Artificial Intelligence for Text Analytics

& 2 ¥ 9 K B
National Taipei University

Natural Language Processing with

Transformers

Min-Yuh Day, Ph.D,
Associate Professor

BB |nstitute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/paj-zhhj-mya

Syllabus G

S T
National Taipei University

Week Date Subject/Topics
1 2022/02/22 Introduction to Artificial Intelligence for Text Analytics

2 2022/03/01 Foundations of Text Analytics:
Natural Language Processing (NLP)

2022/03/08 Python for Natural Language Processing

2022/03/15 Natural Language Processing with Transformers
2022/03/22 Case Study on Artificial Intelligence for Text Analytics |
2022/03/29 Text Classification and Sentiment Analysis

O U1 b W

Syllabus e

B 4 F 9r X B
National Taipei University

Week Date Subject/Topics

8 2022/04/12 Midterm Project Report

9 2022/04/19 Multilingual Named Entity Recognition (NER),
Text Similarity and Clustering

10 2022/04/26 Text Summarization and Topic Models
11 2022/05/03 Text Generation
12 2022/05/10 Case Study on Artificial Intelligence for Text Analytics Il

Syllabus A<,

B 4 F 9r X B
National Taipei University

Week Date Subject/Topics

13
14

15
16
17
18

2022/05/17
2022/05/24

2022/05/31
2022/06/07
2022/06/14
2022/06/21

Question Answering and Dialogue Systems

Deep Learning, Transfer Learning,
Zero-Shot, and Few-Shot Learning for Text Analytics

Final Project Report |
Final Project Report Il
Self-learning

Self-learning

Natural Language Processing
with Transformers

Outline

* Natural Language Processing with Transformers

* Transformer (Attention is All You Need)
* Encoder-Decoder

* Attention Mechanisms

* Transfer Learning in NLP

* BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022),
Natural Language Processing with Transformers:

Building Language Applications with Hugging Face,
O'Reilly Media.

OREILLY

Natural Language
Processing with
Transformers

Building Language Applications
with Hugging Face ~

.....
X .
S

Lewis Tunstall,
Leandro von Werra
& Thomas Wolf

https://www.amazon.com/Natural-Language-Processing-Transformers-Applications/dp/1098103246

https://www.amazon.com/Natural-Language-Processing-Transformers-Applications/dp/1098103246

The Transformers Timeline

ULMFit BERT RoBERTa XLM-R DeBERTa GPT-Neo

T5
Transformer GPT GPT-2 DistrilBERT GPT-3 GPT-J

%
2017 2018 2019 2020 2021 2022

Transformer (Attention is All You Need)

(Vaswani et al., 2017)

Output
Probabilities
l Linear |
-
Add & Norm J
Feed
Forward
e) Add & Norm
_ .
A el Multi-Head
Feed Attention
Forward EASIINNA Nx
——
iz Add & Norm
(->| Add & Norm l NiaEked
Multi-Head Multi-Head
Attention Attention
. S T ACHIN A IR
o J U)
Positional Positional
Encodi P ¢ '
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)

Overall pre-training and fine-tuning procedures for BERT

Ksp
" .

Mask LM
*

Start/End Spax

- BERT

00—

v ()G) - ()

Ce)] e - (W]
lemfl & |- | 8| Ceem]| & |- [B]
e e u pEmmm s “
@m___ [T«N][[SEP]][Tolﬂ]_” [TokM]
_'_l

Masked Sentence A

*
Unlabeled Sentence A and B Pair

Masked Sentence B

Pre-training

EIE L [Een][&] [E]

L . L. L. _ B

-! EEER[ESR

Question Paragraph
*
Question Answer Pair

Fine-Tuning

BERT:
Pre-training of Deep
Bidirectional Transformers for
Language Understanding

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin, mingweichang, kentonl, kristout}@google.com

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

11

BERT

Bidirectional Encoder Representations from Transformers

BERT (Ours) OpenAl GPT

Pre-training model architectures

BERT uses a bidirectional Transformer.

OpenAl GPT uses a left-to-right Transformer.

ELMo uses the concatenation of independently trained left-to-right and right- to-left LSTM
to generate features for downstream tasks.

Among three, only BERT representations are jointly conditioned on both left and right

context in all layers.

12

BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)

BERT input representation

/i / b A4 D A4 D / D 4 N / /
Input lCLSIW my || dog is {cute] [SEP] he [likes 1[play 1 ##ing] [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E{SEP] Ehe EIikes Eplay ENing E[SEP]
+ + + + + + + + + + +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ + + + + + + + + + +
Position
Embeddings Eo El Ez E3 E4 ES E6 E7 E8 E9 Elo

The input embeddings is the sum of the token embeddings,
the segmentation embeddings and the position embeddings.

