

NTPU 図立臺北大学 National Taipei University

(Artificial Intelligence in Finance and Quantitative Analysis)

金融計量經濟學 (Financial Econometrics)

1101AIFQA07 MBA, IM, NTPU (M6132) (Fall 2021) Tue 2, 3, 4 (9:10-12:00) (8F40)

<u>戴敏育</u>副教授 Min-Yuh Day, Ph.D, Associate Professor

國立臺北大學 資訊管理研究所

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2021-11-23

週次(Week) 日期(Date) 內容(Subject/Topics)

- 1 2021/09/28 智慧金融量化分析概論 (Introduction to Artificial Intelligence in Finance and Quantitative Analysis)
- 2 2021/10/05 AI 金融科技: 金融服務創新應用 (AI in FinTech: Financial Services Innovation and Application)
- 3 2021/10/12 投資心理學與行為財務學 (Investing Psychology and Behavioral Finance)
- 4 2021/10/19 財務金融事件研究法 (Event Studies in Finance)
- 5 2021/10/26 智慧金融量化分析個案研究 I (Case Study on AI in Finance and Quantitative Analysis I)
- 6 2021/11/02 財務金融理論 (Finance Theory)

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 7 2021/11/09 數據驅動財務金融 (Data-Driven Finance)
- 8 2021/11/16 期中報告 (Midterm Project Report)
- 9 2021/11/23 金融計量經濟學 (Financial Econometrics)
- 10 2021/11/30 人工智慧優先金融 (AI-First Finance)
- 11 2021/12/07 智慧金融量化分析產業實務 (Industry Practices of AI in Finance and Quantitative Analysis)
- 12 2021/12/14 智慧金融量化分析個案研究 II (Case Study on AI in Finance and Quantitative Analysis II)

週次(Week) 日期(Date) 內容(Subject/Topics)

- 13 2021/12/21 財務金融深度學習(Deep Learning in Finance); 財務金融強化學習 (Reinforcement Learning in Finance)
- 14 2021/12/28 演算法交易 (Algorithmic Trading); 風險管理 (Risk Management); 交易機器人與基於事件的回測 (Trading Bot and Event-Based Backtesting)
- 15 2022/01/04 期末報告 I (Final Project Report I)
- 16 2022/01/11 期末報告 II (Final Project Report II)
- 17 2022/01/18 學生自主學習 (Self-learning)
- 18 2022/01/25 學生自主學習 (Self-learning)

Financial Econometrics and

Machine Learning

Financial Econometrics and Machine Learning

- Financial Econometrics
 - Financial Theories
 - OLS Regression
- Machine Learning
 - Learning
 - Evaluation
 - Bias and variance
 - Cross-validation

Financial Econometrics

 The discipline at the intersection of mathematics, statistics, and finance that applies such methods to financial market data is typically called financial econometrics.

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Financial Econometrics

(Chris Brooks, 2019)

- Financial econometrics
 - the application of statistical techniques to problems in finance
- Financial econometrics can be useful for testing theories in finance,

determining asset prices or returns,

testing hypotheses concerning the relationships between variables, examining the effect on financial markets of changes in economic conditions,

forecasting future values of financial variables and for financial decision-making.

Financial Econometrics

- [Financial] econometrics is the quantitative application of statistical and mathematical models using [financial] data to develop financial theories or test existing hypotheses in finance and to forecast future trends from historical data.
- It subjects real-world [financial] data to statistical trials and then compares and contrasts the results against the [financial] theory or theories being tested.

Topics of Financial Econometrics

(Oliver Linton, 2019)

- 1. Econometric
- 2. Return Predictability and the Efficient Markets Hypothesis
- 3. Robust Tests and Tests of Nonlinear Predictability of Returns
- 4. Empirical Market Microstructure
- 5. Event Study Analysis
- 6. Portfolio Choice and Testing the Capital Asset Pricing Model
- 7. Multifactor Pricing Models

Topics of Financial Econometrics

(Oliver Linton, 2019)

- 8. Present Value Relations
- 9. Intertemporal Equilibrium Pricing
- **10.Volatility**
- **11.Continuous Time Processes**
- **12.Yield Curve**
- **13.Risk Management and Tail Estimation**

Applications of Financial Econometrics

- (Chris Brooks, 2019)
- 1. Testing whether financial markets are weak-form informationally efficient
- 2. Testing whether the capital asset pricing model (CAPM) or arbitrage pricing theory (APT) represent superior models for the determination of returns on risky assets
- 3. Measuring and forecasting the volatility of bond returns
- 4. Explaining the determinants of bond credit ratings used by the ratings agencies
- 5. Modelling long-term relationships between prices and exchange rates

Applications of Financial Econometrics (Chris Brooks, 2019)

- 6. Determining the optimal hedge ratio for a spot position in oil
- 7. Testing technical trading rules to determine which makes the most money
- 8. Testing the hypothesis that earnings or dividend announcements have no effect on stock prices
- 9. Testing whether spot or futures markets react more rapidly to news
- **10.Forecasting the correlation between the stock indices of two countries**

Machine Learning and Financial Econometrics

 ML and DL methods are able to discover statistical inefficiencies and even economic inefficiencies that are not discoverable by traditional econometric methods, such as multivariate OLS regression.

