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Data-Driven Finance

Scientific Method

Financial Econometrics and Regression
Data Availability

Normative Theories Revisited

Debunking Central Assumptions in Finance



Data-driven finance

* Financial context (theory, model, application)
that is primarily driven by and based on
insights gained from data.



Data-driven finance
Robin Wigglesworth (2019)

* Nowadays, analysts sift through
non-traditional information such as
satellite imagery and credit card data,
or use artificial intelligence techniques such as
machine learning and natural language processing to
glean fresh insights from traditional sources such as
economic data and earnings-call transcripts.



Scientific Method

* Generally accepted principles that should guide
scientific effort

* The scientific method is an empirical method of
acquiring knowledge that has characterized the
development of science

* It involves careful observation, applying rigorous
skepticism about what is observed, given that cognitive
assumptions can distort how one interprets the
observation.



Scientific Method

* It involves formulating hypotheses, via induction, based
on such observations; experimental and measurement-
based testing of deductions drawn from the hypotheses;
and refinement (or elimination) of the hypotheses
based on the experimental findings



Normative Finance and Scientific Method

 Normative financial theories mostly rely on assumptions and
axioms in combination with deduction as the major
analytical method to arrive at their central results.

* Expected utility theory (EUT) assumes that agents have the same
utility function no matter what state of the world unfolds and
that they maximize expected utility under conditions of

uncertainty.

* Mean-variance portfolio (MVP) theory describes how investors
should invest under conditions of uncertainty assuming that only
the expected return and the expected volatility of a portfolio

over one period count.
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Normative Finance and Scientific Method

* The capital asset pricing model (CAPM) assumes that only the
nondiversifiable market risk explains the expected return and
the expected volatility of a stock over one period.

* Arbitrage pricing theory (APT) assumes that a number of
identifiable risk factors explains the expected return and the
expected volatility of a stock over time; admittedly,
compared to the other theories, the formulation of APT is
rather broad and allows for wide-ranging interpretations.
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Financial Econometrics and Regression

* [Financial] econometrics is the quantitative application
of statistical and mathematical models using [financial]
data to develop financial theories or test existing
hypotheses in finance and to forecast future trends

from historical data.
* It subjects real-world [financial] data to statistical trials

and then compares and contrasts the results against the
[financial] theory or theories being tested.
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Financial Econometrics and Regression

* One of the major tools in financial econometrics is
regression, in both its univariate and multivariate forms

* Regression is also a central tool in statistical learning in
general
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Data Availability

* Types of (financial) data

* Financial econometrics is driven by statistical methods, such as
regression, and the availability of financial data

* Theoretical and empirical financial research was mainly driven by
relatively small data sets and was mostly comprised of end-of-day (EOD)

data

* Types of financial and other data available in ever increasing granularity,
quantity, and velocity.

* Quality and quantity via programmatic APIs

* Finance professionals have relied on data terminals from Refinitiv or
Bloomberg

* Major breakthrough in data-driven finance via programmatic APIs



Relevant types of financial data

. Unstructured .
Structured data Alternative data

Prices,
fundamentals

Historical News, texts

Streaming Prices, volumes News, filings

Web, social
media, satellites

Web, social
media, satellites,
Internet of Things
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Normative Theories Revisited

* Revisits the normative theories and analyzes them
based on real financial time series data

* Expected Utility and Reality
 Mean-Variance Portfolio Theory (MVPT)
e Capital Asset Pricing Model (CAPM)

* Arbitrage Pricing Theory (APT)

17



Normalized financial time series data
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Simulated portfolio volatilities, returns, and
Sharpe ratios
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Expected versus realized portfolio volatilities

Expected vs. Realized Portfolio Volatility
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Expected versus realized portfolio returns

Expected vs. Realized Portfolio Return
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Expected versus realized portfolio Sharpe ratios

Expected vs. Realized Sharpe Ratio
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CAPM-predicted versus realized stock returns
for a single stock
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Average CAPM-predicted versus average
realized stock returns for multiple stocks
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Arbitrage Pricing Theory (APT)
Relevant types of financial data

____Factor __ Description

Market MSCI World Gross Return Daily USD (PUS = Price Return)

Size MSCI World Equal Weight Price Net Index EOD

Volatility MSCI Wor
Value MSCI Wor

Risk MSCI Wor

d Minimum Volatility Net Return
d Value Weighted Gross (NUS for Net)

d Risk Weighted Gross USD EOD

Growth MSCI World Quality Net Return USD
Momentum MSCI World Momentum Gross Index USD EOD

factors = pd.read csv('http://hilpisch.com/aiif eikon eod factors.csv’,

index_ col=

0, parse dates=True)
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APT-predicted versus realized stock returns
for a stock
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Average APT-predicted versus average
realized stock returns for multiple stocks
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Normalized factors time series data
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APT-predicted returns based on typical factors
compared to realized returns
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APT-predicted performance and real
performance over time (gross)
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Debunking Central Assumptions in Finance

