

Artificial Intelligence

The Theory of Learning and Ensemble Learning

1111AI06 MBA, IM, NTPU (M6132) (Fall 2022) Wed 2, 3, 4 (9:10-12:00) (B8F40)

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2022-10-26

Week Date Subject/Topics

- **1 2022/09/14 Introduction to Artificial Intelligence**
- 2 2022/09/21 Artificial Intelligence and Intelligent Agents
- 3 2022/09/28 Problem Solving
- 4 2022/10/05 Knowledge, Reasoning and Knowledge Representation; Uncertain Knowledge and Reasoning
- 5 2022/10/12 Case Study on Artificial Intelligence I
- 6 2022/10/19 Machine Learning: Supervised and Unsupervised Learning

Week Date Subject/Topics

- 7 2022/10/26 The Theory of Learning and Ensemble Learning
- 8 2022/11/02 Midterm Project Report
- 9 2022/11/09 Deep Learning and Reinforcement Learning
- 10 2022/11/16 Deep Learning for Natural Language Processing
- 11 2022/11/23 Invited Talk: AI for Information Retrieval
- 12 2022/11/30 Case Study on Artificial Intelligence II

- Week Date Subject/Topics
- 13 2022/12/07 Computer Vision and Robotics
- 14 2022/12/14 Philosophy and Ethics of AI and the Future of AI
- 15 2022/12/21 Final Project Report I
- 16 2022/12/28 Final Project Report II
- 17 2023/01/04 Self-learning
- 18 2023/01/11 Self-learning

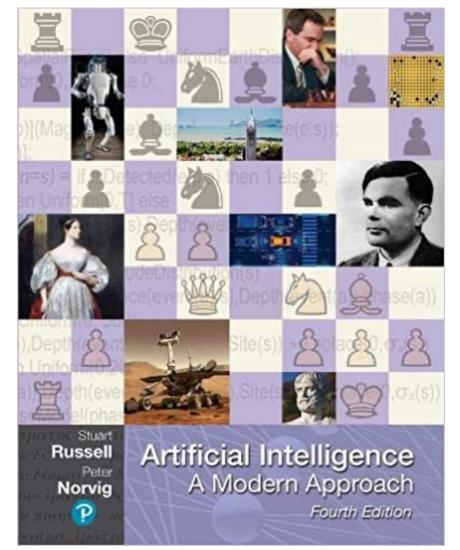
The Theory of Learning and **Ensemble Learning**

Outline

- The Theory of Learning
 - Computational Learning Theory
 - Probably Approximately Correct (PAC) Learning
- Ensemble Learning
 - Bagging: Random forests
 - Stacking
 - Boosting: Gradient boosting
 - Online learning
- Meta Learning: Learning to Learn

Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach,

4th Edition, Pearson



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

Artificial Intelligence: A Modern Approach

- **1. Artificial Intelligence**
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- **5. Machine Learning**
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of Al

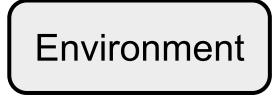
Artificial Intelligence: Machine Learning

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 5. Machine Learning

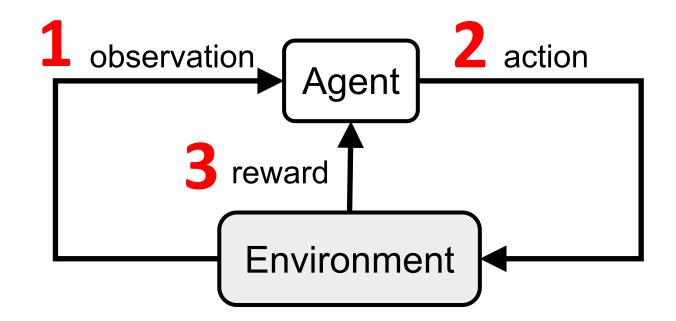
- Learning from Examples
- Learning Probabilistic Models
- Deep Learning
- Reinforcement Learning

Reinforcement Learning (DL)

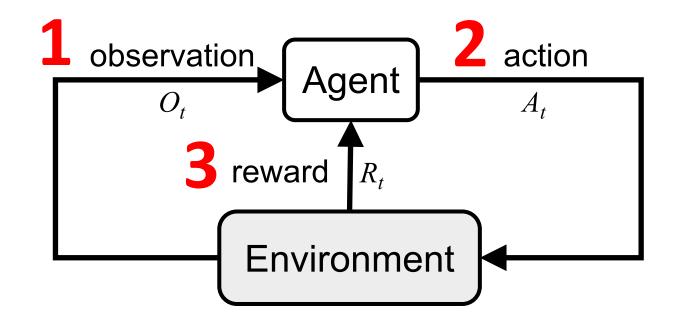


Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

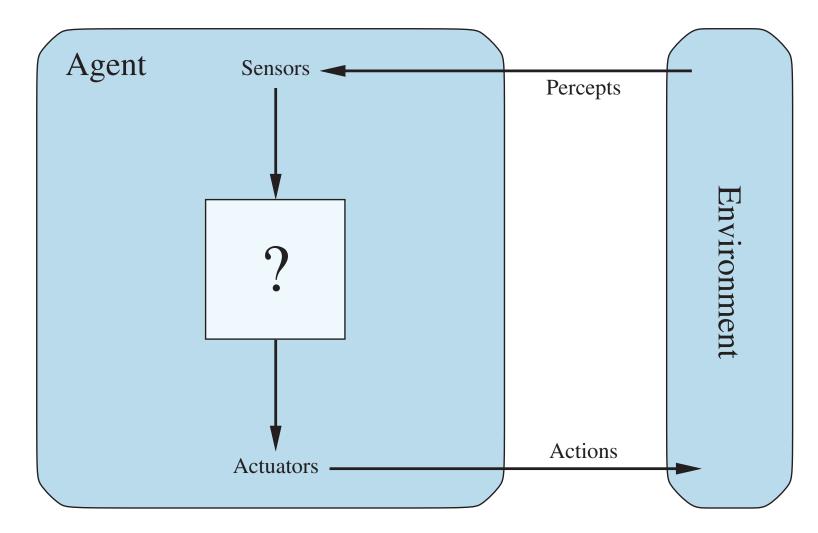
Reinforcement Learning (DL)



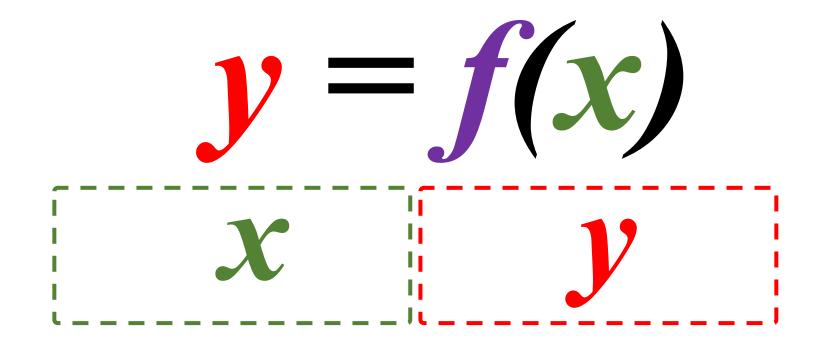
Reinforcement Learning (DL)



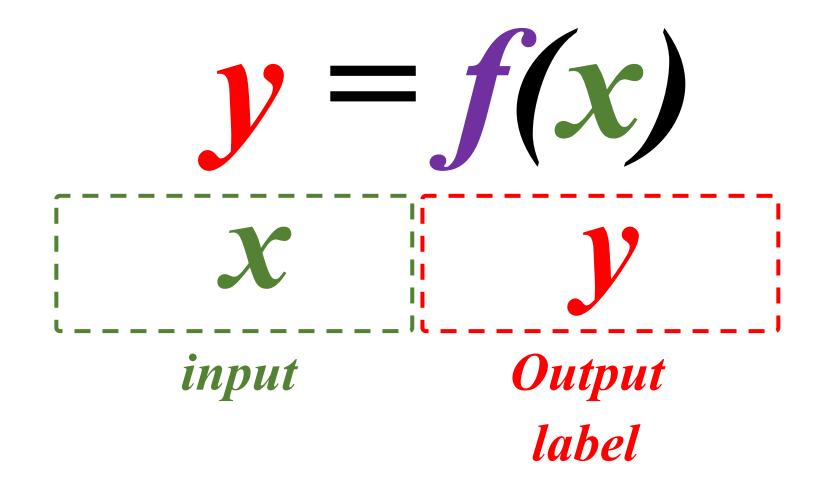
Agents interact with environments through sensors and actuators



Machine Learning Supervised Learning (Classification) Learning from Examples



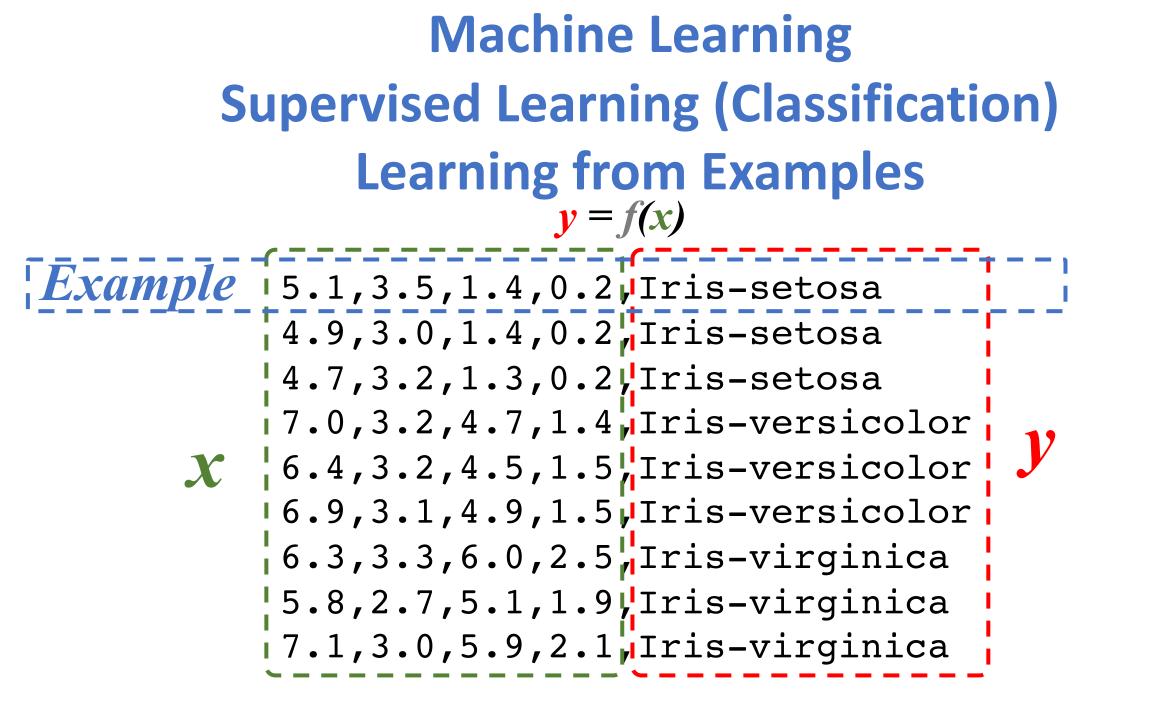
Machine Learning Supervised Learning (Classification) Learning from Examples



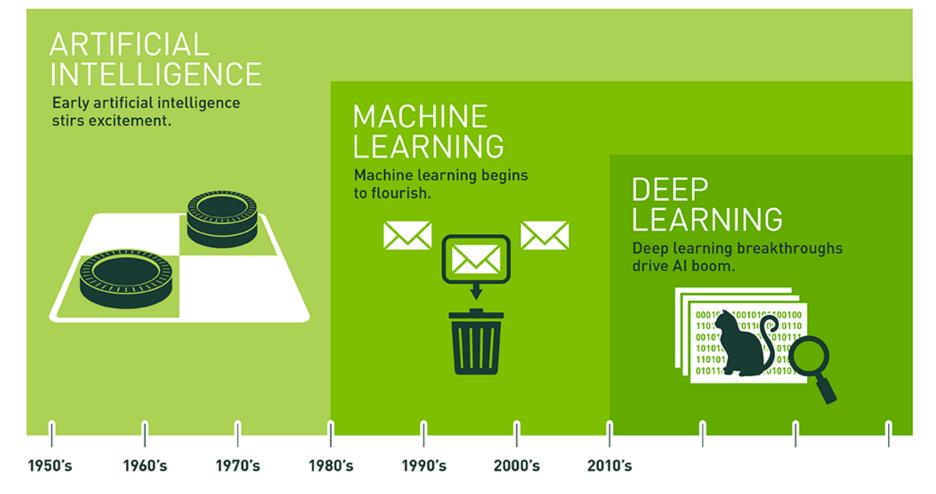
Machine Learning Supervised Learning (Classification) Learning from Examples y = f(x)

5.1,3.5,1.4,0.2, Iris-setosa 4.9,3.0,1.4,0.2, Iris-setosa 4.7,3.2,1.3,0.2, Iris-setosa 7.0,3.2,4.7,1.4, Iris-versicolor 6.4,3.2,4.5,1.5, Iris-versicolor 6.9,3.1,4.9,1.5, Iris-versicolor 6.3,3.3,6.0,2.5,Iris-virginica 5.8,2.7,5.1,1.9, Iris-virginica 7.1,3.0,5.9,2.1,Iris-virginica

Machine Learning Supervised Learning (Classification) Learning from Examples $\mathbf{v} = f(\mathbf{x})$ *Example* 5.1,3.5,1.4,0.2, Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2, Iris-setosa 7.0,3.2,4.7,1.4, Iris-versicolor 6.4,3.2,4.5,1.5, Iris-versicolor 6.9,3.1,4.9,1.5, Iris-versicolor 6.3,3.3,6.0,2.5,Iris-virginica 5.8,2.7,5.1,1.9, Iris-virginica 7.1,3.0,5.9,2.1,Iris-virginica



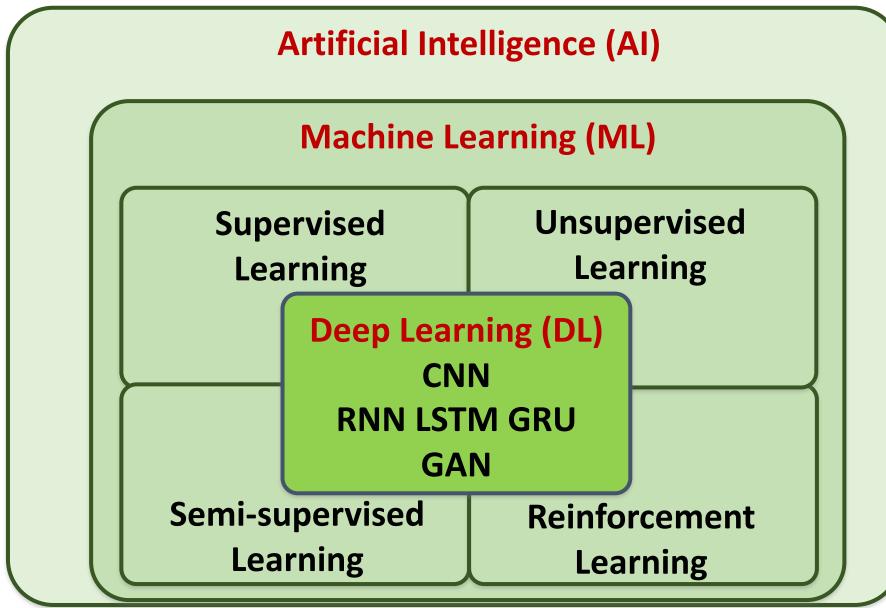
Artificial Intelligence Machine Learning & Deep Learning



Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

AI, ML, DL



Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html

The

Theory of Learning

The Theory of Learning

- Computational Learning Theory
- Probably approximately correct (PAC)

The Theory of Learning

- How can we be sure that our learned hypothesis will predict well for previously unseen inputs?
 - How do we know that the hypothesis h is close to the target function f if we don't know what is?
- How many examples do we need to get a good *h*?
- What hypothesis space should we use?
- If the hypothesis space is very complex, can we even find the best *h* or do we have to settle for a local maximum?
- How complex should *h* be?
- How do we avoid overfitting?

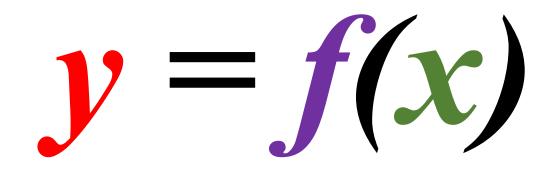
Computational Learning Theory

- Intersection of AI, statistics, and theoretical computer science.
- Any hypothesis that is seriously wrong will almost certainly be "found out" with high probability after a small number of examples.

Probably approximately correct (PAC)

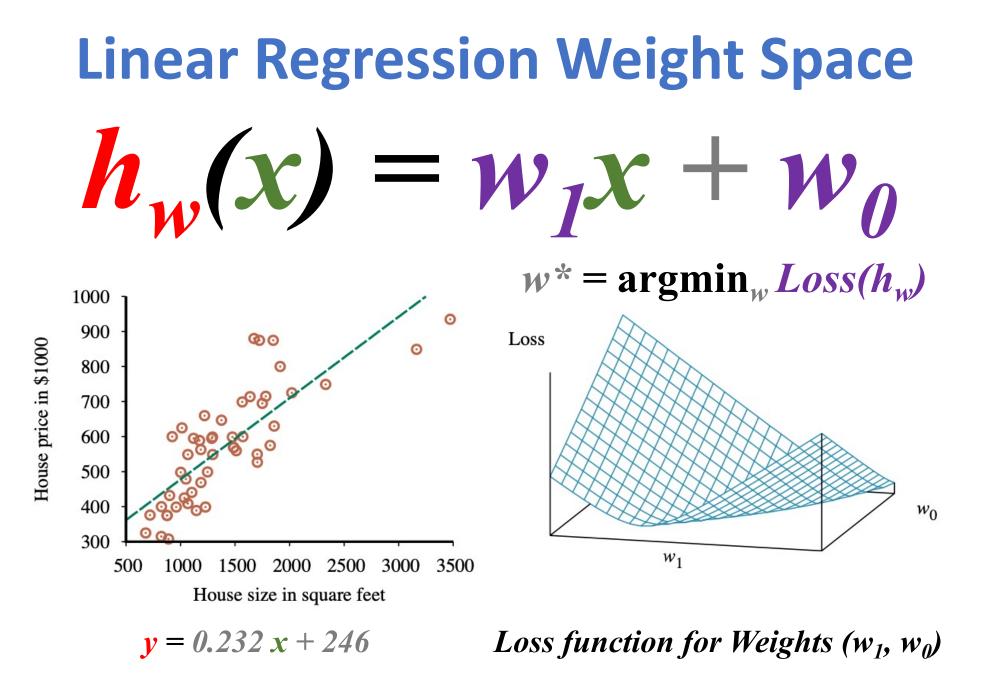
- Any hypothesis that is consistent with a sufficiently large set of training examples is unlikely to be seriously wrong.
- PAC learning algorithm:
 - Any learning algorithm that returns hypotheses that are probably approximately correct.

Linear function



 $y = w_1 x + w_0$

 $h_w(x) = w_1 x + w_0$

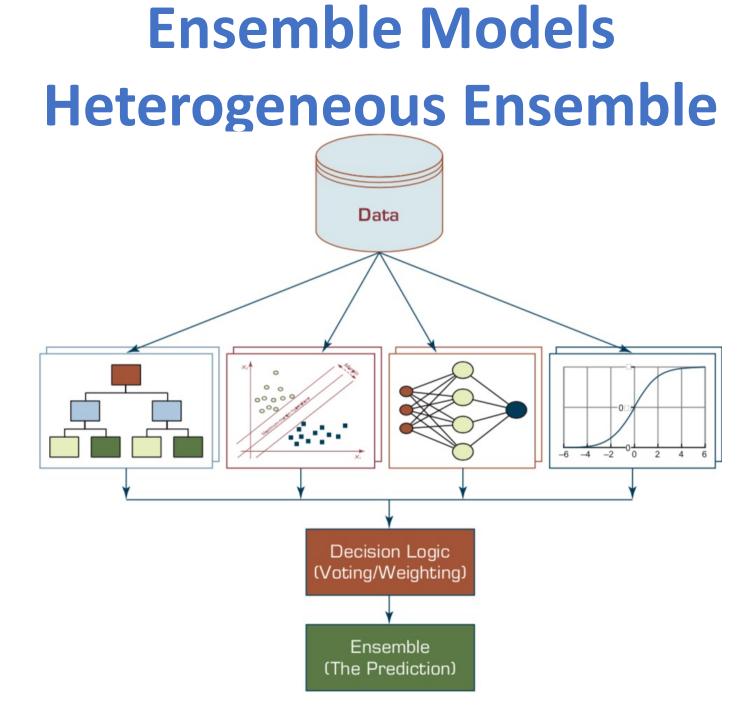


Ensemble

Learning

Ensemble Learning

 Select a collection, or ensemble, of hypotheses, h₁, h₂, ..., h_n , and combine their predictions by averaging, voting, or by another level of machine learning.



Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

Ensemble Learning

- Base model
 - individual hypotheses
 - $h_1, h_2, ..., h_n$
- Ensemble model
 - hypotheses combination

Why Ensemble Learning

- Reduce bias
- Reduce variance

Ensemble Learning

- Bagging
 - Random forests
- Stacking
- Boosting
 - Gradient boosting
- Online learning

Ensemble Learning: Bagging

Bagging

- Generate distinct training sets by sampling with replacement from the original training set.
- Classification:
 - Plurality Vote (Majority Vote)
- Regression:
 - Average

Ensemble Learning: Random forests

- Random forest model is a form of decision tree bagging in which we take extra steps to make the ensemble of trees more diverse, to reduce variance.
- The key idea is to randomly vary the attribute choices (rather than the training examples)

Ensemble Learning: Random forests

- Extremely randomized trees (ExtraTrees)
 - Use randomness in selecting the split point value
 - for each selected attribute, we randomly sample several candidate values from a uniform distribution over the attribute's range

Ensemble Learning: Stacking

• Staking

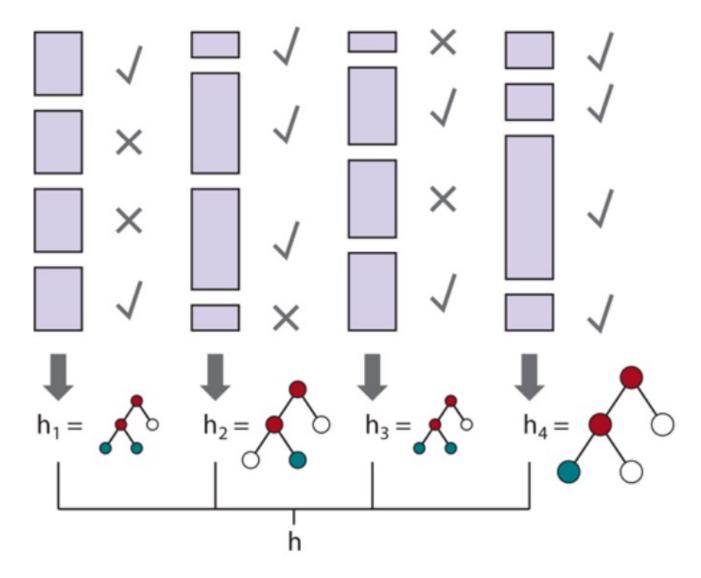
- Stacked generalization combines multiple base models from different model classes trained on the same data.
- Bagging
 - Combines multiple base models of the same model class trained on different data.

Ensemble Learning: Boosting

Boosting

- The most popular ensemble method
- Weighted training set

Ensemble Learning: Boosting



Ensemble Learning: Gradient boosting

- Gradient boosting
 - Gradient boosting is a form of boosting using gradient descent
- Gradient boosting machines (GBM)
- Gradient boosted regression trees (GBRT)
- Popular method for regression and classification of factored tabular data

Ensemble Learning: Online learning

- Online learning
 - Data are not i.i.d. (independent and identically distributed)
 - An agent receives an input x_i from nature, predicts the corresponding y_i and then is told the correct answer.

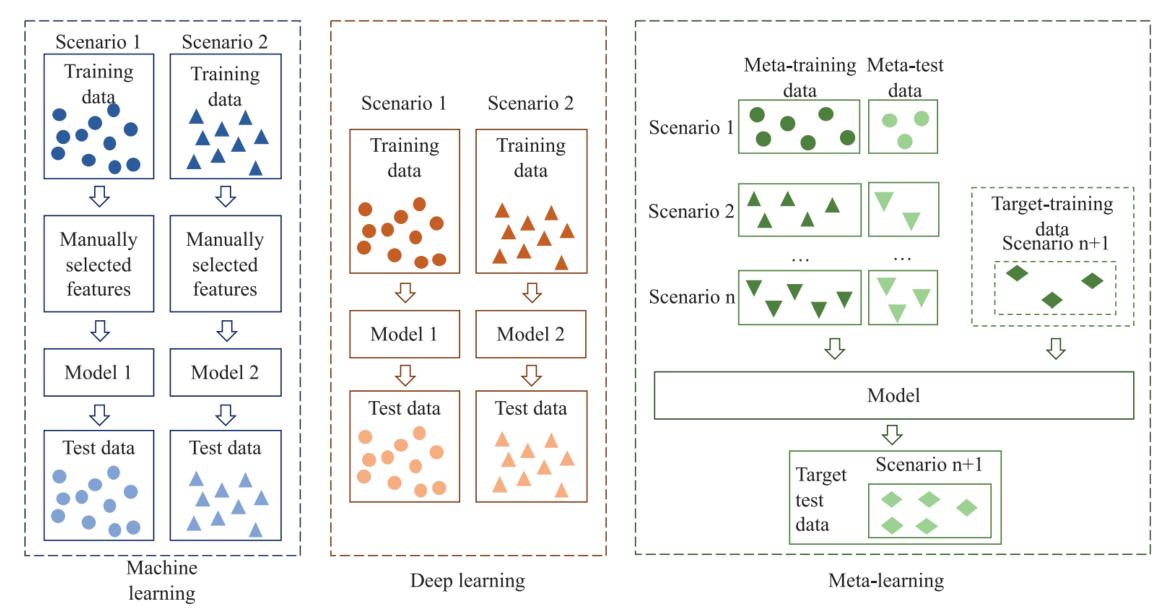
Meta Learning: Learning to Learn

Deep Learning Transfer Learning Few-Shot Learning Meta Learning

Deep Learning, Transfer Learning, Few-Shot Learning, Meta Learning

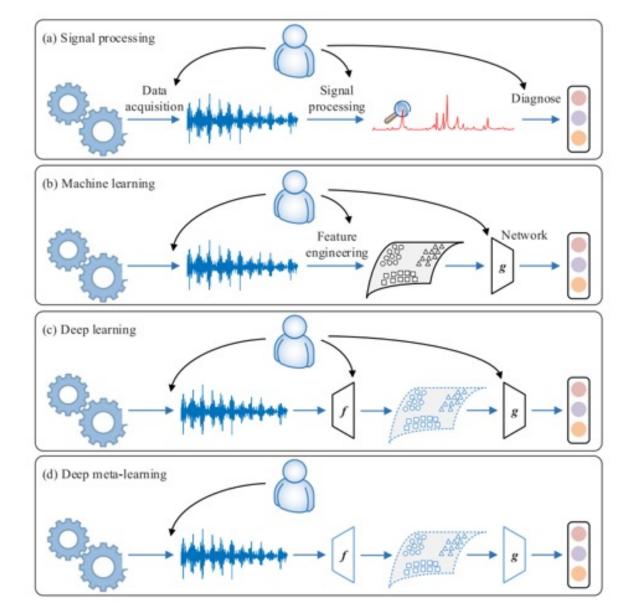
- Deep Learning
 - Transfer Learning
 - Pre-training, Fine-Tuning (FT)
- Meta Learning: Learning to Learn
- Few-Shot Learning (FSL)
- One-Shot Learning (1SL)
- Zero-Shot Learning (OSL)(ZSL)

Machine Learning, Deep Learning, Meta Learning



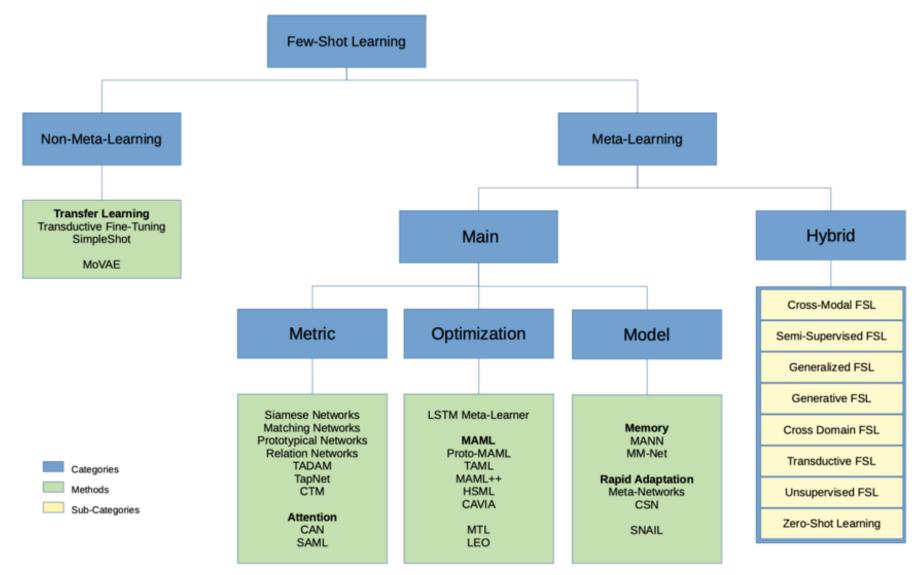
Source: Luo, Shuai, Yujie Li, Pengxiang Gao, Yichuan Wang, and Seiichi Serikawa. "Meta-seg: A survey of meta-learning for image segmentation." Pattern Recognition (2022): 108586.

Machine Learning, Deep Learning, Meta Learning



Few-Shot Learning (FSL) and Meta Learning

Machine learning from few training examples



Source: Parnami, Archit, and Minwoo Lee. "Learning from Few Examples: A Summary of Approaches to Few-Shot Learning." arXiv preprint arXiv:2203.04291 (2022).

Meta Learning, Transfer Learning, Ensemble Learning, Continual Learning, Multi-Task Learning

Features	Method					
	Meta-learning	Transfer learning	Ensemble learning	Continual learning	Multi-task learning	Hierarchical Bayesian models
Learning from prior experience	\checkmark	\checkmark	X	\checkmark	X	\checkmark
Relationship between source tasks	No limitation	Related	Same	Task streams	Related	Related
Relationship between source tasks and target tasks	No limitation	Related	Same	Related	Related	Related
Considering the requirements of the target task	\checkmark	X	X	X	X	X

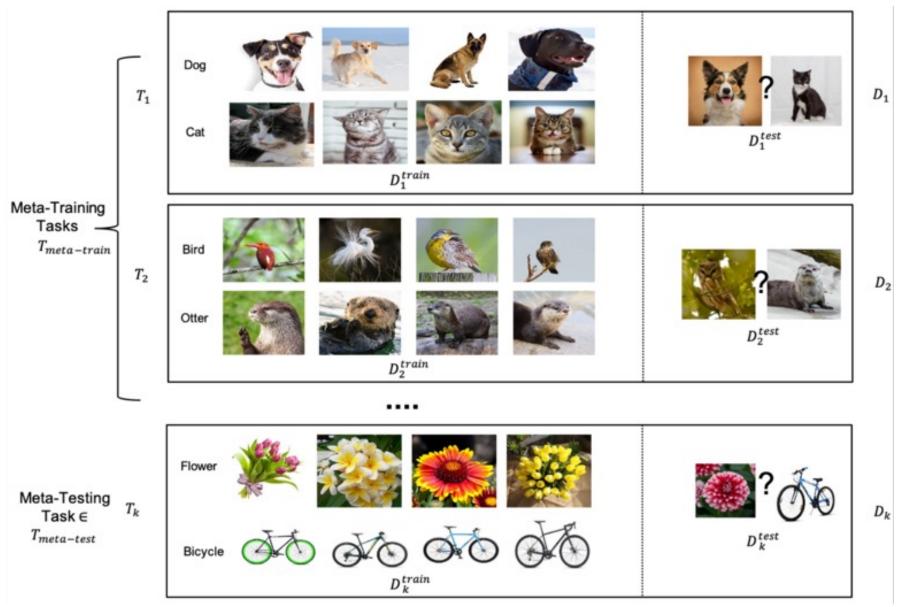
Meta-Learning and Few-shot Learning Notations and Terms

-	ization-based	Metric-based		
Meta-learning		Meta-learning		
Notation A	Term A	Notation B	Term B	
\mathcal{D}_i^{train}	Training set for task \mathcal{T}_i	S_i	Support Set for task \mathcal{T}_i	
\mathcal{D}_{i}^{test}	Test set for task \mathcal{T}_i	Q_i	Query Set for task \mathcal{T}_i	
$\mathcal{D}_{meta-train}$	Meta-training set	\mathcal{D}_{train}	Training Set	
$\mathcal{D}_{meta-test}$	Meta-testing set	\mathcal{D}_{test}	Test Set	

Meta-Learning Symbols

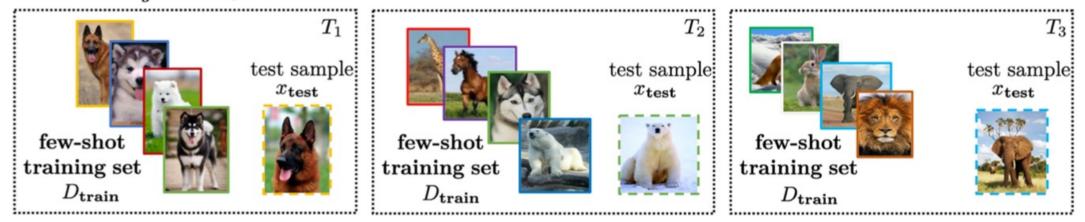
Symbol	Meaning
\mathcal{T}_i	Task <i>i</i>
${\cal L}$	Loss function
(x_k,y_k)	Input-Output pair
$f_ heta$	Model (function) with parameters θ
$g_{ heta_1}$	Embedding function
$d_{ heta_2}$ or d	Distance function
g_{ϕ}	Meta-Learning model with parameters ϕ
$egin{array}{c} g_{\phi} \ P_{ heta}(y x) \end{array}$	Output probability of y for input x using model parameters θ
$k_{ heta}(x_1,x_2)$	Kernel function measuring similarity between two vectors x_1 and x_2
σ	Softmax function
lpha,eta	Learning rates
w	Weights
\mathbf{v}_{c}	Prototype of class c
$egin{array}{c} \mathbf{v}_c \ C \ S^c \end{array}$	Set of classes present in S
S^c	Subset of S containing all elements (x_k, y_k) such that $y_k = c$
\oplus	Concatenation operator
B	Number of batches (X_b, Y_b) sampled in inner-loop for a randomly sampled task \mathcal{T}_i
Ι	Number of tasks \mathcal{T}_i sampled in inner-loop
J	Number of outer-loop iterations

Meta-Learning Example Setup



Few-Shot Learning (FSL) Solving the FSL problem by meta-learning

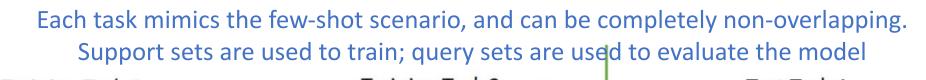
meta-training tasks T_s 's



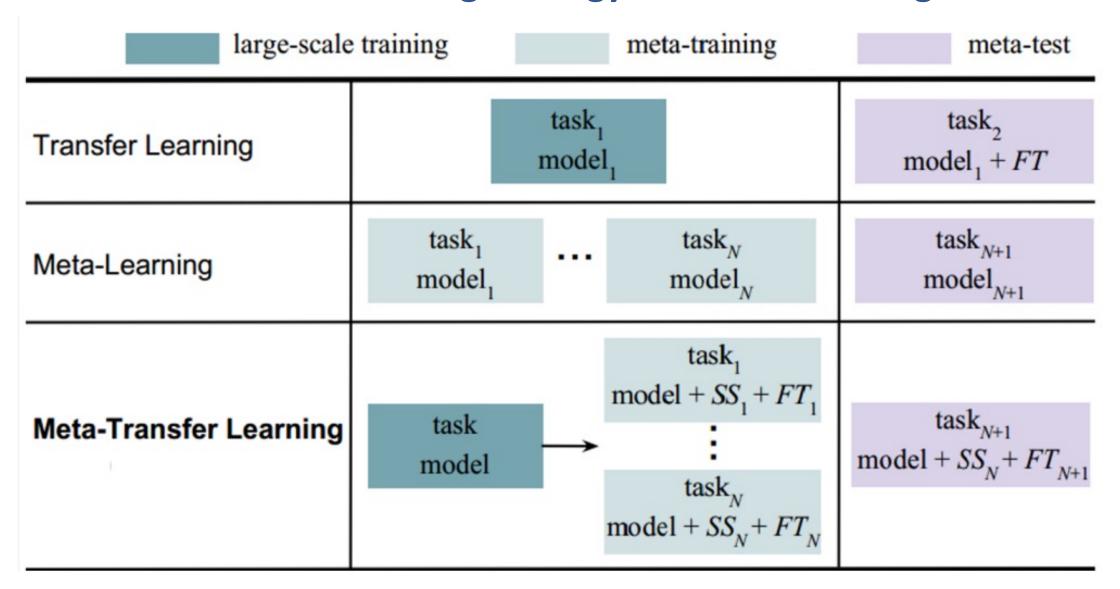
meta-testing tasks T_t 's

. . .