Normative Financial Theories

- Normative financial theories mostly rely on assumptions and axioms in combination with deduction as the major analytical method to arrive at their central results.
 - Expected utility theory (EUT) assumes that agents have the same utility function no matter what state of the world unfolds and that they maximize expected utility under conditions of uncertainty.
 - Mean-variance portfolio (MVP) theory describes how investors should invest under conditions of uncertainty assuming that only the expected return and the expected volatility of a portfolio over one period count.

Normative Financial Theories

- The capital asset pricing model (CAPM) assumes that only the nondiversifiable market risk explains the expected return and the expected volatility of a stock over one period.
- Arbitrage pricing theory (APT) assumes that a number of identifiable risk factors explains the expected return and the expected volatility of a stock over time; admittedly, compared to the other theories, the formulation of APT is rather broad and allows for wide-ranging interpretations.

Financial Econometrics and Regression

- One of the major tools in financial econometrics is regression, in both its univariate and multivariate forms
 - $y = \alpha + \beta x$
 - $y = \alpha + \beta_1 x_1 + \beta_2 x_2$
 - $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$
- Regression is also a central tool in statistical learning in general

CAPM and APT OLS regression

- Both the CAPM and the APT relate the output variables with the relevant input factors in linear fashion.
- From an econometric point of view, both models are implemented based on linear ordinary least-squares (OLS) regression.
- CAPM: univariate linear OLS regression
- APT: multivariate OLS regression

Expected CAPM return versus beta (including linear regression)

Expected CAPM return versus beta (including linear regression)

Machine Learning

- Learning
- Data: Features, Labels
- Success (Loss Function): MSE
- Capacity (Model Fit)
- Evaluation
- Bias and variance
- Cross-validation

Learning (Mitchell, 1997)

 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Performance Measure

- The measure of success for estimation problems
 - mean-squared error (MSE)
- Classification problems
 - accuracy ratio

EUR/USD exchange rate as time series (monthly)

Sample data set

Sample data and cubic regression line

Sample data and neural network approximation

MSE values against number of training epochs

Regression lines for different highest degrees

Sample data and DNN approximation (higher capacity)

Training and validation data including regression fits

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Training and validation data including DNN predictions

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

MSE values for DNN model on the training and validation data sets

Test data and predictions from OLS regression and the DNN model

High bias and high variance OLS regression fits

The Quant Finance PyData Stack

Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#/5

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide,

O'Reilly O'REILLY" Artificial Intelligence in Finance A Python-Based Guide **Yves Hilpisch**

yhilpisch/aiif Public	https://github.co	om/yhilpisch/aiif	Notifications	98 දී Fork 77		
<> Code 💿 Issues	Pull requests (>) Actions (1) Projects	🖽 Wiki 🔃 Security 🗠 Insights				
	⊘ 0 tags	Go to file Code -	About			
yves Code updates for TF	2.3.	Jupyter Notebooks and code for the book Artificial Intelligence in Finance (O'Reilly) by Yves Hilpisch				
code	Code updates for TF 2.3.	11 months ago				
🗅 .gitignore	Code updates for TF 2.3.	11 months ago				
LICENSE.txt	Code updates.	11 months ago		O'REILLY'		
C README.md	Code updates.	11 months ago	Ja view license	Artificial		
⋮Ξ README.md			Releases	Intelligence		
		No releases published	In Finance A Python-Based Guide			
Artificial Inte	lligence in Finance			6. 3 m		
	•.	Packages				
About this Repos	itory	No packages published	All and and			
This repository provides I Finance book published I	Python code and Jupyter Notebooks accom by O'Reilly.	Languages	Yves Hip			
O'REILLY °			 Jupyter Notebook 97.4% 	• Python 2.6%		

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

co python101.ipynb - Colaboratory × +	
← → C https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3	☆ ◙ 0 :
CO A python101.ipynb A File Edit View Insert Runtime Tools Help	T 🚓 SHARE 🗛
CODE TEXT A CELL CELL	editing
<pre></pre>	
[→ 194.87	
<pre>[11] 1 amount = 100 2 interest = 10 #10% = 0.01 * 10 3 years = 7 4 5 future_value = amount * ((1 + (0.01 * interest)) ** years) 6 print(round(future_value, 2))</pre>	
[→ 194.87	
<pre>[12] 1 # Python Function def 2 def getfv(pv, r, n): 3 fv = pv * ((1 + (r)) ** n) 4 return fv 5 fv = getfv(100, 0.1, 7) 6 print(round(fv, 2))</pre>	
[→ 194.87	
<pre>[13] 1 # Python if else 2 score = 80 3 if score >=60 : 4 print("Pass") 5 else: 6 print("Fail")</pre>	
[→ Pass	