Fine-tuning BERT on NLP Tasks

Class Class

Label Label

» e —

() G- G Gl =) -
BERT BERT

lews || & |- | &]| Beem]| & |~ | & E

——r g I p ey i

een EN
G—
@m ml [SEP] m m [CLS] | Tok 1 Tok 2
_I_l

Sentence 1 Sentence 2

Single Sentence

(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:

MNLI, QQP, QNLI, STS-B, MRPC, SST-2, ColLA
RTE, SWAG
Start/End Span (o] B-PER (e}
209 e <k
CIG)- Callrei)- () A ERES
BERT BERT
|E""sl “ E, | | Ex || Eisen H E/ | | Ew | E[CLS] E, E, Ev
—_ N g

BE e @ (e - -
_I_l |_'_| | |

Single Sentence

Question Paragraph

(c) Question Answering Tasks: (d) Single Sentence Tagging Tasks:
SQUAD v1.1 CoNLL-2003 NER

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

BERT Sequence-level tasks

Bas || E Eay | E E, Ey

Ey = | Bt ;
NG s e >
_fr - - B W - yBy .
O A /- b 4 w N\ / \
cLs) R ... v (SEP) R . = [CLS] Tok 1 Tok 2 Tok N

I_l_l I_|_| | | |

Sentence 1 Sentence 2 Single Sentence
(@) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, ColLA
RTE, SWAG

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

BERT Token-level tasks

Start/End Span

o0
(w7 B

BERT

Ecis) E, |- Ey E[sen E/ Ew
A\ A\ A AN A\
G - = N N BN .
o) / N\ b 4 N\ P T
[cLs) T‘,"‘ o T:‘ [SEP) T:* - T:‘
I | | I |
Question Paragraph

(c) Question Answering Tasks:
SQUAD v1.1

E(cn.sn b E, Ex
g —{—
[CLS)][Tok 1 Tok 2 Tok N

I |

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

Sentiment Analysis:
Single Sentence Classification

Class
Label

(e = I~]

BERT

[CLS] Tok 1 Tok 2

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805 17

Transformer Models
Transformer

Encoder Decoder

|

DistilBERT T5
|

BART
|

M2M-100
|

ALBERT BlgBird

RoBERTa

ELECTRA

DI ANE]

18

Pre-trained Language Model (PLM)

Semi-supervised Sequence Learning

context2Vec
. Pre-trained seq2seq
4_——__——_ x
ULMFiT ELMo
GPT
Multiiingua[Transformer e
Larger model

MultiFiT More data

Cross-lingual Defense

» Grover

UDify T DNN

MASS Permutation LM
Knowledge |distillation UniLM Rl el)
VideoBERT
MT-DNN CHA
= KD Longer tifne ViLBERT
Remoyé NSP : ;
ERNIE VisualBERT ERNIE (Baidu)
(Isinghua) B2T2
XLNet . BERT-wwm
SpanBERT Neural |entity linker Unicoder v,
RoBERTa LXMERT
VL-BERT
RnowBort UNITER 5y Xiaoshi Wang & Zhengyan Zhang @THUNLP

https://github.com/thunlp/PLMpapers 19

https://github.com/thunlp/PLMpapers

Transformers Pre-trained Language Model

T-NLG g=
1Hb—

17.5b
/{J
/
15b /
/
12.5b
MegatronLM
10b 8.3b
MegatronLM
8.3b
o
>
7.5b rfl%m.
GPT-2
N 1.5b
BERT-Large ' RoBERTa
® v 355
40m e g DistiBERT
i S] it Google A Transf !___,1,--"//=. 13b ﬁ A
EAU:OZ Opsep';"'u BEF;ZBL@?A_--»»«*’“ERE%@F g M;'B-(E)J:N XLM sss:. R;zifnra o;s:aE‘RT 66m
94m 10m et XLNET @ 66m
2 e e ot ® L) 340m @ . i
® ® > o o (i o D) S
Q"\QQ\ QQ\ @WQ\ %.«3\ Q'«\OQ\ bere \\\QQ\ @e\”@ .b@&
\s S O"\O \é\o s S Oéo \@Q\\

2019 2020 2021

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

- 90+ Models

2022

20

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Scaling Transformers

] Swit.ch-C
1073
12 |
10 1 GShard
E])
o
[} | GPT-3
E @
©]
o
q_ .
o] Turmg-NLG
= T5H
o 10104 Megatren
~]
-]
=
] GP;I'-2
109-5
5 BERT
Transf.ormer
108 - GPT
2017-07 2018-01 2018-07 2019-01 2019-07 2020-01 2020-07 2021-01

Release date

21

Pre-trained Models (PTM)

CBOW, Skip-Gram [129]

—(Non-ContextuaI

GloVe [133
Contextual?
—(Contextual HELMo [135], GPT [142), BERT [36]]
—(LSTM HLM-LSTM [30], Shared LSTM[109], ELMo [135], CoVe [126])
—(Transformer Enc. ~ }—{ BERT [36], SpanBERT [117], XLNet [209], RoBERTa [117]
Architectures
—(Transformer Dec. HGPT [142], GPT-2 [143)] j
MASS [160], BART [100]
—(Transformer
XNLG [19], mBART [118]
—(Supervised CoVe [126]

ELMo [135], GPT [142], GPT-2 [143], UniLM [39])

BERT (36], SpanBERT [117], RoBERTa [117], XLM-R [28])

()
Unsupervised/ s ULER 2]
PTMs Self-Supervised PLM

o e o0

CBOW-NS [129], ELECTRA [24] |

Task Types

NSP)—(BERT [36], UniLM (39])
('SOP }—{ ALBERT [93]. StructBERT [193] |

Pre-trained Models (PTM)

—[Extensions)—

SentiLR [83], KEPLER [195], WKLM [202]