Few-Shot Learning (FSL) Meta-learning

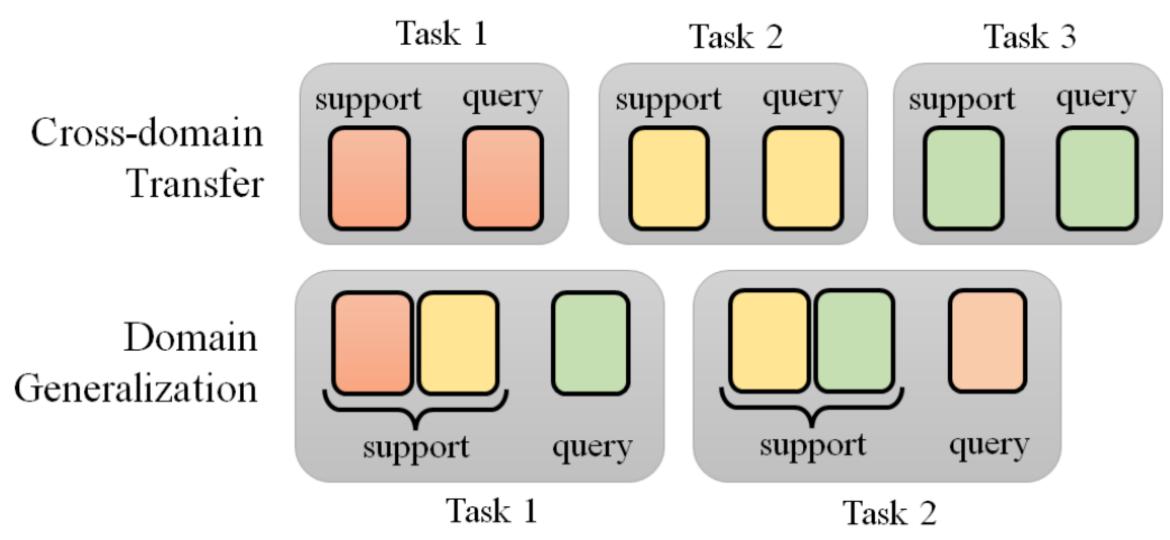


Meta-Task Learning (MTL) Transfer Learning Strategy for Meta-Learning

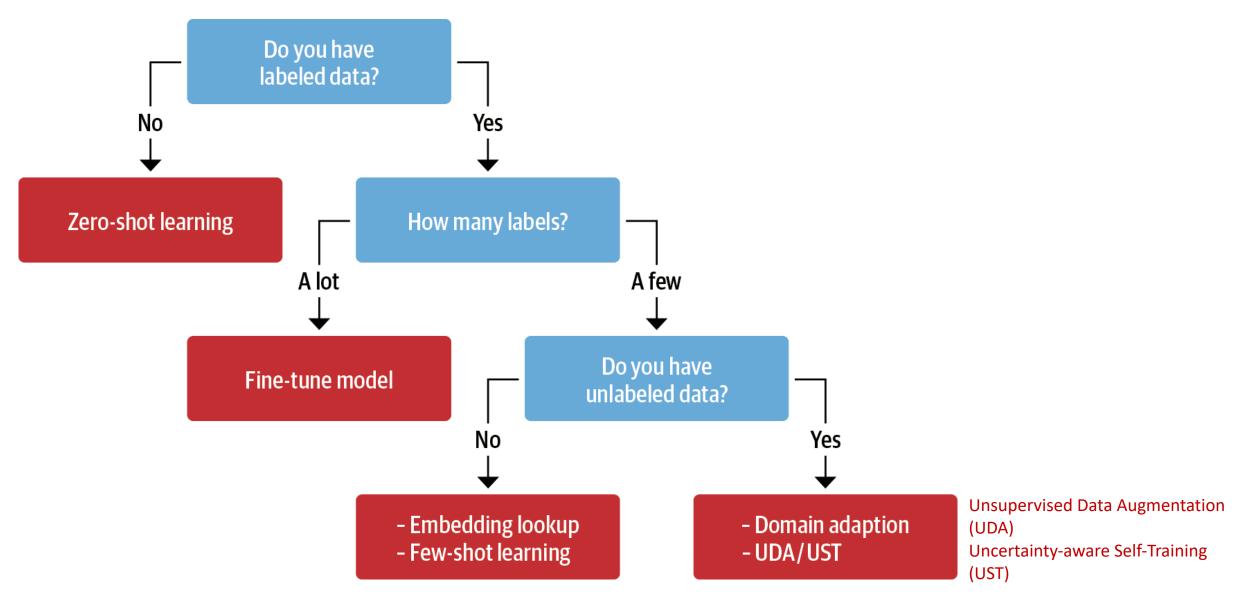


Meta Learning

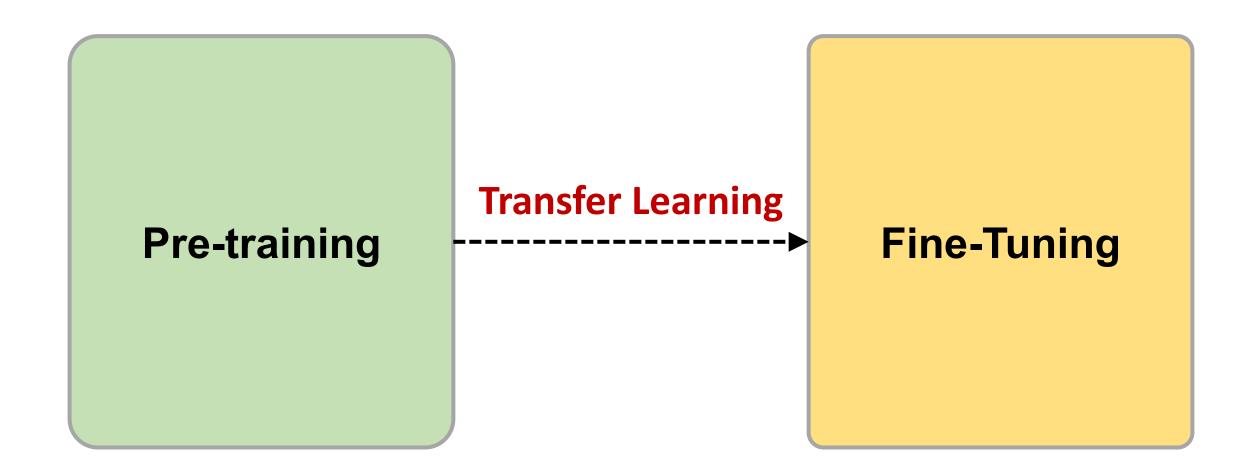
The task construction of cross-domain transfer and domain generalization



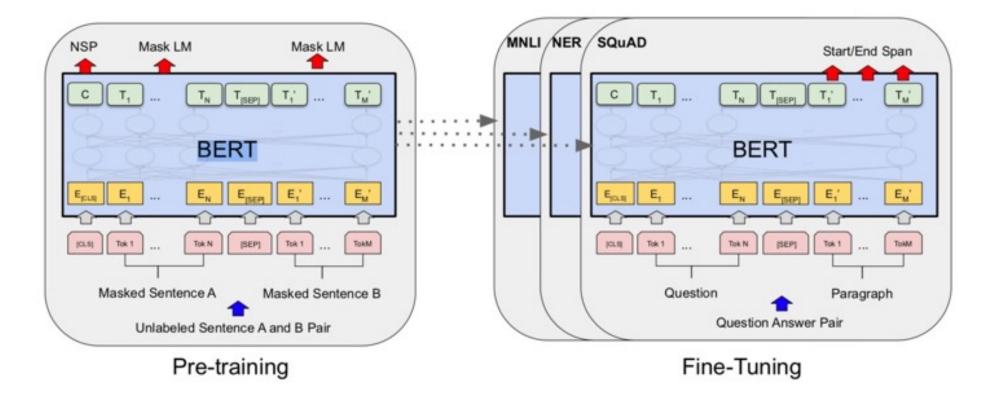
Transfer Learning, Fine-tuning, Few-shot learning



Transfer Learning



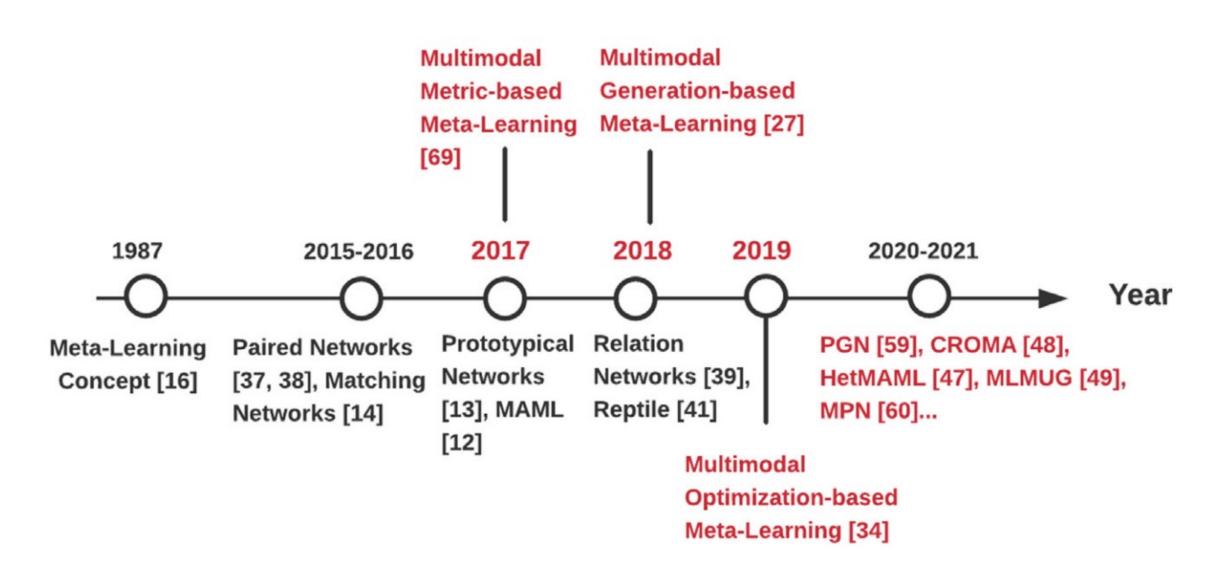
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) Overall pre-training and fine-tuning procedures for BERT



Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Meta Learning



Meta Learning

Year	Achievement	Ref.
1987	(1) A new framework of "learning how to learn" with self-referential learning was proposed. The neural networks in self-referential	[34,35]
	learning can regard their weights as inputs and update them continuously. (2) Based on the conventional neural network, two types of wights were used to connect the neurons. Each type of weight presents a different learning speed.	
1990	A synaptic learning rule, which is biologically plausible, was proposed to automatically study the learning rules.	[36]
1993	A chain of meta-networks was introduced to improve the learning capacity of a recurrent neural network for a dynamic environment.	[37]
1995	A framework was proposed to optimize the learning rule within a parametric learning rule space.	[38]
1996	An improved self-referential model was proposed. Time ratios were used to measure the effects of learning processes on the later learning processes.	[39]
1998	The term "Learning to learn" was proposed to equally represent the concept of meta-learning.	[40]
2001	Gradient descent methods were firstly used in meta-learning instead of evolutionary methods, which were widely used in previous research.	[41,42]
2003	A biologically plausible meta-reinforcement learning algorithm was proposed to tune the parameters of the meta-learning model dynamically and adaptively.	[43]
2004	A new perspective of meta-learning was proposed: exploring the interaction between the learning mechanism and the specific contexts to which the mechanism applies.	[9]
2008	The zero-data learning problem was addressed.	[44]
2010-2012	The breakthrough of deep neural networks marks the beginning of the era of meta-learning.	[45-47]
2013	The relationship between transfer learning and meta-learning was described.	[48]
2016	A meta-learning algorithm named gradient descent by gradient descent was proposed.	[49]
2017	(1) MAML was proposed.	[50,51]
	(2) A doctoral thesis systematically introduced the concept of meta-learning and corresponding methods.	
2018	Reptile, an improved version of MAML, was proposed.	[52]
2019	The Capsule network provides a new method to improve the learning capacity of meta-learning, especially in computer vision.	[53]
2020	Combining auto-encoder and capsule network to focus on the zero-shot learning problem.	[54]

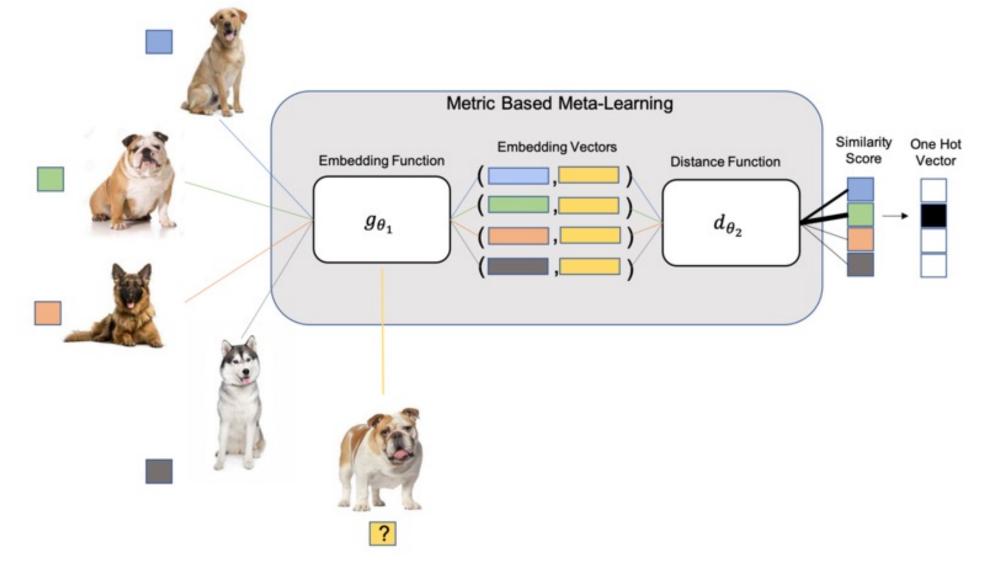
Meta-learning Approaches

	Metric-based	Optimization-based	Model-based
Key idea	Metric Learning [19]	Gradient Descent	Memory; RNN
How $P_{\theta}(y x)$ is modeled?	$\sum_{(x_k,y_k)\in S}k_ heta(x,x_k)y_k,$	$P_{\theta^{\prime}}(y x),$ where $\theta^{\prime} = g_{\phi}(\theta,S)$	$f_{ heta}(x,S).$
Advantages	Faster Inference. Easy to deploy.	Offers flexibility to optimize in dynamic environments. S can be discarded post- optimization.	Faster inference with mem- ory models. Eliminates the need for defin- ing a metric or optimizing at test.
Disadvantages	Less adaptive to optimization in dynamic environments.	Optimization at inference is undesirable for real-world deployment.	Less efficient to hold data in memory as S grows.
	Computational complexity grows linearly with size of S at test.	Prone to overfitting.	Hard to design.

Meta Learning: Learning to Learn

Class	Methods	Reference	Summary
Metric-Based	Siamese Neural Networks Matching Networks Prototype Networks	[32–36] [37–41] [42–46]	We show four metric-based meta-learning algorithms, focusing on feature extractors, similarity metrics, and automatic algorithm selection However, the metric-based approaches are sensitive to the dataset and
	Relation Networks	[47-53]	increase the computational expenditure when the number of tasks is large.
	Memory-Augmented Neural Networks	[54–56] [57,58]	We display three model-based approaches. MANN combines neural networks with external memory modules, but the model is complex. Meta-Net
	Meta Networks	[59-65]	is computationally intensive and has high memory requirements. SNAIL is relatively simplified, but has to
Model-Based	Simple Neural Attentive Meta-Learner	[66–71]	be optimized in terms of automatic parameter tuning and reducing computation.
	MAML	[72–80]	We present three methods of optimization-based meta-learning. MAML is relatively simple to implement, but the capacity of the
Optimization-Based	META- LSTM	[81-86]	model is limited. Meta-LSTM has a large capacity, but a complicated training process. Meta-SGD
	META- SGD	[87–93]	has improved capacity but still has difficulties in generalization ability.

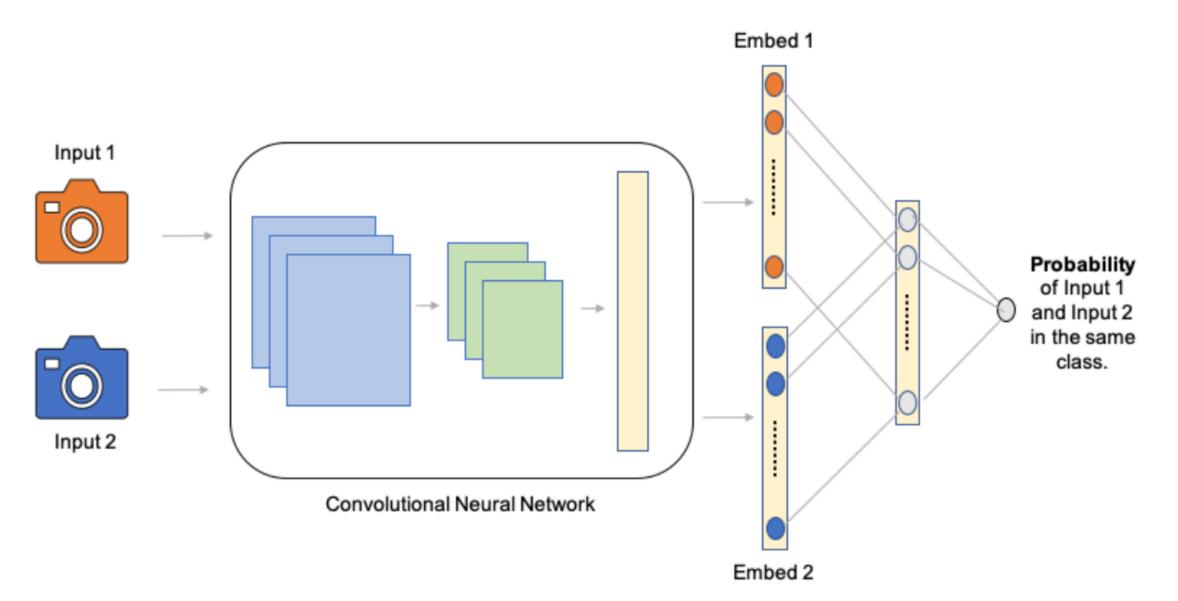
Metric-based Meta-learning M-Way K-Shot Task (4-way-1-shot classification task)



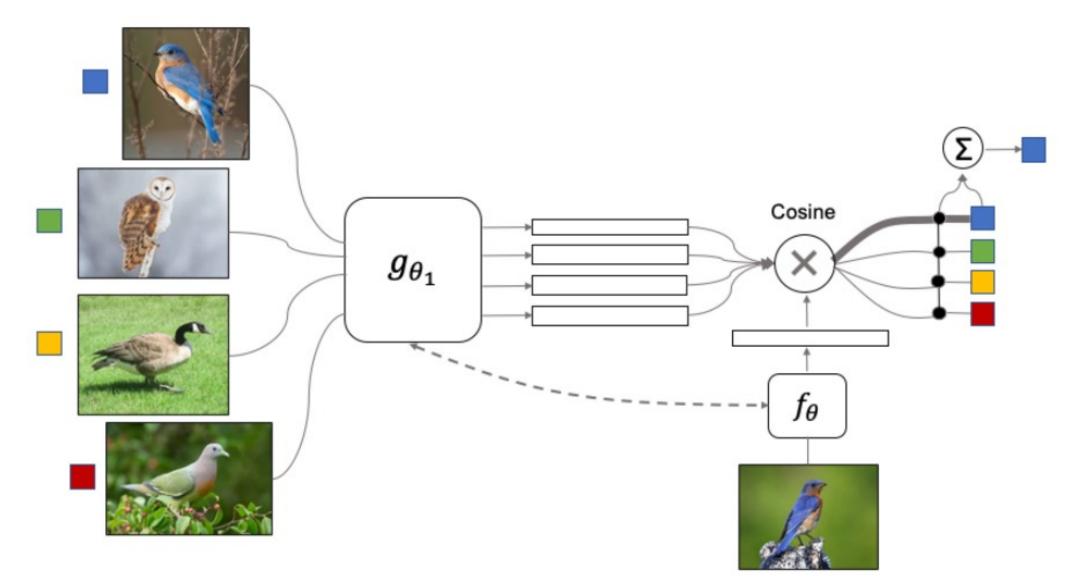
Metric-based Meta-Learning Methods

Method	тт	~	4	Duradiation	Logg
	T.I	$g_{ heta_1}$	$d_{ heta_2}$	Prediction	Loss
Siamese Net-	Yes	CNN	L1	$v=w\cdot d(g_{\theta_1}(x_1),g_{\theta_2}(x_2))$	$-(y \log(p) +$
works [20]				$p = \operatorname{sigmoid}(\sum_j v_j)$	$(1-y)(\log(1-$
					<i>p</i>))
Matching Net-	Yes	CNN +	Cosine	$\hat{y} =$	$-\log P$
works [13]		LSTM w/	Similarity	$\begin{vmatrix} \sum_{k=1}^t \sigma(d(f_\theta(\hat{x}), g_{\theta_1}(x_k))y_k) \\ P(y=c \hat{x}) = \hat{y}_c \end{vmatrix}$	
		attention		$\overline{P}(y=c \hat{x}) = \hat{y}_c$	
Prototypical	Yes	CNN	Euclidean	P(y = c x) =	$-\log P$
Networks [21]				$\sigma(-d(g_{ heta_1}(x),\mathbf{v}_c))$	
Relation Net-	Yes	CNN	Learned	$r_c = d_{ heta_2}(g_{ heta_1}(x) \oplus \mathbf{v_c}))$	$\sum (r_c - $
works [22]			by CNN		$c \in C$
			5		$1(y == c))^2$
TADAM [16]	No	ResNet-	Cosine /	$P_{\lambda}(y = c x) =$	$-\log P$
		12	Euclidean	$\sigma(-\lambda d(g_{{ heta}_1}(x,\Gamma),{f v}_c))$	
TapNet [23]	No	Resnet-12	Euclidean	P(y = c x) =	$-\log P$
				$\sigma(-d(\mathbf{M}(g_{ heta_1}(x)),\mathbf{M}(\Phi_c)))$	
CTM [24]	No	Any	Any	-	-