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

C	► python101.ipynb ☆ File Edit View Insert Runtime	Tools	Help	<u>All changes saved</u>	Comme	nt 🚢	Share	\$ (A
≣	Table of contents	×	+ Co	de + Text	✓ RAM Disk	•	🖍 Edi	ting	^
Q	Data Driven Finance		- Da	ita Driven Finance					
$\langle \rangle$	Financial Econometrics and Regression								
	Data Availability		▼ Fir	ancial Econometrics and Regression					
{ <i>X</i> }	Normative Theories Revisited								
-	Mean-Variance Portfolio Theor	у	[18]	1 import numpy as np					
	Capital Asset Pricing Model		US						
	Arbitrage-Pricing Theory			4 return $2 + 1 / 2 * x$					
	Debunking Central Assumptions			5 = 5					
	Normality			$7 \times 7 \times$					
	Sample Data Sets Real Financial Returns			array([-4, -3, -2, -1, 0, 1, 2, 3, 4])					
	Linear Relationships			1 y = f(x)					
	Deep Learning for Financial Time Series Forecasting	s		2 y					
			C→	array([0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00])				
	Trading				↑ \	↓ ⊝] 🌣 🖟] 🗎	:
	Investment Portfolio Optimisation with Python		os D	1 print('x', x) 2 3 print('y', y)					
	Efficient Frontier Portfolio Optimisation in Python			4 5 beta = np.cov(x, y, ddof=0)[0, 1] / x.var()					
≕	Investment Portfolio Optimization			6 print('beta', beta)					

C	Python101.ipynb File Edit View Insert Runtime Too	s Help All changes saved	Comment 🚓 Share 🏟 🛕
⊫	Table of contents X	+ Code + Text	✓ RAM Disk Editing ∧
Q	Financial Econometrics and Regression Data Availability Normative Theories Revisited Mean-Variance Portfolio Theory Capital Asset Pricing Model	Machine Learning	↑↓⇔■∕₪≣:
<> { <i>x</i> }		- Data	
	Arbitrage-Pricing Theory Debunking Central Assumptions Normality Sample Data Sets Real Financial Returns Linear Relationships Financial Econometrics and Machine Learning	<pre> 1 import numpy as np 2 import pandas as pd 3 from pylab import plt, mpl 4 np.random.seed(100) 5 plt.style.use('seaborn') 6 mpl.rcParams['savefig.dpi'] = 300 7 mpl.rcParams['font.family'] = 'serif' 8 9 url = 'http://hilpisch.com/aiif_eikon_eod_data.csv' 10 11 raw = pd.read_csv(url, index_col=0, parse_dates=True)['EUR='] 12 raw.head() </pre>	
	Machine Learning Data Success Capacity Evaluation Bias & Variance Cross-Validation	<pre> C→ Date 2010-01-01 1.4323 2010-01-04 1.4411 2010-01-05 1.4368 2010-01-06 1.4412 2010-01-07 1.4318 Name: EUR=, dtype: float64</pre>	

C	> 	ols	lelp <u>Saving</u>		Comment	よ Share 🕯	¢ (A)
≣	Table of contents X	-	Code + Text	✓ F	RAM	- Editi	ing 🔨
Q	Financial Econometrics and Regression	•	Success		$\land \downarrow$	c) 🔲 🖊 🖟] 🖬 :
	Data Availability						
<>	Normative Theories Revisited	✓ 0s	1 def MSE(1, p):				
$\{x\}$	Mean-Variance Portfolio Theory		2 return np.mean $((1 - p) ** 2)$				
	Capital Asset Pricing Model		1 = 1 = 1 = 1 = 1 = 1				
	Arbitrage-Pricing Theory	0s	2 reg				
	Debunking Central Assumptions		array(1-0.01910626, -0.0147182, 0.10990388, 0.06007211, -0.208335	8.			
	Normality		-0.03275423])	.,			
	Sample Data Sets						
	Real Financial Returns	∕ Os	<pre>[10] 1 p = np.polyval(reg, f) 2 p</pre>				
	Linear Relationships		array(1 0 12088427 0 11526131 0 11080193 0 10739461 0 1049329	6			
	Financial Econometrics and Machine Learning		0.10331514, 0.10244475, 0.10222973, 0.10258281, 0.1034212 0.10466683, 0.10624564, 0.1080881, 0.1101288, 0.1123064	6, 3,			
	Machine Learning		0.11456366, 0.11684709, 0.11910711, 0.12129784, 0.123377 0.12530587, 0.12704913, 0.12857481, 0.1298542, 0.130861				
	Data		0.1315748 , 0.13197395 , 0.13204243 , 0.13176634 , 0.1311344	3,			
	Success		0.13013803, 0.12877097, 0.12702948, 0.12491207, 0.1224194 0.11955452, 0.11632208, 0.11272891, 0.10878364, 0.1044966	7,			
	Capacity		0.09987977, 0.09494668, 0.0897123, 0.08419296, 0.0784062	7,			
	Evaluation		0.03919218, 0.03211286, 0.02494106, 0.01770149, 0.0104154	.8,			
	Bias & Variance		0.00311939, -0.00417251 , -0.0114311 , -0.01863101 , $-0.025747($	4,			
	Cross-Validation		-0.06531322, -0.07116897, -0.07675602, -0.08205478, -0.0870467	7,			

