

Artificial Intelligence

Problem Solving

1111AI03 MBA, IM, NTPU (M6132) (Fall 2022) Wed 2, 3, 4 (9:10-12:00) (B8F40)

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2022-09-28

Week Date Subject/Topics

- **1 2022/09/14 Introduction to Artificial Intelligence**
- 2 2022/09/21 Artificial Intelligence and Intelligent Agents
- 3 2022/09/28 Problem Solving
- 4 2022/10/05 Knowledge, Reasoning and Knowledge Representation; Uncertain Knowledge and Reasoning
- **5 2022/10/12 Case Study on Artificial Intelligence I**
- 6 2022/10/19 Machine Learning: Supervised and Unsupervised Learning

- Week Date Subject/Topics
- 7 2022/10/26 The Theory of Learning and Ensemble Learning
- 8 2022/11/02 Midterm Project Report
- 9 2022/11/09 Deep Learning and Reinforcement Learning
- 10 2022/11/16 Deep Learning for Natural Language Processing
- 11 2022/11/23 Invited Talk: AI for Information Retrieval
- 12 2022/11/30 Case Study on Artificial Intelligence II

- Week Date Subject/Topics
- 13 2022/12/07 Computer Vision and Robotics
- 14 2022/12/14 Philosophy and Ethics of AI and the Future of AI
- 15 2022/12/21 Final Project Report I
- 16 2022/12/28 Final Project Report II
- 17 2023/01/04 Self-learning
- 18 2023/01/11 Self-learning

Artificial Intelligence Problem Solving

Outline

- Solving Problems by Searching
- Search in Complex Environments
- Adversarial Search and Games
- Constraint Satisfaction Problems

Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

Artificial Intelligence: A Modern Approach

- **1. Artificial Intelligence**
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- 5. Machine Learning
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of Al

Artificial Intelligence: Problem Solving

Artificial Intelligence: 2. Problem Solving

- Solving Problems by Searching
- Search in Complex Environments
- Adversarial Search and Games
- Constraint Satisfaction Problems

Intelligent Agents

4 Approaches of Al

Reinforcement Learning (DL)

Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

Reinforcement Learning (DL)

Reinforcement Learning (DL)

Agents interact with environments through sensors and actuators

Solving Problems by Searching

AI: Solving Problems by Searching

A simplified road map of part of Romania, with road distances in miles.

The state-space graph for the two-cell vacuum world

There are 8 states and three actions for each state: L = Left, R = Right, S = Suck.

A typical instance of the 8-puzzle

Start State

Goal State

Arad to Bucharest

A sequence of search trees generated by a graph search on the Romania problem

The Separation Property of Graph Search

illustrated on a rectangular-grid problem

The frontier (green) separates the interior (lavender) from the exterior (faint dashed)

(c)

(a)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

The Best-First Search (BFS) Algorithm

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure $node \leftarrow \text{NODE}(\text{STATE}=problem.INITIAL})$ frontier \leftarrow a priority queue ordered by f, with node as an element $reached \leftarrow$ a lookup table, with one entry with key *problem*.INITIAL and value *node* while not IS-EMPTY(frontier) do $node \leftarrow POP(frontier)$ **if** *problem*.IS-GOAL(*node*.STATE) **then return** *node* for each *child* in EXPAND(*problem*, *node*) do $s \leftarrow child.STATE$ if s is not in reached or child.PATH-COST < reached[s].PATH-COST then $reached[s] \leftarrow child$ add child to frontier return failure

function EXPAND(problem, node) yields nodes $s \leftarrow node.STATE$ for each action in problem.ACTIONS(s) do $s' \leftarrow problem.RESULT(s, action)$ $cost \leftarrow node.PATH-COST + problem.ACTION-COST(s, action, s')$ yield NODE(STATE=s', PARENT=node, ACTION=action, PATH-COST=cost)