: ERNIE(THU) [214], KnowBERT [136], K-BERT [111]
—(Knowledge-Enrlched

XLU mBERT [36], Unicoder [68], XLM [27], XLM-R [28], MultiFit [42] j
—(Multilingual
XLG MASS [160], mBART [118], XNLG [19] j

(T . ERNIE(Baidu) [170], BERT-wwm-Chinese [29], NEZHA [198], ZEN [37]
ANguage-Speciiic BERTje [33], CamemBERT [125], FlauBERT [95], RobBERT [35]

VIiLBERT [120], LXMERT [175],
VisualBERT [103], B2T2 (2], VL-BERT [163]

—[Multi-Modal VideoBERT [165], CBT [164]]

SpeechBERT [@D

—(Domain-Specific | SentiLR [83], BioBERT [98]. SciBERT [11], PatentBERT [97) |

—(Model Pruning HCompressingBERT [51] j

—(Quantization }—{ Q-BERT [156], Q8BERT [211] |

—(Model Compression |—{ Parameter Sharing}—{ ALBERT [93] |

—(Distillation }—{ DistilBERT [152], TinyBERT [75]. MiniLM [194])

—(Module Replacing}—{ BERT-of-Theseus [203])

23

The Encoder-Decoder Framework

* The encoder-decoder framework
e Attention Mechanisms

* Transfer Learning in NLP

24

RNN

] R R
-

| 17 1 |

Inputt Inputl Input 2 Input 3 eoe Inputt

!

An encoder-decoder architecture
with a pair of RNN

14 m - Transformer

Encoder block Decoder block

26

Attention Mechanisms

‘+ RNN cell B - Transformer
, e i

Encoder block Decoder block

An encoder-decoder architecture with an attention mechanism

.’

L
are m =4 State?2

84 State3

Transformers Statel

great »

e 2 =4 State4

27

RNN Encoder-Decoder

alignment of words in English and the generated translation in French

=
= c v
c o E —
@ o O o % A
0 O € © = 3 N p=
25258285 _98 ¢
-
E o o LWug 29 S QO \Y}
Ll
accord
sur

la

zone
économique
européenne
a

ete

signé

en

ao(t

1992

<end>

Transformers
are

great

Encoder-Decoder Architecture
of the Original Transformer

Gl b
+m
-bm
FEnn

Encoder block

i

State

_ +m - Transformer

State 2

State 3

State 4

Decoder block

29

Comparison of Traditional Supervised Learning
and Transfer Learning

Training and evaluation on Extract knowledge from source task,
the same task/domain and apply to different target task
@

Initialize

with Body A
Body A fres ‘ =i Body A

Predictions A Predictions B Predictions A Predictions B

Model A Model B

——
-

ey
-

Supervised learning Transfer learning

30

ULMFIT: 3 Steps

Transfer Learning in NLP

Language Language
Model Model

1. Pretraining 2. Domain adaptation

. Cass>

3. Fine-tuning

31

An overview of the Hugging Face Ecosystem

Hugging Face Hub

Tokenizers Transformers Datasets

Accelerate

32

A typical pipeline for

training transformer models
with the Datasets, Tokenizers, and Transformers libraries

mm

Load and Tokenize Load models, Load metrics
process datasets input texts train and infer evaluate models

https://github.com/nlp-with-transformers/notebooks 33

https://github.com/nlp-with-transformers/notebooks

The lllustrated Transformer

INPUT

{Je Suis étudiant]—>

Jay Alammar (2018)

THE
TRANSFORMER

2 Tl

4

http://jalammar.github.io/illustrated-transformer/

OUTPUT

—>[I am a studentJ

34

http://jalammar.github.io/illustrated-transformer/

The lllustrated Transformer

Jay Alammar (2018)

ouwm[l am a student]

'y

\\

\S

ENCODERS

E

¥

-

DECODERS

\\

)

INPUT [Jo suis étudlam]

http://jalammar .github.io/illustrated -transformer /

35

http://jalammar.github.io/illustrated-transformer/

The lllustrated Transformer

Jay Alammar (2018)

OUTPUT[I am a student]

(f N\ & .
ENCODER > DECODER
\. J \
4 4
(N {
ENCODER DECODER
\ J \
4 4
f N fi3
ENCODER DECODER
- 7 -
4 4
{ W (s
ENCODER DECODER
. . .
4 4
& B @
ENCODER DECODER
\ 7 \
4 4
fi; Y {
ENCODER DECODER
\ J \.
\ A
|
INPUT | Je suis étudiant

http://jalammar.github.io/illustrated-transformer/

36

http://jalammar.github.io/illustrated-transformer/

The lllustrated Transformer

ENCODER

Jay Alammar (2018)

(

Feed Forward Neural Network

t

(

Self-Attention

)
)

http://jalammar.github.io/illustrated-transformer/

37

http://jalammar.github.io/illustrated-transformer/

ENCODER

The lllustrated Transformer
Jay Alammar (2018)

DECODER 1

Feed Forward)

&

4

Feed Forward

=

4 » 7 Y

(Encoder-Decoder Attention

(
(

j
Self-Attention j Self-Attention)
"/

1 t

38

http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

X1

The lllustrated Transformer

Jay Alammar (2018)

X2

Je suis

Each word is embedded into a vector of size 512.

http://jalammar .github.io/illustrated -transformer /

X3

etudiant

39

http://jalammar.github.io/illustrated-transformer/

The lllustrated Transformer

Jay Alammar (2018)
ENCODER ? ? ?