Convolutional Siamese Network

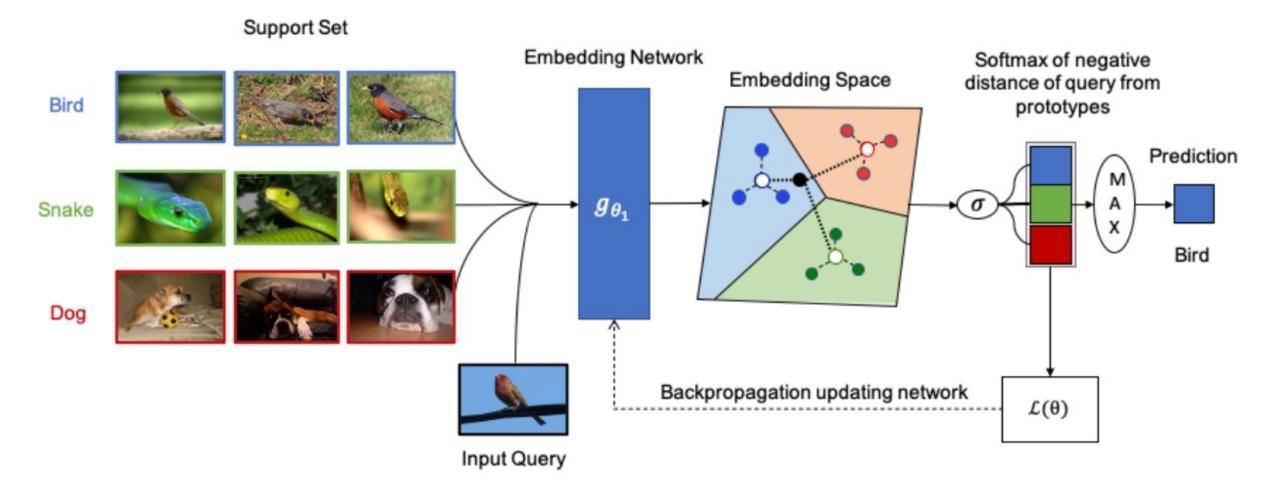


Meta Learning: Matching Networks

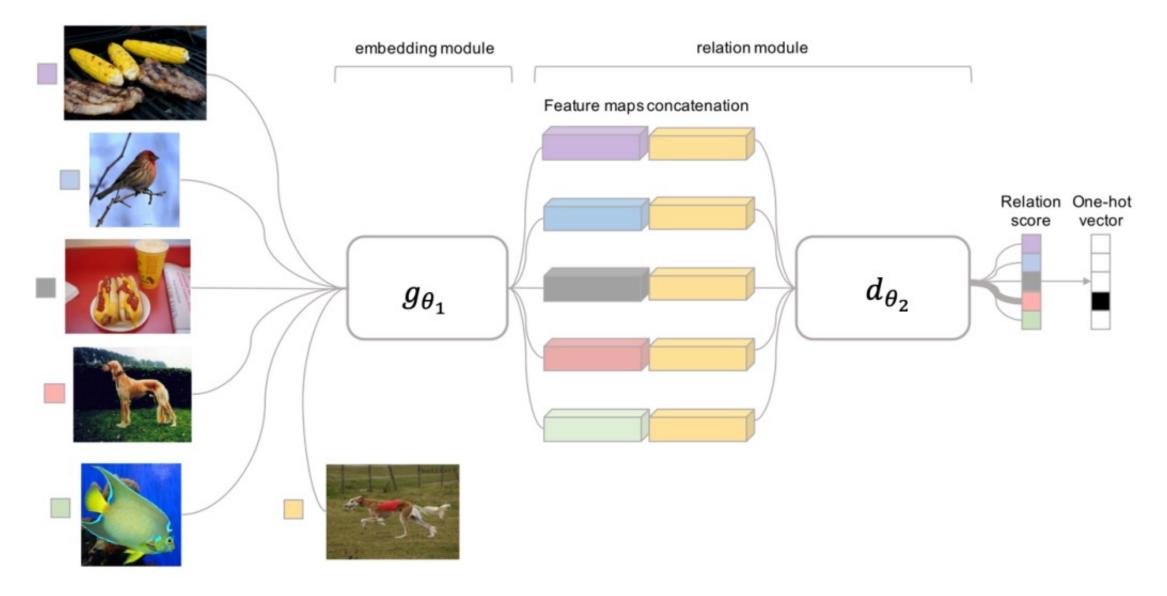


Few-shot Prototypes

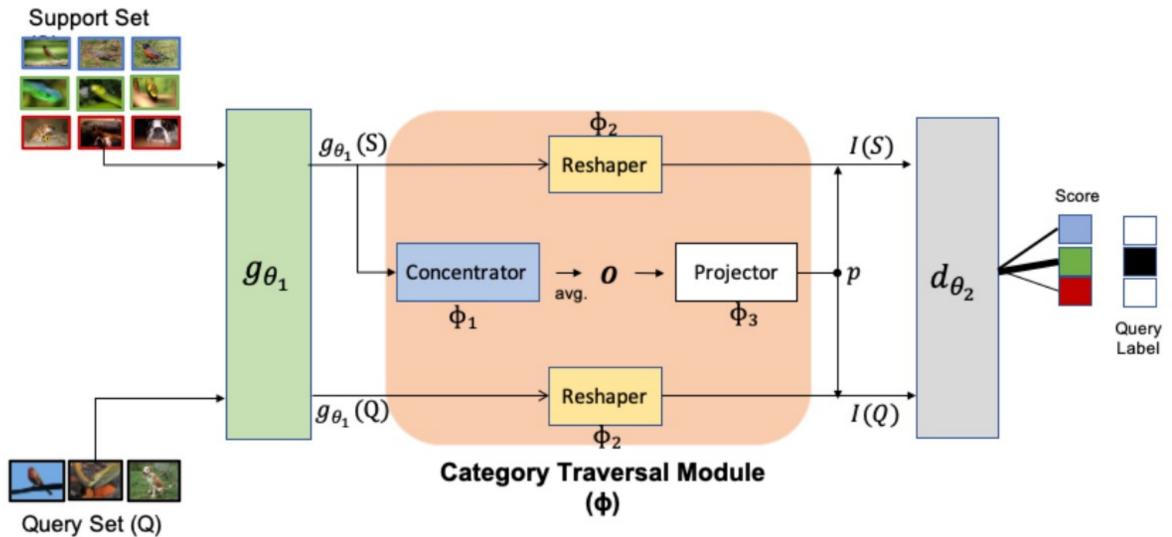
 v_c are computed as the mean of embedded support examples for each class



Meta Learning: Relation Network



Meta Learning: Category Traversal Module (CTM)

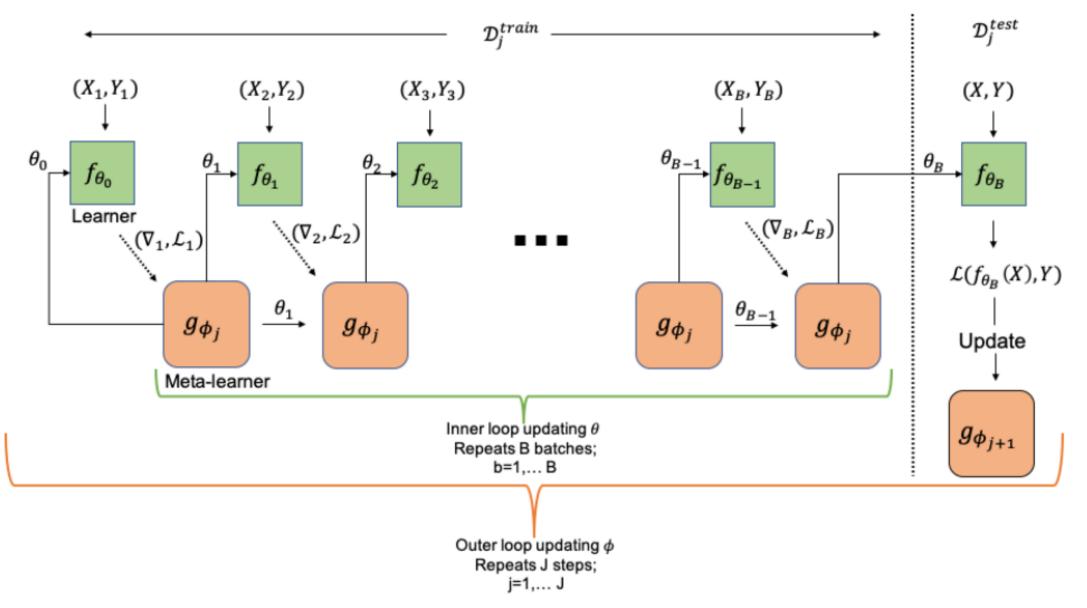


Optimization-based Meta-Learning Methods

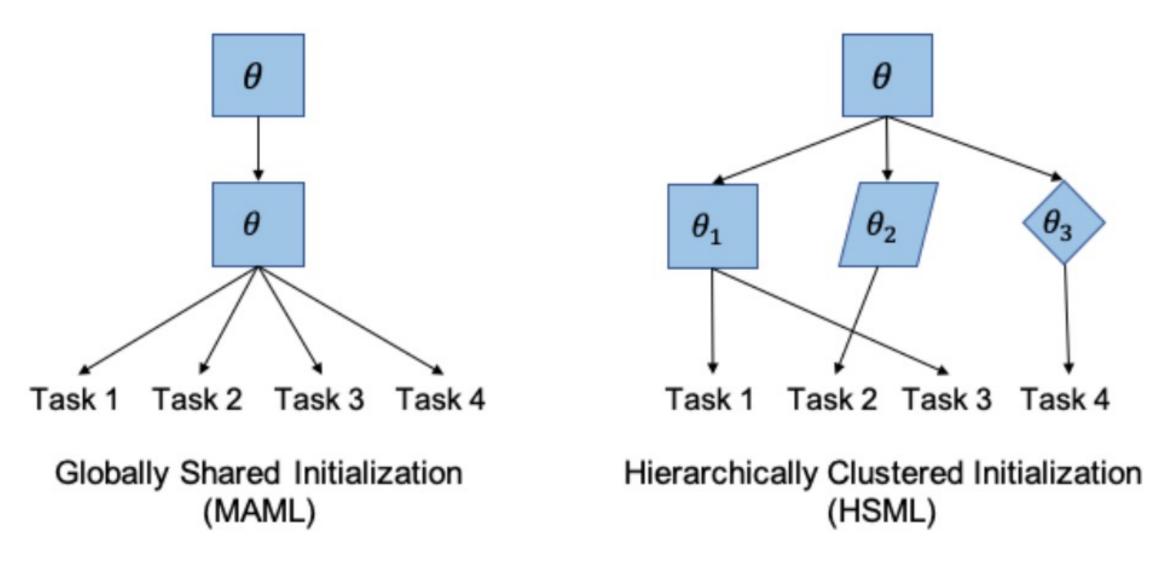
Method	Learner	Meta-Learner
LSTM Meta-Learner [35]	Repeat $\forall b \in [1B]$	Repeat $\forall j \in [1J]$
Lo I M Meta Dealler [55]	$\mathcal{L}_b \leftarrow \mathcal{L}(f(X_b; \theta_{b-1}), Y_b)$	$\mathcal{L}_{j}^{test} \leftarrow \mathcal{L}(f(X; \theta_B), Y)$
	$\theta_b \leftarrow g((\nabla_{\theta_{b-1}}\mathcal{L}_b,\mathcal{L}_b);\phi_{j-1})$	2
		$\phi_j \leftarrow \phi_{j-1} - \alpha \nabla_{\phi_{j-1}} \mathcal{L}_j^{test}$
MAML [14]	Repeat $\forall i \in [1I]$	Repeat $\forall j \in [1J]$
	$\mathcal{L}_{i}^{train} \leftarrow \mathcal{L}(f(\mathcal{D}_{i}^{train}; \theta_{i-1}))$	
	$\theta_i^* \leftarrow \theta_{i-1} - \alpha \nabla_{\theta_{i-1}} \mathcal{L}_t^{train}$	$\theta_j \leftarrow \theta_{j-1} - \beta \nabla_{\theta_{j-1}} \sum_{i=1}^{I} \mathcal{L}_i^{test}$
	$\mathcal{L}_{i}^{test} \leftarrow \mathcal{L}(f(\mathcal{D}_{i}^{test}; \theta_{t}^{*}))$	1-1
MTL [37]		
	$\mathcal{L}_i^{train} \leftarrow \mathcal{L}(f(\mathcal{D}_i^{train}; [\theta_{j-1}, \phi_{j-1}, \Theta]))$	$\theta_{j} \leftarrow \theta_{j-1} - \beta \nabla_{\theta_{j-1}} \sum_{i=1}^{I} \mathcal{L}_{i}^{test}$
	$\theta_i^* \leftarrow \theta_{j-1} - \alpha \nabla_{\theta_{j-1}} \mathcal{L}_i^{train}$	$v_j \leftarrow v_{j-1} - p \lor v_{\theta_{j-1}} \sum_{i=1}^{j} z_i$
	$\mathcal{L}_i^{test} \leftarrow \mathcal{L}(f(\mathcal{D}_i^{test}; \theta_i^*))$	1
		$\phi_j \leftarrow \phi_{j-1} - \beta \nabla_{\phi_{j-1}} \sum_{i=1}^{i} \mathcal{L}_i^{test}$
	$\phi_{j-1} = \{\phi_e, \phi_r, \phi_d, \alpha\}$	Ι
	$\mathbf{z_i} \leftarrow g(\mathcal{D}_i^{train}; [\phi_e, \phi_r, \Theta])$	$\phi_j \leftarrow \phi_{j-1} - \beta \nabla_{\phi_{j-1}} \sum_{i=1}^{I} \mathcal{L}_i^{test}$
	$ heta_i \leftarrow g(\mathbf{z_i}; \phi_d)$	<i>i</i> =1
	$\mathcal{L}_i^{train} \leftarrow \mathcal{L}(f(\mathcal{D}_i^{train}; \theta_i))$	
	$\mathbf{z_i^*} \leftarrow \mathbf{z_i} - \alpha \nabla_{\mathbf{z_i}} \mathcal{L}_i^{train}$	
	$\theta_i^* \leftarrow g(\mathbf{z}_i^*; \phi_d)$	
	$\mathcal{L}_i^{test} \leftarrow \mathcal{L}(f(\mathcal{D}_i^{test}; \theta_i^*))$	

Source: Parnami, Archit, and Minwoo Lee. "Learning from Few Examples: A Summary of Approaches to Few-Shot Learning." arXiv preprint arXiv:2203.04291 (2022).

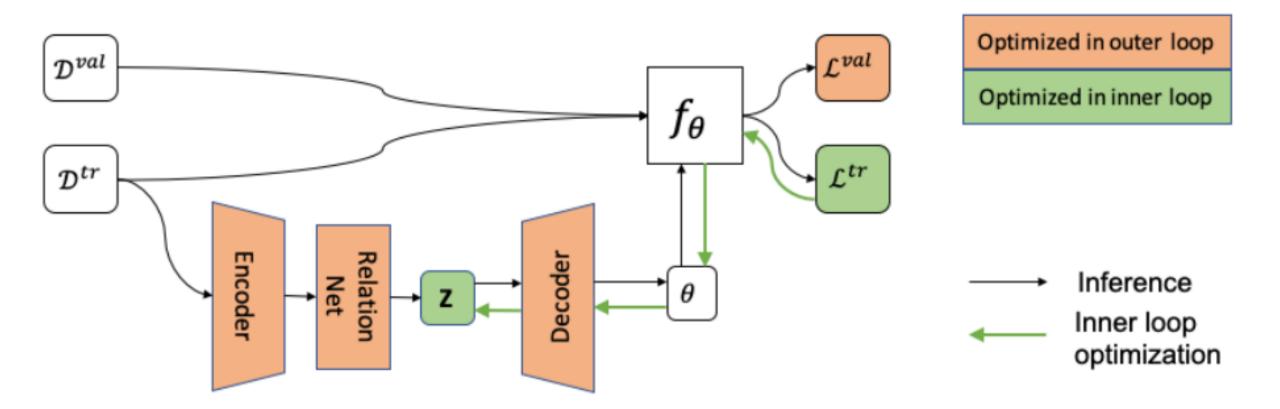
Computational Graph for the Forward Pass of the Meta-learner



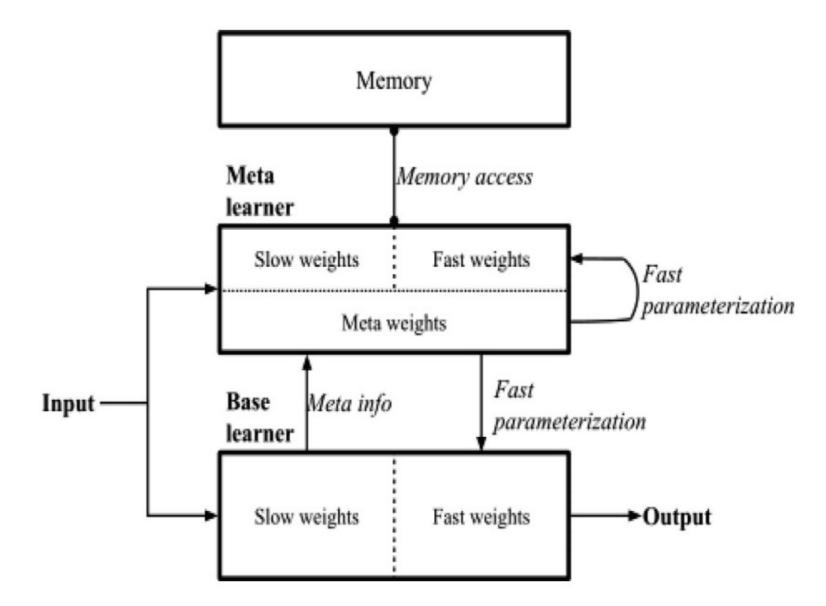
Model-Agnostic Meta-Learning (MAML) Hierarchically Structured Meta-Learning (HSML)



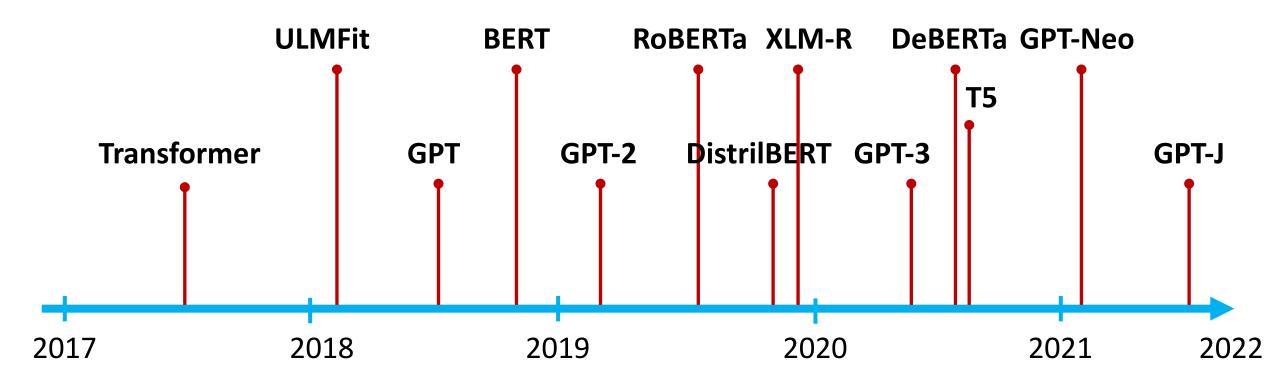
Latent Embedding Optimization (LEO)