Breadth-First Search and Uniform-Cost Search Algorithms

function BREADTH-FIRST-SEARCH(*problem*) returns a solution node or *failure* $node \leftarrow \text{NODE}(problem.INITIAL)$ if problem.IS-GOAL(node.STATE) then return node *frontier* \leftarrow a FIFO queue, with *node* as an element $reached \leftarrow \{problem.INITIAL\}$ while not IS-EMPTY(frontier) do $node \leftarrow POP(frontier)$ for each *child* in EXPAND(*problem*, *node*) do $s \leftarrow child.STATE$ if problem.IS-GOAL(s) then return child if s is not in reached then add s to reached add *child* to *frontier* **return** failure

function UNIFORM-COST-SEARCH(*problem*) **returns** a solution node, or *failure* **return** BEST-FIRST-SEARCH(*problem*, PATH-COST)

Part of the Romania State Space Uniform-Cost Search

Depth-First Search (DFS)

Iterative deepening and depth-limited tree-like search

function ITERATIVE-DEEPENING-SEARCH(*problem*) returns a solution node or *failure* for depth = 0 to ∞ do $result \leftarrow DEPTH-LIMITED-SEARCH(problem, depth)$ if $result \neq cutoff$ then return result

function DEPTH-LIMITED-SEARCH(problem, l) returns a node or failure or cutoff
frontier ← a LIFO queue (stack) with NODE(problem.INITIAL) as an element
result ← failure
while not Is-EMPTY(frontier) do
node ← POP(frontier)
if problem.Is-GOAL(node.STATE) then return node
if DEPTH(node) > l then
result ← cutoff
else if not Is-CYCLE(node) do
for each child in EXPAND(problem, node) do
add child to frontier
return result

Four iterations of iterative deepening search

Four iterations of iterative deepening search

Four iterations of iterative deepening search

Bidirectional Best-First Search

keeps two frontiers and two tables of reached states

function BIBF-SEARCH(*problem*_F, f_F, *problem*_B, f_B) **returns** a solution node, or *failure* $node_F \leftarrow \text{NODE}(problem_F.INITIAL)$ // Node for a start state $node_B \leftarrow \text{NODE}(problem_B.INITIAL)$ // Node for a goal state frontier_F \leftarrow a priority queue ordered by f_F, with $node_F$ as an element frontier_B \leftarrow a priority queue ordered by f_B, with $node_B$ as an element reached_F \leftarrow a lookup table, with one key $node_F.STATE$ and value $node_F$ reached_B \leftarrow a lookup table, with one key $node_B.STATE$ and value $node_B$ solution \leftarrow failure

while not TERMINATED(solution, frontier_F, frontier_B) do

if $f_F(\text{TOP}(frontier_F)) < f_B(\text{TOP}(frontier_B))$ then

 $solution \leftarrow PROCEED(F, problem_F frontier_F, reached_F, reached_B, solution)$ else $solution \leftarrow PROCEED(B, problem_B, frontier_B, reached_B, reached_F, solution)$ return solution

Bidirectional Best-First Search

keeps two frontiers and two tables of reached states

function PROCEED(*dir*, *problem*, *frontier*, *reached*, *reached*₂, *solution*) returns a solution

// Expand node on frontier; check against the other frontier in reached₂.

// The variable "dir" is the direction: either F for forward or B for backward.

 $node \leftarrow \text{POP}(frontier)$

for each child in EXPAND(problem, node) do

 $s \leftarrow child.$ State

if s not in reached or PATH-COST(child) < PATH-COST(reached[s]) then

 $reached[s] \leftarrow child$

add child to frontier

if s is in $reached_2$ then

 $solution_2 \leftarrow \text{JOIN-NODES}(dir, child, reached_2[s]))$

if $PATH-COST(solution_2) < PATH-COST(solution)$ then

 $solution \leftarrow solution_2$

return solution

Evaluation of search algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete?	Yes 1	$egin{aligned} & \operatorname{Yes}^{1,2} \ & \operatorname{Yes} \ & O(b^{1+\lfloor C^*/\epsilon floor}) \ & O(b^{1+\lfloor C^*/\epsilon floor}) \end{aligned}$	No	No	Yes 1	$\mathrm{Yes}^{1,4}$
Optimal cost?	Yes 3		No	No	Yes 3	$\mathrm{Yes}^{3,4}$
Time	$O(b^d)$		$O(b^m)$	$O(b^\ell)$	$O(b^d)$	$O(b^{d/2})$
Space	$O(b^d)$		O(bm)	$O(b\ell)$	O(bd)	$O(b^{d/2})$

b is the branching factor; *m* is the maximum depth of the search tree; *d* is the depth of the shallowest solution, or is *m* when there is no solution; ℓ is the depth limit

Values of *hSLD* —straight-line distances to Bucharest.

