng-ying Zhu, Qi-bing Li, Chao-chao Chen, and Yan-chao Tan (2019), "Finbrain: When finance meets AI 2.0." Frontiers of Information Technology & Electronic Engineering 20, no. 7, pp. 914-924


Technology-driven Financial Industry Development

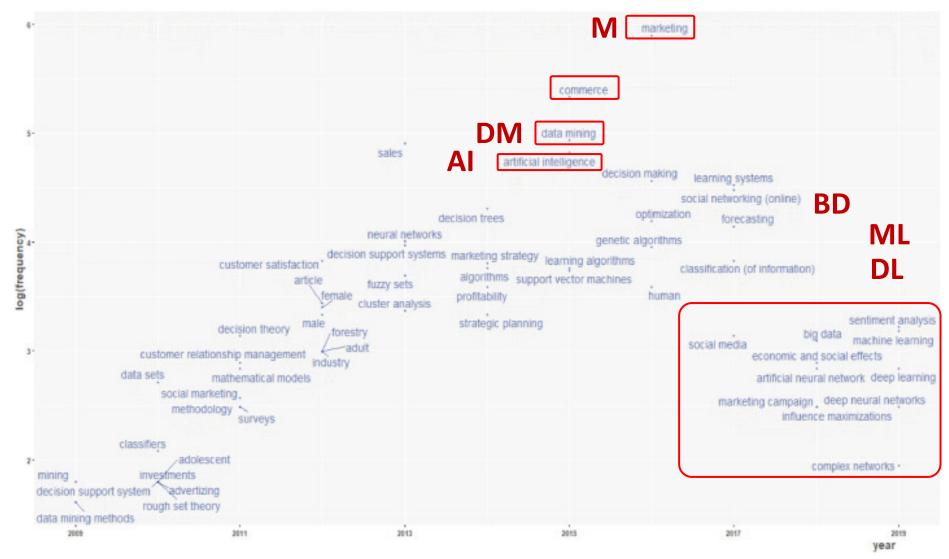
Development stage	Driving technology	Main landscape	Inclusive finance	Relationship between technology and finance			
Fintech 1.0 (financial IT)	Computer	Credit card, ATM, and CRMS	Low	Technology as a tool			
Fintech 2.0 (Internet finance)	Mobile Internet	Marketplace lending, third-party payment, crowdfunding, and Internet insurance	Medium	Technology- driven change			
Fintech 3.0 (financial intelligence)	Al, Big Data, Cloud Computing, Blockchain	Intelligent finance	High	Deep fusion			

Source: Xiao-lin Zheng, Meng-ying Zhu, Qi-bing Li, Chao-chao Chen, and Yan-chao Tan (2019), "Finbrain: When finance meets AI 2.0." Frontiers of Information Technology & Electronic Engineering 20, no. 7, pp. 914-924


Al-driven Marketing

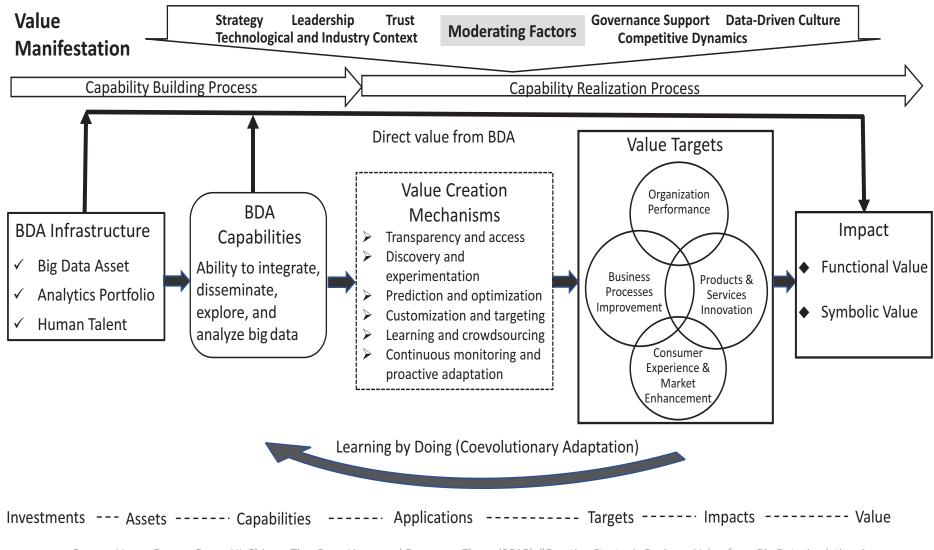
(Ma and Sun, 2020)

Source: Liye Ma and Baohong Sun (2020), "Machine learning and AI in marketing – Connecting computing power to human insights." International Journal of Research in Marketing, 37, no. 3, 481-504.

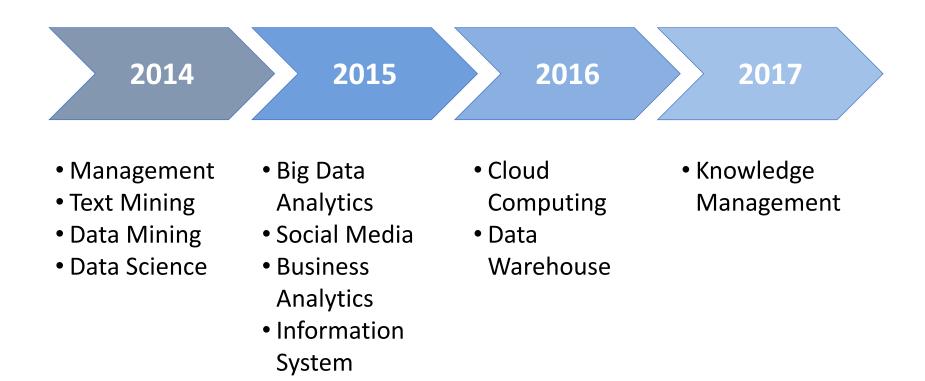

Machine Learning in Marketing Research (Ma and Sun, 2020)

Source: Liye Ma and Baohong Sun (2020), "Machine learning and AI in marketing – Connecting computing power to human insights." International Journal of Research in Marketing, 37, no. 3, 481-504.

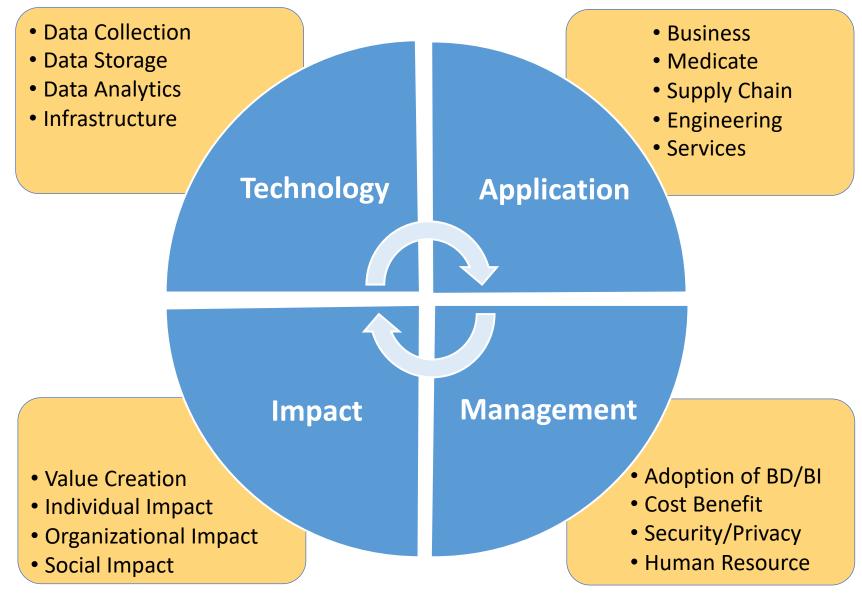
Artificial Intelligence in Marketing


(Verma et al., 2021)

Source: Sanjeev Verma, Rohit Sharma, Subhamay Deb, and Debojit Maitra (2021),. "Artificial intelligence in marketing: Systematic review and future research direction." International Journal of Information Management Data Insights (2021): 100002.

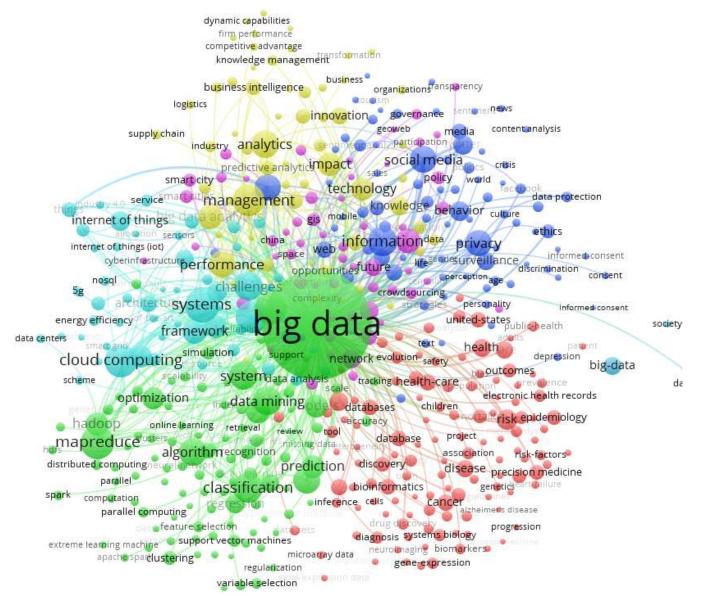

Value Creation by Big Data Analytics

(Grover et al., 2018)



Source: Varun Grover, Roger HL Chiang, Ting-Peng Liang, and Dongsong Zhang (2018), "Creating Strategic Business Value from Big Data Analytics: A Research Framework", Journal of Management Information Systems, 35, no. 2, pp. 388-423.

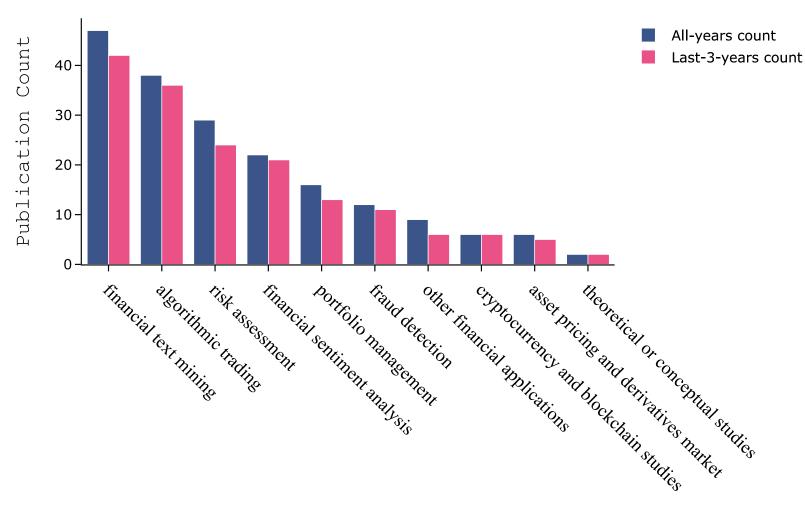
Evolution of top keywords in "BD & BI" publications



Framework for BD and BI Research

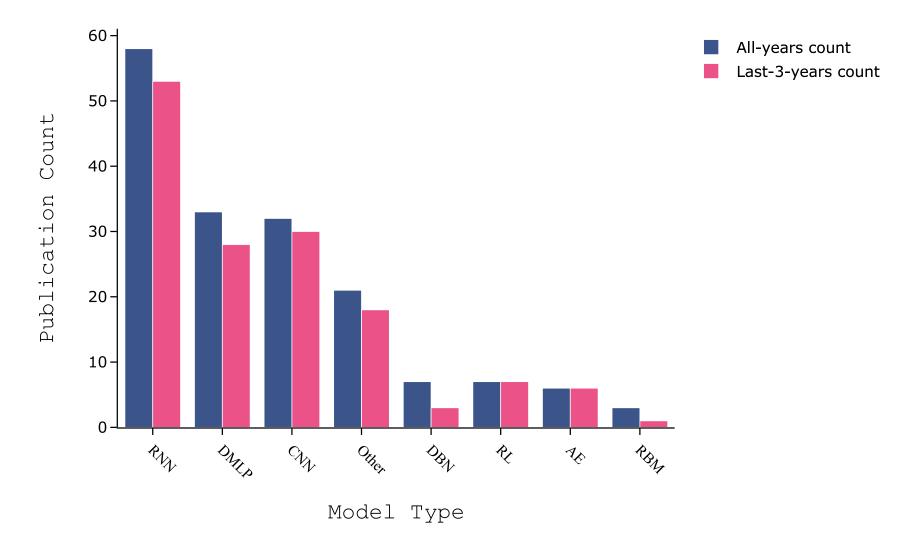
Source: Ting-Peng Liang and Yu-Hsi Liu (2018), "Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study", Expert Systems with Applications, Volume 111, 30, 2018, pp. 2-10

Business Intelligence and Big Data analytics

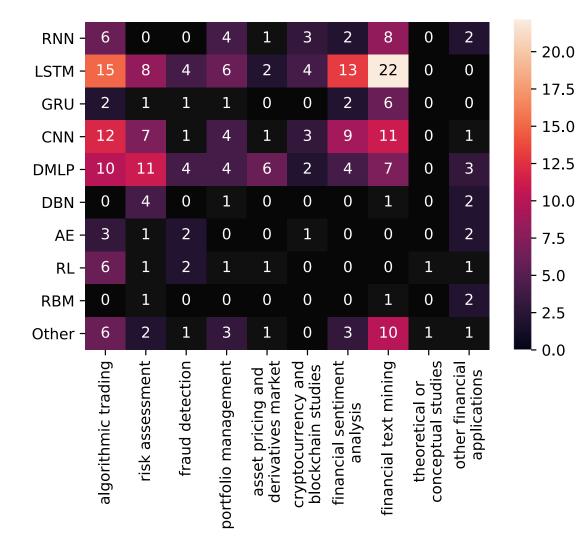

Source: Ting-Peng Liang and Yu-Hsi Liu (2018), "Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study", Expert Systems with Applications, Volume 111, 30, 2018, pp. 2-10

Deep learning for financial applications: **A survey Applied Soft Computing (2020)**

Financial time series forecasting with deep learning: **A systematic literature review:** 2005-2019 **Applied Soft Computing (2020)**


Source:

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.