Feed Forward '

1 1 1
al L] [[[[] zs [

t t t

([
\E]J

A A A
I I |

x [xe| | |] | xs ([

Je suis étudiant

http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The lllustrated Transformer
Jay Alammar (2018)

ENCODER #2 k\ JJ

1 t
rr [e[T T 1]

A A

ENCODER #1 f \

Feed Forward Feed Forward
Neural Network Neural Network

Z1 I:III:‘ Z2|:|:]:|:]
1 f

L[]J

1 1
x: [xe| [1 1]
Thinking Machines

http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The lllustrated Transformer
Jay Alammar (2018)

Layer: | 5: | Attention: | Input - Input

Cross_
the_
street_
because_
it_

was_

too

tire

http://jalammar.github.io/illustrated-transformer/

The_
animal_
didn_

| 5
Cross_
the_
street_
because_
it_
was_
too_
tire

42

http://jalammar.github.io/illustrated-transformer/

Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated

with that word.

We end up creating a "query", a "key", and a "value" projection of each word in the input sentence.

Thinking

X2

Input

Embedding X1
Queries q1
Keys Ki1
Values V1

Machines

gz

k2

V2

http://jalammar.github.io/illustrated-transformer/

WK

43

http://jalammar.github.io/illustrated-transformer/

The lllustrated Transformer

Input

Embedding
Queries
Keys
Values

Score

Jay Alammar (2018)
Thinking Machines
X1 X2
g1 g2
K k>
Vi V2
qir* ki= qi* ka=¢

http://jalammar.github.io/illustrated-transformer/

44

http://jalammar.github.io/illustrated-transformer/

The lllustrated Transformer

Jay Alammar (2018)
Input Thinking Machines
Embedding X1 X2
Queries q1 q2
Keys K1 k2
Values V1 V2
Score gi® ki= g1 * k2 =
Divide by 8 (/dx)
Softmax

http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (Vdi)

Softmax

Softmax
X
Value

Sum

Thinking

X1

K1

Vi

qi ® ki=112
14

0.88

v [

Z1

Machines

X2

q- [T

k2

V2

qi ko =96
12
0.12

V2

Z2

http://jalammar.github.io/illustrated-transformer/

46

http://jalammar.github.io/illustrated-transformer/

Matrix Calculation of Self-Attention

X wa Q
X —

X WK K
X —

X WV Vv
X —

http://jalammar .github.io/illustrated -transformer /

47

http://jalammar.github.io/illustrated-transformer/

The self-attention calculation in matrix form

Q KT

softmax()

http://jalammar.github.io/illustrated-transformer/

48

http://jalammar.github.io/illustrated-transformer/

Multi-headed Attention

X

Thinking
Machines
ATTENTION HEAD #0
Qo
W@
Ko
WK
Vo
WoV

Q1

ATTENTION HEAD #1

K4

Vi

http://jalammar.github.io/illustrated-transformer/

49

http://jalammar.github.io/illustrated-transformer/

ATTENTION
HEAD #0

Multi-headed Attention

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
\ 4
ATTENTION ATTENTION
HEAD #1 HEAD #7

http://jalammar.github.io/illustrated-transformer/

50

http://jalammar.github.io/illustrated-transformer/

Multi-headed Attention

1) Concatenate all the attention heads 2) Multiply with a weight
matrix \W" that was trained
jointly with the model

X

3) The result would be the © matrix that captures information
from all the attention heads. We can send this forward to the FFNN

http://jalammar.github.io/illustrated-transformer/

51

http://jalammar.github.io/illustrated-transformer/

Multi-headed Attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix " to
R with weight matrices Q/K/V matrices produce the output of the layer

Thinking
Machines

WO

* In all encoders other than #0,

we don't need embedding.

We start directly with the output

of the encoder right below this one

R %09 see see

http://jalammar.github.io/illustrated-transformer/

52

http://jalammar.github.io/illustrated-transformer/

As we encode the word "it", one attention head is focusing most on "the animal”,
while another is focusing on "tired" -- in a sense, the model's representation of the word
"it" bakes in some of the representation of both "animal" and "tired".

Layer:| 5 §|Attention:| Input - Input %/

N
The_ The_
animal_ animal_
didn_ didn_
|
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_
was_
too_
tire

http://jalammar.github.io/illustrated-transformer/

53

http://jalammar.github.io/illustrated-transformer/

Add all the attention heads

Layer:| 5 4| Attention:| Input - Input %

The

animal_
didn_

t

Cross_
the_
street_
because_
it_

was

too_

tire

tire
d_ o

http://jalammar.github.io/illustrated-transformer/

because
i B
was_

too

54

http://jalammar.github.io/illustrated-transformer/

Positional Encoding

ENCODER #1

DECODER #1

A

ENCODER #0

DECODER #0

Sy

T

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

To give the model a sense of the order of the words, we add positional encoding vectors -- the values of which follow a specific pattern.

o [T T 1]

t []

+

. [

Je

e [[1]

[[[]]

+

e[T T 1]

Suis

http://jalammar.github.io/illustrated-transformer/

xs [T 1]

t L[]

+

xs [ERIERIE

étudiant

http://jalammar.github.io/illustrated-transformer/

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

Positional Encoding

- -

X1 X2

Je SUIS

Positional encoding with a toy embedding size of 4

http://jalammar.github.io/illustrated-transformer/

0.91 0.0002 1

X3

-

étudiant

56

http://jalammar.github.io/illustrated-transformer/

Positional encoding for 20 words (rows)
with an embedding size of 512 (columns

o8

You can see that it appears split in half down the center. That's because the values of the left half are generated by one function (which uses sine), and the right
half is generated by another function (which uses cosine). They're then concatenated to form each of the positional encoding vectors.

http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

Token Position

=]

'f.l!