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Nodes are labeled with f = g + h. The *h* values are the Straight-Line Distances heuristic h_{SLD}

Nodes are labeled with f = g + h. The *h* values are the Straight-Line Distances heuristic h_{SLD}

If the heuristic *h* is consistent, then the single number h(n) will be less than the sum of the cost c(n, a, a') of the action from n to n' plus the heuristic estimate h(n').

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

(a) A* Search(b) Weighted A* Search

The gray bars are obstacles, the purple line is the path from the green start to red goal, and the small dots are states that were reached by each search. On this particular problem, weighted A* explores 7 times fewer states and finds a path that is 5% more costly.

Recursive Best-First Search (RBFS) Algorithm

function RECURSIVE-BEST-FIRST-SEARCH(*problem*) **returns** a solution or *failure* solution, fvalue \leftarrow RBFS(*problem*, NODE(*problem*.INITIAL), ∞) **return** solution

function RBFS(problem, node, f_limit) returns a solution or failure, and a new f-cost limit if problem.IS-GOAL(node.STATE) then return node successors \leftarrow LIST(EXPAND(node)) if successors is empty then return failure, ∞ for each s in successors do // update f with value from previous search $s.f \leftarrow \max(s.PATH-COST + h(s), node.f)$) while true do

 $best \leftarrow the node in successors with lowest f-value$ if $best.f > f_limit$ then return failure, best.falternative \leftarrow the second-lowest f-value among successors result, $best.f \leftarrow RBFS(problem, best, min(f_limit, alternative))$ if $result \neq failure$ then return result, best.f

Recursive Best-First Search (RBFS)

Recursive Best-First Search (RBFS)

Recursive Best-First Search (RBFS)

On the left, nodes A and B are successors of Start; on the right, node F is an inverse successor of Goal

A typical instance of the 8-puzzle

The shortest solution is 26 actions long

Start State

Comparison of the search costs and effective branching factors for 8-puzzle problems

	Search Cost (nodes generated)			Effective Branching Factor		
d	BFS	$A^*(h_1)$	$A^*(h_2)$	BFS	$A^*(h_1)$	$\mathbf{A}^{*}(h_{2})$
6	128	24	19	2.01	1.42	1.34
8	368	48	31	1.91	1.40	1.30
10	1033	116	48	1.85	1.43	1.27
12	2672	279	84	1.80	1.45	1.28
14	6783	678	174	1.77	1.47	1.31
16	17270	1683	364	1.74	1.48	1.32
18	41558	4102	751	1.72	1.49	1.34
20	91493	9905	1318	1.69	1.50	1.34
22	175921	22955	2548	1.66	1.50	1.34
24	290082	53039	5733	1.62	1.50	1.36
26	395355	110372	10080	1.58	1.50	1.35
28	463234	202565	22055	1.53	1.49	1.36

A subproblem of the 8-puzzle

Start State

The task is to get tiles 1, 2, 3, 4, and the blank into their correct positions, without worrying about what happens to the other tiles

A Web service providing driving directions, computed by a search algorithm.

Search in Complex Environments

A one-dimensional state-space landscape

Adversarial Search and Games

Game Tree for the Game of Tic-tac-toe

Constraint Satisfaction Problems

The Map-Coloring Problem Represented as a Constraint Graph

A Tree Decomposition of the Constraint Graph

Artificial Intelligence: A Modern Approach (AIMA)

- Artificial Intelligence: A Modern Approach (AIMA)
 - http://aima.cs.berkeley.edu/
- AIMA Python
 - <u>http://aima.cs.berkeley.edu/python/readme.html</u>
 - https://github.com/aimacode/aima-python
- Search
 - http://aima.cs.berkeley.edu/python/search.html
- Games: Adversarial Search

http://aima.cs.berkeley.edu/python/games.html

- CSP (Constraint Satisfaction Problems)
 - http://aima.cs.berkeley.edu/python/csp.html

Artificial Intelligence: A Modern Approach (AIMA)

Artificial Intelligence: A Modern Approach, 4th US ed.

by Stuart Russell and Peter Norvig

The authoritative, most-used AI textbook, adopted by over 1500 schools.

