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Syllabus
Week    Date    Subject/Topics

1  2022/09/14  Introduction to Artificial Intelligence

2  2022/09/21  Artificial Intelligence and Intelligent Agents

3  2022/09/28  Problem Solving

4  2022/10/05  Knowledge, Reasoning and Knowledge Representation;
Uncertain Knowledge and Reasoning

5  2022/10/12  Case Study on Artificial Intelligence I 

6  2022/10/19  Machine Learning: Supervised and Unsupervised Learning
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Syllabus
Week    Date    Subject/Topics

7  2022/10/26  The Theory of Learning and Ensemble Learning 

8  2022/11/02  Midterm Project Report 

9  2022/11/09  Deep Learning and Reinforcement Learning 

10  2022/11/16  Deep Learning for Natural Language Processing  

11  2022/11/23  Invited Talk: AI for Information Retrieval  

12  2022/11/30  Case Study on Artificial Intelligence II
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Syllabus
Week    Date    Subject/Topics

13  2022/12/07  Computer Vision and Robotics 

14  2022/12/14  Philosophy and Ethics of AI and the Future of AI 

15  2022/12/21  Final Project Report I 

16  2022/12/28  Final Project Report II 

17  2023/01/04  Self-learning 

18  2023/01/11  Self-learning
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Artificial Intelligence 
and 

Intelligent Agents

5



Outline
• Artificial Intelligence
• Intelligent Agents
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Stuart Russell and Peter Norvig (2020), 
Artificial Intelligence: A Modern Approach, 

4th Edition, Pearson

7
Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/


1. Artificial Intelligence
2. Problem Solving
3. Knowledge and Reasoning
4. Uncertain Knowledge and Reasoning
5. Machine Learning
6. Communicating, Perceiving, and Acting
7. Philosophy and Ethics of AI

8Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
A Modern Approach 



9Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
Intelligent Agents



• Solving Problems by Searching
• Search in Complex Environments
• Adversarial Search and Games
• Constraint Satisfaction Problems

10Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
2. Problem Solving



• Logical Agents
• First-Order Logic
• Inference in First-Order Logic
• Knowledge Representation
• Automated Planning

11Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
3. Knowledge and Reasoning



• Quantifying Uncertainty
• Probabilistic Reasoning
• Probabilistic Reasoning over Time
• Probabilistic Programming
• Making Simple Decisions
• Making Complex Decisions
• Multiagent Decision Making

12Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
4. Uncertain Knowledge and Reasoning



• Learning from Examples
• Learning Probabilistic Models
• Deep Learning
• Reinforcement Learning

13Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
5. Machine Learning



• Natural Language Processing
• Deep Learning for Natural Language 

Processing
• Computer Vision
• Robotics

14Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
6. Communicating, Perceiving, and Acting



15Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
Philosophy and Ethics of AI

The Future of AI



Artificial Intelligence 
(AI) 
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Definition 
of 

Artificial Intelligence 
(A.I.) 
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Artificial Intelligence 

“… the science and 
engineering

of 
making 

intelligent machines” 
(John McCarthy, 1955)

18Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/



Artificial Intelligence 

“… technology that 
thinks and acts 
like humans”

19Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/



Artificial Intelligence 

“… intelligence
exhibited by machines

or software”
20Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/



4 Approaches of AI

21

Thinking Humanly Thinking Rationally

Acting Humanly Acting Rationally

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



4 Approaches of AI
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2.
Thinking Humanly: 

The Cognitive
Modeling Approach

3. 
Thinking Rationally:
The “Laws of Thought” 

Approach

1.
Acting Humanly:

The Turing Test 
Approach (1950)

4. 
Acting Rationally:

The Rational Agent 
Approach

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



AI Acting Humanly:
The Turing Test Approach

(Alan Turing, 1950)

• Knowledge Representation
• Automated Reasoning
• Machine Learning (ML)
• Deep Learning (DL)

• Computer Vision (Image, Video)
• Natural Language Processing (NLP)
• Robotics

23Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



4 Approaches of AI
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2.
Thinking Humanly: 

The Cognitive
Modeling Approach

3. 
Thinking Rationally:
The “Laws of Thought” 

Approach

1.
Acting Humanly:

The Turing Test 
Approach (1950)

4. 
Acting Rationally:

The Rational Agent 
Approach

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Acting Rationally:
The Rational Agent Approach

• AI has focused on the study and construction of 
agents that do the right thing.
• Standard model

25Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Neuroscience
The parts of a nerve cell or neuron

26Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Axonal arborization

Axon from another cell

Synapse
Dendrite Axon

Nucleus

Synapses

Cell body or soma



Comparison of 
Computer and Human Brain

27Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Supercomputer Personal Computer Human Brain

Computational units 106 GPUs + CPUs 8 CPU cores 106 columns

1015 transistors 1010 transistors 1011 neurons

Storage units 1016 bytes RAM 1010 bytes RAM 1011 neurons

1017 bytes disk 1012 bytes disk 1014 synapses

Cycle time 10−9 sec 10−9 sec 10−3 sec

Operations/sec 1018 1010 1017



A scene from the blocks world

28Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Find a block which is taller than the one you 
are holding and put it in the box.



29Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Intelligent Agents



4 Approaches of AI
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2.
Thinking Humanly: 

The Cognitive
Modeling Approach

3. 
Thinking Rationally:
The “Laws of Thought” 

Approach

1.
Acting Humanly:
The Turing Test 

Approach (1950)

4. 
Acting Rationally:

The Rational Agent 
Approach

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Reinforcement Learning (DL)

31Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

Agent

Environment



Reinforcement Learning (DL)

32Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
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Reinforcement Learning (DL)

33Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
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Agents interact with environments 
through sensors and actuators

34Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

CHAPTER 2
INTELLIGENT AGENTS

Agent Sensors

Actuators

E
n

v
iro
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m
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t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

A B

Figure 2.2 A vacuum-cleaner world with just two locations. Each location can be clean or
dirty, and the agent can move left or right and can clean the square that it occupies. Different
versions of the vacuum world allow for different rules about what the agent can perceive,
whether its actions always succeed, and so on.



A vacuum-cleaner world 
with just two locations 

35Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Partial tabulation of 
a simple agent function for 
the vacuum-cleaner world 

36Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

4 Chapter 2 Intelligent Agents

Percept sequence Action

[A,Clean ] Right

[A,Dirty ] Suck

[B,Clean ] Left

[B,Dirty ] Suck

[A,Clean ], [A,Clean ] Right

[A,Clean ], [A,Dirty ] Suck
...

...
[A,Clean ], [A,Clean ], [A,Clean ] Right

[A,Clean ], [A,Clean ], [A,Dirty ] Suck
...

...

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world shown
in Figure ??. The agent cleans the current square if it is dirty, otherwise it moves to the other
square. Note that the table is of unbounded size unless there is a restriction on the length of
possible percept sequences.

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast,
legal,
comfortable
trip, maximize
profits,
minimize
impact on
other road
users

Roads, other
traffic, police,
pedestrians,
customers,
weather

Steering,
accelerator,
brake, signal,
horn, display,
speech

Cameras, radar,
speedometer, GPS, engine
sensors, accelerometer,
microphones, touchscreen

Figure 2.4 PEAS description of the task environment for an automated taxi driver.



PEAS description of 
the task environment for 
an automated taxi driver

37Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Examples of Agent Types and 
their PEAS descriptions

38Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Agent Type Performance
Measure

Environment Actuators Sensors

Medical
diagnosis system

Healthy patient,
reduced costs

Patient, hospital,
staff

Display of
questions, tests,
diagnoses,
treatments

Touchscreen/voice
entry of
symptoms and
findings

Satellite image
analysis system

Correct
categorization of
objects, terrain

Orbiting satellite,
downlink,
weather

Display of scene
categorization

High-resolution
digital camera

Part-picking
robot

Percentage of
parts in correct
bins

Conveyor belt
with parts; bins

Jointed arm and
hand

Camera, tactile
and joint angle
sensors

Refinery
controller

Purity, yield,
safety

Refinery, raw
materials,
operators

Valves, pumps,
heaters, stirrers,
displays

Temperature,
pressure, flow,
chemical sensors

Interactive
English tutor

Student’s score
on test

Set of students,
testing agency

Display of
exercises,
feedback, speech

Keyboard entry,
voice

Figure 2.5 Examples of agent types and their PEAS descriptions.

Task Environment Observable Agents Deterministic Episodic Static Discrete

Crossword puzzle Fully Single Deterministic Sequential Static Discrete
Chess with a clock Fully Multi Deterministic Sequential Semi Discrete

Poker Partially Multi Stochastic Sequential Static Discrete
Backgammon Fully Multi Stochastic Sequential Static Discrete

Taxi driving Partially Multi Stochastic Sequential Dynamic Continuous
Medical diagnosis Partially Single Stochastic Sequential Dynamic Continuous

Image analysis Fully Single Deterministic Episodic Semi Continuous
Part-picking robot Partially Single Stochastic Episodic Dynamic Continuous

Refinery controller Partially Single Stochastic Sequential Dynamic Continuous
English tutor Partially Multi Stochastic Sequential Dynamic Discrete

Figure 2.6 Examples of task environments and their characteristics.