Topic Name

Deep learning for financial applications: Deep Learning Models

Deep learning for financial applications: Topic-Model Heatmap

RBN

Deep learning for financial applications: Topic-Feature Heatmap

price data -	35	3	0	16	10	7	10	22	- 35
technical indicator -	15	0	0	7	1	4	3	7	
index data -	5	1	0	0	0	0	1	1	- 30
market characteristics -	6	2	2	0	9	0	0	0	
fundamental -	2	0	0	2	3	0	0	0	- 25
market microstructure data -	8	4	3	0	0	1	0	1	
sentiment -	1	1	0	0	0	1	7	5	- 20
text -	2	7	2	1	1	0	21	36	
news -	0	1	0	0	0	0	4	22	- 15
company/personal financial data -	0	21	5	2	1	0	2	3	
macroeconomic data -	1	2	2	0	0	1	0	0	- 10
risk measuring features -	0	3	2	0	0	0	0	0	_
blockchain/cryptocurrency specific features -	0	0	0	0	0	6	0	0	- 5
human inputs -	0	0	0	0	0	0	0	2	- 0
	algorithmic trading -	risk assessment -	fraud detection -	portfolio management -	asset pricing and	cryptocurrency and _ blockchain studies [_]	financial sentiment _ analysis	financial text mining -	0

Deep learning for Financial applications: Topic-Dataset Heatmap

Stock Data -	15	2	0	11	3	0	7	20	2	3	- 35	
Index/ETF Data -	35	0	0	3	3	0	9	14	0	1		
Cryptocurrency -	9	0	0	2	0	15	2	0	0	0	- 30	
Forex Data -	5	0	0	1	0	0	0	0	0	2		
Commodity Data -	6	0	0	1	0	0	0	0	0	2	- 25	
Options Data -	1	0	0	0	4	0	0	0	0	0		
Transaction Data -	2	3	2	0	0	0	0	1	0	0	- 20	
News Text -	4	3	0	0	0	0	13	36	0	0		
Tweet/microblog -	1	0	0	0	0	1	8	10	0	1	- 15	
Credit Data -	0	10	1	0	0	0	0	0	0	0		
Financial Reports -	0	6	2	3	2	0	4	3	0	3	- 10	
Consumer Data -	0	8	6	0	0	0	0	1	0	1	_	
Macroeconomic Data -	0	2	1	0	0	0	0	0	0	1	- 5	
Other -	5	3	1	1	3	0	0	3	1	0	0	
	algorithmic trading -	risk assessment -	fraud detection -	portfolio management -	asset pricing and derivatives market	cryptocurrency and blockchain studies	financial sentiment analysis	financial text mining -	theoretical or conceptual studies	other financial applications	- 0	

Algo-trading applications embedded with time series forecasting models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[33]	GarantiBank in BIST, Turkey	2016	OCHLV, Spread, Volatility, Turnover, etc.	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, Correlation R-square	Spark
[34]	CSI300, Nifty50, HSI, Nikkei 225, S&P500, DJIA	2010–2016	OCHLV, Technical Indicators	WT, Stacked autoencoders, LSTM	MAPE, Correlation coefficient, THEIL-U	-
[35]	Chinese Stocks	2007-2017	OCHLV	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[36]	50 stocks from NYSE	2007-2016	Price data	SFM	MSE	-
[37]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[38]	300 stocks from SZSE, Commodity	2014-2015	Price data	FDDR, DMLP+RL	Profit, return, SR, profit-loss curves	Keras
[39]	S&P500 Index	1989–2005	Price data, Volume	LSTM	Return, STD, SR, Accuracy	Python, TensorFlow, Keras, R, H2O
[40]	Stock of National Bank of Greece (ETE).	2009–2014	FTSE100, DJIA, GDAX, NIKKEI225, EUR/USD, Gold	GASVR, LSTM	Return, volatility, SR, Accuracy	Tensorflow
[41]	Chinese stock-IF-IH-IC contract	2016-2017	Decisions for price change	MODRL+LSTM	Profit and loss, SR	-
[42]	Singapore Stock Market Index	2010-2017	OCHL of last 10 days of Index	DMLP	RMSE, MAPE, Profit, SR	-
[43]	GBP/USD	2017	Price data	Reinforcement Learning + LSTM + NES	SR, downside deviation ratio, total profit	Python, Keras, Tensorflow
[44]	Commodity, FX future, ETF	1991–2014	Price Data	DMLP	SR, capability ratio, return	C++, Python
[45]	USD/GBP, S&P500, FTSE100, oil, gold	2016	Price data	AE + CNN	SR, % volatility, avg return/trans, rate of return	H2O

Algo-trading applications embedded with time series forecasting models

-			-			
Art.	Data set	Period	Feature set	Method	Performance	Environment
					criteria	

					iute of return	
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014-2017	MA, BOLL, the CRIX returns, Euribor interest rates, OCHLV	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[47]	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning, DMLP	Total profit, Correlation	-
[48]	Stocks in the S&P500	1990–2015	Price data	DMLP, GBT, RF	Mean return, MDD, Calmar ratio	H2O
[49]	Fundamental and Technical Data, Economic Data	-	Fundamental , technical and market information	CNN	-	_

Classification (buy-sell signal, or trend detection) based algo-trading models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[51]	Stocks in Dow30	1997-2017	RSI	DMLP with genetic algorithm	Annualized return	Spark MLlib, Java
[52]	SPY ETF, 10 stocks from S&P500	2014-2016	Price data	FFNN	Cumulative gain	MatConvNet, Matlab
[53]	Dow30 stocks	2012-2016	Close data and several technical indicators	LSTM	Accuracy	Python, Keras, Tensorflow, TALIE
[54]	High-frequency record of all orders	2014–2017	Price data, record of all orders, transactions	LSTM	Accuracy	-
[55]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price and volume data in LOB	LSTM	Precision, Recall, F1-score, Cohen's k	-
[56]	17 ETFs	2000-2016	Price data, technical indicators	CNN	Accuracy, MSE, Profit, AUROC	Keras, Tensorflow
[57]	Stocks in Dow30 and 9 Top Volume ETFs	1997–2017	Price data, technical indicators	CNN with feature imaging	Recall, precision, F1-score, annualized return	Python, Keras, Tensorflow, Java
[58]	FTSE100	2000-2017	Price data	CAE	TR, SR, MDD, mean return	-
[59]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price, Volume data, 10 orders of the LOB	CNN	Precision, Recall, F1-score, Cohen's k	Theano, Scikit learn, Python
[60]	Borsa Istanbul 100 Stocks	2011-2015	75 technical indicators and OCHLV	CNN	Accuracy	Keras
[61]	ETFs and Dow30	1997-2007	Price data	CNN with feature imaging	Annualized return	Keras, Tensorflow
[62]	8 experimental assets from bond/derivative market	-	Asset prices data	RL, DMLP, Genetic Algorithm	Learning and genetic algorithm error	-
[63]	10 stocks from S&P500	-	Stock Prices	TDNN, RNN, PNN	Missed opportunities, false alarms ratio	-
[64]	London Stock Exchange	2007–2008	Limit order book state, trades, buy/sell orders, order deletions	CNN	Accuracy, kappa	Caffe
[65]	Cryptocurrencies, Bitcoin	2014-2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-

Deep learning for financial applications: Stand-alone and/or other algorithmic models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[66]	DAX, FTSE100, call/put options	1991–1998	Price data	Markov model, RNN	Ewa-measure, iv, daily profits' mean and std	-
[67]	Taiwan Stock Index Futures, Mini Index Futures	2012-2014	Price data to image	Visualization method + CNN	Accumulated profits,accuracy	_
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015–2016	Text and Price data	LSTM, RNN, GRU	Return, SR, precision, recall, accuracy	Python, Tweepy API
[69]	CME FIX message	2016	Limit order book, time-stamp, price data	RNN	Precision, recall, F1-measure	Python, TensorFlow, R
[70]	Taiwan stock index futures (TAIFEX)	2017	Price data	Agent based RL with CNN pre-trained	Accuracy	_
[71]	Stocks from S&P500	2010-2016	OCHLV	DCNL	PCC, DTW, VWL	Pytorch
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013-2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[73]	489 stocks from S&P500 and NASDAQ-100	2014-2015	Limit Order Book	Spatial neural network	Cross entropy error	NVIDIA's cuDNN
[74]	Experimental dataset	-	Price data	DRL with CNN, LSTM, GRU, DMLP	Mean profit	Python

Deep learning for financial applications: Credit scoring or classification studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[77]	The XR 14 CDS contracts	2016	Recovery rate, spreads, sector and region	DBN+RBM	AUROC, FN, FP, Accuracy	WEKA
[78]	German, Japanese credit datasets	-	Personal financial variables	SVM + DBN	Weighted- accuracy, TP, TN	-
[79]	Credit data from Kaggle	-	Personal financial variables	DMLP	Accuracy, TP, TN, G-mean	-
[80]	Australian, German credit data	-	Personal financial variables	GP + AE as Boosted DMLP	FP	Python, Scikit-learn
[81]	German, Australian credit dataset	-	Personal financial variables	DCNN, DMLP	Accuracy, False/Missed alarm	-
[82]	Consumer credit data from Chinese finance company	-	Relief algorithm chose the 50 most important features	CNN + Relief	AUROC, K-s statistic, Accuracy	Keras
[83]	Credit approval dataset by UCI Machine Learning repo	_	UCI credit approval dataset	Rectifier, Tanh, Maxout DL	-	AWS EC2, H2O, R

Financial distress, bankruptcy, bank risk, mortgage risk, crisis forecasting studies.

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[84]	966 french firms	-	Financial ratios	RBM+SVM	Precision, Recall	-
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, RF	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[86]	The event data set for large European banks, news articles from Reuters	2007–2014	Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	_
[87]	Event dataset on European banks, news from Reuters	2007–2014	Text, sentence	Sentence vector + DFFN	Usefulness, F1-score, AUROC	-
[88]	News from Reuters, fundamental data	2007-2014	Financial ratios and news text	doc2vec + NN	Relative usefulness	Doc2vec
[89]	Macro/Micro economic variables, Bank charac- teristics/performance variables from BHC	1976–2017	Macro economic variables and bank performances	CGAN, MVN, MV-t, LSTM, VAR, FE-QAR	RMSE, Log likelihood, Loan loss rate	-
[90]	Financial statements of French companies	2002-2006	Financial ratios	DBN	Recall, Precision, F1-score, FP, FN	-
[91]	Stock returns of American publicly-traded companies from CRSP	2001–2011	Price data	DBN	Accuracy	Python, Theano
[92]	Financial statements of several companies from Japanese stock market	2002–2016	Financial ratios	CNN	F1-score, AUROC	-
[93]	Mortgage dataset with local and national economic factors	1995–2014	Mortgage related features	DMLP	Negative average log-likelihood	AWS
[94]	Mortgage data from Norwegian financial service group, DNB	2012–2016	Personal financial variables	CNN	Accuracy, Sensitivity, Specificity, AUROC	-
[95]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	CNN, LSTM	F1-Score	Keras, Tensorflow
[96]	Several datasets combined to create a new one	1996-2017	Index data, 10-year Bond yield, exchange rates,	Logit, CART, RF, SVM, NN, XGBoost, DMLP	AUROC, KS, G-mean, likelihood ratio, DP, BA, WBA	R

Deep learning for financial applications: Fraud detection studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[114]	Debit card transactions by a local Indonesia bank	2016–2017	Financial transaction amount on several time periods	CNN, Stacked-LSTM, CNN-LSTM	AUROC	-
[115]	Credit card transactions from retail banking	2017	Transaction variables and several derived features	LSTM, GRU	Accuracy	Keras
[116]	Card purchases' transactions	2014-2015	Probability of fraud per currency/origin country, other fraud related features	DMLP	AUROC	-
[117]	Transactions made with credit cards by European cardholders	2013	Personal financial variables to PCA	DMLP, RF	Recall, Precision, Accuracy	-
[118]	Credit-card transactions	2015	Transaction and bank features	LSTM	AUROC	Keras, Scikit-learn
[119]	Databases of foreign trade of the Secretariat of Federal Revenue of Brazil	2014	8 Features: Foreign Trade, Tax, Transactions, Employees, Invoices, etc	AE	MSE	H2O, R
[120]	Chamber of Deputies open data, Companies data from Secretariat of Federal Revenue of Brazil	2009–2017	21 features: Brazilian State expense, party name, Type of expense, etc.	Deep Autoencoders	MSE, RMSE	H2O, R
[121]	Real-world data for automobile insurance company labeled as fradulent	-	Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	-
[122]	Transactions from a giant online payment platform	2006	Personal financial variables	GBDT+DMLP	AUROC	-
[123]	Financial transactions	-	Transaction data	LSTM	t-SNE	-
[124]	Empirical data from Greek firms	-	-	DQL	Revenue	Torch

Deep learning for financial applications: Portfolio management studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[65]	Cryptocurrencies, Bitcoin	2014-2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-
[127]	Stocks from NYSE, AMEX, NASDAQ	1965–2009	Price data	Autoencoder + RBM	Accuracy, confusion matrix	-
[128]	20 stocks from S&P500	2012-2015	Technical indicators	DMLP	Accuracy	Python, Scikit Learn, Keras, Theano
[129]	Chinese stock data	2012-2013	Technical, fundamental data	Logistic Regression, RF, DMLP	AUC, accuracy, precision, recall, f1, tpr, fpr	Keras, Tensorflov Python, Scikit learn
[130]	Top 5 companies in S&P500	-	Price data and Financial ratios	LSTM, Auto-encoding, Smart indexing	CAGR	-
[131]	IBB biotechnology index, stocks	2012–2016	Price data	Auto-encoding, Calibrating, Validating, Verifying	Returns	-
[132]	Taiwans stock market	-	Price data	Elman RNN	MSE, return	-
[133]	FOREX (EUR/USD, etc.), Gold	2013	Price data	Evolino RNN	Return	Python
[134]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	LSTM+DMLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[135]	S&P500	1985-2006	monthly and daily log-returns	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[136]	10 stocks in S&P500	1997-2016	OCHLV, Price data	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflov
[137]	Analyst reports on the TSE and Osaka Exchange	2016-2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCal
[138]	Stocks from Chinese/American stock market	2015-2018	OCHLV, Fundamental data	DDPG, PPO	SR, MDD	-
[139]	Hedge fund monthly return data	1996–2015	Return, SR, STD, Skewness, Kurtosis, Omega ratio, Fund alpha	DMLP	Sharpe ratio, Annual return, Cum. return	-
[140]	12 most-volumed cryptocurrency	2015-2016	Price data	CNN + RL	SR, portfolio value, MDD	-

Deep learning for financial applications: Asset pricing and derivatives market studies

Art.	Der. type	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Asset pricing	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[142]	Options	Simulated a range of call option prices	-	Price data, option strike/maturity, dividend/risk free rates, volatility	DMLP	RMSE, the average percentage pricing error	Tensorflow
[143]	Futures, Options	TAIEX Options	2017	OCHLV, fundamental analysis, option price	DMLP, DMLP with Black scholes	RMSE, MAE, MAPE	-
[144]	Equity returns	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	Fama–French n-factor model DL	R ² ,RMSE	Tensorflow

Deep learning for financial applications: Cryptocurrency and blockchain studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX daily returns, Euribor interest rates, OCHLV of EURO/UK, EURO/USD, US/JPY	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN	Accumulative portfolio value, MDD, SR	-
[140]	12 most-volumed cryptocurrency	2015-2016	Price data	CNN + RL	SR, portfolio value, MDD	
[145]	Bitcoin data	2010–2017	Hash value, bitcoin address, public/private key, digital signature, etc.	Takagi–Sugeno Fuzzy cognitive maps	Analytical hierarchy process	-
[146]	Bitcoin data	2012, 2013, 2016	TransactionId, input/output Addresses, timestamp	Graph embedding using heuristic, laplacian eigen-map, deep AE	F1-score	-
[147]	Bitcoin, Litecoin, StockTwits	2015–2018	OCHLV, technical indicators, sentiment analysis	CNN, LSTM, State Frequency Model	MSE	Keras, Tensorflow
[148]	Bitcoin	2013–2016	Price data	Bayesian optimized RNN, LSTM	Sensitivity, specificity, precision, accuracy, RMSE	Keras, Python, Hyperas

Financial sentiment studies coupled with text mining for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Analyst reports on the TSE and Osaka Exchange	2016-2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[150]	Sina Weibo, Stock 2012–2015 Technical market records indicators, sentences		DRSE F1-score, precision, recal accuracy, AURC		Python	
[151]	News from Reuters and Bloomberg for S&P500 stocks	Bloomberg for S&P500 price data		DeepClue	Accuracy	Dynet software
[152]	News from Reuters and 2006–2013 Bloomberg, Historical stock security data		News, price data DMLP		Accuracy	-
[153]	SCI prices	2008-2015	OCHL of change rate, price	Emotional Analysis + LSTM	MSE	-
[154]	SCI prices	2013-2016	Text data and Price data	LSTM	Accuracy, F1-Measure	Python, Keras
[155]	Stocks of Google, Microsoft and Apple	2016-2017	Twitter sentiment and stock prices			Spark, Flume,Twitter API,
[156]	30 DJIA stocks, S&P500, 2002–2016 DJI, news from Reuters		Price data and features from news articles	LSTM, NN, CNN and word2vec	Accuracy	VADER
[157]	Stocks of CSI300 index, OCHLV of CSI300 index	2009–2014	Sentiment Posts, Price data	Naive Bayes + LSTM	Precision, Recall, F1-score, Accuracy	Python, Keras
[158]	S&P500, NYSE Composite, DJIA, NASDAQ Composite	2009–2011	Twitter moods, index data	DNN, CNN	Error rate	Keras, Theano