Table of Contents for the US Edition (or see the Global Edition)

	Preface (pdf); Contents with subsections
	I Artificial Intelligence
	1 Introduction 1
	2 Intelligent Agents 36
	II Problem-solving
	3 Solving Problems by Searching 63
	4 Search in Complex Environments 110
<u>e</u>	5 Adversarial Search and Games 146
	6 Constraint Satisfaction Problems 180
	III Knowledge, reasoning, and planning
	7 Logical Agents 208
	8 First-Order Logic 251
X	9 Inference in First-Order Logic 280
4.2	10 Knowledge Representation 314
	11 Automated Planning 344
2	IV Uncertain knowledge and reasoning
~	12 Quantifying Uncertainty 385
A	13 Probabilistic Reasoning 412
	14 Probabilistic Reasoning over Time 461
nce	15 Probabilistic Programming 500
	16 Making Simple Decisions 528
	17 Making Complex Decisions 562
	18 Multiagent Decision Making 599

O US Edition

△ Global Edition

Acknowledgements

Code

Courses

Editions

Errata

Exercises

Instructors Pag

Pseudocode

Reviews

Figures

V Machine Learning

19 Learning from Examples ... 651 20 Learning Probabilistic Models ... 721 21 Deep Learning ... 750 22 Reinforcement Learning ... 789 VI Communicating, perceiving, and acting 23 Natural Language Processing ... 823 24 Deep Learning for Natural Language Processing ... 856 25 Computer Vision ... 881 26 Robotics ... 925 VII Conclusions 27 Philosophy, Ethics, and Safety of AI ... 981 28 The Future of AI ... 1012 Appendix A: Mathematical Background ... 1023 Appendix B: Notes on Languages and Algorithms ... 1030 Bibliography ... 1033 (pdf and LaTeX .bib file and bib data) Index ... 1069 (pdf)

Exercises (website) <u>Figures (pdf)</u> <u>Code (website); Pseudocode (pdf)</u> <u>Covers: US, Global</u>

AIMA Code

AIMA Python

🛱 aimacode / aima-python 🕑	Public	⊙ Watch 337 -	양 Fork 3.2k ▾ ☆ Star 6.6k ▾	
<> Code 🕢 Issues 120 In P	ull requests 79 🕑 Actions 🖽 Projects 🖽 Wiki	🕑 Security 🛛 🗠 In	sights	
양 master → 양1 branch 정0	Go to file Add	file - Code -	About	
contention metal m	Python implementation of algorithms from Russell And Norvig's "Artificial			
🗈 aima-data @ f6cbea6	updating submodule (#994)	4 years ago	Intelligence - A Modern Approach"	
🖿 gui	fixed tests (#1191)	2 years ago		
images	add perception and tests (#1091)	3 years ago		
🖿 js	Added TicTacToe to notebook (#213)	7 years ago	 337 watching 	
notebooks Image Rendering problem resolved (#1178)		3 years ago	% 3.2k forks	
tests	fixed tests (#1191)	2 years ago		
C .coveragerc	.coveragerc Added coverage report generation to Travis (#1058)		Releases	
🗅 .flake8	Fix flake8 warnings (#508)	5 years ago	No releases published	
🗅 .gitignore	Reworked PriorityQueue and Added Tests (#1025)	4 years ago	Packages	
.gitmodules Updating Submodule (#647)		5 years ago	No packages published	
🗅 .travis.yml	fixed svm for not posdef kernel matrix, updated .travis.yml wi	. 2 years ago	no havages hapisilea	

https://github.com/aimacode/aima-python
Tom Lawry (2020), Al in Health:

A Leader's Guide to Winning in the New Age of Intelligent Health Systems,

HIMSS Publishing

Source: Tom Lawry (2020), AI in Health: A Leader's Guide to Winning in the New Age of Intelligent Health Systems, HIMSS Publishing

https://www.amazon.com/Health-HIMSS-Book-Tom-Lawry/dp/0367333716/

Al in Healthcare

Multimodal Fall Detection

IEEE SENSORS JOURNAL, VOL. 21, NO. 17, SEPTEMBER 1, 2021

Performance, Challenges, and Limitations in Multimodal Fall Detection Systems: A Review

Vasileios-Rafail Xefteris[®], Athina Tsanousa, Georgios Meditskos[®], Stefanos Vrochidis[®], and Ioannis Kompatsiaris

Abstract—Fall events among older adults are a serious concern, having an impact on their health and well-being. The development of the Internet of Things (IoT) over the last years has led to the emergence of systems able to track abnormal body movements and falls, thus facilitating fall detection and in some cases prevention. Fusing information from multiple unrelated sources is one of the recent trends in healthcare systems. This work aims to provide a survey of recent methods and trends of multisensor data fusion in fall detection systems and discuss their performance, challenges, and limitations. The paper highlights the benefits of developing multimodal systems for fall detection compared to single-sensor approaches, categorizes the different methods applied to this field, and discusses issues and trends for future work.

Index Terms—Data fusion, fall detection, multisensor fusion, non-wearable sensors, wearable sensors.

Ambient Assisted Living (AAL)

Multimodal Fall Detection

Ambient Assisted Living (AAL)

Sensor	Intrusion	ROI	Accuracy	Power	Computational	Environment
modalities		specific		needs	needs	affected
Wearable	Obtrusive	No	Scenario	High	Low/dependent	No
Ambiant	No	Vac	dependent	Low	I aw/danandant	Vac
Ambient	NO	res	dependent	LOW	Low/dependent	res
Camera	Privacy	Yes	High	Low	High	Yes

Challenges of Multimodal Fall Detection

Modalities	Performance	Response time	Power	Unaddressed	Other advantages
combined			consumption	issues	
Wearable	Reasonable accuracy.	Reasonably low time.	Up to 62 days.	Obtrusiveness.	Offer to other healthcare applications, continuous monitoring.
Non-wearable	High accuracy.	Reasonably low response time.	No action needed.	ROI restriction.	No recharge power needs.
Wearable and non-wearable	High accuracy.	Low response time.	No evidence.	Complexity.	Takes advantage of both modalities, no ROI restriction.

Fall Detection Non-Wearable Sensors Fusion

Reference	Year	Sensors	Method	Evaluation	Performance
[46]	2013	PIR and PM	Graph-theoretical concepts to track	Falls and ADLs from 5	Accuracy: 82.86%
		sensors.	user and rule-based algorithm to detect falls.	healthy young subjects.	
[47]	2014	Doppler radar sensor and PIR motion sensors.	SVM classifier on Doppler radar features, rule-based algorithm to correct false alarms using PIR data.	A week of continuous data monitoring of a volunteer.	Reduced false alarms by 63% with 100% detection rate.
[48]	2018	IR sensor and an ultrasonic distance sensor.	Thermal IR and ultrasonic features, SVM classifier.	180 falls and ADLs from 3 healthy young subjects, 6 continuous recordings.	Accuracy: 96.7% (discrete test), 90.3% (continuous test).
[52]	2018	Doppler radar sensor and RGB camera.	Multiple CNN, movement classification from radar, aspect ratio sequence from camera, max voting fusion.	1 type of fall and 3 types of ADLs from 3 subjects.	Accuracy: 99.85%
[53]	2019	Doppler radar and depth camera.	Joints' coordinates from depth camera, feature extraction from joints' coordinates and radar data, Linear Discriminant Classifier.	3 different datasets.	Sensitivity: 100% (FD).