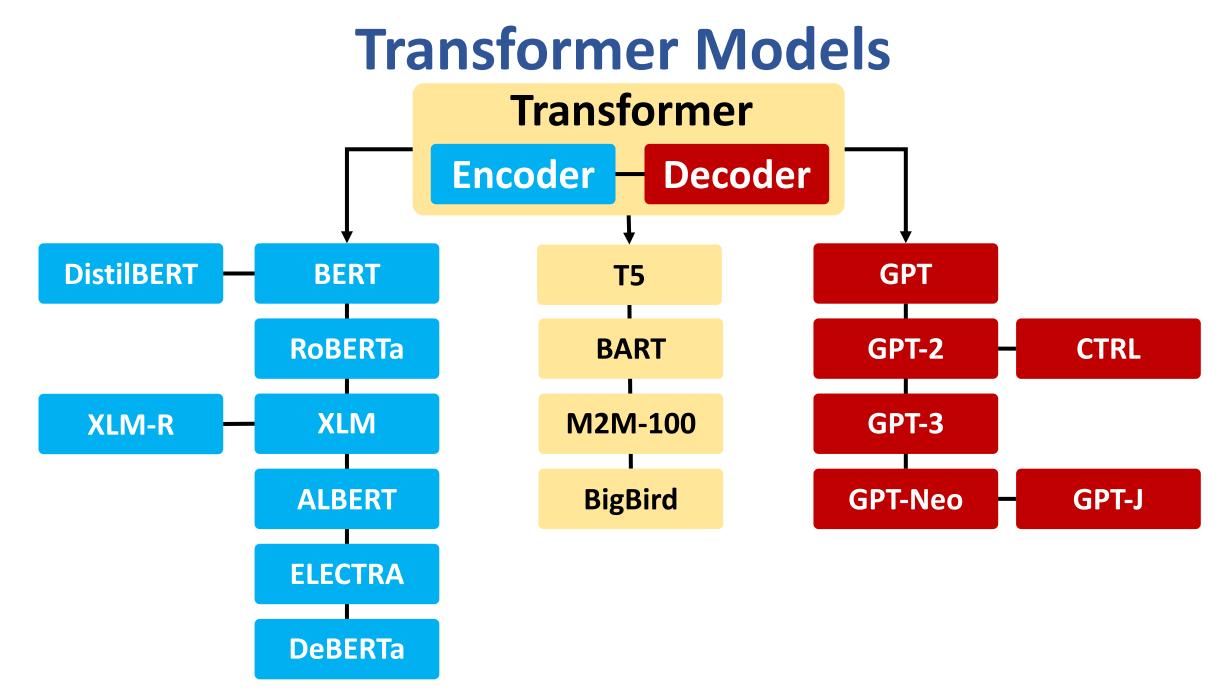


Overall Architecture of Meta Networks

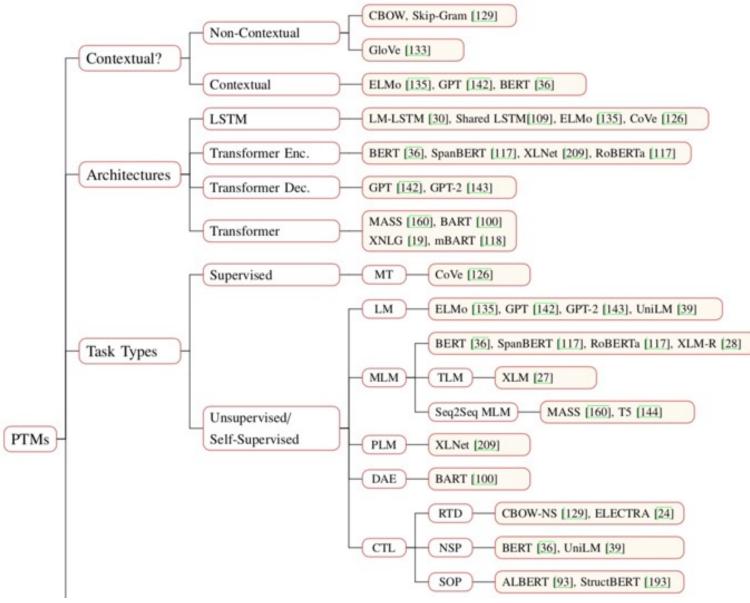


The Transformers Timeline



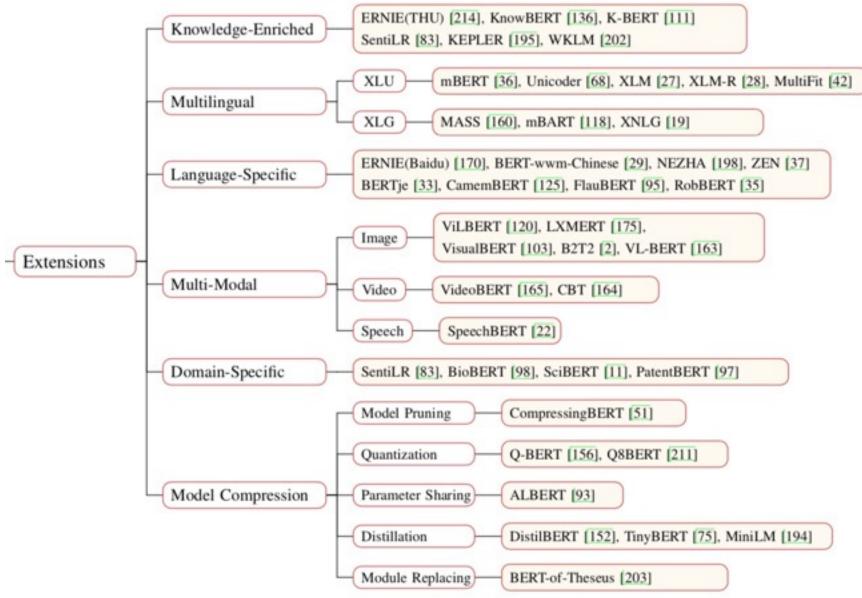


Pre-trained Models (PTM)



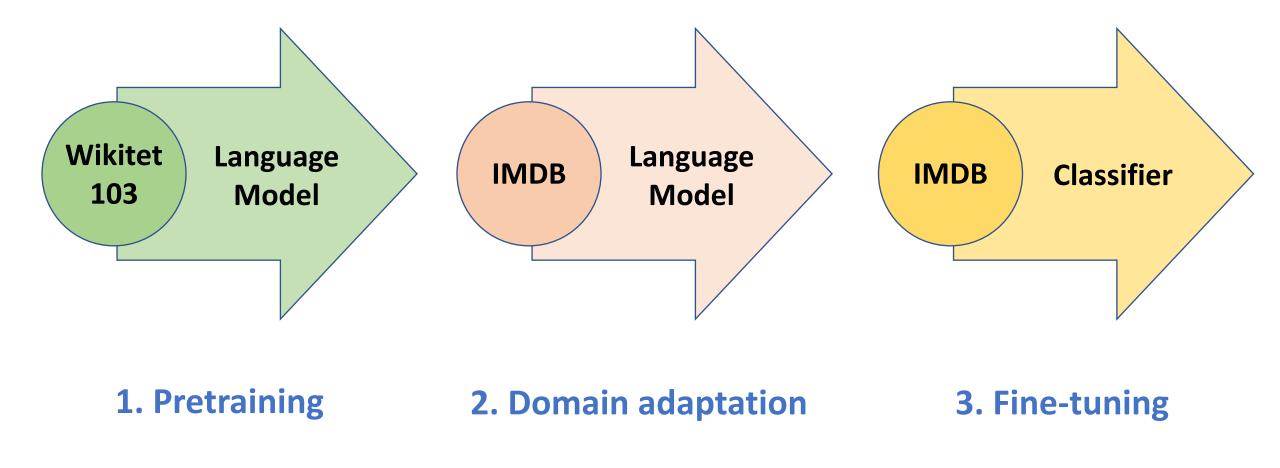
Source: Qiu, Xipeng, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. "Pre-trained Models for Natural Language Processing: A Survey." arXiv preprint arXiv:2003.08271 (2020).

Pre-trained Models (PTM)

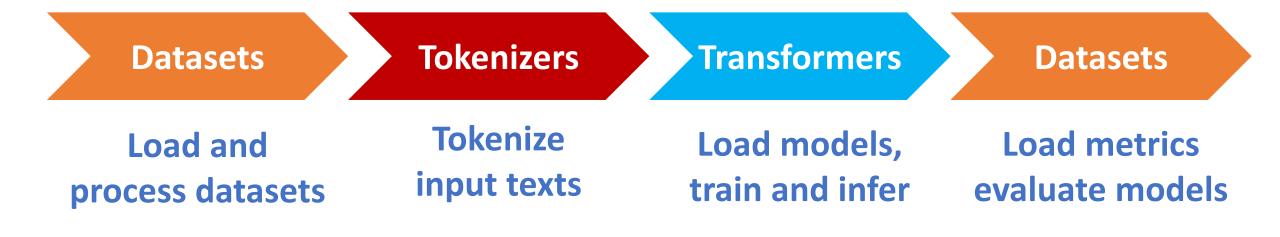


Source: Qiu, Xipeng, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. "Pre-trained Models for Natural Language Processing: A Survey." arXiv preprint arXiv:2003.08271 (2020).

ULMFiT: 3 Steps Transfer Learning in NLP



A typical pipeline for training transformer models with the Datasets, Tokenizers, and Transformers libraries



Few-Shot Learning (FSL) Typical Scenarios

- Acting as a test bed for learning like human
- Learning for rare cases
- Reducing data gathering effort and computational cost

- Few-Shot Learning (FSL) is a sub-area in machine learning.
- Machine Learning Definition
 - A computer program is said to learn from experience E with respect to some classes of task T and performance measure P if its performance can improve with E on T measured by P.
 - Example: Image classification task (T), a machine learning program can improve its classification accuracy (P) through E obtained by training on a large number of labeled images (e.g., the ImageNet data set).

Machine Learning

task T	experience E	performance P
image classification [73]	large-scale labeled images for each class	classification
mage classification [75]	large-scale labeled illages for each class	accuracy
	a database containing around 30 million	
the ancient game of Go [120]	recorded moves of human experts and	winning rate
	self-play records	

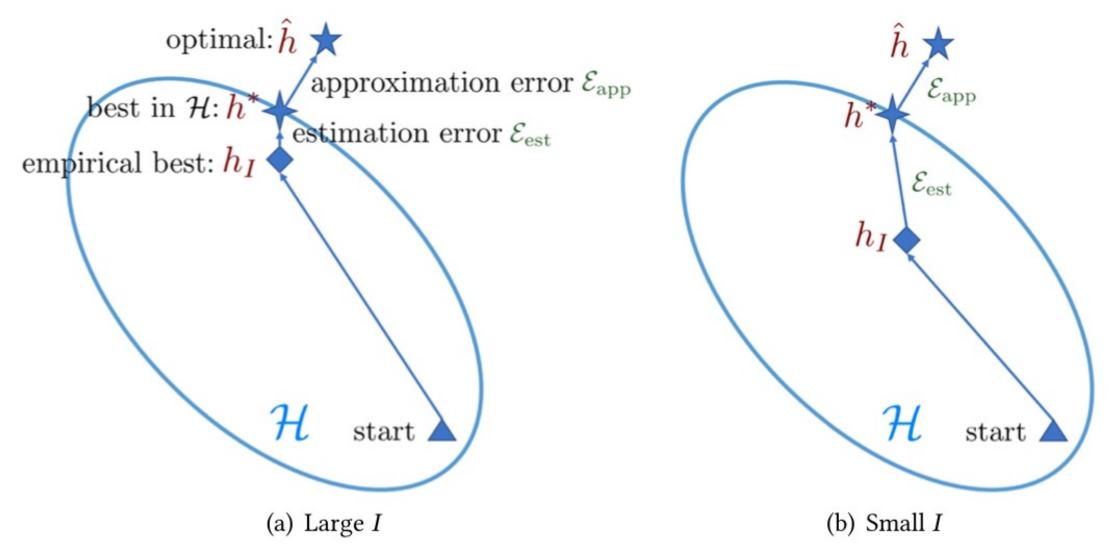
- Few-shot Learning (FSL) is a type of machine learning problems (specified by E, T, and P), where E contains only a limited number of examples with supervised information for the target T.
 - Existing FSL problems are mainly supervised learning problems.
 - Few-shot classification learns classifiers given only a few labeled examples of each class.
 - image classification
 - sentiment classification from short text
 - object recognition

- Few-shot classification learns a classifier *h*, which predicts label *y_i* for each input *x_i*.
- Usually, one considers the *N-way-K-shot* classification, in which *D_{train}* contains *I* = *KN* examples from *N* classes each with *K* examples

- Few-Shot Learning (FSL)
 - *K* = 10 ~ 100 examples
- One-Shot Learning (1SL)
 - K = 1 example
- Zero-Shot Learning (OSL)(ZSL)
 - K = 0

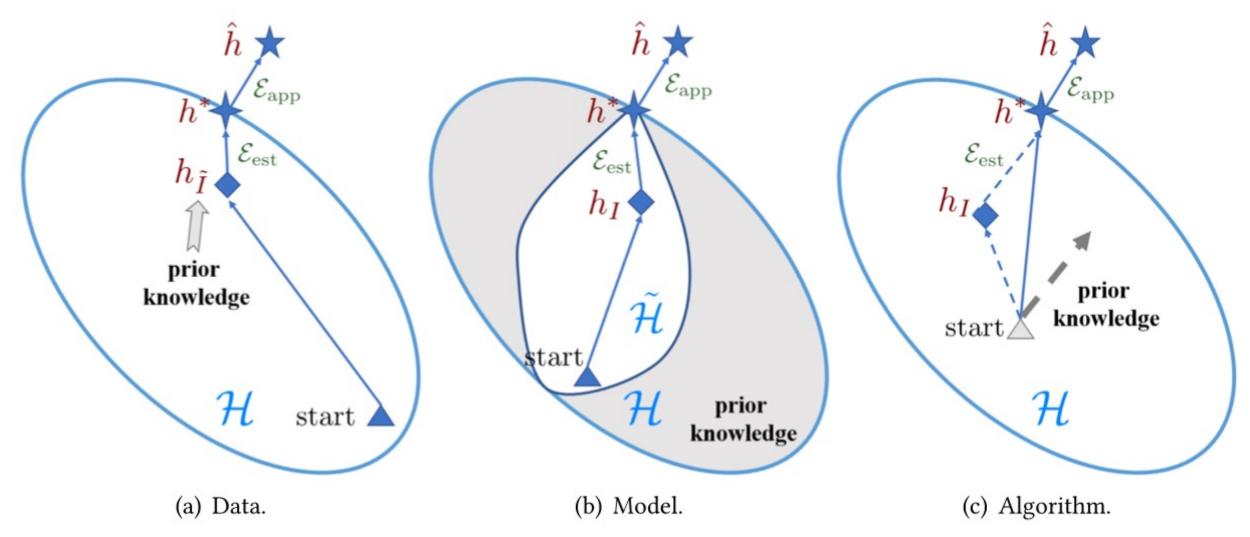
task T	exper	performance P	
lask I	supervised information	prior knowledge	performance r
character generation [76]	a few examples of new	pre-learned knowledge of	pass rate of visual
character generation [70]	character	parts and relations	Turing test
duran taariaitaa diaaaaaaa [4]	new molecule's limited	similar molecules' assays	classification
drug toxicity discovery [4]	assay	similar molecules assays	accuracy
image classification [70]	a few labeled images for	raw images of other classes,	classification
	each class of the target T	or pre-trained models	accuracy

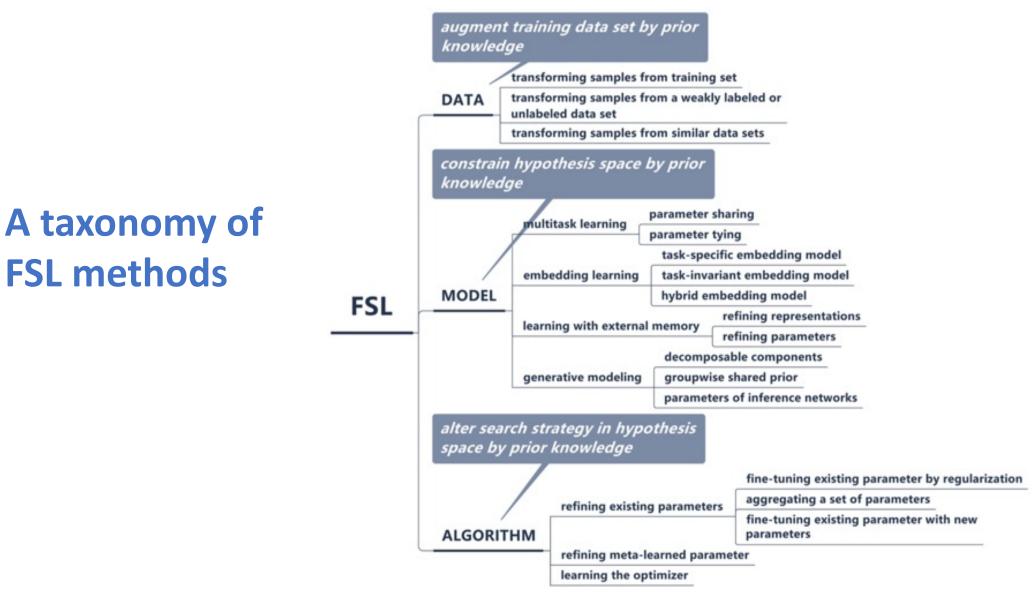
Comparison of learning with sufficient and few training samples



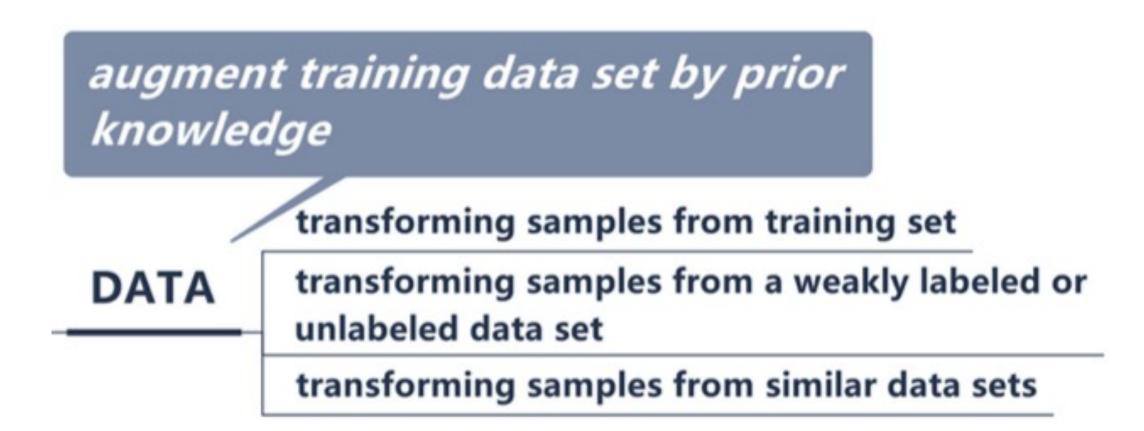
89

Different perspectives on how FSL methods solve the few-shot problem





91



constrain hypothesis space by prior knowledge

	multitask learning	parameter s	sharing
Į.		parameter 1	tying
		task-spec	ific embedding model
	embedding learning	task-inva	riant embedding model
MODEL		hybrid en	nbedding model
	loorning with outornal	momony	refining representations
-	learning with external	memory	refining parameters
		decompo	osable components
	generative modeling	groupwis	se shared prior
		paramete	ers of inference networks

alter search strategy in hypothesis space by prior knowledge

> fine-tuning existing parameter by regularization aggregating a set of parameters

refining existing parameters

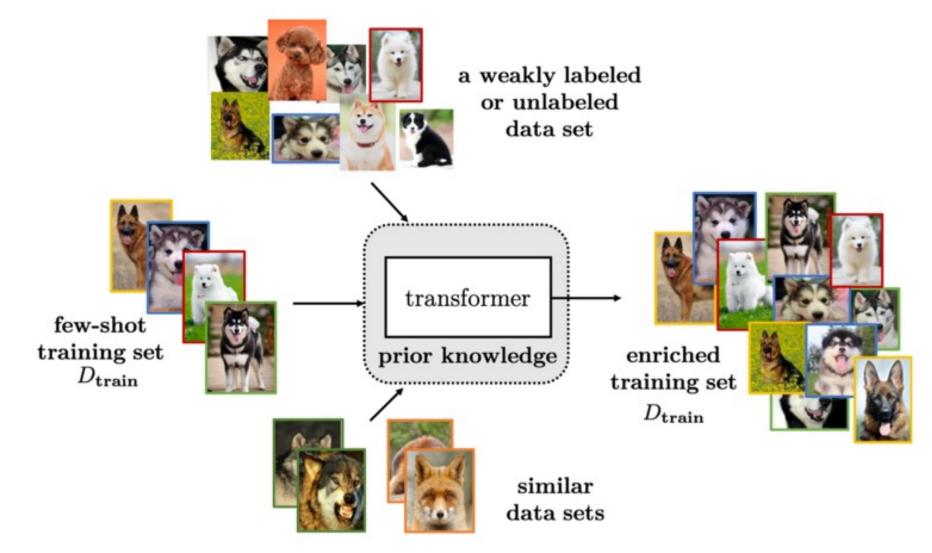
ALGORITHM

fine-tuning existing parameter with new parameters

refining meta-learned parameter

learning the optimizer

Few-Shot Learning (FSL) Solving the FSL problem by data augmentation



Characteristics for FSL Methods Focusing on the Data Perspective

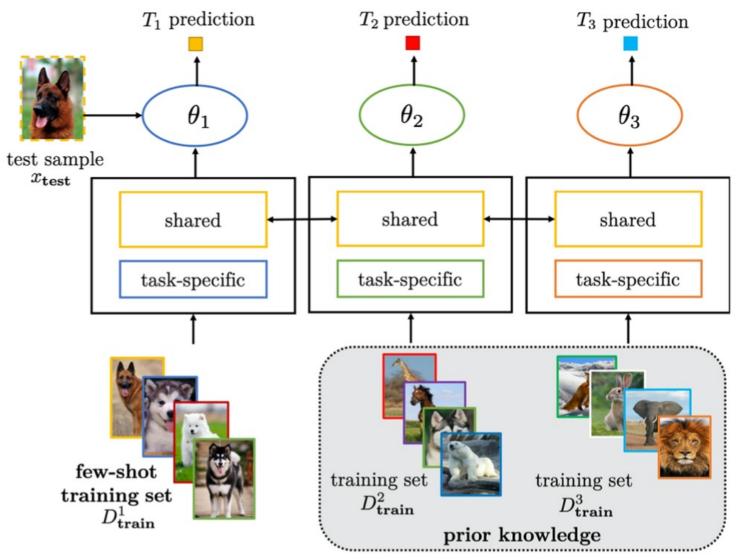
category	input (x, y)	transformer t	output (\tilde{x}, \tilde{y})
transforming samples from	original (x_i, y_i)	learned transformation	$(t(x_i), y_i)$
$D_{ ext{train}}$		function on x_i	
transforming samples from a weakly labeled or unlabeled data set	weakly labeled or unlabeled $(\bar{x}, -)$	a predictor trained from $D_{ m train}$	$(\bar{x}, t(\bar{x}))$
transforming samples from similar data sets	samples $\{(\hat{x}_j, \hat{y}_j)\}$ from similar data sets	an aggregator to combine $\{(\hat{x}_j, \hat{y}_j)\}$	$(t(\{\hat{x}_j\}), t(\{\hat{y}_j\}))$

The transformer $t(\cdot)$ takes input (x, y) and returns synthesized sample (\tilde{x}, \tilde{y}) to augment the few-shot D_{train} .