Examples of Task Environments and 
their Characteristics
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The TABLE-DRIVEN-AGENT program 
is invoked for each new percept and 

returns an action each time. 
It retains the complete percept sequence in memory.

40Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

6 Chapter 2 Intelligent Agents

function TABLE-DRIVEN-AGENT(percept ) returns an action
persistent: percepts , a sequence, initially empty

table , a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action← LOOKUP(percepts , table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and re-
turns an action each time. It retains the complete percept sequence in memory.

function REFLEX-VACUUM-AGENT([location ,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-location vacuum environ-
ment. This program implements the agent function tabulated in Figure ??.

Agent

E
n

v
ir

o
n

m
e
n

t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent. We use rectangles to denote the
current internal state of the agent’s decision process, and ovals to represent the background
information used in the process.



The agent program for a simple 
reflex agent in the two-location 

vacuum environment.

41Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

6 Chapter 2 Intelligent Agents
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Figure 2.1 Agents interact with environments through sensors and actuators.
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Figure 2.2 A vacuum-cleaner world with just two locations. Each location can be clean or
dirty, and the agent can move left or right and can clean the square that it occupies. Different
versions of the vacuum world allow for different rules about what the agent can perceive,
whether its actions always succeed, and so on.



Schematic Diagram of 
a Simple Reflex Agent

42Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Schematic diagram of 
a simple reflex agent
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Schematic diagram of 
a simple reflex agent
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6 Chapter 2 Intelligent Agents
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A Simple Reflex Agent
It acts according to a rule whose condition 

matches the current state, 
as defined by the percept.

45Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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function SIMPLE-REFLEX-AGENT(percept ) returns an action
persistent: rules, a set of condition–action rules

state← INTERPRET-INPUT(percept )
rule←RULE-MATCH(state, rules)
action← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches the
current state, as defined by the percept.

Agent

E
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v
iro

n
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t

Sensors

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

IWhat action 
should do now

State

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

transition model , a description of how the next state depends on
the current state and action

sensor model , a description of how the current world state is reflected
in the agent’s percepts

rules, a set of condition–action rules
action , the most recent action, initially none

state←UPDATE-STATE(state,action ,percept , transition model , sensor model )
rule←RULE-MATCH(state, rules)
action← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.
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A Model-based Reflex Agent

46Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



A model-based reflex agent

47Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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It keeps track of the current state of the world, 
using an internal model. 

It then chooses an action in the same way as the reflex agent.



A model-based, goal-based agent

48Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



A model-based, utility-based agent 

49Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



A general learning agent
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Three ways to represent states and 
the transitions between them

51Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Artificial Intelligence
Machine Learning & Deep Learning

52Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/



AI, ML, DL
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3 Machine Learning Algorithms
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Machine Learning (ML)
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Machine Learning (ML) / Deep Learning (DL)

56
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"Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.
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• Natural Language Processing
• Deep Learning for Natural Language 

Processing
• Computer Vision
• Robotics

57Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
6. Communicating, Perceiving, and Acting



AI and Blockchain 
Key Enabling Technologies of the Metaverse

58Source: Gadekallu, Thippa Reddy, Thien Huynh-The, Weizheng Wang, Gokul Yenduri, Pasika Ranaweera, Quoc-Viet Pham, Daniel Benevides da Costa, and Madhusanka Liyanage (2022).
"Blockchain for the Metaverse: A Review." arXiv preprint arXiv:2203.09738..



Primary Technical Aspects in the Metaverse
AI with ML algorithms and DL architectures 

is advancing the user experience in the virtual world

59
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"Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.



AI for the Metaverse in the Application Aspects 
healthcare, manufacturing, smart cities, gaming 

E-commerce, human resources, real estate, and DeFi

60
Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim  (2022). 
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AI for Text Analytics
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The Transformers Timeline
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Transformer Models

64Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers:  Building Language Applications with Hugging Face,  O'Reilly Media.
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Transformer (Attention is All You Need) 
(Vaswani et al., 2017)
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BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding
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BERT (Bidirectional Encoder Representations from Transformers)
Overall pre-training and fine-tuning procedures for BERT
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Fine-tuning BERT on Different Tasks
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Fine-tuning BERT on 
Question Answering (QA)
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Fine-tuning BERT on Dialogue
Intent Detection (ID; Classification)
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Fine-tuning BERT on Dialogue
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Task-Oriented Dialogue (ToD) System
Speech, Text, NLP
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A framework for self-supervised learning of speech representations
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YOLOv7: 
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
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Multimodal Pipeline 
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• Artificial Intelligence
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