Fall Detection Datasets

Datasets	Posture	Subject				Type sensor	year	
samples		Number	Height(cm)	Weight(kg)	Age(year)	Gender(M/F)		-
Fall detection ⁴	380	4	159-182	48-85	24-31	3M-1F	RGB camera	2007
Fall detection ⁵	72	2	N/A	N/A	N/A	2M	RGB camera	2008
Multicam Fall ⁶	24	1	N/A	N/A	N/A	М	8 RGB camera	2010
Le2i ⁷	249	10	N/A	N/A	N/A	N/A	RGB camera	2013
Thermal simulated fall [8]	35	10	N/A	N/A	N/A	N/A	Thermal camera	2016
SisFall[9]	154	45	149-183	42-102	19-75	23M-21F	RGB camera, 2 accelerometers, 1 gyroscope	2016
UR Fall Detection[10]	70	5	N/A	N/A	N/A	5M	2 Kinect camera, accelerometer	2016
NTU RGB+D Action Recognition [11]	56880	302	N/A	N/A	N/A	N/A	Kinect camera v2	2016
UMA Fall [12]	531	17	155-195	50-93	18-55	10M-7F	Mobility sensors (smartphone)	2017
CMD Fall [13]	20	50	N/A	N/A	21-40	30M-20F	Kinect camera, accelerometer	2018
TST Fall Detection Dataset V2 ⁸	264	11	N/A	N/A	N/A	N/A	Microsoft Kinect v2, accelerometer	2018
UP-Fall[14]	561	17	N/A	N/A	22-58	N/A	Infrared ,inertial measurement	2019

Note: N/A_Not Available; M_Male; F_Femal

Source: Oumaima, Guendoul, Ait Abdelali Hamd, Tabii Youness, Oulad Haj Thami Rachid, and Bourja Omar.

"Vision-based fall detection and prevention for the elderly people: A review & ongoing research." In 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS), pp. 1-6. IEEE, 2021.

Human Action Recognition (HAR)

Human Action Recognition from Various Data Modalities: A Review

Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, and Jun Liu

Abstract—Human Action Recognition (HAR) aims to understand human behavior and assign a label to each action. It has a wide range of applications, and therefore has been attracting increasing attention in the field of computer vision. Human actions can be represented using various data modalities, such as RGB, skeleton, depth, infrared, point cloud, event stream, audio, acceleration, radar, and WiFi signal, which encode different sources of useful yet distinct information and have various advantages depending on the application scenarios. Consequently, lots of existing works have attempted to investigate different types of approaches for HAR using various modalities. In this paper, we present a comprehensive survey of recent progress in deep learning methods for HAR based on the type of input data modality. Specifically, we review the current mainstream deep learning methods for single data modalities and multiple data modalities, including the fusion-based and the co-learning-based frameworks. We also present comparative results on several benchmark datasets for HAR, together with insightful observations and inspiring future research directions.

Index Terms—Human Action Recognition, Deep Learning, Data Modality, Single Modality, Multi-modality.

Human Action Recognition (HAR) Modality

	Modality	Example	Pros	Cons	
			· Provide rich appearance information	· Sensitive to viewpoint	
ity	RGB		· Easy to obtain and operate	· Sensitive to background	
Iodal		Hand-waving [27]	· Wide range of applications	· Sensitive to illumination	
ual M		das.	 Provide 3D structural information of subject pose 	 Lack of appearance information 	
Vis	3D Skalaton	l n	· Simple yet informative	· Lack of detailed shape	
	Skeleton	L L	· Insensitive to viewpoint	information	
		Looking at watch [28]	· Insensitive to background	· Noisy	
	Depth	R -	 Provide 3D structural information 	· Lack of color and texture information	
		Mopping floor [29]	 Provide geometric shape information 	 Limited workable distance 	
5	Infrared	1 414	· Workable in dark	· Lack of color and texture information	
	Sequence	Pushing [30]	environments	· Susceptible to sunlight	
			Provide 3D information	· Lack of color and texture	
	Point Cloud	t d	 Provide geometric shape information 	information	
	cioud	Bending over [31]	· Insensitive to viewpoint	 High computational complexity 	
		A	· Avoid much visual	· Asynchronous output	
	Event Stream	14 A	• High dynamic range	· Spatio-temporally sparse	
		Running [32]	· No motion blur	 Capturing device is relatively expensive 	

Human Action Recognition (HAR) Modality

Computer Vision in the Metaverse

with scene understanding, object detection, and human action/activity recognition

Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

Fall Detection

Conversational AI

to deliver contextual and personal experience to users

Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

Task-Oriented Dialogue (ToD) System Speech, Text, NLP

"Book me a cab to Russell Square"

"When do you want to leave?"