Transformers Positional Encoding

0 10

20

30 40
Embedding Dimension

http://jalammar.github.io/illustrated-transformer/

100

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

58

http://jalammar.github.io/illustrated-transformer/

ENCODER #1

The Residuals

4

4

(o

Add & Normalize

D)

fipm— :
. C Feed Forward) (Feed Forward)

--------- SEEETTIE L EE LT reY |

+(

Add & Normalize

)

*

Self-Attention

POSITIONAL
ENCODING

X1

Thinking

http://jalammar.github.io/illustrated-trans

forme

X2

r/

Machines

59

http://jalammar.github.io/illustrated-transformer/

ENCODER #1

-m---eemmmom

F

4

4

Add & Normalize)\

))
(Feed Forward) (Feed Forward)
........ T R
z: z;
4 Add & Normalize 7)
X
- LayerNorm(-)
A A
[I:ED [(TTT]
A
(Self-Attention)
A A
21w Y 7n ninn R
POSITIONAL é é
ENCODING
x+1 B xoL LT 1]
Thinking Machines

Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

60

http://jalammar.github.io/illustrated-transformer/

ENCODER #2

ENCODER #1

Softmax

)

Linear

Y
DECODER #2

Add & Normalize

--------- | SEEELLLL LT |
Add & Normalize
v | L 4
E (Feed Forward) (Feed Forward) ''''' .'"(Encoder-Decoder Attention
S —— 7 N S S—— 7} o Becenmccnnnnannnnnas 1
,»(Add & Normalize) ,‘»(Add & Normalize
: 7 1 : 4 :
E (Self-Attention) E (Self-Attention
\peapeere Aeveceeenecaaa-- 4 =, R S
rosmonsL G @ et) c:%
x1 ([x2 L
Thinking Machines

http://jalammar.github.io/illustrated-transformer/

61

http://jalammar.github.io/illustrated-transformer/

The Decoder Side

Decoding time step:@Z 3 4556 OUTPUT

f

(Linear + Softmax)

T

[B i 2
ENCODER DECODER
. g L W
L)
4 i) fa)
ENCODER DECODER
o . \ J,
EMBEDDING
witTHTiMe CLILT1 [COCIT1 [T
SIGNAL
EMBEDDINGS LLLT] LI LLLT]
INPUT Je suis étudiant

http://jalammar.github.io/illustrated-transformer/

62

http://jalammar.github.io/illustrated-transformer/

The Decoder Side

Decoding time step: 1@3 4 5 6 OUTPUT I
i A
I TTT — Kencdec Vencdec (Linear + Softmax)
(B fii >N
ENCODERS DECODERS
S / \)
EMBEDDING t t U 4
WITH TIME LITT] [TTT] [(ITTT] [TT1T]
SIGNAL
EMBEDDINGS I I I O O [|
INPUT Je suis étudiant PREVIOUS

OUTPUTS

http://jalammar.github.io/illustrated-transformer/

63

http://jalammar.github.io/illustrated-transformer/

The Final Linear and Softmax Layer

Which word in our vocabulary

is associated with this index? i

Get the index of the cell

with the highest value
(argmax)

log_probs [N

@ 123405 * vocab_size
(Softmax)
7
logits ||
@ 12345 . vocab_size
*
(Linear)
*

Decoder stack output

http://jalammar.github.io/illustrated-transformer/

64

http://jalammar.github.io/illustrated-transformer/

Output Vocabulary

The output vocabulary

WORD

am

thanks

student

<eos~>

INDEX

The output vocabulary of our model is created in the preprocessing phase before we even begin training.

http://jalammar.github.io/illustrated-transformer/

65

http://jalammar.github.io/illustrated-transformer/

Example: one-hot encoding of output vocabulary

Output Vocabulary

WORD a am I thanks student <eos>

INDEX 0 1 2 3 4 <

One-hot encoding of the word “am”

1.0

http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Loss Function

Untrained Model Output

Correct and desired output

a am I thanks student

http://jalammar.github.io/illustrated-transformer/

<eos>

67

http://jalammar.github.io/illustrated-transformer/

Target Model Outputs

Output Vocabulary: a am I thanks student <eos>

position #1

position #2 X6 1.0 0.0 0.0 0.0

position #3

position #4 K¢ 0.0 0.0 0.0 0.0

position #5 X6 0.0 0.0 0.0 0.0 1.0

a am I thanks student <eos>

http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

Trained Model Outputs

Output Vocabulary: a am | thanks student <eos>

position #1 0.02

position #2 NN m 0.1 0.05 | 0.01 | 0.03

Il E XM 0.001 0.001 0.001 0.002 0.001

S E:ZZE 0.001 0.002 0.001 0.02 0.01

sk E 0.01 0.01 0.001 0.001 0.001 oAk

a am | thanks student <eos>

http://jalammar.github.io/illustrated-transformer/

69

http://jalammar.github.io/illustrated-transformer/

¥ Transformers Transformers

State-of-the-art Natural Language Processing for
TensorFlow 2.0 and PyTorch

* Transformers
e pytorch-transformers
* pytorch-pretrained-bert
» provides state-of-the-art general-purpose architectures
* (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...)