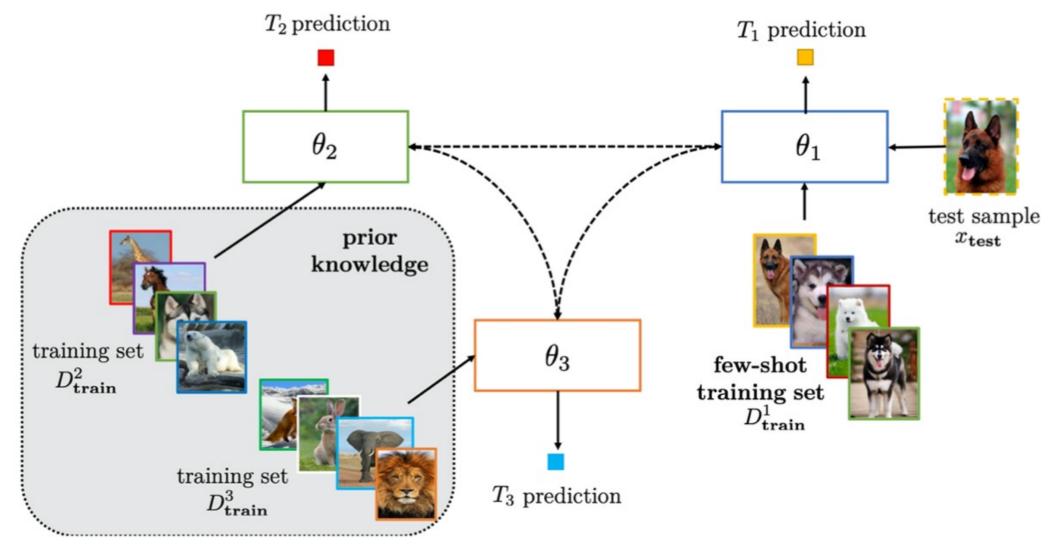
Characteristics for FSL Methods Focusing on the Model Perspective

strategy	prior knowledge	how to constrain ${\cal H}$
multitask learning	other T 's with their data sets D 's	share/tie parameter
embedding learning	embedding learned from/together with other <i>T</i> 's	project samples to a smaller embedding space in which similar and dissimilar samples can be easily discriminated
learning with external memory	embedding learned from other <i>T</i> 's to interact with memory	refine samples using key-value pairs stored in memory
generative modeling	prior model learned from other T 's	restrict the form of distribution

Solving the FSL problem by multitask learning with parameter sharing



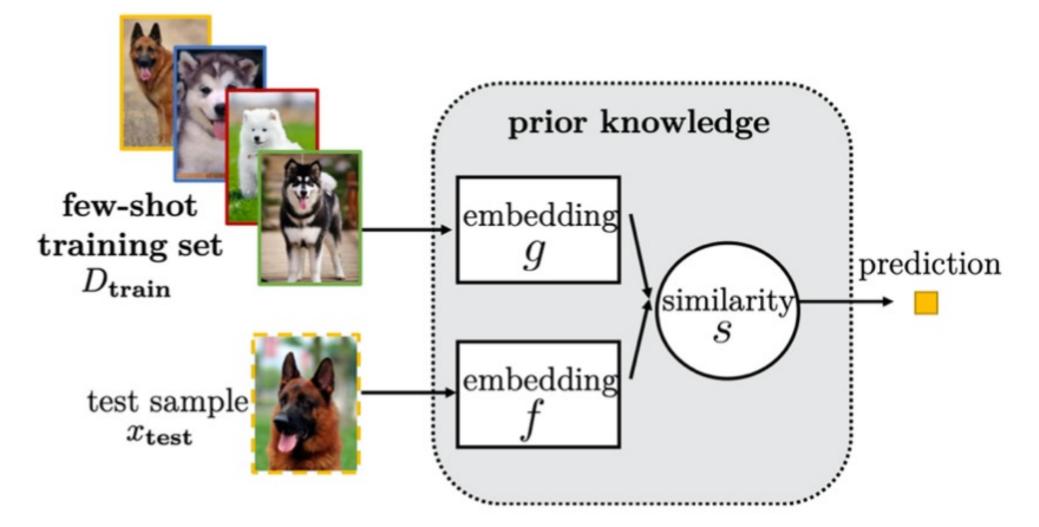
Solving the FSL problem by multitask learning with parameter tying



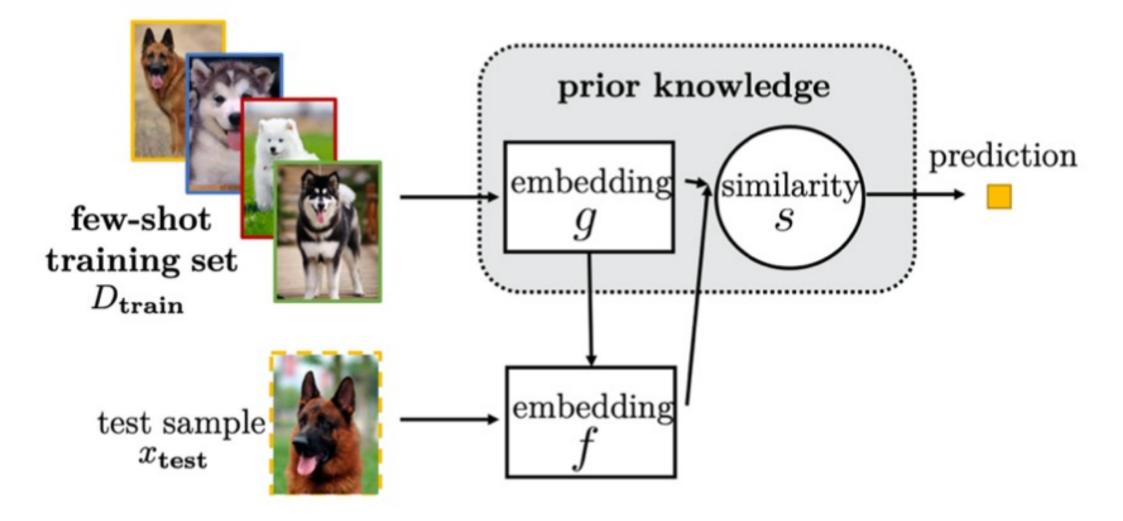
Characteristics of Embedding Learning Methods

category	method	embedding function	embedding function	similarity measure s
category	method	f for x_{test}	g for $D_{ m train}$	similarity measure s
task-specific	mAP-DLM/SSVM[130]	CNN	the same as f	cosine similarity
	class relevance pseudo-metric [36]	kernel	the same as \boldsymbol{f}	squared ℓ_2 distance
	convolutional siamese net [70]	CNN	the same as f	weighted ℓ_1 distance
	Micro-Set[127]	logistic projection	the same as f	ℓ_2 distance
	Matching Nets [138]	CNN, LSTM	CNN, biLSTM	cosine similarity
	resLSTM [4]	GNN, LSTM	GNN, LSTM	cosine similarity
	Active MN [8]	CNN	biLSTM	cosine similarity
	SSMN [24]	CNN	another CNN	learned distance
task-invariant	ProtoNet [121]	CNN	the same as f	squared ℓ_2 distance
	semi-supervised ProtoNet[108]	CNN	the same as f	squared ℓ_2 distance
	PMN [141]	CNN, LSTM	CNN, biLSTM	cosine similarity
	ARC [119]	LSTM, biLSTM	the same as f	-
	Relation Net [126]	CNN	the same as f	-
	GNN [115]	CNN, GNN	the same as f	learned distance
	TPN [84]	CNN	the same as f	Gaussian similarity
	SNAIL [91]	CNN	the same as f	-
	Learnet [14]	adaptive CNN	CNN	weighted ℓ_1 distance
hybrid	DCCN [162]	adaptive CNN	CNN	-
nybrid	R2-D2 [13]	adaptive CNN	CNN	-
	TADAM [100]	adaptive CNN	the same as f	squared ℓ_2 distance

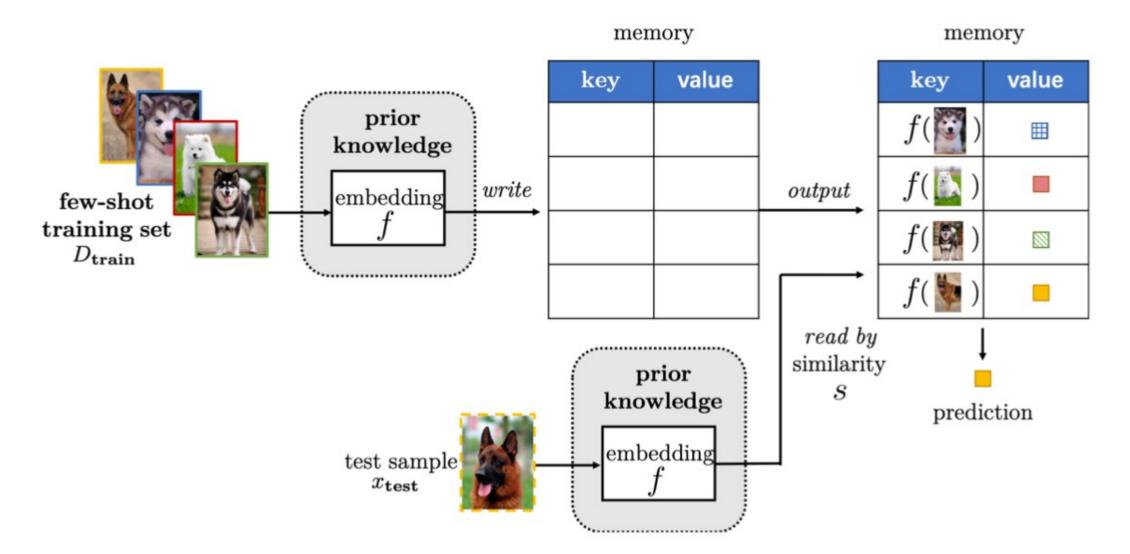
Few-Shot Learning (FSL) Solving the FSL problem by task-invariant embedding model



Few-Shot Learning (FSL) Solving the FSL problem by hybrid embedding model



Solving the FSL problem by learning with external memory

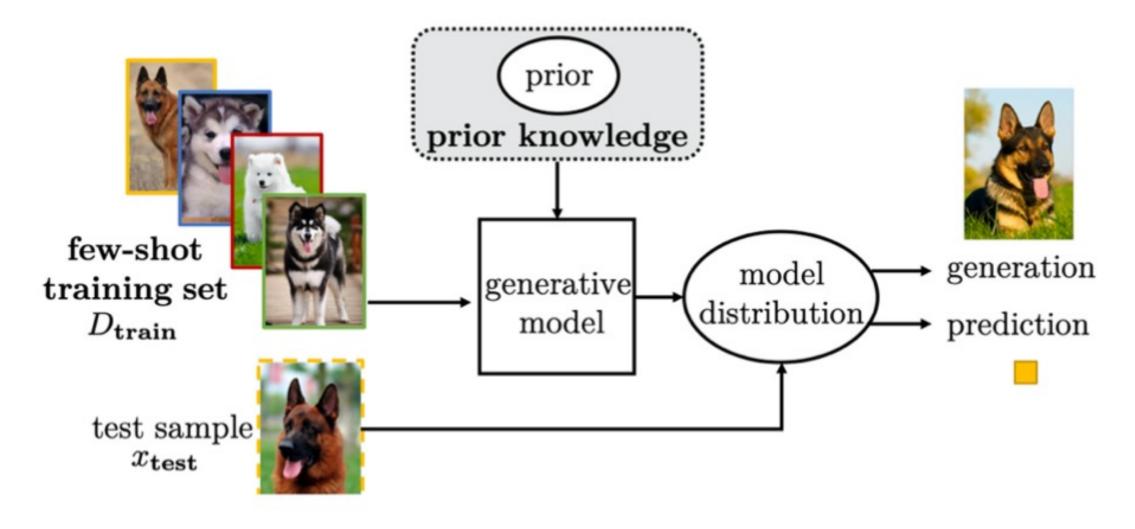


Few-Shot Learning (FSL) Characteristics of FSL Methods Based on Learning with External Memory

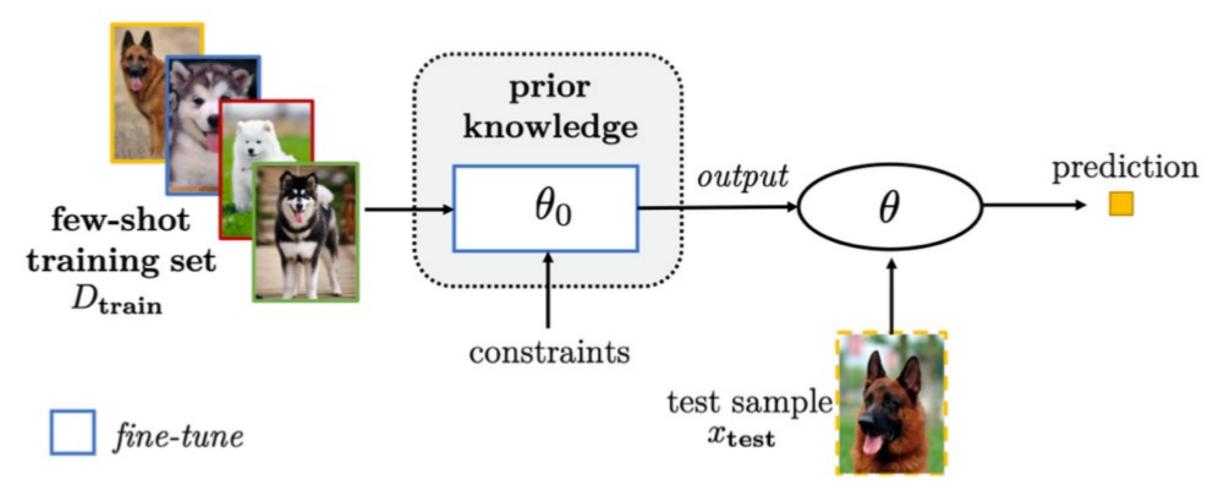
category	method	memory M		similarity s
cutegory	metriou	key M_{key}	value $M_{ m value}$	ommuney o
	MANN [114]	$f(x_i, y_{i-1})$	$f(x_i, y_{i-1})$	cosine similarity
	APL [104]	$f(x_i)$	y_i	squared ℓ_2 distance
refining	abstraction memory [149]	$f(x_i)$	word embedding of y_i	dot product
representations	CMN [164]	$f(x_i)$	y_i , age	dot product
	life-long memory [65]	$f(x_i)$	y_i , age	cosine similarity
	Mem2Vec [125]	$f(x_i)$	word embedding of y_i , age	dot product
refining parameters	MetaNet [96]	$f(x_i)$	fast weight	cosine similarity
	CSNs [97]	$f(x_i)$	fast weight	cosine similarity
	MN-Net [22]	$f(x_i)$	y_i	dot product

Here, f is an embedding function usually pre-trained by CNN or LSTM.

Few-Shot Learning (FSL) Solving the FSL problem by generative modeling



Few-Shot Learning (FSL) Solving the FSL problem by fine-tuning existing parameter θ_{θ} by regularization

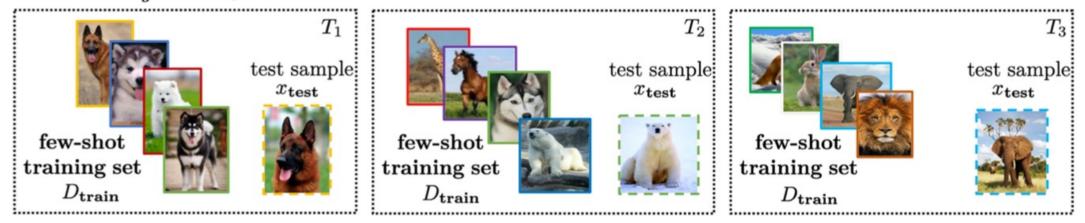


Few-Shot Learning (FSL) Characteristics for FSL Methods Focusing on the Algorithm Perspective

strategy	prior knowledge	how to search θ of the h^* in $\mathcal H$
refining existing parameters	learned θ_0	refine θ_0 by D_{train}
refining meta-learned parameters	meta-learner	refine θ_0 by D_{train}
learning the optimizer	meta-learner	use search steps provided by the meta-learner

Few-Shot Learning (FSL) Solving the FSL problem by meta-learning

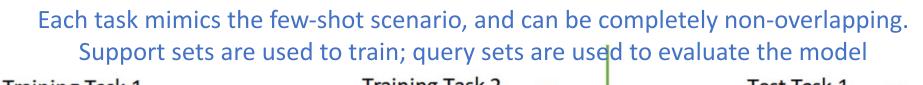
meta-training tasks T_s 's



meta-testing tasks T_t 's

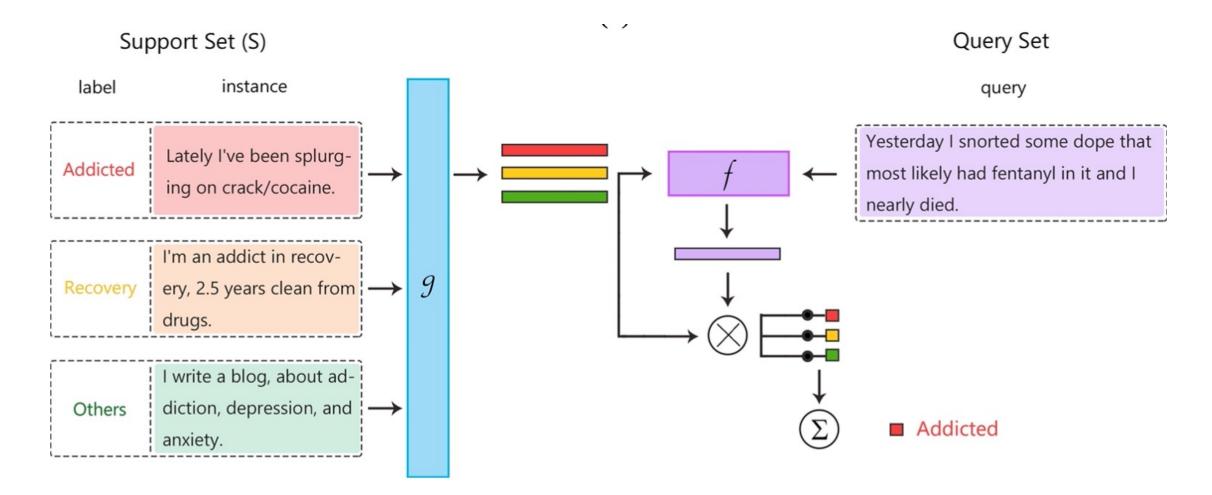
. . .