Source: Razumovskaia, Evgeniia, Goran Glavas, Olga Majewska, Edoardo M. Ponti, Anna Korhonen, and Ivan Vulic.

"Crossing the conversational chasm: A primer on natural language processing for multilingual task-oriented dialogue systems." Journal of Artificial Intelligence Research 74 (2022): 1351-1402.

Multimodal Pipeline

that includes three different modalities (Image, Text. Audio)

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

Video and Audio Multimodal Fusion

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022). "A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets." The Visual Computer 38, no. 8: 2939-2970.

Visual and Textual Representation

Image

Visual representations (Dense)

Text

This is the oldest and most important defensive work to have been built along the North African coastline by the Arab conquerors in the early days of Islam. Founded in 796, this building underwent several modifications during the medieval period. Initially, it formed a quadrilateral and then was composed of four buildings giving onto two inner courtyards.

Textual representations (Sparse)

 -	_	

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

Hybrid Multimodal Data Fusion

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

Multimodal Transfer Learning

Domain 1 / Modality 1

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

CLIP: Learning Transferable Visual Models From Natural Language Supervision

Source: Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry et al. (2021) "Learning transferable visual models from natural language supervision." In International Conference on Machine Learning, pp. 8748-8763. PMLR.

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision

Source: Kim, Wonjae, Bokyung Son, and Ildoo Kim (2021). "Vilt: Vision-and-language transformer without convolution or region supervision." In International Conference on Machine Learning, pp. 5583-5594. PMLR.

Self-Supervised Representation Learning in Speech Downstream Applications

Self-Supervised Learning (SSL)

Source: Mohamed, Abdelrahman, Hung-yi Lee, Lasse Borgholt, Jakob D. Havtorn, Joakim Edin, Christian Igel, Katrin Kirchhoff et al. (2022) "Self-Supervised Speech Representation Learning: A Review." arXiv preprint arXiv:2205.10643.

Stable Diffusion

Stable Diffusion Demo

Stable Diffusion is a state of the art text-to-image model that generates images from text. For faster generation and forthcoming API access you can try <u>DreamStudio Beta</u>

https://huggingface.co/spaces/stabilityai/stable-diffusion

Papers with Code State-of-the-Art (SOTA)

Search for papers, code and tasks

🗠 Browse State-of-the-Art

🍠 Follow 💠 Discuss Trends About

Log In/Register

Browse State-of-the-Art

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

Q

Follow on 🎔 Twitter for updates

Computer Vision

Natural Language Processing

https://paperswithcode.com/sota

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

co python101.ipynb - Colaboratory × +	
← → C https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3	☆ ◙ 0 :
CO A python101.ipynb 🏠 File Edit View Insert Runtime Tools Help	SHARE A
CODE TEXT 1 CELL CELL	EDITING
<pre> 1 # Future Value 2 pv = 100 3 r = 0.1 4 n = 7 5 fv = pv * ((1 + (r)) ** n) 6 print(round(fv, 2)) </pre>	:
[→ 194.87	
<pre>[11] 1 amount = 100 2 interest = 10 #10% = 0.01 * 10 3 years = 7 4 future_value = amount * ((1 + (0.01 * interest)) ** years) 6 print(round(future_value, 2))</pre>	
[→ 194.87	
<pre>[12] 1 # Python Function def 2 def getfv(pv, r, n): 3 fv = pv * ((1 + (r)) ** n) 4 return fv 5 fv = getfv(100, 0.1, 7) 6 print(round(fv, 2))</pre>	
[→ 194.87	
<pre>[13] 1 # Python if else 2 score = 80 3 if score >=60 : 4</pre>	
[→ Pass	

Summary

- Solving Problems by Searching
- Search in Complex Environments
- Adversarial Search and Games
- Constraint Satisfaction Problems

References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Steven D'Ascoli (2022), Artificial Intelligence and Deep Learning with Python: Every Line of Code Explained For Readers New to AI and New to Python, Independently published.
- Nithin Buduma, Nikhil Buduma, Joe Papa (2022), Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 2nd Edition, O'Reilly Media.