* for Natural Language Understanding (NLU) and
Natural Language Generation (NLG)
with over 32+ pretrained models
in 100+ languages
and deep interoperability between
TensorFlow 2.0 and
PyTorch.

https://github.com/huggingface/transformers

70

https://github.com/huggingface/transformers

~ Hugging Face

Hugging Face

Models Datasets Spaces Docs Solutions

__/

The Al community
building the future.

Build, train and deploy state of the art models powered by

the reference open source in machine learning.

() star 58,696

https://huggingface.co/

Pricing

LogIn

Sign Up

71

https://huggingface.co/

Hugging Face Transformers

» Hugging Face Q Search models, datasets, users... # Models ~ Datasets Spaces © Docs i Solutions Pricing v= LogIn Sign Up

* Transformers

Q. Search documentation #EK
& Transformers
vale2 v ENv & () 58697
&) Transformers
State-of-the-art Machine Learning for Jax, Pytorch and TensorFlow If you are looking for custom
GET STARTED support from the Hugging Face

. t
& Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) o

provides thousands of pretrained models to perform tasks on different modalities such FEREIreS

Quick tour
. as text, vision, and audio. Contents
Installation
Supported models
Philosoph .
P These models can applied on:
Supported frameworks
Glossary

-2 Text, for tasks like text classification, information extraction, question

USING & TRANSFORMERS . - . .
answering, summarization, translation, text generation, in over 100 languages.

S f the task i i S ; ; :
LRSS E= Images, for tasks like image classification, object detection, and segmentation.
Summary of the models

@: Audio, for tasks like speech recognition and audio classification.
Preprocessing data

Fine-tuning a pretrained model Transformer models can also perform tasks on several modalities combined, such as

Distributed training with & table question answering, optical character recognition, information extraction from

Accelerate . e L. . . :
scanned documents. video classification. and visual auestion answering.

https://huggingface.co/docs/transformers/index

https://huggingface.co/docs/transformers/index

Hugging Face Tasks
Natural Language Processing

Text
Classification

3345 models

D

Summarization

323 models

0O cp O
Do 29
Token Question
Classification Answering
1492 models 1140 models

»

Text Generation Fill-Mask

3959 models 2453 models

https://huggingface.co/tasks

Xn

Translation

1467 models

~l0

Sentence
Similarity

352 models

73

https://huggingface.co/

NLP with Transformers Github
O Why GitHub? ~ Team Enterprise Explore -~ Marketplace Pricing Search Signin

& nlp-with-transformers / notebooks ' public L\ Notifications % Fork 170 % star 11k~

<> Code () Issues 19 Pull requests (® Actions f Projects 0J wiki @ Security [~ Insights

¥ main ~ ¥ 1branch © 0 tags Go to file About

Jupyter notebooks for the Natural

ﬁ lewtun Merge pull request #21 from JingchaoZhang/patch-3 ... ae5b7c1 15 days ago @ 71 commits Language Processing with Transformers
book
.github/ISSUE_TEMPLATE Update issue templates 25 days ago
& transformersbook.com/
M data Move dataset to data directory 4 months ago
00 Readme OREILLY
images Add README last month :
i 9 &8 Apache-2.0 License Natural angque
scripts Update issue templates 25 days ago % 1.1k stars ProceS$|ng with
. Transformers
Y .gitignore Initial commit 4 months ago © 33 watching Building Language Applications
?89 170 forks with Hugging Face
(Y 01_introduction.ipynb Remove Colab badges & fastdoc refs 27 days ago
Y 02_classification.ipynb Merge pull request #8 from nlp-with-transformers/remove-display-df 26 days ago
Releases
M 03_transformer-anatomy.ipynb [Transformers Anatomy] Remove cells with figure references 22 days ago
No releases published
(Y 04_multilingual-ner.ipynb Merge pull request #8 from nlp-with-transformers/remove-display-df 26 days ago N
Leandro von Werro'
3 05_text-generation.ipynb Merge pull request #8 from nlp-with-transformers/remove-display-df 26 days ago & Thomos Wolf

Packadges
https://github.com/nlp-with-transformers/notebooks 24

https://github.com/nlp-with-transformers/notebooks

NLP with Transformers Github Notebooks

Running on a cloud platform

Open in Kaggle © | Run on Gradient {ﬂ] Open Studio Lab

Dealing with Few to No Labels CO | Open in Colab

© Run on Gradient €0 Open Studio Lab

O RE"-LY To run these notebooks on a cloud platform, just click on one of the badges in the table below:
N atu ra l La n g u a g e Chapter Colab Kaggle Gradient Studio Lab
P . ith Introduction
rocessing wi Text Classification
Transformers TRarsarmss Anatoy
Buiding Language Applications Mulilingual Named Entity
with Hugging Face Recognition
Text Generation
Summarization
Question Answering
MoKig T Snstormet Effiaientin
Production
[Open in Kagole Sl © Run on Gradient €0 0penStudio Lav
[Open in Kaggie I ©_ Run on Gradient SRR 0 Open_stucio Lab |
[Open in Kaggie S © Run on Gradiont SRR €0 0pen_stuco Lab