* Debunks two of the most commonly found assumptions
in financial models and theories

 Normality of returns

* Linear relationships
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Standard normally distributed random numbers
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Distribution with first and second moment of
0.0 and 1.0, respectively
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Histogram and PDF for standard normally
distributed numbers
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Histogram and normal PDF for discrete numbers
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Q-Q plot for standard normally distributed
humbers

quantiles
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quantiles

sample

Q-Q plot for discrete numbers

theoretical quantiles
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Frequency distribution and normal PDF
for S&P 500 log returns

SPX
— D
70 E frequency
60
s
=
o
S
5, 40
-~
-~
)
=
5 30
E
20
10
0
-0.06 -0.04 -0.02 0.00 0.02 0.04

log returns

38



Q-Q for S&P 500 log returns
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mu capm

Expected CAPM return versus beta
(including linear regression)
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Expected CAPM return versus beta
(including linear regression)
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Theory-First to Data-Driven Finance

Finance used to be characterized by normative theories based on
simplified mathematical models of the financial markets, relying on
assumptions such as normality of returns and linear relationships.

The almost universal and comprehensive availability of

(financial) data has led to a shift in focus
from a theory-first approach to data-driven finance.

Several examples based on real financial data illustrate that many
popular financial models and theories cannot survive a confrontation

with financial market realities.

Although elegant, they might be too simplistic to capture the
complexities, changing nature, and nonlinearities of financial markets.
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The Quant Finance PyData Stack

@ PyThalesians Zipline DX Analytics
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QuantLib
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Yves Hilpisch (2020),
Artificial Intelligence in Finance:

A Python-Based Guide,
O'Reilly

OREILLY"

Artificial
Intelligence
in Flnance

A Python-Based Guide

Yves Hilpisch

https://www.amazon.com/Artificial-Intelligence-Finance-Python-Based-Guide/dp/1492055433



https://www.amazon.com/Artificial-Intelligence-Finance-Python-Based-Guide/dp/1492055433

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly
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0 Readme
[ LICENSE.txt Code updates. 11 months ago [
&5 View license OREILLY’
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Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4z)1zTuniMqf2RkCrT

€O python101.ipynb - Colaborator X <+

&

Cco
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& python101.ipynb 7+

File Edit View Insert Runtime Tools Help

& https://colab.research.google.com/drive/IFEG6DnGvwfUbeo4zJ1zTunjMgf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3 Y &)

Bl COMMENT 2% SHARE o

CODE TEXT 4 CELL ¥ CELL ~/ CONNECTED ¥ /’ EDITING A

# Future Value H
pv = 100

(0ol

1/

T
n
fv = pv * ((1 + (r)) ** n)
print(round(fv, 2))

AU WN =

194.87

[

[12]

3

[13]

amount = 100
interest = 10 #10% = 0.01 * 10
years = 7

future_value = amount * ((1 + (0.0l * interest)) ** years)
print(round(future_value, 2))

194.87

1 # Python Function def

2 def getfv(pv, r, n):

8 fv = pv * ((1 + (r)) ** n)
4 return fv

5 fv = getfv(100, 0.1, 7).

6 print(round(fv, 2))

194.87

1 # Python if else
2 score = 80

3 if score >=60 :

4 print("Pass")
5| else:

6 print("Fail").

https://tinyurl.com/aintpupython101
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Python in Google Colab (Python101)
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inancial Theories
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O Expected Utility
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Mean-Variance
Portfolio Theory
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(MVPT) v Uncertainty and Risk
Capital Asset Pricing
Model (CAPM) OV = I « AN |
Arbitrage Pricing 4 ° 1 import numpy as np
Theory (APT) 2
. . . 3 #The prices of the stock and bond today.
Deep Learning for Financial 480 = 10
Time Series Forecasting erol=tlg
Portfolio Optimization and 6 print('sS0', S0)
Algorithmic Trading 7 print('sS0', S0)
Investment Portfolio 8 .
Optimisation with 9 #The uncertain payoff of the stock and bond tomorrow.
Python 10 S1 = np.array((20, 5))
11 Bl = np.array((11, 11))
Efficient Frontier 12 print('sl', sl)
Portfolio Optimisation in 13 print('Bl', B1)
Python
14
Investment Portfolio 15 #The market price vector
= Optimization 16 M0 = np.array((S0, B0))
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X

B comment &% Share £t o

RAM I i 2 ey
+ Code + Text v Disk mmm v g Editing A

~ Data Driven Finance

-~ Financial Econometrics and Regression

v ([e18h) import numpy as np

def f(x):
return 2 + 1 / 2 * x

N o W N

X = np.arange(-4, 5)
X

arraY([_4l _31 _2r _11 0! ll 21 31 4])

\/o 1y = £(x)

2y

|:-> array([ 0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00])
AV eooB 8 U T

Vi ° ISprint (fix i, Ex)
2
3 print('y', y)
4
5 beta = np.cov(x, y, ddof=0)[0, 1] / x.var()
6 print('beta', beta)
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