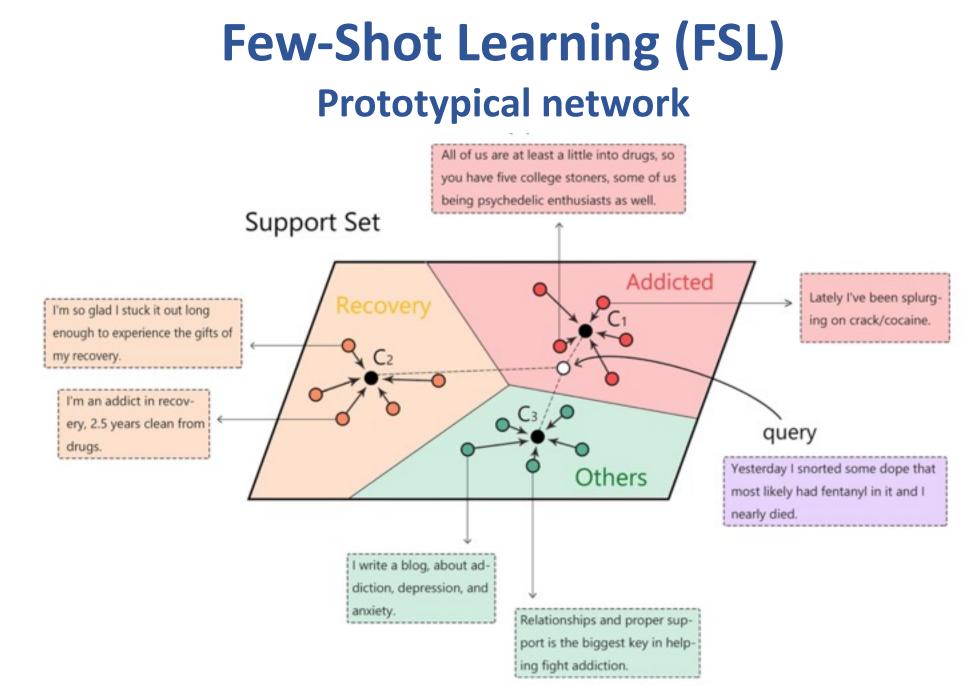
Few-Shot Learning (FSL) Meta-learning



Training Task 1	Training Task 2 ···	Test Task 1 ····
News	Music	Medical
Support Set:	Support Set:	Support Set:
Only _[0] France _[LOC] and _[0] Britain _[LOC]	Play[0] rap[album] album[album] one[album]	Patient _[0] received _[0] combivent _[DRUG]
$backed_{[O]} Fischler_{[PER]}'s_{[O]} proposal_{[O]}.$	by[o] Gene[artist] Vincent[artist].	nebs _[Dosage Form/Route] , solumedrol _[DRUG]
		125mg _[AMOUNT] IV _[Dosage Form/Route]
Query Set:	Query Set:	X1 [Dosage Frequency].
Adrian[PER] Warner[PER] has[O] lived[O]	Add _[0] Rosemary _[artist] Clooney _[artist]	Query Set:
in _[0] Brussels _[LOC] since _[0] 1996 _[0] .	to _[0] pura _[playlist] vida _[playlist] playlist _[0] .	She was given a dose of levaquin this
		morning.
Labels: {PER, PER, O, O, O, LOC, O, O}	Labels: {O, artist, artist, O, playlist,	Labels: {O, O, O, AMOUNT, AMOUNT,
	playlist, O}	O, DRUG, TIME, TIME}

Few-Shot Learning (FSL) Matching networks





111

Few-Shot Learning (FSL) for medical text

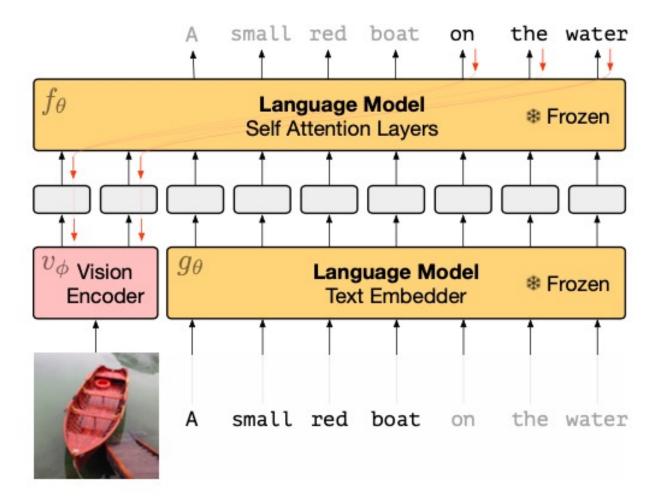
Study	Year	Data source	Research aim	Size of training set	Number of entities / classes	Entity type of training domain	Entity type of test domain
Alicia Lara-Clares and Ana Garcia-Serrano ⁴⁴	2019	MEDDOCAN shared task dataset ⁴⁵	NER	500 clinical cases, with no reconstruction	29	Clinical	Clinical
Ferré et al. ⁴⁶	2019	BB-norm dataset from the Bacteria Biotope 2019 Task ⁴⁷	Entity Normalization	Original dataset with no reconstruction and zero-shot	Not mentioned *	Biological	Biological
Hou et al. ⁴⁸	2020	Snips dataset ⁴⁹	Slot Tagging (NER)	1-shot and 5-shot	7	Six of Weather, Music, PlayList, Book (including biomedical), Search Screen (including biomedical), Restaurant and Creative Work.	The remaining one
Sharaf et al. ⁵⁰	2020	ten different datasets collected from the Open Parallel Corpus (OPUS) ⁵¹	Neural Machine Translation (NMT)	Sizes ranging from 4k to 64k training words (200 to 3200 sentences), but reconstructed	N/A †	Bible, European Central Bank, KDE, Quran, WMT news test sets, Books, European Medicines Agency (EMEA), Global Voices, Medical (ufal-Med), TED talks	Bible, European Central Bank, KDE, Quran, WMT news test sets, Books, European Medicines Agency (EMEA), Global Voices, Medical (ufal-Med), TED talk
Lu et al. ⁵²	2020	MIMIC II ²² and MIMIC III ²³ , and EU legislation dataset ⁵³	Multi-label Text Classification	5-shot for MIMIC II and III, 50-shot for EU legislation	MIMIC II: 9 MIMIC III: 15 EU legis- lation: 5	Medical	Medical

Source: Yao Ge, Yuting Guo, Yuan-Chi Yang, Mohammed Ali Al-Garadi, and Abeed Sarker (2022). "Few-shot learning for medical text: A systematic review." arXiv preprint arXiv:2204.14081 (2022).

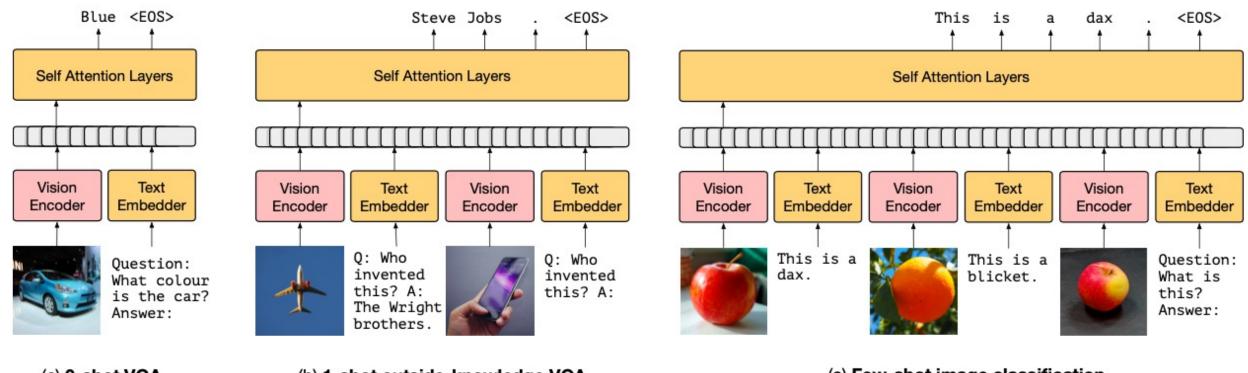
Few-Shot Learning (FSL) for medical text

Study	Year	Data source	Research aim	Size of training set	Number of entities / classes	Entity type of training domain	Entity type of test domain
Lu et al. ⁸⁰	2021	Constructed and shared a novel dataset ^{††} based on Weibo for the research of few-shot rumor detection, and use PHEME dataset ^{\$1}	Rumor Detection (NER)	For the Weibo dataset: 2-way 3-event 5-shot 9-query; for PHEME dataset: 2-way 2-event 5-shot 9-query	Weibo: 14 PHEME: 5	Source posts and comments from Sina Weibo related to COVID-19	Source posts and comments from Sina Weibo related to COVID-19
Ma et al. 82	2021	CCLE, CERES- correctedCRISPR gene disruption scores, GDSC1000 dataset, PDTC dataset and PDX dataset ^{‡‡}	Drug- response Predictions	1-shot, 2-shot, 5-shot and 10-shot	N/A [†]	Biomedical	Biomedical
Kormilitzin et al. ⁸³	2021	MIMIC-III ²³ and UK-CRIS datasets ^{30, 31}	NER	25%, 50%, 75% and 100% of the training set, with no reconstruction	7	Electronic health record	Electronic health record
Guo et al. ³⁴	2021	Abstracts of biomedicalliteratures (from relation extraction task of BioNLP Shared Task 2011 and 2019 ⁴⁷) and structured biological datasets	NER	100%, 75%, 50%, 25%, 0% of training set, with no reconstruction	Not mentioned *	Biomedical entities	Biomedical entities
Lee et al. ⁸⁵	2021	COVID19-Scientific ⁸⁶ , COVID19-Social ⁸⁷ (fact- checked by journalists from a website called Politi-fact.com), FEVER ⁸⁸ (Fact Extraction and Verification, generated by altering sentences extracted from Wiki- pedia to promote research onfact- checking systems)	Fact-Checking (close to Text Classification)	2-shot, 10-shot and 50-shot	Not mentioned *	Facts about COVID-19	Facts about COVID-19

Curated samples with about five seeds required to get past well-known language model failure modes of either repeating text for the prompt or emitting text that does not pertain to the image. These samples demonstrate the ability to generate open-ended outputs that adapt to both images and text, and to make use of facts that it has learned during language-only pre-training.



Gradients through a frozen language model's self attention layers are used to train the vision encoder.

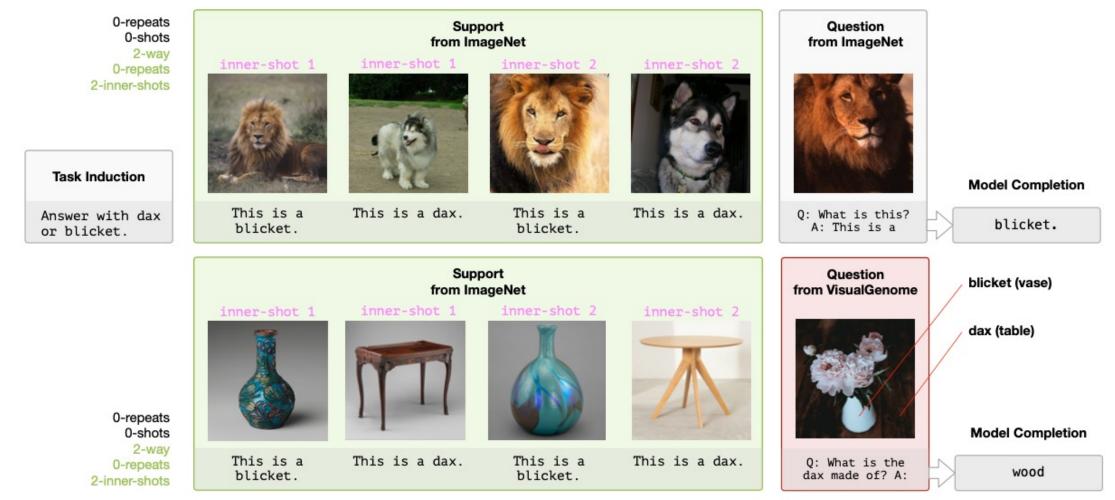


(a) **0-shot VQA**

(b) 1-shot outside-knowledge VQA

(c) Few-shot image classification

Inference-Time interface for *Frozen*. The figure demonstrates how we can support (a) visual question answering, (b) outside-knowledge question answering and (c) few-shot image classification via in-context learning.



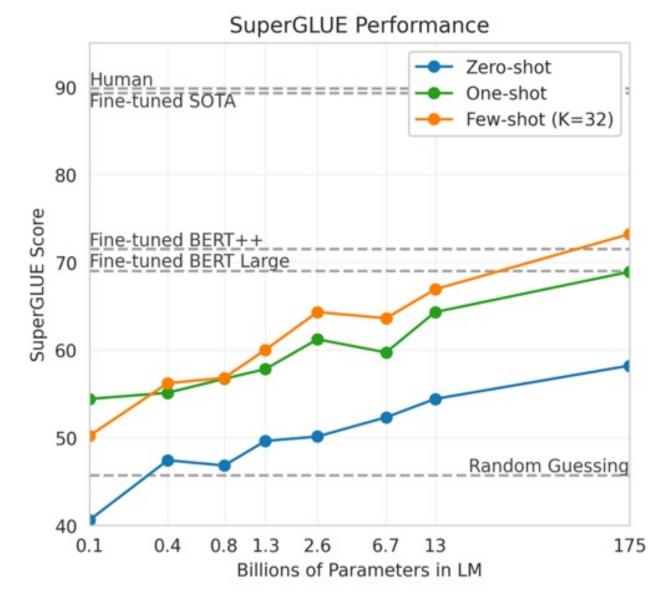
(a) minilmageNet

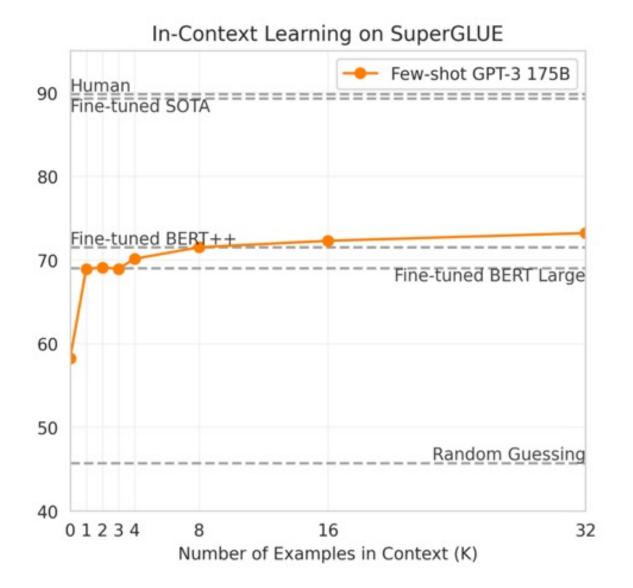
(b) Fast VQA

Examples of (a) the Open-Ended miniImageNet evaluation (b) the Fast VQA evaluation.

Language Models are Few-Shot Learners

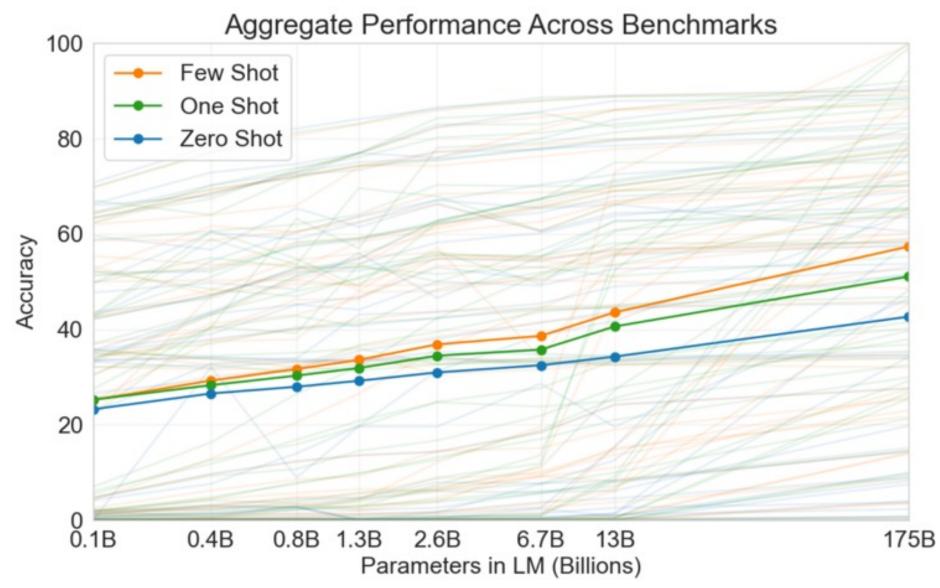
Tom B. Brown*	Benjamin Mann*	Nick Ryder*	Melanie Subbiah*	This work was
Jared Kaplan [†]	Prafulla Dhariwal	Arvind Neelakantan	Pranav Shyam	funded by
•				OpenAl.
Girish Sastry	Amanda Askell Sa	ndhini Agarwal	Ariel Herbert-Voss	All models were
Gretchen Kruege	r Tom Henighan	Rewon Child	Aditya Ramesh	trained on V100
Deniel M 7	lington Toffing		The for	GPU's on part of
Daniel M. 2	Ziegler Jeffre	y wu Cie	mens Winter	a high-
Christopher Hesse	Mark Chen Eric	Sigler Mateusz L	itwin Scott Gray	bandwidth
Benjamin C	hess Jack Cla	urk Christ	opher Berner	cluster provided
Denjanini e	Juck Ch		opner berner	by Microsoft.
Sam McCandlish	Alec Radford	Ilya Sutskever	Dario Amodei	





Performance on SuperGLUE increases with model size. A value of K = 32means that our model was shown 32 examples per task, for 256 examples total divided across the 8 tasks in SuperGLUE.

Source: Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. (2020) "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901



Performance on cloze and completion tasks.

Setting	LAMBADA	LAMBADA	StoryCloze	HellaSwag
	(acc)	(ppl)	(acc)	(acc)
SOTA	68.0 ^a	8.63 ^b	91.8 ^c	85.6 ^d
GPT-3 Zero-Shot	76.2	3.00	83.2	78.9
GPT-3 One-Shot	72.5	3.35	84.7	78.1
GPT-3 Few-Shot	86.4	1.92	87.7	79.3

GPT-3 significantly improves SOTA on LAMBADA while achieving respectable performance on two difficult completion prediction datasets.

Results on three Open-Domain QA tasks

Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

GPT-3 is shown in the few-, one-, and zero-shot settings, as compared to prior SOTA results for closed book and open domain settings. TriviaQA few-shot result is evaluated on the wiki split test server.

GPT-3 results on a selection of QA / RC tasks.

Fine-tuned SOTA 92.0 ^{<i>a</i>} 78.5 ^{<i>b</i>} 90.7 ^{<i>c</i>}	
GPT-3 Zero-Shot68.851.481.5GPT-3 One-Shot71.253.284.0GPT-3 Few-Shot70.151.585.0	89.1 ^d 23.6 34.3 36.5

CoQA and DROP are F1 while ARC reports accuracy. See the appendix for additional experiments. a[KKS+20] b[KKS+20] c[JZC+19] d [JN20]

Setting	En→Fr	Fr→En	En→De	De→En	En→Ro	Ro→En
SOTA (Supervised)	45.6 ^{<i>a</i>}	35.0 ^b	41.2 ^c	40.2^{d}	38.5 ^e	39.9 ^e
XLM [LC19]	33.4	33.3	26.4	34.3	33.3	31.8
MASS [STQ ⁺ 19]	<u>37.5</u>	34.9	28.3	35.2	<u>35.2</u>	33.1
mBART [LGG ⁺ 20]	-	-	<u>29.8</u>	34.0	35.0	30.5
GPT-3 Zero-Shot	25.2	21.2	24.6	27.2	14.1	19.9
GPT-3 One-Shot	28.3	33.7	26.2	30.4	20.6	38.6
GPT-3 Few-Shot	32.6	<u>39.2</u>	29.7	<u>40.6</u>	21.0	<u>39.5</u>

Few-shot GPT-3 outperforms previous unsupervised NMT work by 5 BLEU when translating into English reflecting its strength as an English LM.