Training Transformers from Scratch OBENIEEGTIE

ey

Open in Kaggle © | Run on Gradient [0 Open = Studio Lab

Future Directions CO Open in Colab

Lewis Tunstall,

Leandro von Werra
& Thomas Wolf Nowadays, the GPUs on Colab tend to be K80s (which have limited memory), so we recommend using Kaggle,

Gradient, or SageMaker Studio Lab. These platforms tend to provide more performant GPUs like P100s, all for
free!

https://github.com/nlp-with-transformers/notebooks

75

https://github.com/nlp-with-transformers/notebooks

NLP with Transformers

'git clone https://github.com/nlp-with-transformers/notebooks.git
%3cd notebooks

from install import *

install requirements ()

from utils import *
setup chapter ()

https://github.com/nlp-with-transformers/notebooks

76

https://github.com/nlp-with-transformers/notebooks

Text Classification

text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
from your online store in Germany. Unfortunately, when I opened the package, \
I discovered to my horror that I had been sent an action figure of Megatron \
instead! As a lifelong enemy of the Decepticons, I hope you can understand my \
dilemma. To resolve the issue, I demand an exchange of Megatron for the \
Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""

https://github.com/nlp-with-transformers/notebooks

77

https://github.com/nlp-with-transformers/notebooks

Text Classification

text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
from your online store in Germany. Unfortunately, when I opened the package, \
I discovered to my horror that I had been sent an action figure of Megatron \
instead! As a lifelong enemy of the Decepticons, I hope you can understand my \
dilemma. To resolve the issue, I demand an exchange of Megatron for the \
Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""

from transformers import pipeline
classifier = pipeline("text-classification")

import pandas as pd
outputs = classifier (text)
pd.DataFrame (outputs)

label score
0 NEGATIVE 0.901546

https://github.com/nlp-with-transformers/notebooks

78

https://github.com/nlp-with-transformers/notebooks

Text Classification

from transformers import pipeline
classifier = pipeline("text-classification")

import pandas as pd
outputs = classifier (text)
pd.DataFrame (outputs)

label score
0 NEGATIVE 0.901546

https://github.com/nlp-with-transformers/notebooks

79

https://github.com/nlp-with-transformers/notebooks

Named Entity Recognition

ner tagger = pipeline("ner", aggregation strategy="simple'")
outputs = ner tagger (text)
pd.DataFrame (outputs)

entity_group score word start end
0 ORG 0.879010 Amazon 5 1
1 MISC 0.990859 Optimus Prime 36 49
2 LOC 0.999755 Germany 90 97
3 MISC 0.556570 Mega 208 212
4 PER 0.590256 ##tron 212 216
5 ORG 0.669692 Decept 253 259
6 MISC 0.498349 ##ticons 259 264
7 MISC 0.775362 Megatron 350 358
8 MISC 0.987854 Optimus Prime 367 380

9 PER 0.812096 Bumblebee 502 511

https://github.com/nlp-with-transformers/notebooks

https://github.com/nlp-with-transformers/notebooks

Question Answering

reader = pipeline("question-answering")

question = "What does the customer want?"
outputs = reader (question=question, context=text)
pd.DataFrame ([outputs])

score start end answer
0 0.631292 335 358 an exchange of Megatron

https://github.com/nlp-with-transformers/notebooks

81

https://github.com/nlp-with-transformers/notebooks

Summarization

summarizer = pipeline("summarization")
outputs = summarizer (text, max length=45, clean up tokenization spaces=True)
print (outputs[0] ['summary text'])

Bumblebee ordered an Optimus Prime action figure
from your online store in Germany. Unfortunately,
when I opened the package, I discovered to my horror
that I had been sent an action figure of Megatron
instead.

https://github.com/nlp-with-transformers/notebooks 82

https://github.com/nlp-with-transformers/notebooks

Translation

translator = pipeline("translation en to de",
model="Helsinki- NLP/opus -mt-en-de")

outputs = trans lator (text, clean up tokenization spaces=True, m1n_length=100)
print (outputs[0] ['translation text'])

Sehr geehrter Amazon, letzte Woche habe ich eine Optimus Prime Action Figur aus
Ihrem Online-Shop in Deutschland bestellt. Leider, als ich das Paket o6ffnete,
entdeckte ich zu meinem Entsetzen, dass ich stattdessen eine Action Figur von
Megatron geschickt worden war! Als lebenslanger Feind der Decepticons, Ich
hoffe, Sie konnen mein Dilemma verstehen. Um das Problem zu losen, Ich fordere

einen Austausch von Megatron fur die Optimus Prime Figur habe ich bestellt.
Anbei sind Kopien meiner Aufzeichnungen uber diesen Kauf. Ich erwarte, bald wvon

Ihnen zu horen. Aufrichtig, Bumblebee.

https://github.com/nlp-with-transformers/notebooks 83

https://github.com/nlp-with-transformers/notebooks

Text Generation

from transformers import set seed
set seed(42) # Set the seed to get reproducible results

generator = pipeline("text-generation")
response = '"Dear Bumblebee, I am sorry to hear that your order was mixed up."