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015-2016	Text and Price data	RNN, KNN, SVR, LinR	Return, SR, precision, recall, accuracy	Python, Tweepy API
[165]	News from Reuters, Bloomberg	2006–2013	Financial news, price data	Bi-GRU	Accuracy	Python, Keras
[166]	News from Sina.com, ACE2005 Chinese corpus	2012-2016	A set of news text	Their unique algorithm	Precision, Recall, F1-score	-
[167]	CDAX stock market data	2010-2013	Financial news, stock market data	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Python, Scikit-Learn
[168]	Apple, Airbus, Amazon news from Reuters, Bloomberg, S&P500 stock prices	2006-2013	13 Price data, news, TGRU, stock2vec technical indicators		Accuracy, precision, AUROC	Keras, Python
[169]	S&P500 Index, 15 stocks in S&P500	2006–2013 News from Reuters and Bloomberg		CNN	Accuracy, MCC	_
[170]	S&P500 index news from Reuters	2006–2013	Financial news titles, Technical indicators	SI-RCNN (LSTM + CNN)	Accuracy	-
[171]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	Paragraph Vector + LSTM	Profit	-
[172]	NIFTY50 Index, NIFTY Bank/Auto/IT/Energy Index, News	2013–2017	Index data, news	LSTM	MCC, Accuracy	-
[173]	Price data, index data, news, social media data	2015	Price data, news from articles and social media	Coupled matrix and tensor	Accuracy, MCC	Jieba
[174]	HS300	2015-2017	Social media news, price data	RNN-Boost with LDA	Accuracy, MAE, MAPE, RMSE	Python, Scikit-learn

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[175]	News and Chinese stock data	2014–2017	Selected words in a news	HAN	Accuracy, Annual return	-
[176]	News, stock prices from2001Price data andHong Kong StockTF-IDF from newsExchangeExchange			ELM, DLR, PCA, BELM, KELM, NN	Accuracy	Matlab
[177]	TWSE index, 4 stocks in TWSE	dex, 4 stocks in 2001–2017 Technical CNN + LSTM RMSE, Profit indicators, Price data, News		RMSE, Profit	Keras, Python, TALIB	
[178]	Stock of Tsugami Corporation			e data LSTM RMSE		Keras, Tensorflow
[179]	News, Nikkei Stock Average and 10-Nikkei companies	1999–2008	news, MACD	news, MACD RNN, RBM+DBN		-
[180]	ISMIS 2017 Data Mining Competition dataset	-	Expert identifier, classes	LSTM + GRU + FFNN	Accuracy	-
[181]	Reuters, Bloomberg News, S&P500 price	2006-2013	News and sentences	LSTM	Accuracy	-
[182]	APPL from S&P500 and 2011–2017 news from Reuters		Input news, CNN + LSTM, OCHLV, Technical CNN+SVM indicators		Accuracy, F1-score	Tensorflow
[183]	Nikkei225, S&P500, news from Reuters and Bloomberg	2001–2013	Stock price data and news	DGM	Accuracy, MCC, %profit	-
[184]	Stocks from S&P500	2006–2013	Text (news) and Price data	LAR+News, RF+News	MAPE, RMSE	-

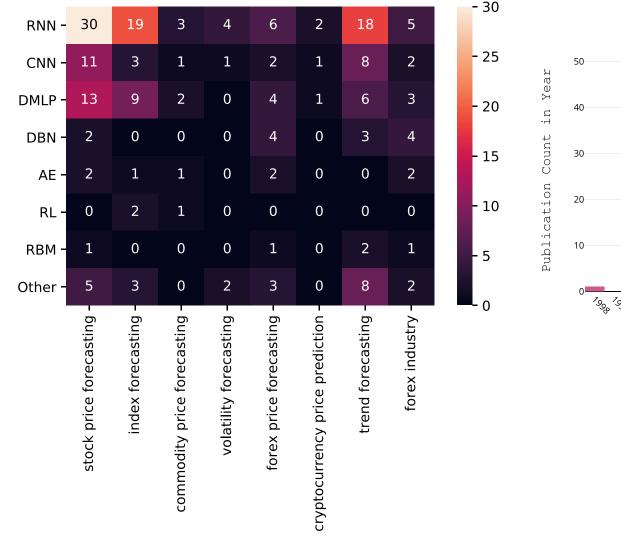
Financial sentiment studies coupled with text mining without forecasting

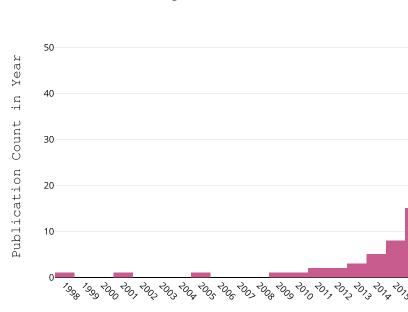
Art.	Data set Period		Feature set	Method	Performance criteria	Env.
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, Random Forest	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[185]	SemEval-2017 dataset, financial text, news, stock market data	2017	Sentiments in Tweets, News headlines	Ensemble SVR, CNN, LSTM, GRU	Cosine similarity score, agreement score, class score	Python, Keras, Scikit Learn
[186]	Financial news from Reuters	2006–2015	115 Word vector, Targeted Cumulative Lexical and dependency tree abnormal return Contextual input LSTM		_	
[187]	Stock sentiment analysis from StockTwits	5		StockTwits LSTM, Doc2Vec, nessages CNN		-
[188]	Sina Weibo, Stock market records	2012-2015	Technical DRSE indicators, sentences		F1-score, precision, recall, accuracy, AUROC	Python
[189]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013-2014	Text, Sentiment	LSTM, CNN	Return	Python, Tensorflow
[190]	StockTwits	2008–2016	Sentences, StockTwits messages	CNN, LSTM, GRU	MCC, WSURT	Keras, Tensorflow
[191]	Financial statements of Japan companies	-	Sentences, text	DMLP	Precision, recall, f-score	-
[192]	Twitter posts, news headlines			Sentences, text Deep-FASP		-
[193]	Forums data	2004-2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
[194]	News from Financial Times related US stocks	-	Sentiment of news headlines	SVR, Bidirectional LSTM	Cosine similarity	Python, Scikit Learn, Keras, Tensorflow

Deep learning for financial applications: Other text mining studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013-2014	Text, Sentiment	nt DMLP Return		
[86]	The event data set for 2007–2014 Word, senter large European banks, news articles from Reuters		Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	_
[87]	Event dataset on 2007–2014 European banks, news from Reuters		Text, sentence	Sentence vector + DFFN	Usefulness, F1-score, AUROC	-
[88]	News from Reuters, fundamental data			doc2vec + NN	Relative usefulness	Doc2vec
[121]	Real-world data for – automobile insurance company labeled as fradulent		Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	_
[123]	Financial transactions	_	Transaction data	LSTM	t-SNE	-
[195]	Taiwan's National2008–2014Pension Insurance		Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
[196]	StockTwits	2015–2016	Sentences, StockTwits messages	Doc2vec, CNN	Accuracy, precision, recall, f-measure, AUC	Python, Tensorflow

Deep learning for financial applications: Other theoretical or conceptual studies


Art.	SubTopic	IsTimeSeries?	Data set	Period	Feature set	Method
[197]	Analysis of AE, SVD	Yes	Selected stocks from the IBB index and stock of Amgen Inc.	2012–2014	Price data	AE, SVD
[198]	Fraud Detection in Banking	No	Risk Management / Fraud Detection	-	_	DRL


Deep learning for financial applications: Other financial applications

Art.	Subtopic	Data set	Period	Feature set	Method	Performance criteria	Env.
[47]	Improving trading decisions	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning and DMLP	Total profit, Correlation	-
[193]	Identifying Top Sellers In Underground Economy	Forums data	2004–2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
[195]	Predicting Social Ins. Payment Behavior	Taiwan's National Pension Insurance	2008-2014	Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
[199]	Speedup	45 CME listed commodity and FX futures	1991–2014	Price data	DNN	_	-
[200]	Forecasting Fundamentals	Stocks in NYSE, NASDAQ or AMEX exchanges	1970–2017	16 fundamental features from balance sheet	DMLP, LFM	MSE, Compound annual return, SR	-
[201]	Predicting Bank Telemarketing	Phone calls of bank marketing data	2008-2010	16 finance-related attributes	CNN	Accuracy	-
[202]	Corporate Performance Prediction	22 pharmaceutical companies data in US stock market	2000-2015	11 financial and 4 patent indicator	RBM, DBN	RMSE, profit	-

Financial time series forecasting with deep learning: Topic-model heatmap

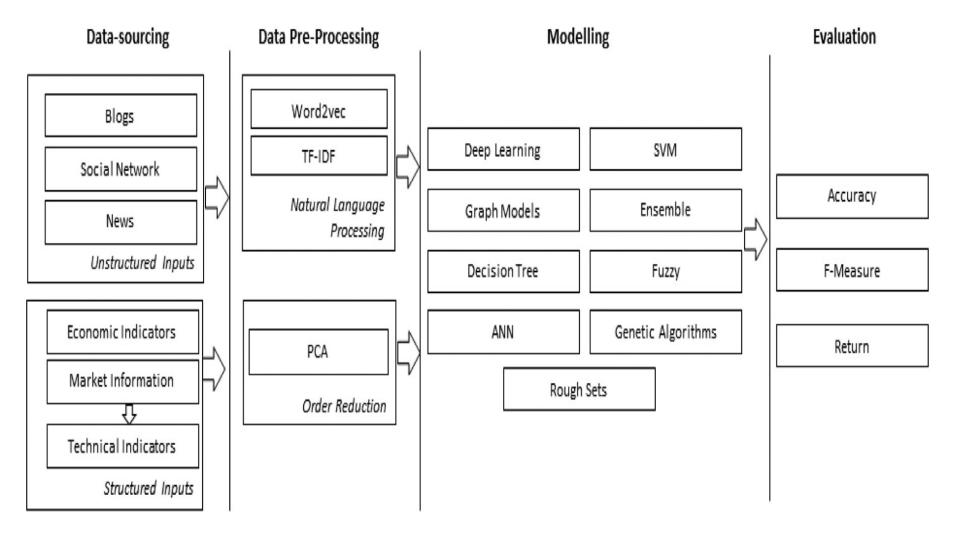
Year

Histogram of Publication Count in Years

Source: Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

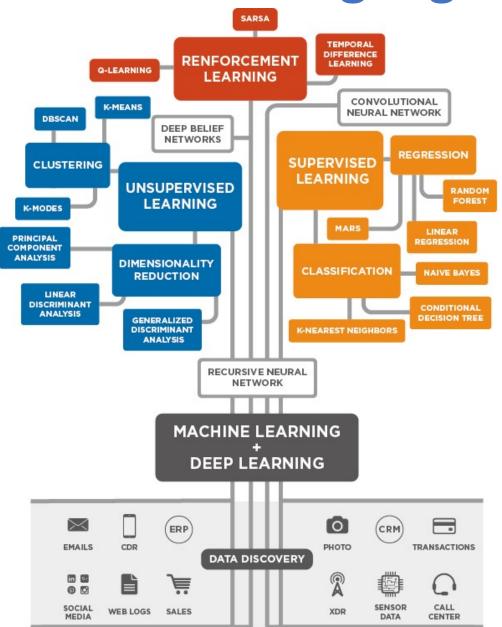
Stock price forecasting using only raw time series data

Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[80]	38 stocks in KOSPI	2010-2014	Lagged stock returns	50 min	5 min	DNN	NMSE, RMSE, MAE, MI	-
[81]	China stock market, 3049 Stocks	1990-2015	OCHLV	30 d	3 d	LSTM	Accuracy	Theano, Keras
[82]	Daily returns of 'BRD' stock in Romanian Market	2001-2016	OCHLV	-	1 d	LSTM	RMSE, MAE	Python, Theano
[83]	297 listed companies of CSE	2012-2013	OCHLV	2 d	1 d	LSTM, SRNN, GRU	MAD, MAPE	Keras
[84]	5 stock in NSE	1997–2016	OCHLV, Price data, turnover and number of trades.	200 d	110 d	LSTM, RNN, CNN, MLP	MAPE	-
[85]	Stocks of Infosys, TCS and CIPLA from NSE	2014	Price data	-	-	RNN, LSTM and CNN	Accuracy	-
[86]	10 stocks in S&P500	1997-2016	OCHLV, Price data	36 m	1 m	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[87]	Stocks data from S&P500	2011-2016	OCHLV	1 d	1 d	DBN	MSE, norm-RMSE, MAE	-
[88]	High-frequency transaction data of the CSI300 futures	2017	Price data	-	1 min	DNN, ELM, RBF	RMSE, MAPE, Accuracy	Matlab
[89]	Stocks in the S&P500	1990-2015	Price data	240 d	1 d	DNN, GBT, RF	Mean return, MDD, Calmar ratio	H2O
[90]	ACI Worldwide, Staples, and Seagate in NASDAQ	2006–2010	Daily closing prices	17 d	1 d	RNN, ANN	RMSE	-
[91]	Chinese Stocks	2007–2017	OCHLV	30 d	15 d	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[92]	20 stocks in S&P500	2010-2015	Price data	-	_	AE + LSTM	Weekly Returns	-
[93]	S&P500	1985-2006	Monthly and daily log-returns	*	1 d	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[94]	12 stocks from SSE Composite Index	2000-2017	OCHLV	60 d	17 d	DWNN	MSE	Tensorflow
[<mark>9</mark> 5]	50 stocks from NYSE	2007–2016	Price data	-	1d, 3 d, 5 d	SFM	MSE	-