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

CO CONTRACTOR CONTRACT	ntime Tool	ls Help	All changes saved	🗐 Comment 🛛 🚓 Share 🔅 🔺
Table of contents	×	+ Co	le + Text	✓ RAM → Fediting ∧
Financial Econometrics and Regression Data Availability	Financial Econometrics and Regression Data Availability		pacity	
Normative Theories Revisited	d	~ [21	<pre>1 reg = {} 2 for d in range(1, 12, 2): </pre>	
Mean-Variance Portfolio	Theory	Os		
Capital Asset Pricing Mo	del		<pre>p = np.polyval(reg[d], f)</pre>	
Arbitrage-Pricing Theory			5 mse = MSE(1, p) 6 msint $\left[\frac{1}{2} \left[\frac{1}{2} \frac{1}{2} \right] + MSE = \left[\frac{1}{2} \frac{1}{2} \right] \right]$	
Debunking Central Assumption	ons		6 princui (d:2d) MSL-{mse})	
Normality			1 MSE=0.005322474034260403 3 MSE=0.004353110724143185	
Sample Data Sets			5 MSE=0.003416642295737103	
Real Financial Returns			<pre>/ MSE=0.002/389501//235401 9 MSE=0.0014119616263308346</pre>	
Linear Relationships			11 MSE=0.0012651237868752398	
Financial Econometrics and Mac Learning	hine	> D	<pre>1 plt.figure(figsize=(10, 6)) 2 plt plot(f l 'ro' label='sample data')</pre>	
Machine Learning			3 for d in reg:	
Data			<pre>4</pre>	
Success			6 plt.legend()	
Capacity		Г÷	<matplotlib.legend.legend 0x7f6630300310="" at=""></matplotlib.legend.legend>	
Evaluation			•	 sample data
Bias & Variance			A	$\begin{array}{c}\cdot & \deg = 1 \\\cdot & \deg = 3 \end{array}$
Cross-Validation			0.2	deg=5
			https://tinyurl.com/aintpupython101	

https://tinyurl.com/aintpupython101

```
Model: "sequential 1"
def create dnn model (hl=1, hu=256):
    ''' Function to create Keras DNN model.
                                                       Layer (type)
    Parameters
                                                       dense 2 (Dense)
    _____
                                                       dense 3 (Dense)
   hl: int
                                                       dense 4 (Dense)
   number of hidden layers
                                                       dense 5 (Dense)
   hu: int.
   number of hidden units (per layer)
                                                      Total params: 132,353
    1 1 1
                                                      Trainable params: 132,353
   model = Sequential()
                                                      Non-trainable params: 0
    for in range(hl):
       model.add(Dense(hu, activation='relu', input dim=1))
   model.add(Dense(1, activation='linear'))
   model.compile(loss='mse', optimizer='rmsprop')
   return model
```

```
model = create dnn model(3)
```

model.summary()

Param #

512

65792

65792

257

Output Shape

(None, 256)

(None, 256)

(None, 256)

(None, 1)

https://tinyurl.com/aintpupython101

Summary

- Financial Econometrics
 - Financial Theories
 - OLS Regression
- Machine Learning
 - Learning
 - Evaluation
 - Bias and variance
 - Cross-validation

References

- Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media, <u>https://github.com/yhilpisch/aiif</u>.
- Chris Brooks (2019), Introductory Econometrics for Finance, 4th Edition, Cambridge University Press
- Oliver Linton (2019), Financial Econometrics: Models and Methods, Cambridge University Press
- Tom Mitchell (1997), Machine Learning, McGraw-Hill.
- Min-Yuh Day (2021), Python 101, https://tinyurl.com/aintpupython101