Source: Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. (2020) "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901

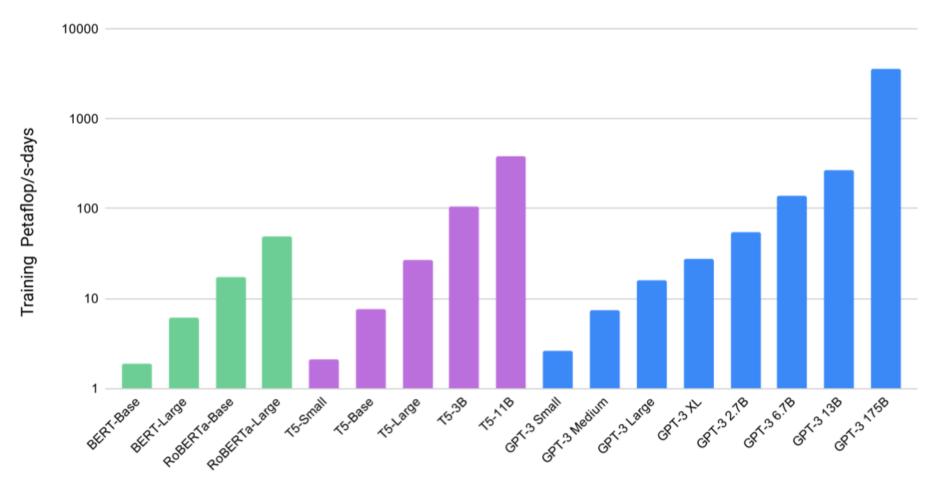
GPT-3: Language Models are Few-Shot Learners Performance of GPT-3 on SuperGLUE

compared to fine-tuned baselines and SOTA

	SuperGLUE Average	E BoolQ Accuracy	CB Accuracy	CB y F1	COPA Accuracy	RTE Accuracy
Fine-tuned SOTA	89.0	91.0	96.9	93.9	94.8	92.5
Fine-tuned BERT-Large	69.0	77.4	83.6	75.7	70.6	71.7
GPT-3 Few-Shot	71.8	76.4	75.6	52.0	92.0	69.0
	WiC	WSC	MultiRC	MultiRC	ReCoRD	ReCoRD
	Accuracy	Accuracy	Accuracy	F1a	Accuracy	F1
Fine-tuned SOTA	76.1	93.8	62.3	88.2	92.5	93.3
Fine-tuned BERT-Large	69.6	64.6	24.1	70.0	71.3	72.0
GPT-3 Few-Shot	49.4	80.1	30.5	75.4	90.2	91.1

GPT-3 few-shot is given a total of 32 examples within the context of each task and performs no gradient updates.

Total Compute Used During Training



GPT-3 3B is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute during pre-training

Human accuracy in identifying

whether short (~200 word) news articles are model generated

	Mean accuracy	95% Confidence Interval (low, hi)	t compared to control (p -value)	"I don't know" assignments
Control (deliberately bad model)	86%	83%-90%	-	3.6 %
GPT-3 Small	76%	72%-80%	3.9 (2 <i>e</i> -4)	4.9%
GPT-3 Medium	61%	58%-65%	10.3 (7 <i>e</i> -21)	6.0%
GPT-3 Large	68%	64%-72%	7.3 (3 <i>e</i> -11)	8.7%
GPT-3 XL	62%	59%-65%	10.7 (1 <i>e</i> -19)	7.5%
GPT-3 2.7B	62%	58%-65%	10.4 (5 <i>e</i> -19)	7.1%
GPT-3 6.7B	60%	56%-63%	11.2 (3 <i>e</i> -21)	6.2%
GPT-3 13B	55%	52%-58%	15.3 (1e-32)	7.1%
GPT-3 175B	52%	49%-54%	16.9 (1 <i>e</i> -34)	7.8%

This table compares mean accuracy between five different models, and shows the results of a two-sample T-Test for the difference in mean accuracy between each model and the control model (an unconditional GPT-3 Small model with increased output randomness).

The GPT-3 generated news article that humans had the greatest difficulty distinguishing from a human written article (accuracy: 12%) Title: United Methodists Agree to Historic Split Subtitle: Those who oppose gay marriage will form their own denomination

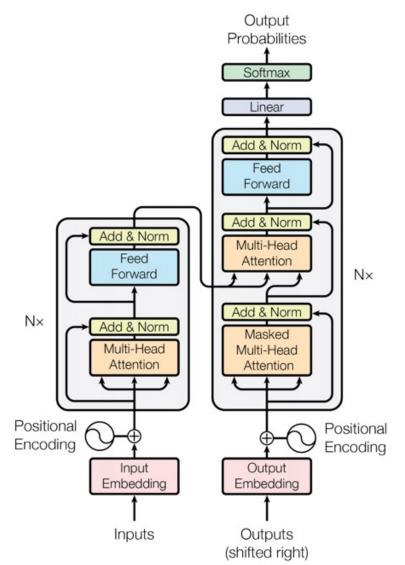
Article: After two days of intense debate, the United Methodist Church has agreed to a historic split - one that is expected to end in the creation of a new denomination, one that will be "theologically and socially conservative," according to The Washington Post. The majority of delegates attending the church's annual General Conference in May voted to strengthen a ban on the ordination of LGBTQ clergy and to write new rules that will "discipline" clergy who officiate at same-sex weddings. But those who opposed these measures have a new plan: They say they will form a separate denomination by 2020, calling their church the Christian Methodist denomination.

The Post notes that the denomination, which claims 12.5 million members, was in the early 20th century the "largest Protestant denomination in the U.S.," but that it has been shrinking in recent decades. The new split will be the second in the church's history. The first occurred in 1968, when roughly 10 percent of the denomination left to form the Evangelical United Brethren Church. The Post notes that the proposed split "comes at a critical time for the church, which has been losing members for years," which has been "pushed toward the brink of a schism over the role of LGBTQ people in the church." Gay marriage is not the only issue that has divided the church. In 2016, the denomination was split over ordination of transgender clergy, with the North Pacific regional conference voting to ban them from serving as clergy, and the South Pacific regional conference voting to allow them.

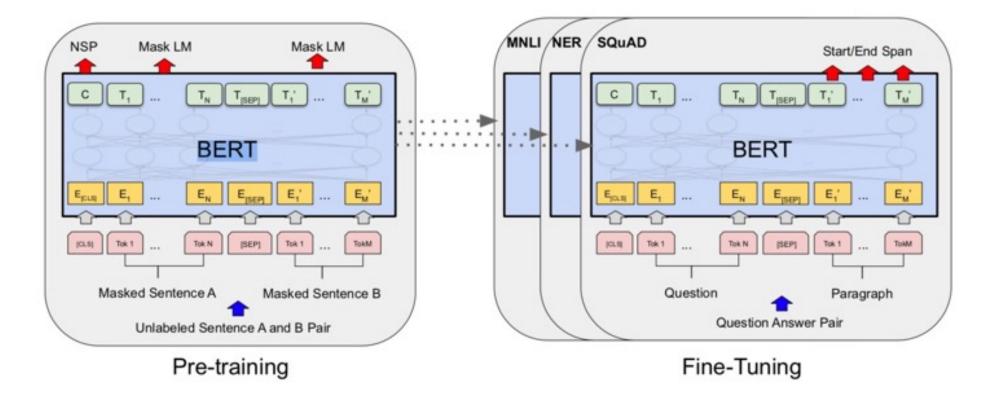
Source: Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. (2020) "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901

Transformer (Attention is All You Need)

(Vaswani et al., 2017)

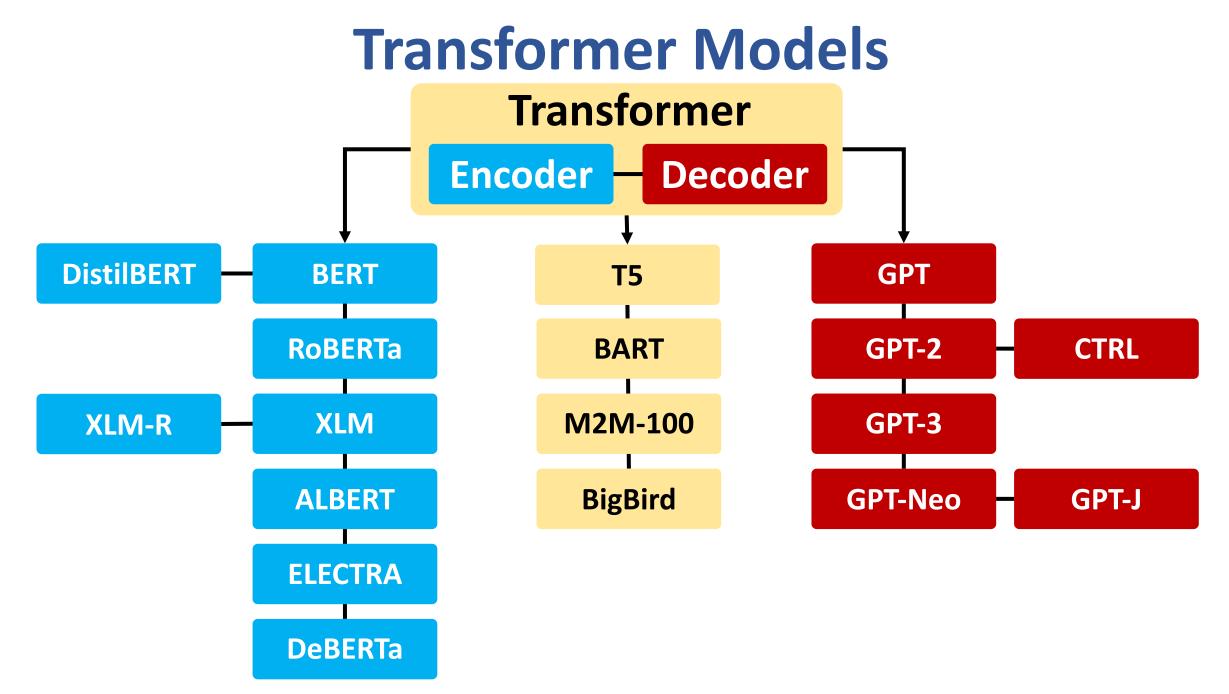


Source: Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." In *Advances in neural information processing systems*, pp. 5998-6008. 2017. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) Overall pre-training and fine-tuning procedures for BERT



Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.



Machine Learning: Ensemble Learning Random Forest

File Edit View Insert Runtin	ne Tools Help <u>All changes saved</u>	comment	÷	Share	\$	
Table of contents	× + Code + Text × D	AM Disk	•	/ E	Editing	
Unsupervised Learning: Associatior Analysis, Market Basket Analysis	✓ Random Forest					
Association Rules Generation fr Frequent Itemsets	OM 1 # Randon Forest: https://chrisalbon.com/machine_learning/trees_and_fores			l ¢	_	
Market Basket Analysis	2 # Load the library with the iris dataset 3 from sklearn.datasets import load iris					
Unsupervised Learning: Cluster Analysis, Market Segmentation	4 5 # Load scikit's random forest classifier library					
Cluster Analysis: K-Means Clustering	6 from sklearn.ensemble import RandomForestClassifier 7 8 # Jord mondes					
Market Segmentation	8 # Load pandas 9 import pandas as pd					
Mall Customer Segmentation						
Machine Learning with scikit-learn	11 # Load numpy 12 import numpy as np					
Classification and Prediction	13					
Support Vector Machine (S	<pre>/M) 15 np.random.seed(0)</pre>					
Random Forest	16 17 # Create an object called iris with the iris data					
K-Means Clustering	18 iris = load_iris()					
Deep Learning for Financial Time So Forecasting	<pre>19 20 # Create a dataframe with the four feature variables 21 if = pd.DataFrame(iris.data, columns=iris.feature_names)</pre>					
Portfolio Optimization and Algorithr Trading						
Investment Portfolio Optimisati with Python	25					
Efficient Frontier Portfolio Optimisation in Python	<pre>26 # Add a new column with the species names, this is what we are going to 27 if['species'] = pd.Categorical.from_codes(iris.target, iris.target_names 28</pre>		oredio	ct		

https://tinyurl.com/aintpupython101

Machine Learning: Supervised Learning Classification and Prediction

▶ ▲ python101.ipynb ☆ File Edit View Insert Runtime T		Comment	*	Shar	e 🌣	
Table of contents	+ Code + Text	Connect	•	/	Editing	J
Machine Learning with scikit-learn Classification and Prediction	 Machine Learning with scikit-learn 					
K-Means Clustering Deep Learning for Financial Time Series Forecasting	- Classification and Prediction					
Portfolio Optimization and Algorithmic Trading	1 # Import libraries	$\wedge \downarrow$	Θ	日 :	\$	Î
Investment Portfolio Optimisation with Python	2 import numpy as np 3 import pandas as pd 4 %matplotlib inline					
Efficient Frontier Portfolio Optimisation in Python	5 import matplotlib.pyplot as plt 6 import seaborn as sns					
Investment Portfolio Optimization	7 from pandas.plotting import scatter_matrix					
Text Analytics and Natural Language Processing (NLP)	8 9 # Import sklearn 10 from sklearn import model selection					
Python for Natural Language Processing	11 from sklearn.metrics import classification_report 12 from sklearn.metrics import confusion_matrix					
spaCy Chinese Model	13 from sklearn.metrics import accuracy_score 14 from sklearn.linear model import LogisticRegression					
Open Chinese Convert (OpenCC, 開放 中文轉換)	14 from sklearn.finear_model import logistickegression 15 from sklearn.tree import DecisionTreeClassifier 16 from sklearn.neighbors import KNeighborsClassifier					
Jieba 結巴中文分詞	17 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis					
Natural Language Toolkit (NLTK)	18 from sklearn.naive_bayes import GaussianNB 19 from sklearn.svm import SVC					
Stanza: A Python NLP Library for Many Human Languages	<pre>20 from sklearn.neural_network import MLPClassifier 21 print("Imported")</pre>					
Text Processing and Understanding	22 23 # Load dataset					
NLTK (Natural Language Processing with Python – Analyzing Text with the	<pre>24 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data 25 names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']</pre>					

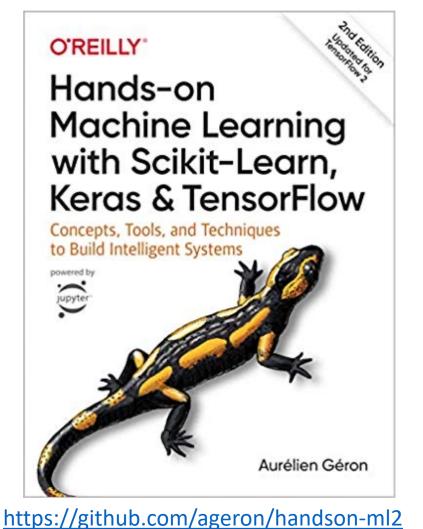
https://tinyurl.com/aintpupython101

Aurélien Géron (2019),

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition

O'Reilly Media, 2019



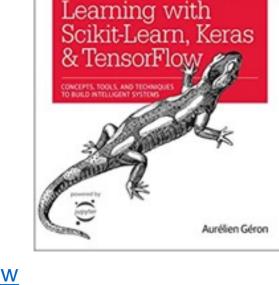
Source: https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646/

Hands-On Machine Learning with

Scikit-Learn, Keras, and TensorFlow

Notebooks

- 1. The Machine Learning landscape
- 2. End-to-end Machine Learning project
- 3. Classification
- 4. Training Models
- 5. Support Vector Machines
- 6. Decision Trees
- 7. Ensemble Learning and Random Forests
- 8. Dimensionality Reduction
- 9. Unsupervised Learning Techniques
- 10. Artificial Neural Nets with Keras
- 11. Training Deep Neural Networks
- 12. Custom Models and Training with TensorFlow
- 13. Loading and Preprocessing Data
- 14. Deep Computer Vision Using Convolutional Neural Networks
- 15. Processing Sequences Using RNNs and CNNs
- 16. Natural Language Processing with RNNs and Attention
- 17. Representation Learning Using Autoencoders
- 18. Reinforcement Learning
- 19. Training and Deploying TensorFlow Models at Scale

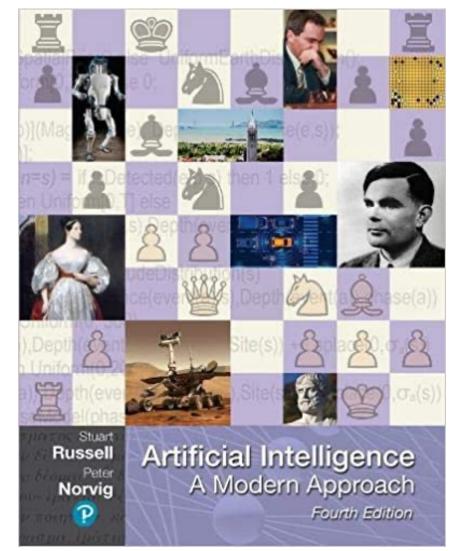


Hands-on Machine

O'REILLY

Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach,

4th Edition, Pearson



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

Artificial Intelligence: A Modern Approach (AIMA)

- Artificial Intelligence: A Modern Approach (AIMA)
 - http://aima.cs.berkeley.edu/
- AIMA Python
 - http://aima.cs.berkeley.edu/python/readme.html
 - https://github.com/aimacode/aima-python
- Learning
 - http://aima.cs.berkeley.edu/python/learning.html

Artificial Intelligence: A Modern Approach (AIMA)

Artificial Intelligence: A Modern Approach, 4th US ed.

by Stuart Russell and Peter Norvig

The authoritative, most-used AI textbook, adopted by over 1500 schools.

Table of Contents for the US Edition (or see the Global Edition)

	Preface (pdf); Contents with subsections
	I Artificial Intelligence
	1 Introduction 1
	2 Intelligent Agents 36
	II Problem-solving
	3 Solving Problems by Searching 63
	4 Search in Complex Environments 110
ge	5 Adversarial Search and Games 146
	6 Constraint Satisfaction Problems 180
	III Knowledge, reasoning, and planning
	7 Logical Agents 208
	8 First-Order Logic 251
X	9 Inference in First-Order Logic 280
	10 Knowledge Representation 314
	11 Automated Planning 344
1	IV Uncertain knowledge and reasoning
	12 Quantifying Uncertainty 385
0.0	13 Probabilistic Reasoning 412
1 1 1 1	14 Probabilistic Reasoning over Time 461
ence	15 Probabilistic Programming 500
oach Anns	16 Making Simple Decisions 528
	17 Making Complex Decisions 562
	18 Multiagent Decision Making 599

US Edition

△ Global Edition

Acknowledgements

Code

Courses

Editions

Errata

Exercises

Instructors Pag

Pseudocode

Reviews

Figures

V Machine Learning

19 Learning from Examples ... 651 20 Learning Probabilistic Models ... 721 21 Deep Learning ... 750 22 Reinforcement Learning ... 789 VI Communicating, perceiving, and acting 23 Natural Language Processing ... 823 24 Deep Learning for Natural Language Processing ... 856 25 Computer Vision ... 881 26 Robotics ... 925 VII Conclusions 27 Philosophy, Ethics, and Safety of AI ... 981 28 The Future of AI ... 1012 Appendix A: Mathematical Background ... 1023 Appendix B: Notes on Languages and Algorithms ... 1030 Bibliography ... 1033 (pdf and LaTeX .bib file and bib data) Index ... 1069 (pdf)

Exercises (website) <u>Figures (pdf)</u> <u>Code (website); Pseudocode (pdf)</u> <u>Covers: US, Global</u>

Papers with Code State-of-the-Art (SOTA)

Search for papers, code and tasks

🗠 Browse State-of-the-Art

🍠 Follow 💠 Discuss Trends About

Trends About Log In/Register

Browse State-of-the-Art

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

Q

Follow on 🎔 Twitter for updates

Computer Vision

Natural Language Processing

https://paperswithcode.com/sota

Summary

- The Theory of Learning
 - Computational Learning Theory
 - Probably Approximately Correct (PAC) Learning
- Ensemble Learning
 - Bagging: Random forests
 - Stacking
 - Boosting: Gradient boosting
 - Online learning
- Meta Learning: Learning to Learn

References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Steven D'Ascoli (2022), Artificial Intelligence and Deep Learning with Python: Every Line of Code Explained For Readers New to AI and New to Python, Independently published.
- Nithin Buduma, Nikhil Buduma, Joe Papa (2022), Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 2nd Edition, O'Reilly Media.
- Min-Yuh Day (2022), Python 101, https://tinyurl.com/aintpupython101