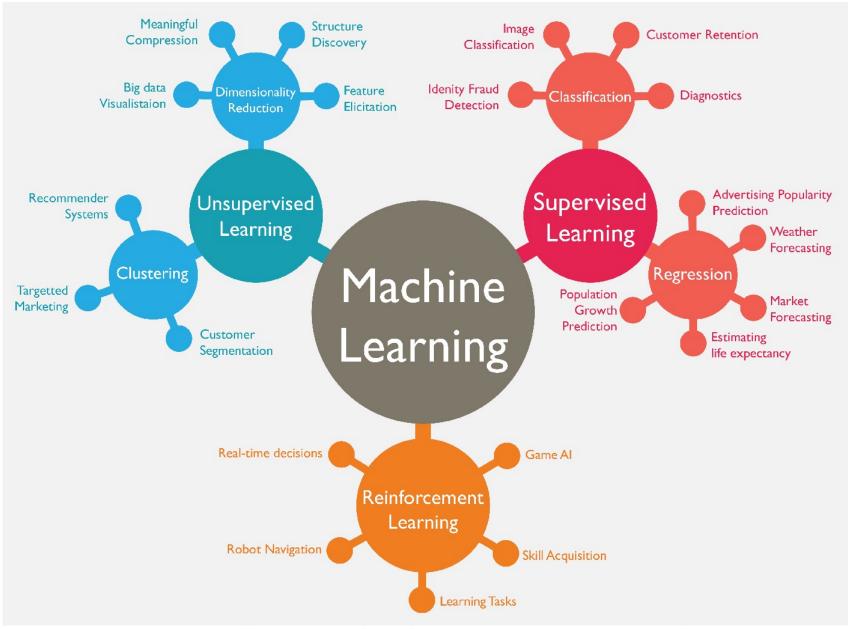

Source: Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

Stock price forecasting using various data

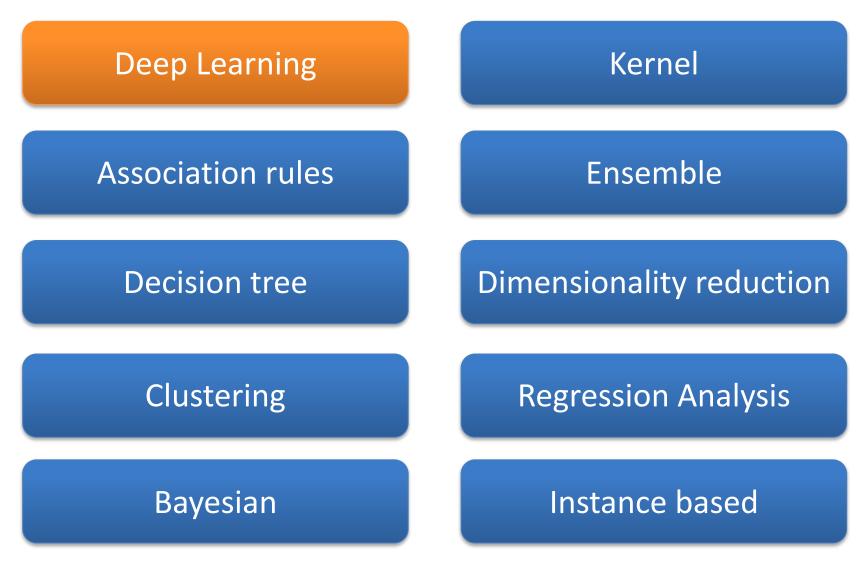
Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[96]	Japan Index constituents from WorldScope	1990–2016	25 Fundamental Features	10 d	1 d	DNN	Correlation, Accuracy, MSE	Tensorflow
[97]	Return of S&P500	1926-2016	Fundamental Features:	-	1 s	DNN	MSPE	Tensorflow
[98]	U.S. low-level disaggregated macroeconomic time series	1959–2008	GDP, Unemployment rate, Inventories, etc.	-	-	DNN	R ²	-
[99]	CDAX stock market data	2010-2013	Financial news, stock market data	20 d	1 d	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Pythor Scikit-Learn
[100]	Stock of Tsugami Corporation	2013	Price data	-	-	LSTM	RMSE	Keras, Tensorflow
[101]	Stocks in China's A-share	2006-2007	11 technical indicators	-	1 d	LSTM	AR, IR, IC	-
[102]	SCI prices	2008-2015	OCHL of change rate, price	7 d	-	EmotionalAnalysis + LSTM	MSE	-
[103]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	10 d	-	Paragraph Vector + LSTM	Profit	-
[104]	TKC stock in NYSE and QQQQ ETF	1999-2006	Technical indicators, Price	50 d	1 d	RNN (Jordan–Elman)	Profit, MSE	Java
[105]	10 Stocks in NYSE	-	Price data, Technical indicators	20 min	1 min	LSTM, MLP	RMSE	-
[106]	42 stocks in China's SSE	2016	OCHLV, Technical Indicators	242 min	1 min	GAN (LSTM, CNN)	RMSRE, DPA, GAN-F, GAN-D	-
[107]	Google's daily stock data	2004-2015	OCHLV, Technical indicators	20 d	1 d	$(2D)^2$ PCA + DNN	SMAPE, PCD, MAPE, RMSE, HR, TR, R ²	R, Matlab
[108]	GarantiBank in BIST, Turkey	2016	OCHLV, Volatility, etc.	-	-	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, R ²	Spark
[109]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	80 d	1 d	LSTM+MLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[110]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	-	-	CNN, LSTM	F1-Score	Keras, Tensorflow
[111]	Fundamental and Technical Data, Economic Data	-	Fundamental , technical and market information	-	-	CNN	-	-
[112]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	-	*	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[113]	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	*	-	Fama–French n-factor model DL	R ² , RMSE	Tensorflow


Source: Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

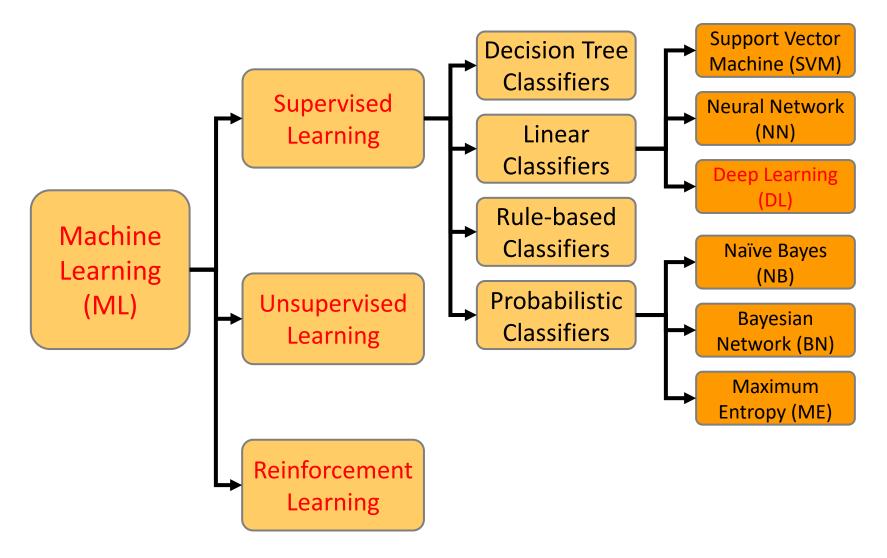
Stock Market Movement Forecast: Phases of the stock market modeling


Source: O. Bustos and A. Pomares-Quimbaya (2020), "Stock Market Movement Forecast: A Systematic Review." Expert Systems with Applications (2020): 113464.

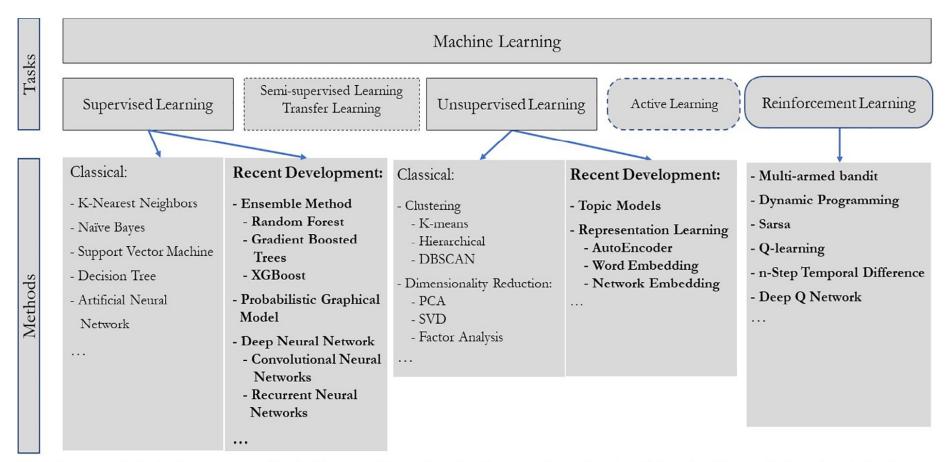
3 Machine Learning Algorithms


Source: Enrico Galimberti, http://blogs.teradata.com/data-points/tree-machine-learning-algorithms/

Machine Learning (ML)


Source: https://www.mactores.com/services/aws-big-data-machine-learning-cognitive-services/

Machine Learning Models


Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing

Machine Learning (ML) / Deep Learning (DL)

Source: Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma (2015), "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.

Machine Learning Tasks and Methods

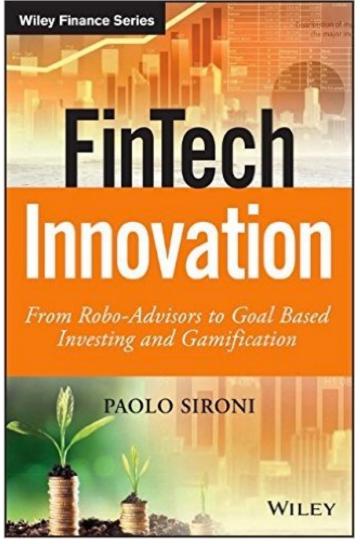
Note: Several entries in the diagram, e.g. word embedding or multi-armed bandit, refer to specific problem formulations for which a collection of methods exist.

: Tasks that take input data as given

: Tasks that involve interactive data acquisition

Dashed border: methods not elaborated in paper text **Bold type**: highlights recent developments

Source: Live Ma and Baohong Sun (2020), "Machine learning and AI in marketing – Connecting computing power to human insights." International Journal of Research in Marketing, 37, no. 3, 481-504.

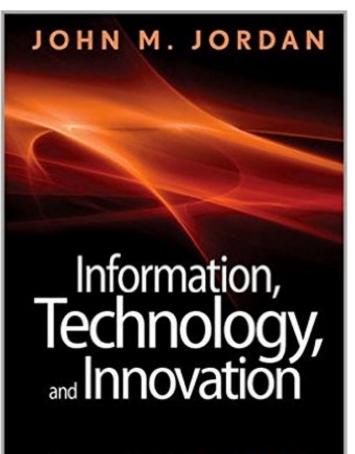

FinTech

Innovation

Paolo Sironi (2016) FinTech Innovation:

From Robo-Advisors to Goal Based Investing and Gamification,

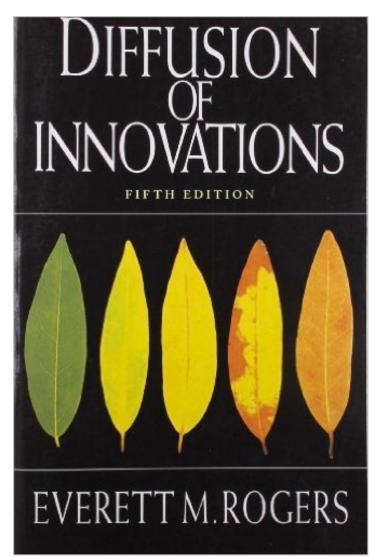
Wiley


Source: https://www.amazon.com/FinTech-Innovation-Robo-Advisors-Investing-Gamification/dp/1119226988

John M. Jordan (2012),

Information, Technology, and Innovation:

Resources for Growth in a Connected World,


Wiley

Resources for Growth in a Connected World

Everett M. Rogers (2003), Diffusion of Innovations,

5th Edition, Free Press

(Rogers, 1962; 1971; 1983; 1995; 2003)

Money and Financial History

- Why is a printed piece of paper worth anything?
- How can a coin be worth more or even less than the number stamped on it?
- Why is digital money real money?
- How can money be worth more or less than it was yesterday?

Money

Exchange

Barter

Barter

Money

Bills

Gold Bullion Coin

Gold Bullion Coin

Coin US Penny

Gold Bricks

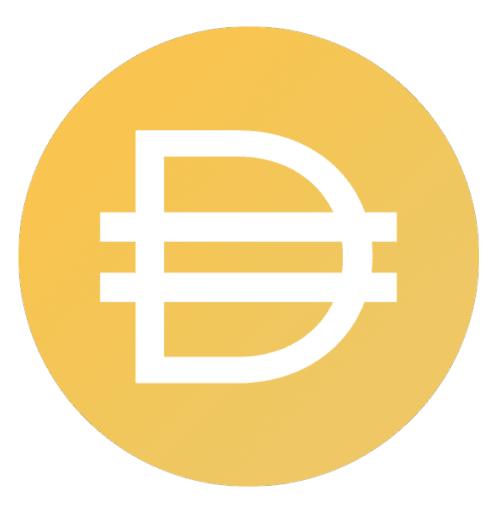
Digital

Money

Bitcoin (BTC)

Ethereum (ETH)

Tether (USDT)


USDC

- USDc is probably the most famous fiat-backed stablecoin.
- Its value is roughly a dollar and it's backed by Circle and Coinbase.

Dai

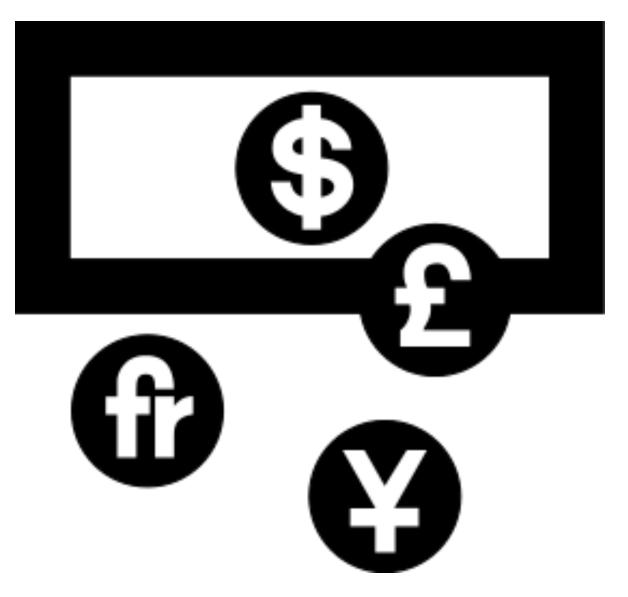
- Dai is probably the most famous decentralized stablecoin.
- Its value is roughly a dollar and it's accepted widely across dapps

Financial

Services

Financial Services

Financial Services



Currency Exchange

Market

FinTech

Financial Technology FinTech

"providing financial services by making use of software and modern technology"

Financial

Services

Financial Services

Source: http://www.crackitt.com/7-reasons-why-your-fintech-startup-needs-visual-marketing/

Financial Revolution with Fintech

A financial services revolution

Consumer Trends

1. Simplification

2. Transparency

3. Analytics

4. Reduced Friction

FinTech: Financial Services Innovation


Source: http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf

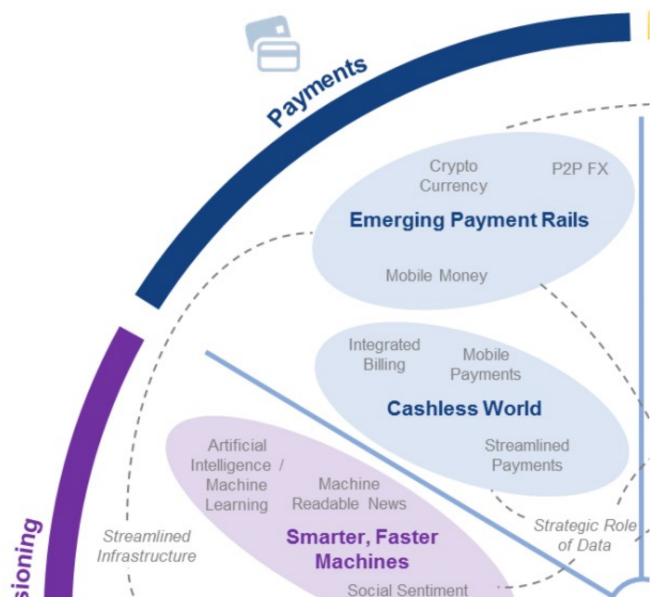
FinTech:

Financial Services Innovation

1. Payments 2. Insurance 3. Deposits & Lending 4. Capital Raising **5. Investment Management** 6. Market Provisioning

Source: http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf

Source: https://www.stockfeel.com.tw/2015年世界經濟論壇 - 未來的金融服務/

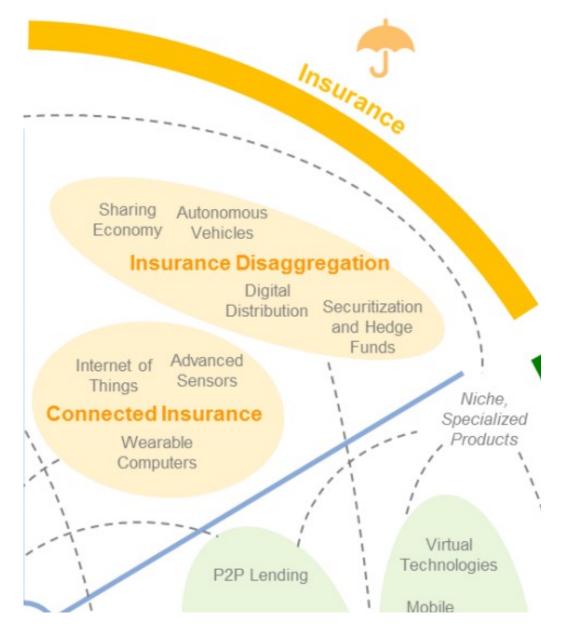

FinTech: Financial Services Innovation

圖表來源:Fugle團隊整理

1

FinTech: Payment

Source: http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf

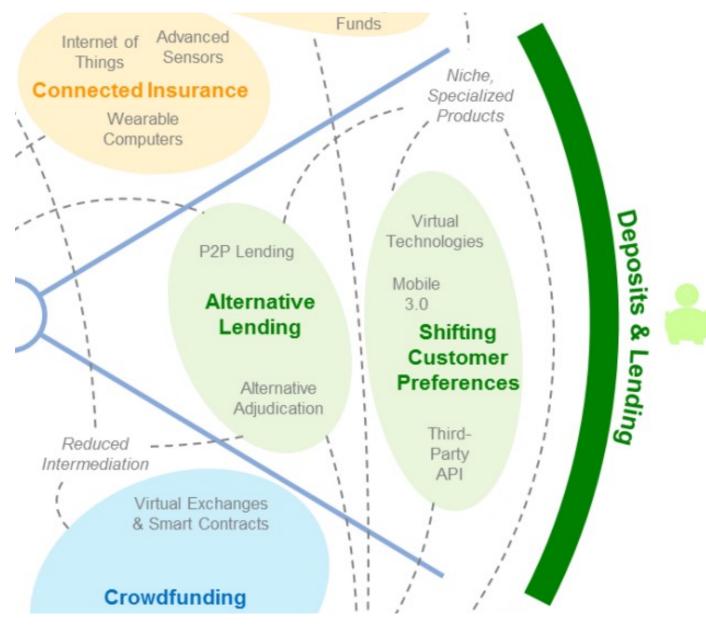

FinTech: Payment Cashless World Emerging Payment Rails

圖表來源:Fugle圖隊整理

2

FinTech: Insurance

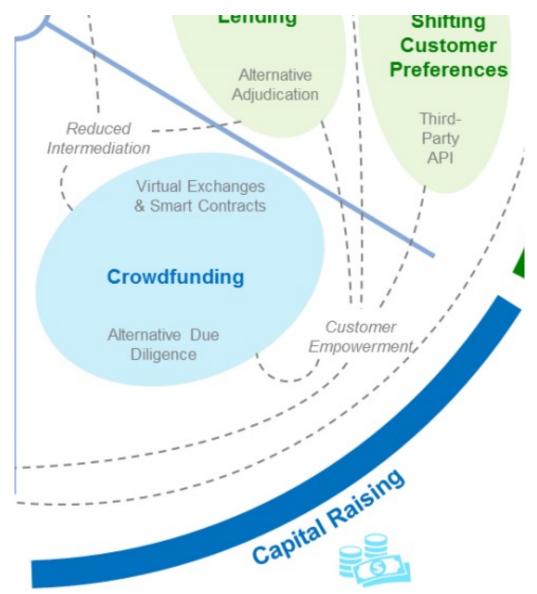
Source: http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf


FinTech: Insurance Insurance Disaggregation Connected Insurance

Source: https://www.stockfeel.com.tw/2015年世界經濟論壇 - 未來的金融服務/

FinTech: Deposits & Lending

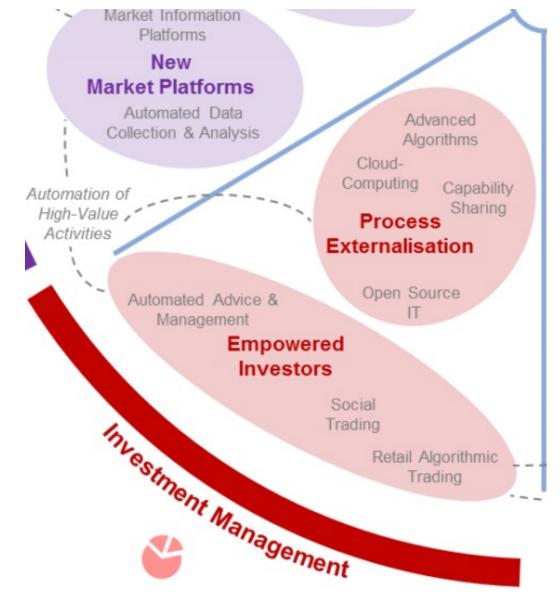
3


Source: http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf

3 FinTech: Deposits & Lending Alternative Lending Shifting Customer Preferences

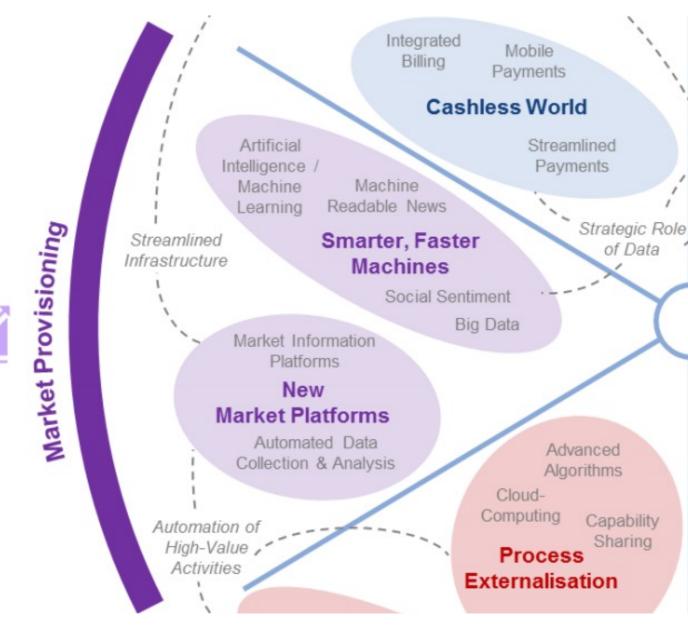
圖表來源:Fugle團隊整理

FinTech: Capital Raising



圖表來源:Fugle團隊整理

G FinTech: Investment Management


5 FinTech: Investment Management Empowered Investors Process Externalization

圖表來源:Fugle團隊整理

6

FinTech: Market Provisioning

Source: http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf

6 FinTech: Market Provisioning Smarter, Faster Machines New Market Platforms

圖表來源:Fugle團隊整理

Decentralized Finance (DeFi) **Block Chain FinTech**

Decentralized Finance (DeFi)

- A global, open alternative to the current financial system.
- Products that let you borrow, save, invest, trade, and more.
- Based on open-source technology that anyone can program with.

Traditional Finance Centralized Finance (CeFi)

- Some people aren't granted access to set up a bank account or use financial services.
- Lack of access to financial services can prevent people from being employable.
- Financial services can block you from getting paid.
- A hidden charge of financial services is your personal data.
- Governments and centralized institutions can close down markets at will.
- Trading hours often limited to business hours of specific time zone.
- Money transfers can take days due to internal human processes.
- There's a premium to financial services because intermediary institutions need their cut.

DeFi vs. CeFi

Decentralized Finance (DeFi)

You hold your money.

You control where your money goes and how it's spent.

Transfers of funds happen in minutes.

Transaction activity is pseudonymous.

DeFi is open to anyone.

The markets are always open.

It's built on transparency – anyone can look at a product's data and inspect how the system works.

Traditional Finance (Centralized Finance; CeFi)

Your money is held by companies.

You have to trust companies not to mismanage your money, like lend to risky borrowers.

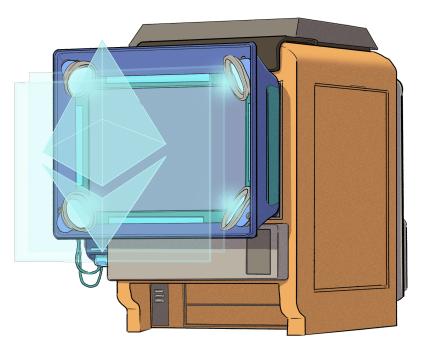
Payments can take days due to manual processes.

Financial activity is tightly coupled with your identity.

You must apply to use financial services.

Markets close because employees need breaks.

Financial institutions are closed books: you can't ask to see their loan history, a record of their managed assets, and so on.


(DeFi)

Decentralized Applications (Dapps)

- Ethereum-powered tools and services
- Dapps are a growing movement of applications that use Ethereum to disrupt business models or invent new ones

The Internet of Assets

- Ethereum isn't just for digital money.
- Anything you can own can be represented, traded and put to use as non-fungible tokens (NFTs).

Source: Matt Fortnow and QuHarrison Terry (2021), The NFT Handbook - How to Create, Sell and Buy Non-Fungible Tokens, Wiley

Top 10 Cryptocurrency Prices by Market Cap

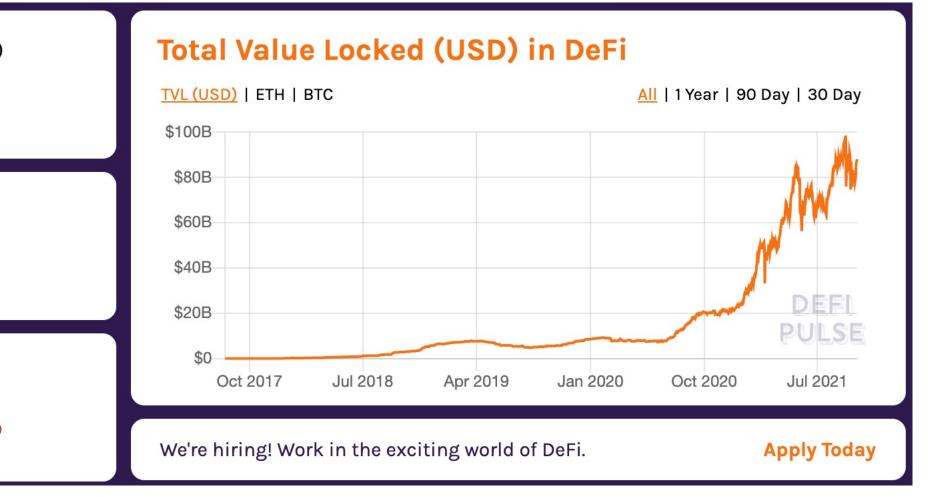
The global cryptocurrency market cap today is \$2.2 Trillion (2021/10/04)

#	ŧ	Coin			Price	1h	24h	7d	24h Volume	Mkt Cap	Last 7 Days
☆	1	₿	Bitcoin	BTC Buy	\$47,785.22	0.1%	-0.6%	10.2%	\$26,105,966,045	\$900,001,131,377	monum
숩	2	۶	Ethereum	ETH Buy	\$3,355.80	0.1%	-1.5%	9.6%	\$17,452,803,700	\$395,497,782,441	monum
쇼	3	*	Cardano	ADA Buy	\$2.19	0.1%	-3.4%	-1.1%	\$1,605,163,106	\$70,315,205,392	mounty
숩	4	₽	Tether	USDT Buy	\$1.00	-0.3%	-0.4%	-0.4%	\$57,040,920,315	\$69,029,185,702	mprogramment
숩	5	\$	Binance Coin	BNB	\$421.42	0.2%	-1.4%	22.3%	\$1,431,278,128	\$65,132,587,985	monum
숩	6	9	Solana	SOL Buy	\$168.14	0.7%	-1.9%	23.8%	\$3,108,762,052	\$50,149,583,355	monut
숩	7	×	XRP	XRP Buy	\$1.03	-0.1%	-1.0%	9.1%	\$4,082,292,861	\$48,199,620,472	mount
☆	8	٢	USD Coin	USDC Buy	\$1.00	-0.0%	-0.2%	-0.2%	\$1,931,705,752	\$32,368,516,635	mpathatunhumpur
☆	9	ð	Polkadot	DOT Buy	\$31.06	0.1%	-2.8%	8.1%	\$958,803,988	\$32,233,045,409	monun
숩	10	0	Dogecoin	DOGE	\$0.216150	0.2%	-1.3%	5.1%	\$1,145,076,668	\$28,484,601,530	mar And

Top Stablecoins (Tether USDT, USD Coin USDC, Dai)

Digital money for everyday use

Stablecoins are


Ethereum tokens designed to stay at a fixed value,

even when

the price of ETH changes.

CURRENCY	MARKET CAPITALIZATION	COLLATERAL TYPE	
💎 Tether	\$69,136,810,713	Fiat	
(S) USD Coin	\$32,359,142,012	Fiat	
🤣 Binance USD	\$13,083,174,132	Fiat	
<table-cell-rows> Dai</table-cell-rows>	\$6,265,852,093	Crypto	
TrueUSD	\$1,347,100,594	Fiat	
O PAX Gold	\$318,953,291	Precious metals	
5 HUSD	\$296,254,105	Fiat	
👉 Gemini Dollar	\$231,786,547	Fiat	

DeFi Total Value Locked (USD) (DeFi Pulse)

Total Value Locked (USD)

\$87.98B

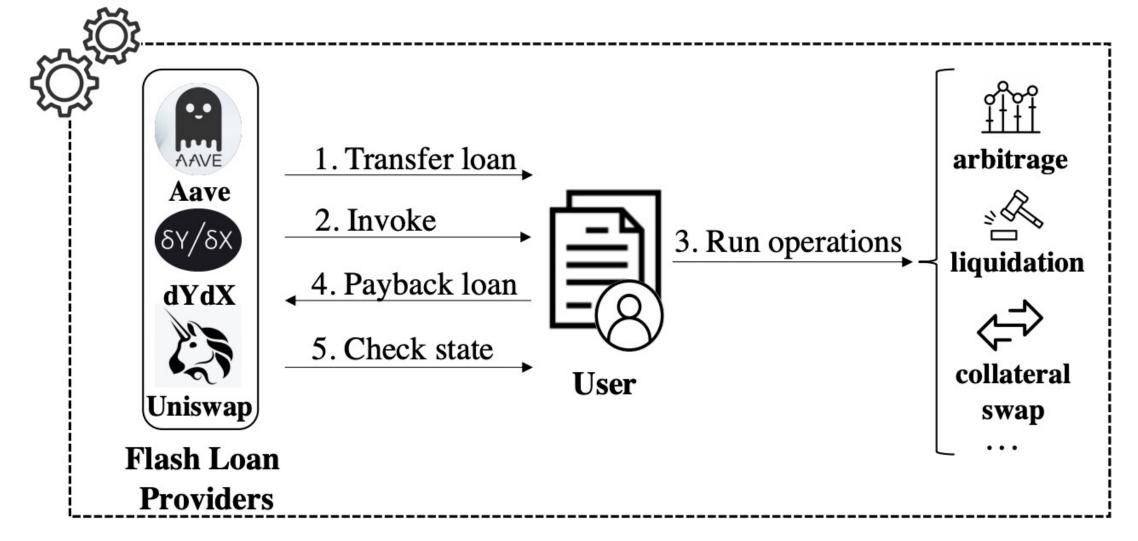
Aave Dominance

15.29%

DeFi Pulse Index

330.78 ^{-16.62} (-4.78%)

Available from TokenSets 5 Set


Top 10 DeFi Applications (DApps) (DeFi Pulse)

Lending		DeFi Paulse	DeFi Apps Name	Chain	Category	Locked (USD)
	Y	<u>1.</u>	<u>Aave</u>	<u>Multichain</u>	<u>Lending</u>	<u>\$15.22B</u>
DEXes	2	<u>2.</u>	<u>Maker</u>	<u>Ethereum</u>	<u>Lending</u>	<u>\$12.85B</u>
(Decentralized	<u>š</u>	<u>3.</u>	Curve Finance	<u>Multichain</u>	<u>DEXes</u>	<u>\$12.75B</u>
Exchanges)		<u>4.</u>	InstaDApp	<u>Ethereum</u>	<u>Lending</u>	<u>\$11.32B</u>
		<u>5.</u>	<u>Compound</u>	<u>Ethereum</u>	Lending	<u>\$9.56B</u>
Assets		<u>6.</u>	<u>Uniswap</u>	<u>Ethereum</u>	<u>DEXes</u>	<u>\$6.50B</u>
		<u>7.</u>	Convex Finance	<u>Ethereum</u>	<u>Assets</u>	<u>\$6.40B</u>
Derivatives		<u>8.</u>	<u>yearn.finance</u>	<u>Ethereum</u>	<u>Assets</u>	<u>\$4.31B</u>
		<u>9.</u>	<u>SushiSwap</u>	<u>Ethereum</u>	<u>DEXes</u>	<u>\$3.97B</u>
Payments		<u>10.</u>	<u>Liquity</u>	<u>Ethereum</u>	Lending	<u>\$2.28B</u>
			Source: https://definulse.com/			1

Financial Stability Challenges

Crypto Ecosystem	 Operational, cyber, and governance risks Integrity (market and AML/CFT) (Anti–Money Laundering / Combating the Financing of Terrorism) Data availability / reliability Challenges from cross-boarder activites
Stablecoins	 How stable are stablecoins? Domestic and global regulatory and supervisory approaches
Macro- Financial	 Cryptoization, capital flows, and restrictions Monetary policy transmission Bank disintermediation

Decentralized Finance Applications (DApps): Flash Loan Transaction

Source: Wang, Dabao, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu Wang, and Kui Ren (2021). "Towards A First Step to Understand Flash Loan and Its Applications in DeFi Ecosystem." In Proceedings of the Ninth International Workshop on Security in Blockchain and Cloud Computing, pp. 23-28. 2021.