prompt = text + "\n\nCustomer service response:\n" + response
outputs = generator (prompt, max length=200)
print (outputs[0] ['generated text'])

Customer service response:

Dear Bumblebee, I am sorry to hear that your order was mixed up. The
order was completely mislabeled, which is very common in our online
store, but I can appreciate it because it was my understanding from this
site and our customer service of the previous day that your order was
not made correct in our mind and that we are in a process of resolving
this matter. We can assure you that your order

https://github.com/nlp-with-transformers/notebooks 84

https://github.com/nlp-with-transformers/notebooks

Text Generation

Dear Amazon, last week I ordered an Optimus Prime action figure from
your online store in Germany. Unfortunately, when I opened the package,
I discovered to my horror that I had been sent an action figure of
Megatron instead! As a lifelong enemy of the Decepticons, I hope you can
understand my dilemma. To resolve the issue, I demand an exchange of
Megatron for the Optimus Prime figure I ordered. Enclosed are copies of
my records concerning this purchase. I expect to hear from you soon.
Sincerely, Bumblebee.

Customer service response:

Dear Bumblebee, I am sorry to hear that your order was mixed up. The
order was completely mislabeled, which is very common in our online
store, but I can appreciate it because it was my understanding from this
site and our customer service of the previous day that your order was
not made correct in our mind and that we are in a process of resolving
this matter. We can assure you that your order

https://github.com/nlp-with-transformers/notebooks 85

https://github.com/nlp-with-transformers/notebooks

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4z)1zTuniMqf2RkCrT

CO (_-pyt.hon.101.ipynb ﬁ. B comment &% share £¢ o
File Edit View Insert Runtime Tools Help All changes saved
‘= Table of contents [x +Code +Text o %/?x = v /Etng A
~ Natural Language Processing with Transformers RS- N

Q Natural Language Processing
with Transformers

SRl « Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language
ex ssification
<> Applications with Hugging Face, O'Reilly Media.

NamectElxtiry Recognition o Github: https:/github.com/nlp-with-transformers/notebooks

{x} Question Answering
O SHINEHEACR) o (0 !git clone https://github.com/nlp-with-transformers/notebooks.git
Translation %cd notebooks

from install import *
install requirements()

=W N =

Text Generation

Al in Finance

N
—_
w
—
[

from utils import *
setup_chapter()

Normative Finance and
Financial Theories

N

Uncertainty and Risk

d Utility Th ¥ [12] 1 text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
Expected Utility Theory 2 from your online store in Germany. Unfortunately, when I opened the package, \
(EUT) K :
3 I discovered to my horror that I had been sent an action figure of Megatron \

Mean-Variance Portfolio 4 instead! As a lifelong enemy of the Decepticons, I hope you can understand my \
Theory (MVPT) 5 dilemma. To resolve the issue, I demand an exchange of Megatron for the \

g 5 5 6 Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
Capital Asset Pricing 7 this purchase. I expect to hear from you soon. Sincerel Bumblebee."""
Model (CAPM) P : 3 b4) ¥y ;
Arbitrage Pricing Theory
APT H :
(APT) -~ Text Clssification

Data Driven Finance

Financial Econometrics and

Regression v 31 1 from transformers import pipeline

2 classifier = pipeline("text-classification")
Data Availability

Normative Theories Revisited [14] 1 import pandas as pd

Mean-Variance Portfolio 2 outputs = classifier(text)
= Theory 3 pd.DataFrame(outputs)

https://tinyurl.com/aintpupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101

Summary

* Natural Language Processing with Transformers

* Transformer (Attention is All You Need)
* Encoder-Decoder

* Attention Mechanisms

* Transfer Learning in NLP

* BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

87

References

Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with
Hugging Face, O'Reilly Media.

Denis Rothman (2021), Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch,
TensorFlow, BERT, RoBERTa, and more, Packt Publishing.

Savas Yildirim and Meysam Asgari-Chenaghlu (2021), Mastering Transformers: Build state-of-the-art models from scratch with advanced natural
language processing techniques, Packt Publishing.

Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta (2020), Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP
Systems, O'Reilly Media.

Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition,
Pearson.

Dipanjan Sarkar (2019), Text Analytics with Python: A Practitioner’s Guide to Natural Language Processing, Second Edition. APress.

Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda (2018), Applied Text Analysis with Python:

Enabling Language-Aware Data Products with Machine Learning, O’Reilly.

Charu C. Aggarwal (2018), Machine Learning for Text, Springer.

Gabe Ignatow and Rada F. Mihalcea (2017), An Introduction to Text Mining: Research Design, Data Collection, and Analysis, SAGE Publications.
Rajesh Arumugam (2018), Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP
applications, Packt.

Jake VanderPlas (2016), Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding." arXiv preprint arXiv:1810.04805.

The Super Duper NLP Repo, https://notebooks.quantumstat.com/

Jay Alammar (2018), The lllustrated Transformer, http://jalammar.github.io/illustrated-transformer/

Jay Alammar (2019), A Visual Guide to Using BERT for the First Time, http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

NLP with Transformer, https://github.com/nlp-with-transformers/notebooks
Min-Yuh Day (2022), Python 101, https://tinyurl.com/aintpupython101

https://notebooks.quantumstat.com/
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://github.com/nlp-with-transformers/notebooks
https://tinyurl.com/aintpupython101