The Economics of Money, **Banking and Financial Markets**

Source: Frederic S. Mishkin (2015), The Economics of Money, Banking and Financial Markets, 11th Edition, Pearson

Economics of Money, Banking and Financial Markets

- **1.** Money, Banking, and Financial System
- 2. Financial Markets
- 3. Financial Institutions
- 4. Central Banking and the Conduct of Monetary Policy
- 5. International Finance and Monetary Policy
- 6. Monetary Theory
- 7. Financial Services Industry

INTRODUCTION

- 1. Why Study Money, Banking, and Financial Markets?
- 2. An Overview of the Financial System
- 3. What Is Money?

FINANCIAL MARKETS

- 4. Understanding Interest Rates
- 5. The Behavior of Interest Rates
- 6. The Risk and Term Structure of Interest Rates

7. The Stock Market, the Theory of Rational Expectations, and the Efficient Market Hypothesis

FINANCIAL INSTITUTIONS

- 8. An Economic Analysis of Financial Structure
- 9. Banking and the Management of Financial Institutions
- **10. Economic Analysis of Financial Regulation**
- **11. Banking Industry: Structure and Competition**
- **12. Financial Crises**

CENTRAL BANKING AND THE CONDUCT OF MONETARY POLICY

- 13. Central Banks and the Federal Reserve System
- **14. The Money Supply Process**
- **15. The Tools of Monetary Policy**
- 16. The Conduct of Monetary Policy: Strategy and Tactics

MONETARY THEORY

- 19. Quantity Theory, Inflation, and the Demand for Money
- 20. The IS Curve
- **21.** The Monetary Policy and Aggregate Demand Curves
- 22. Aggregate Demand and Supply Analysis
- **23. Monetary Policy Theory**
- 24. The Role of Expectations in Monetary Policy
- 25. Transmission Mechanisms of Monetary Policy

Financial Services Industry

- 26. Financial Crises in Emerging Market Economies
- 27. The ISLM Model
- 28. Nonbank Finance
- **29. Financial Derivatives**

30. Conflicts of Interest in the Financial Services Industry

Why Study Money, Banking, and Financial Markets?

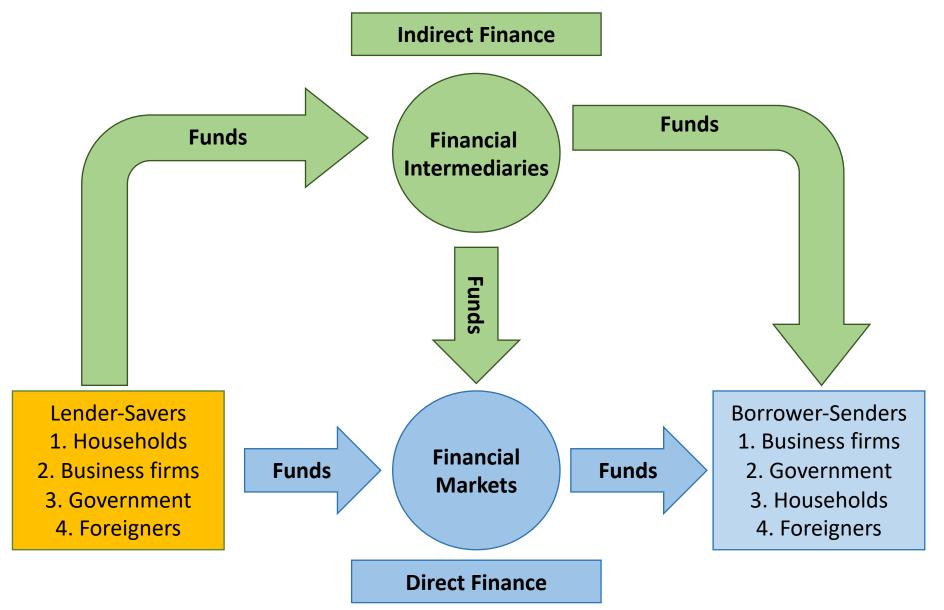
Source: Frederic S. Mishkin (2015), The Economics of Money, Banking and Financial Markets, 11th Edition, Pearson

Why Study Money, Banking, and Financial Markets?

- To examine how financial markets such as bond, stock and foreign exchange markets work
- To examine how financial institutions such as banks and insurance companies work
- To examine the role of money in the economy

Financial Markets

- Markets in which funds are transferred from people who have an excess of available funds to people who have a shortage of funds
 - Bond market
 - Stock market
 - Foreign exchange market


Financial Institutions

- Financial Intermediaries: institutions that borrow funds from people who have saved and make loans to other people:
 - Banks: accept deposits and make loans
 - Other Financial Institutions: insurance companies, finance companies, pension funds, mutual funds and investment banks
- Financial Innovation: the advent of the information age and e-finance

Money and Business Cycles

- Money plays an important role in generating business cycles
- Recessions (unemployment) and expansions affect all of us
- Monetary Theory ties changes in the money supply to changes in aggregate economic activity and the price level

Overview of the Financial System

Source: Frederic S. Mishkin (2015), The Economics of Money, Banking and Financial Markets, 11th Edition, Pearson

What is

Money?

Money

Bills

Meaning of Money

- Money (=money supply) any vehicle used as a means of exchange to pay for goods, services or debts.
- In today's society, any asset that can quickly be transferred into cash is considered money.
- The more liquid an asset is, the closer it is to money.
- In economics, money does not mean wealth nor does it mean income.

Functions of Money

- Medium of Exchange
- Unit of Account
- Store of Value

Medium of Exchange

- By eliminating barter, this function of money increases efficiency in a society.
- As human societies started to engage in exchange money had to be invented.
- Any technological change that reduces transaction costs increases the wealth of the society.
- Any technological change that allows people to specialize also increases wealth.

Unit of Account

- We use money to measure the value of goods and services.
- Suppose we had 4 goods and no money. How do we measure the price of each good?
 - A in terms of B
 - B in terms of C N!/2(N-2)!
 - C in terms of D
 - A in terms of C
 - A in terms of D
 - B in terms of D
- Money allows to quote prices in terms of currency only.

Store of Value

- All assets are stored value.
- Money, although without any return, is still desirable to hold because it allows purchases immediately.
- Other assets take time (transaction costs) to use as a payment for purchases.
- The more liquid an asset is, the less transaction cost it carries.
- Inflation erodes the value of money.

Evolution of the Payments System

- Commodity Money:
 - valuable, easily standardized and divisible commodities (e.g. precious metals, cigarettes).
- Fiat Money:
 - paper money decreed by governments as legal tender.

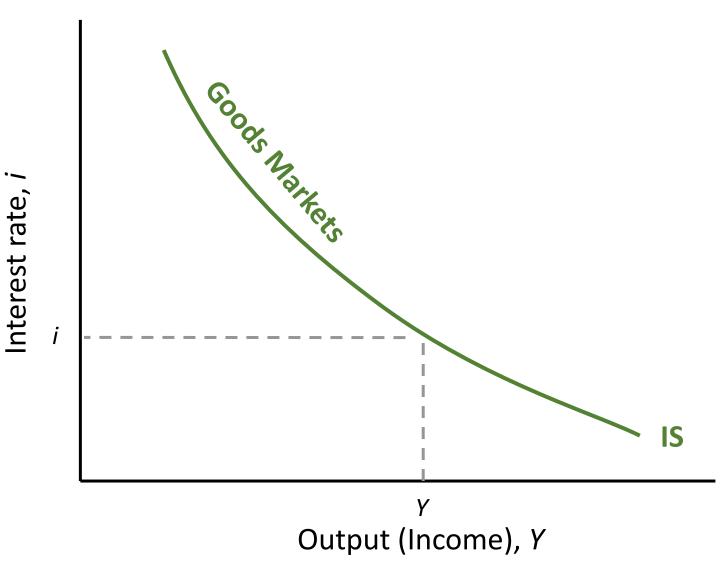
Electronic Money

- Debit Cards
 - Instant transfer from your checking account to merchant's checking account.
- Stored Value Card
 - Gift cards.
- Electronic Cash
 - Account set up on a person's PC from her bank whereby she can buy products over the Internet.
- Electronic Checks
 - Checks written on PC and sent through the Internet.

Benefits of Paper Checks

- Cheaper than telecommunications network.
- Provide receipts.
- Allow float.
- May be more secure; avoid hacker problems.
- Do not leave a wealth of information trail.

Measuring Money

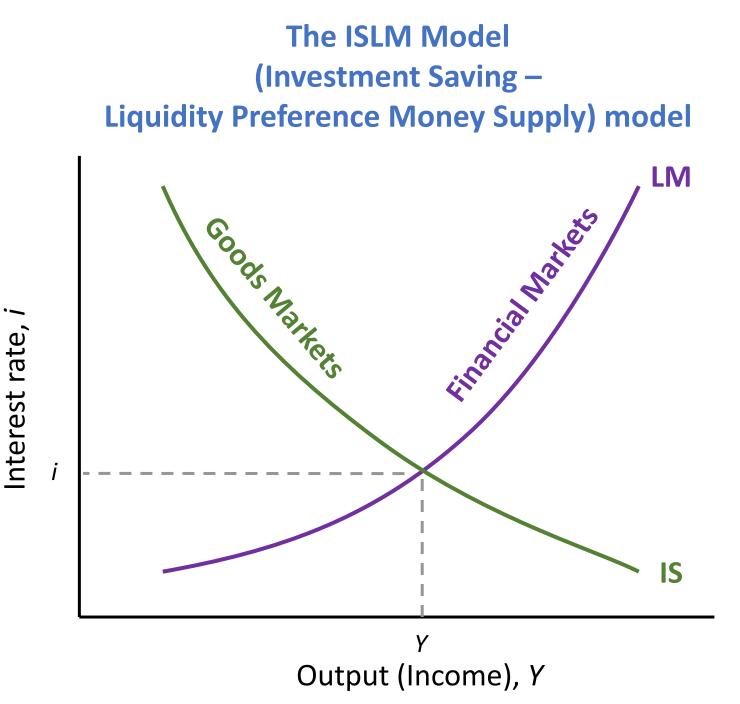

• M1:

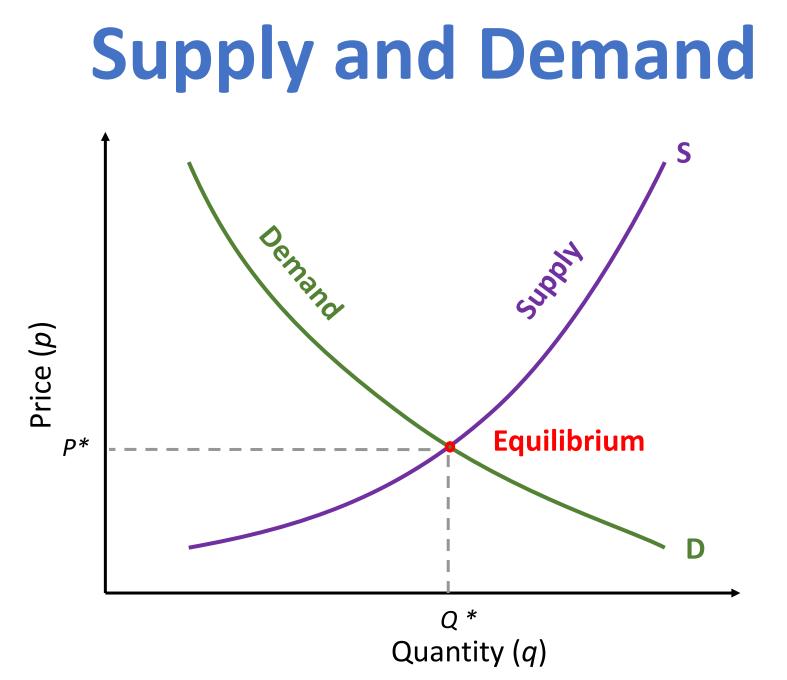
- Currency, demand deposits, travelers checks.
- M2:
 - M1, saving deposits, small time deposits, retail MMMF.
- M3:
 - M2, large time deposits, repos, Eurodollar deposits, institutional MMMF.
- MZM:
 - M2, institutional MMMF minus small time deposits.
- Growth rates of these aggregates do not always go hand in hand, making monetary policy difficult since signals are conflicting.

The IS Curve

The IS (Investment/Saving) Curve

The IS (Investment/Saving) Curve



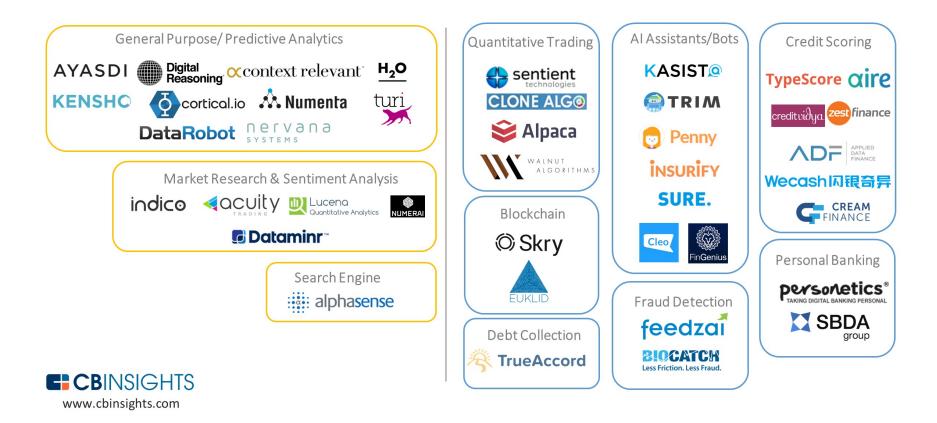


Source: Frederic S. Mishkin (2015), The Economics of Money, Banking and Financial Markets, 11th Edition, Pearson

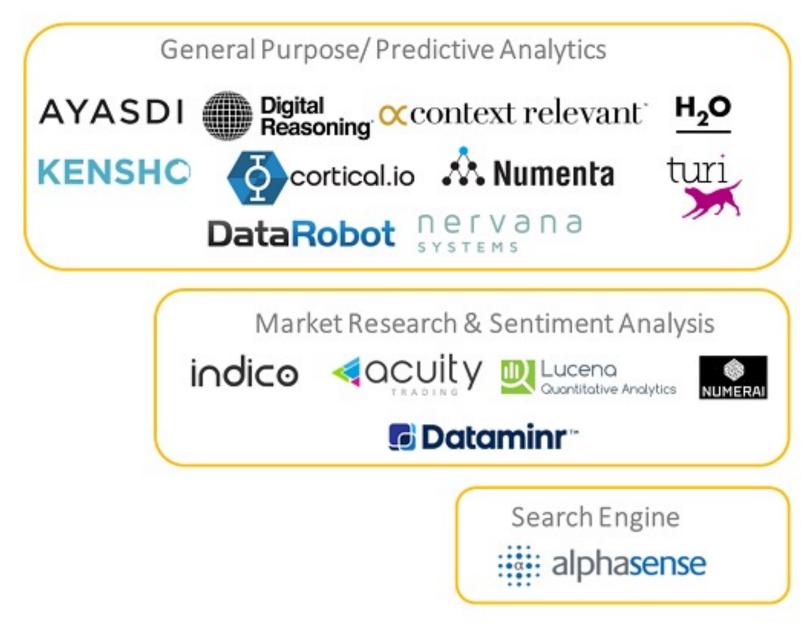
The ISLM Model

Goods and Financial Markets: The ISLM Model (Investment Saving – **Liquidity Preference Money** Supply) model

Source: Frederic S. Mishkin (2015), The Economics of Money, Banking and Financial Markets, 11th Edition, Pearson

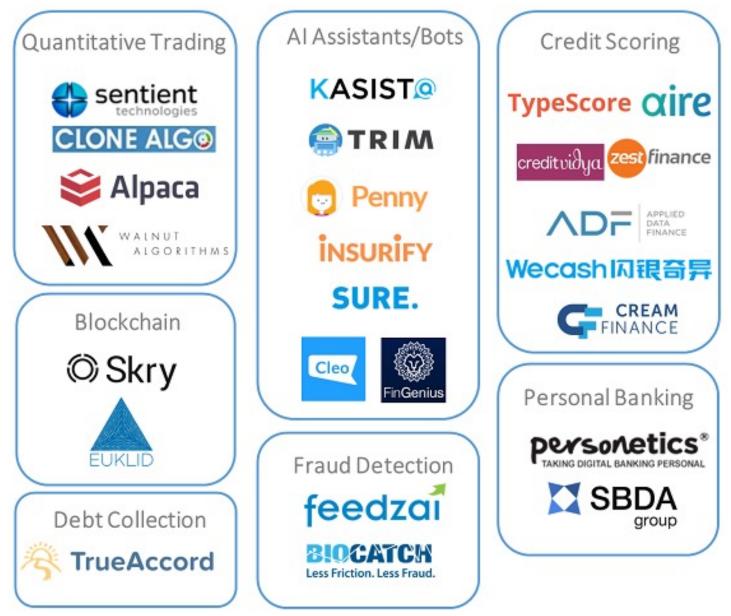

Artificial Intelligence and **Deep Learning** for Fintech

From Algorithmic Trading to Personal Finance Bots: **41 Startups Bringing** Al to Fintech

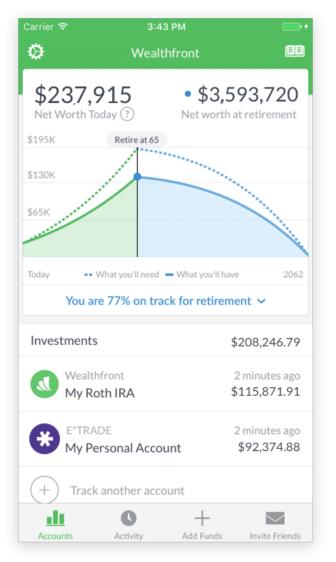

Source: https://www.cbinsights.com/blog/artificial-intelligence-fintech-market-map-company-list/

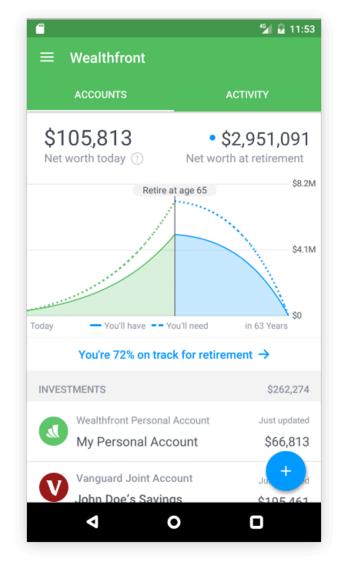
From Algorithmic Trading To Personal Finance Bots: 41 Startups Bringing AI To Fintech Al in Fintech

41 Startups Bringing Artificial Intelligence To Fintech



Artificial Intelligence (AI) in Fintech


Source: https://www.cbinsights.com/blog/artificial-intelligence-fintech-market-map-company-list/


Artificial Intelligence (AI) in Fintech

Wealthfront Robo Advisor

Financial

Services

Technology Innovation

Innovation

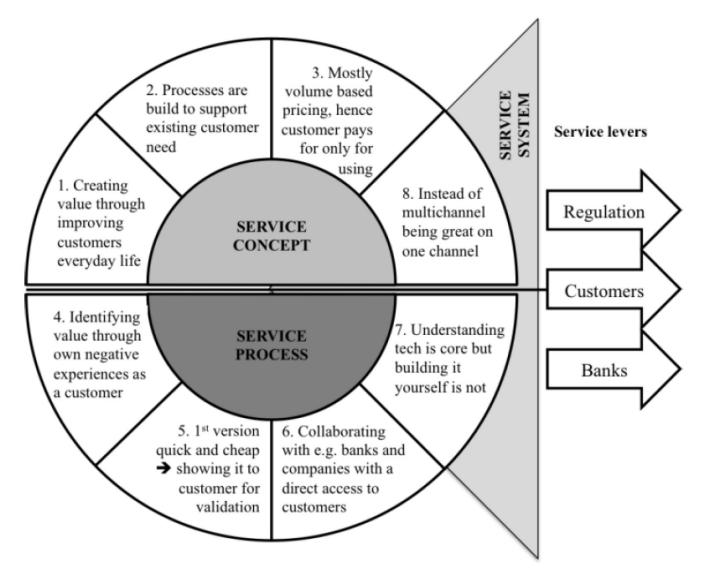
Innovation: a new idea, method, or device

Innovation: something

new

Source: https://www.merriam-webster.com/dictionary/innovation

Novelty: something new or unusual

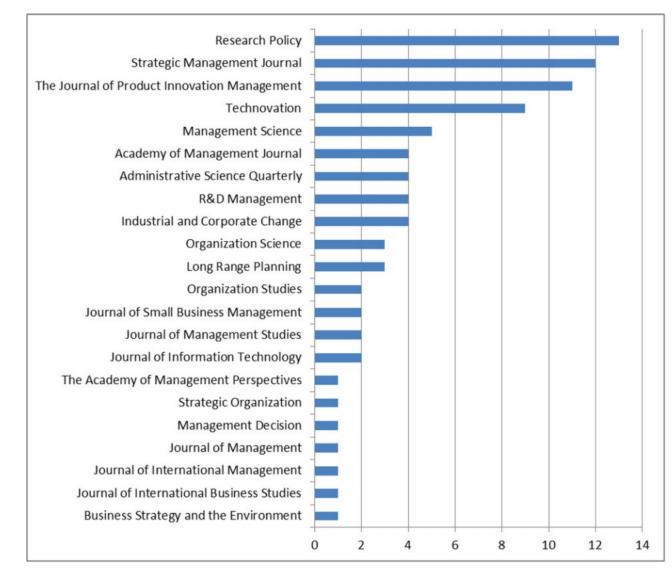

the novelty of a self-driving car

Creativity is not a new Idea.

Creativity is an old belief

you leave behind

FinTechs as Service Innovators: Analysing Components of Innovation



Source: Riikkinen, Mikko, Kaisa Still, Saila Saraniemi, and Katri Kallio. "FinTechs as service innovators: analysing components of innovation." In *ISPIM Innovation Symposium*, The International Society for Professional Innovation Management (ISPIM), 2016.

nnovation "a process of searching and recombining existing knowledge elements"

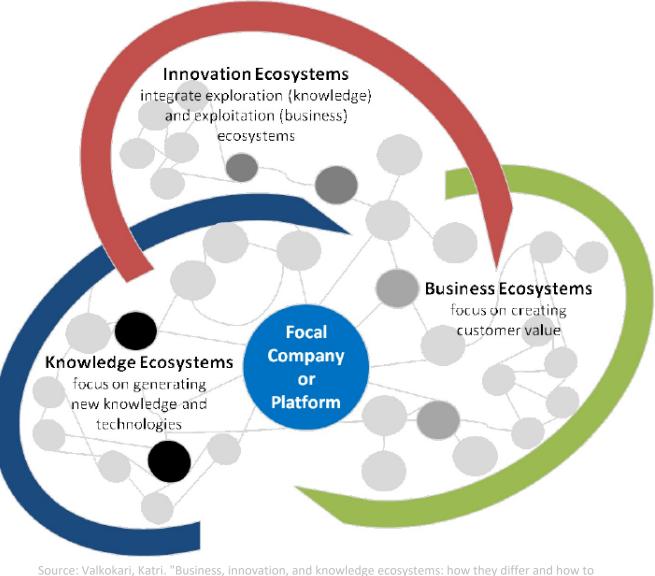
Source: Savino, Tommaso, Antonio Messeni Petruzzelli, and Vito Albino. "Search and recombination process to innovate: A review of the empirical evidence and a research agenda." International Journal of Management Reviews (2017).

Search and recombination process to innovate: A review of the empirical evidence and a research agenda

Source: Savino, Tommaso, Antonio Messeni Petruzzelli, and Vito Albino. "Search and recombination process to innovate: A review of the empirical evidence and a research agenda." International Journal of Management Reviews (2017).

Innovation Research in Economics, Sociology and **Technology Management**

Source: Gopalakrishnan, Shanti, and Fariborz Damanpour. "A review of innovation research in economics, sociology and technology management." *Omega* 25, no. 1 (1997): 15-28.


Innovation Research in Economics, Sociology and Technology Management

	Stage of process	Level of study	Type of innovation		
Economists	Generation Idea generation Project definition	Industry	Product and process Only technical Only radical		
Technologists					
Contextual technologists	Generation Commercialization and marketing Diffusion	Innovation (in the industry context)	Product and process Only technical Radical and incremental		
Organizational technologists	Generation Idea generation Problem solving adoption Adoption Initiation	Organizational Sub-system	Product and process Only technical Radical and incremental		
Sociologists					
Variance sociologists	Adoption Initiation Implementation	Organization	Product and process Technical and administrative Radical and incremental		
Process sociologists	Adoption Initiation Implementation	Innovation (at the organizational level)	Product and process Technical and administrative Radical and incremental		

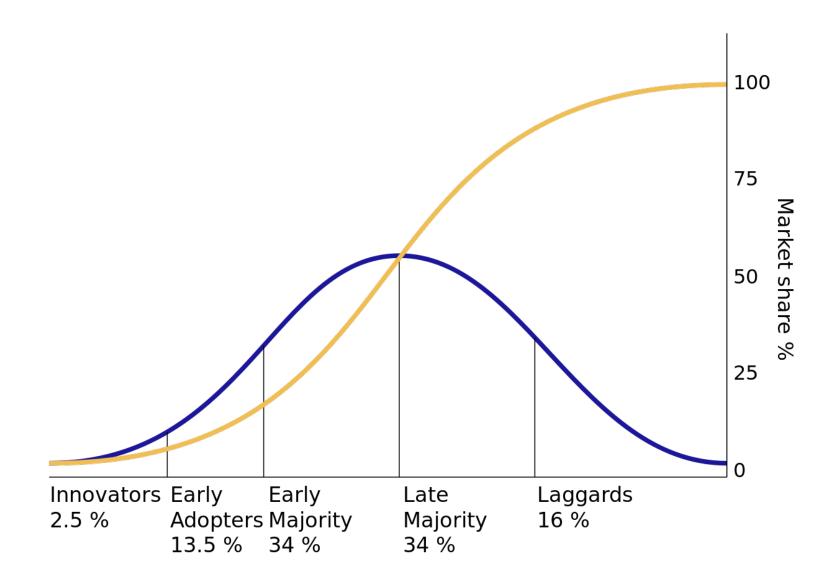
Source: Valkokari, Katri. "Business, innovation, and knowledge ecosystems: how they differ and how to survive and thrive within them." *Technology Innovation Management Review* 5, no. 8 (2015).

Business, Innovation, and Knowledge Ecosystems

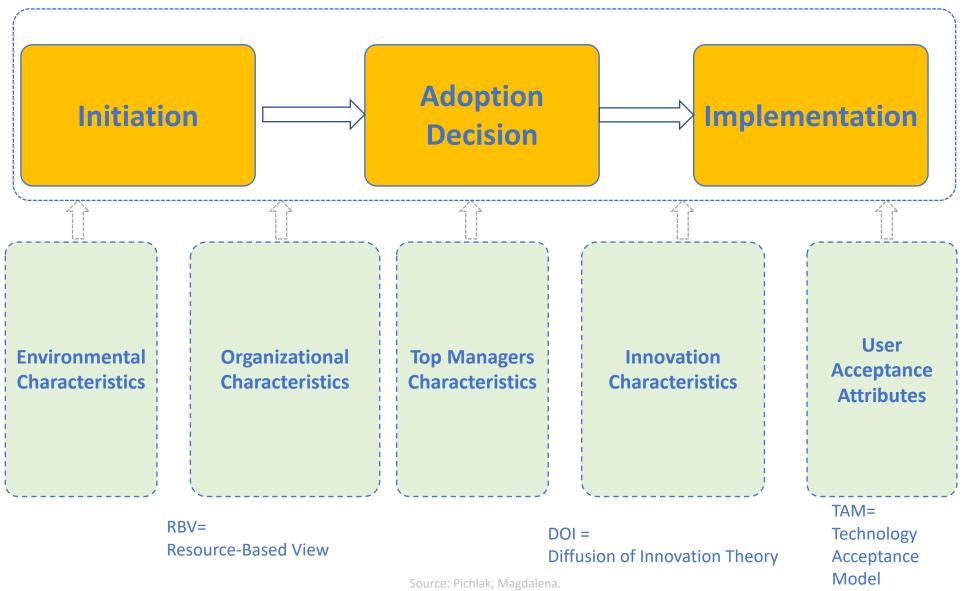
survive and thrive within them." *Technology Innovation Management Review* 5, no. 8 (2015).

Innovation Ecosystems Characteristics

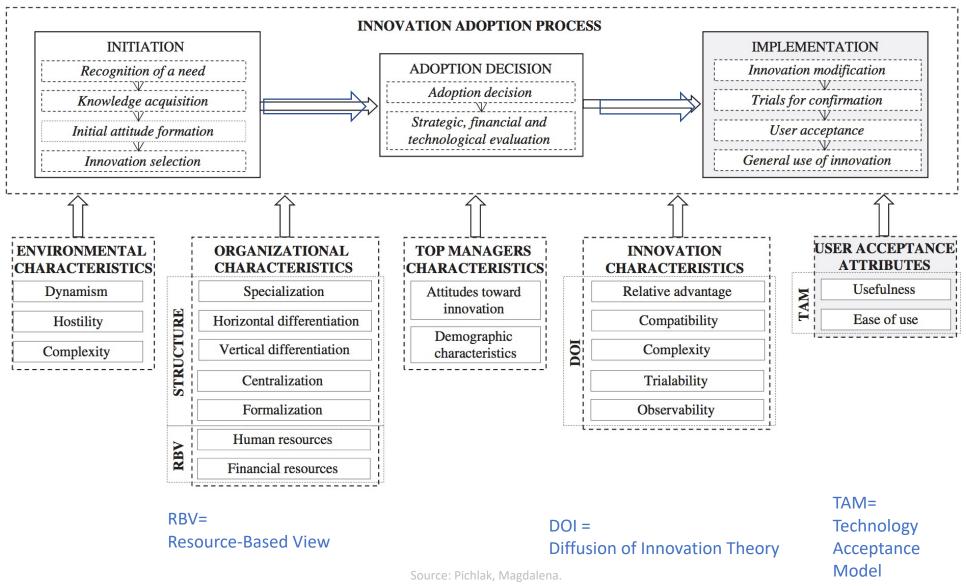
	Business Ecosystems	Innovation Ecosystems	Knowledge Ecosystems
Baseline of Ecosystem	Resource exploitation for customer value	Co-creation of innovation	Knowledge exploration
Relationships and Connectivity	Global business relationships both competitive and co- operative	Geographically clustered actors, different levels of collaboration and openness	Decentralized and disturbed knowledge nodes, synergies through knowledge exchange
Actors and Roles	Suppliers, customers, and focal companies as a core, other actors more loosely involved	Innovation policymakers, local intermediators, innovation brokers, and funding organizations	Research institutes, innovators, and technology entrepreneurs serve as knowledge nodes
Logic of Action	A main actor that operates as a platform sharing resources, assets, and benefits or aggregates other actors together in the networked business operations	Geographically proximate actors interacting around hubs facilitated by intermediating actors	A large number of actors that are grouped around knowledge exchange or a central non- proprietary resource for the benefit of all actors


Source: Valkokari, Katri. "Business, innovation, and knowledge ecosystems: how they differ and how to survive and thrive within them." *Technology Innovation Management Review* 5, no. 8 (2015).

Diffusion of Innovation Theory (DOI)

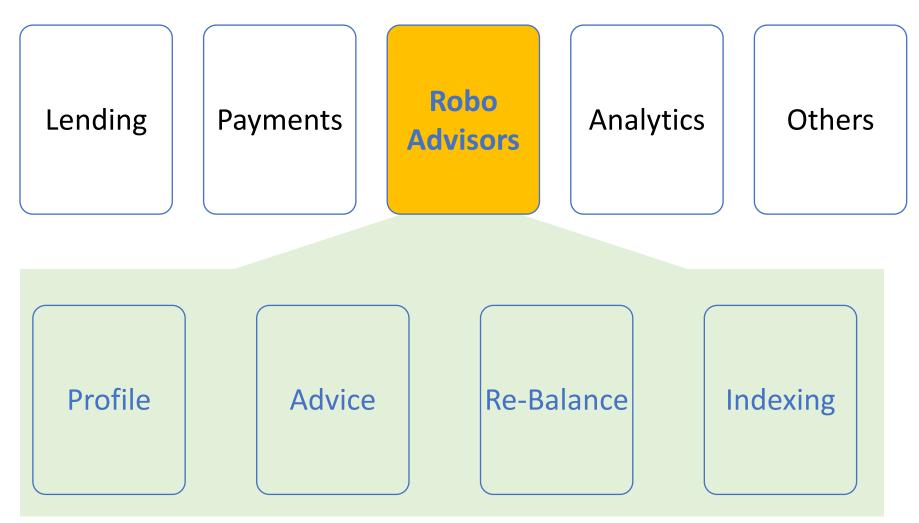

Innovation (Diffusion of Innovation)

- 1. Relative advantage
- 2. Compatibility
- 3. Complexity
- 4. Trialability
- 5. Observability


Diffusion of Innovation

"The innovation adoption process: A multidimensional approach." Journal of Management and Organization 22, no. 4 (2016): 476.

"The innovation adoption process: A multidimensional approach." Journal of Management and Organization 22, no. 4 (2016): 476.


		Initiation				Adoption decision				Implementation						
Factors		Mean	Me	Q3	Q1	QD	Mean	Me	Q3	Q1	QD	Mean	Me	Q3	Q1	QD
Environmental characteristics	Dynamism	3.4	3	4	2.75	0.625	3.6	4	4	3	0.5	4	4	5	4	0.5
	Hostility	3.3	3	4.25	3	0.625	3.9	4	4.25	3.75	0.25	3.7	4	4.5	3.5	0.5
	Complexity	4.5	5	5	4	0.5	3.2	3	4	2.75	0.625	3.3	3	4.25	3	0.625
Organizational characteristics	Specialization	3.8	4	4.25	3.75	0.25	2.9	3	4	2	1	2	2	3.25	2	0.625
	Horizontal differentiation	2.8	3	3.75	2.75	0.5	2.7	3	3.5	2	0.75	2	2	3.5	2	0.75
	Vertical differentiation	2.1	2	3.25	2	0.625	3.3	3	4	2.5	0.75	3.1	3	4	2.75	0.625
	Centralization	2	2	3.25	2	0.625	3.8	4	4.25	3.75	0.25	3.9	4	4.25	3.75	0.25
	Formalization	2.1	2	3	1.75	0.625	3	3	4.25	3	0.625	3.3	3	4	3	0.5
	Human resources	4.9	5	5	4.5	0.25	4	4	5	4	0.5	4.1	4	5	4	0.5
	Financial resources	3.2	3	4	2.5	0.75	4.1	4	4.25	3.75	0.25	4.8	5	5	4	0.5
Top managers characteristics	Top managers attitude towards innovation	4.1	4	4.5	4	0.25	3.9	4	4.25	3.75	0.25	4	4	4.5	3.5	0.5
	Top managers demographic characteristics	2.3	2	3.25	1.75	0.75	2	2.5	3	1	1	2.2	2	3	1.5	0.75
Innovation characteristics	Relative advantage	3	3	4	2.75	0.625	4.4	4.5	5	4	0.5	3.1	3	4	2.75	0.625
	Compatibility	2.8	3	3.5	2	0.75	3.9	4	4.25	3.75	0.25	3.9	4	4.25	3.75	0.25
	Complexity	3.6	4	4.25	3.75	0.25	3.8	4	4	3.75	0.125	3.9	4	4.25	3.75	0.25
	Trialability	3.2	3	4	2.75	0.625	3.1	3	4	2.5	0.75	4.1	4	5	4	0.5
	Observability	3.4	3.5	4.25	3	0.625	3.1	3.5	4	2	1	3.3	3	4.25	3	0.625
User acceptance attributes	Usefulness											3.2	3	4	2	1
	Ease of use											4	4	5	4	0.5

Note.

Me = median; Q = quartile; QD = quartile deviation.

Initiation			Adoption of	decision		Implementation				
Factors	Round 1	Round 2	Factors	Round 1	Round 2	Factors	Round 1	Round 2		
Complexity in the environment	4.5	4.2	Dynamism in the environment	3.6	3.4	Dynamism in the environment	4.0	3.8		
Specialization	3.8	3.4	Hostility in the environment	3.9	4.0	Hostility in the environment	3.7	3.4		
Horizontal differentiation	2.8	3.1	Centralization	3.8	3.8	Centralization	3.9	3.8		
Human resources	4.9	5.0	Human resources	4.0	4.2	Formalization	3.3	3.2		
Top managers attitude towards innovation	4.1	4.3	Financial resources	4.1	4.4	Human resources	4.1	4.4		
Innovation complexity	3.6	3.3	Top managers attitude towards innovation	3.9	4.0	Financial resources	4.8	5.0		
			Relative advantage	4.4	4.1	Top managers attitude towards innovation	4.0	4.4		
			Innovation compatibility	3.9	3.6	Innovation compatibility	3.9	3.8		
			Innovation complexity	3.8	3.8	Innovation complexity	3.9	3.9		
						Innovation trialability	4.1	3.9		
						Ease of use	4.0	4.2		

FinTech Innovation FinTech high-level classification

Source: Paolo Sironi (2016), "FinTech Innovation: From Robo-Advisors to Goal Based Investing and Gamification", Wiley.

"In the next 10 years, we'll see more disruption and changes to the banking and financial industry than we've seen in the preceding 100 years." (Brett King, 2014)

Source: Brett King (2014), Breaking Banks: The Innovators, Rogues, and Strategists Rebooting Banking, Wiley

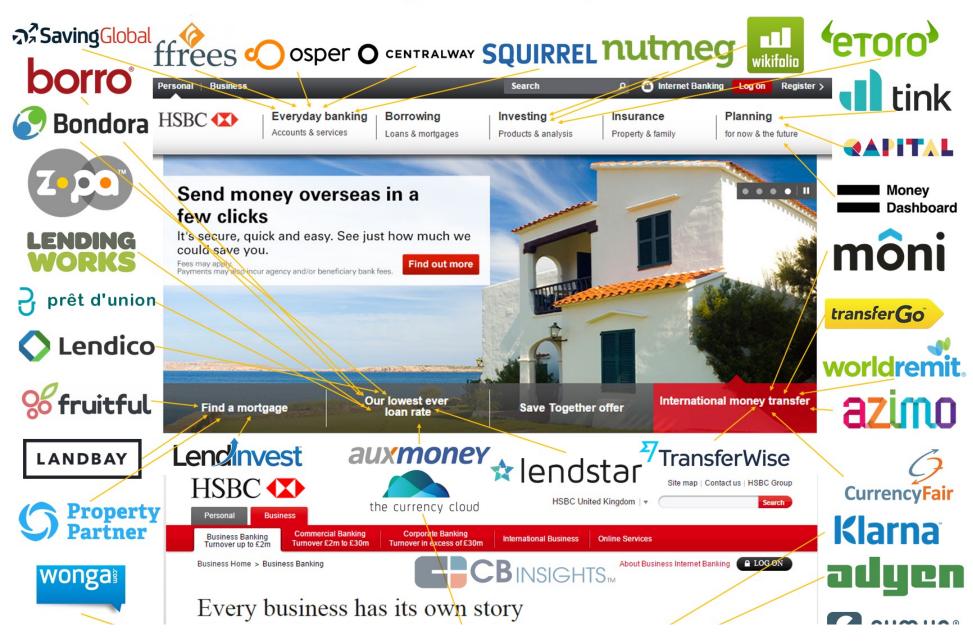
Fintech: Financial Technology

Disrupting Banking: The Fintech Startups That Are Unbundling Wells Fargo, Citi and **Bank of America**

Fintech: Unbunding the Bank

Fintech: Unbunding the Bank Wealth Management: Wealthfront

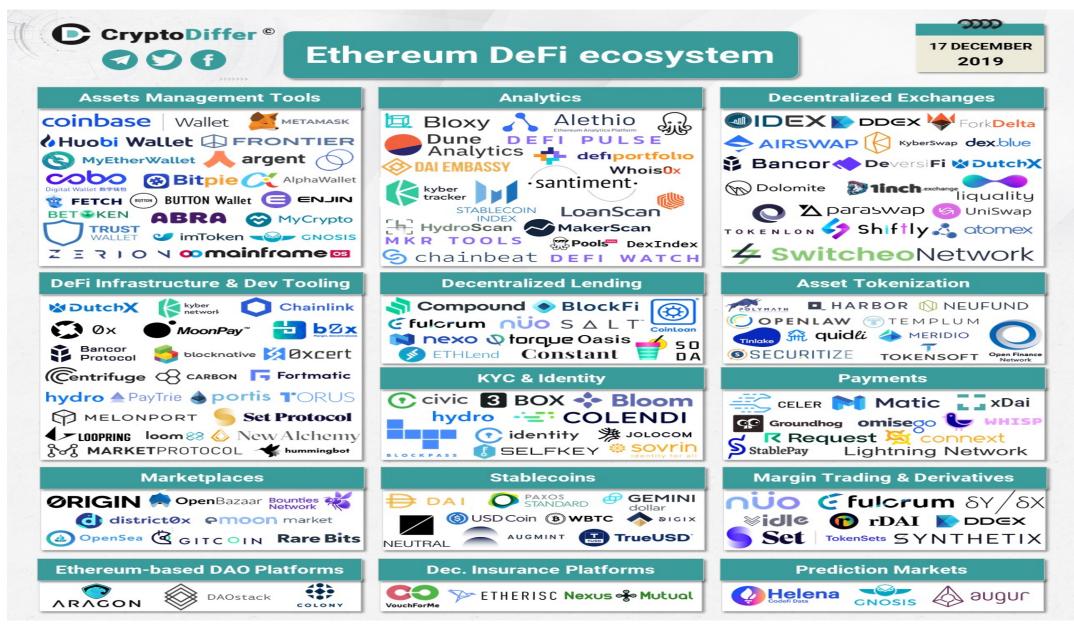
Unbundling of a Bank


Fintech: Financial Technology Disrupting **European Banking: The FinTech Startups That Are Unbundling** HSBC, Santander, and **BNP**

Unbundling of a European Bank

Source: https://www.cbinsights.com/blog/disrupting-european-banking-fintech-startups/

Unbundling of a European Bank



Financial Technology (Fintech) Categories

- 1. Banking Infrastructure
- 2. Business Lending
- 3. Consumer and Commercial Banking
- 4. Consumer Lending
- 5. Consumer Payments
- 6. Crowdfunding
- 7. Equity Financing
- 8. Financial Research and Data

- 9. Financial Transaction Security
- **10. Institutional Investing**
- **11. International Money Transfer**
- **12. Payments Backend and Infrastructure**
- **13. Personal Finance**
- **14. Point of Sale Payments**
- **15. Retail Investing**
- **16. Small and Medium Business Tools**

Ethereum DeFi Ecosystem

Decentralized Finance (DeFi) Ecosystem

Decentralized Finance (DeFi) Ecosystem

🚸 eidoo

S MEW

Melon

AlphaPoint

Huobi Wallet

🔝 Ledger

Trust Wallet

Wallet & Asset Management

tokeny source

P

coinbase Wallet

🥑 imToken

METAMASK

▲ portis

tokeny sources

💠 Bloom

🙏 argent 🛛 📿 AlphaWallet

Gnosis Safe

InstaDApp

Set TokenSets

----- COLENDI

TANGANY **TUDVest** ZenGo

🔁 Zapper.fi 🛛 🔀

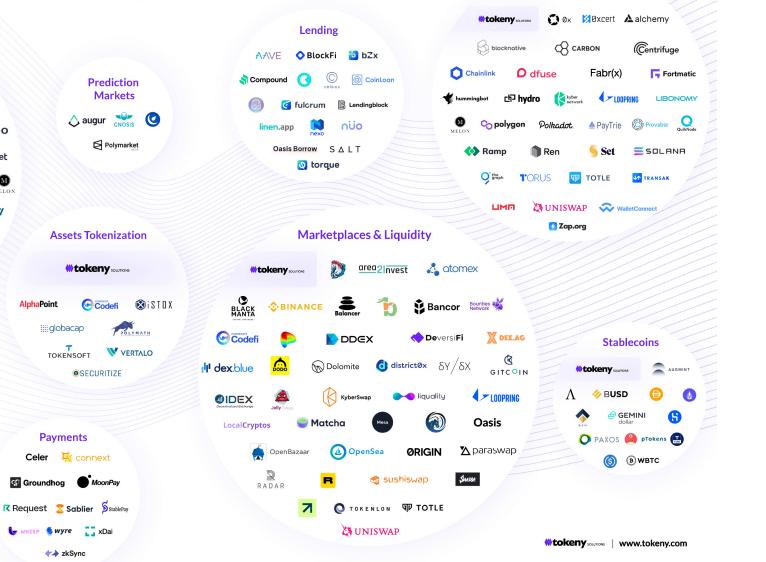
Compliance & Identity

C civic

Chainalysis hydro ELLIPTIE

🛞 identity 🎘 JOLOCOM 🚯 SELFKEY

SOVI SCORECHAIN


⊚ u•port

3 BOX

😁 MyCrypto

Bitpie CODO

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

co python101.ipynb - Colaboratory × +	
\leftarrow \rightarrow C https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3	☆ ◙ 0 :
CO A python101.ipynb 📩 File Edit View Insert Runtime Tools Help	COMMENT 🚓 SHARE 🗛
	ECTED - EDITING
<pre></pre>	:
[→ 194.87	
<pre>[11] 1 amount = 100 2 interest = 10 #10% = 0.01 * 10 3 years = 7 4 future_value = amount * ((1 + (0.01 * interest)) ** years) 6 print(round(future_value, 2))</pre>	
[→ 194.87	
<pre>[12] 1 # Python Function def 2 def getfv(pv, r, n): 3 fv = pv * ((1 + (r)) ** n) 4 return fv 5 fv = getfv(100, 0.1, 7) 6 print(round(fv, 2))</pre>	
[→ 194.87	
<pre>[13] 1 # Python if else 2 score = 80 3 if score >=60 : 4 print("Pass") 5 else: 6 print(."Fail")</pre>	
[→ Pass	

- Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Yves Hilpisch (2018), Python for Finance: Mastering Data-Driven Finance, 2nd Edition, O'Reilly Media.
- Paolo Sironi (2016), FinTech Innovation: From Robo-Advisors to Goal Based Investing and Gamification, Wiley.
- Yuxing Yan (2017), Python for Finance: Apply powerful finance models and quantitative analysis with Python, Second Edition, Packt Publishing
- Campbell R. Harvey, Ashwin Ramachandran, Joey Santoro, Fred Ehrsam (2021), DeFi and the Future of Finance, Wiley
- Matt Fortnow and QuHarrison Terry (2021), The NFT Handbook How to Create, Sell and Buy Non-Fungible Tokens, Wiley
- Parma Bains, Mohamed Diaby, Dimitris Drakopoulos, Julia Faltermeier, Federico Grinberg, Evan Papageorgiou, Dmitri Petrov, Patrick Schneider, and Nobu Sugimoto (2021),
 - The Crypto Ecosystem and Financial Stability Challenges, International Monetary Fund, October 2021
- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), "Business Intelligence, Analytics, and Data Science: A Managerial Perspective", 4th Edition, Pearson
- Frederic S. Mishkin (2015), "The Economics of Money, Banking and Financial Markets", 11th Edition, Pearson
- Susanne Chishti and Janos Barberis (2016), "The FINTECH Book: The Financial Technology Handbook for Investors, Entrepreneurs and Visionaries", Wiley.
- Paolo Sironi (2016), "FinTech Innovation: From Robo-Advisors to Goal Based Investing and Gamification", Wiley.
- Brett King (2014), "Breaking Banks: The Innovators, Rogues, and Strategists Rebooting Banking", Wiley.
- Brett King (2012), "Bank 3.0: Why banking is no longer somewhere you go, but something you do", John Wiley & Sons
- Gopalakrishnan, Shanti, and Fariborz Damanpour (1997). "A review of innovation research in economics, sociology and technology management." Omega 25, no. 1 : 15-28.
- Pichlak, Magdalena (2016). "The innovation adoption process: A multidimensional approach." Journal of Management and Organization 22, no. 4 : 476.
- Everett M. Rogers (2003), "Diffusion of Innovations", Free Press, 5th Edition