
Microservices Architecture,
RESTful services, Service deployment

Software Engineering

1

Min-Yuh Day, Ph.D,
Associate Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1112SE08
MBA, IM, NTPU (M5010) (Spring 2023)

Wed 2, 3, 4 (9:10-12:00) (B8F40)

2023-05-03

https://meet.google.com/
ish-gzmy-pmo

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/ish-gzmy-pmo
https://meet.google.com/ish-gzmy-pmo

Syllabus
Week Date Subject/Topics

1 2023/02/22 Introduction to Software Engineering

2 2023/03/01 Software Products and Project Management:
Software product management and prototyping

3 2023/03/08 Agile Software Engineering:
Agile methods, Scrum, and Extreme Programming

4 2023/03/15 Features, Scenarios, and Stories

5 2023/03/22 Case Study on Software Engineering I

6 2023/03/29 Software Architecture: Architectural design,
System decomposition, and Distribution architecture

2

Syllabus
Week Date Subject/Topics

7 2023/04/05 Tomb-Sweeping Day (Holiday, No Classes)

8 2023/04/12 Midterm Project Report

9 2023/04/19 Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service

10 2023/04/26 Cloud Computing and Cloud Software Architecture

11 2023/05/03 Microservices Architecture, RESTful services,
Service deployment

12 2023/05/10 Security and Privacy; Reliable Programming;
Testing: Test-driven development, and Code reviews;
DevOps and Code Management: DevOps automation

3

Syllabus
Week Date Subject/Topics

13 2023/05/17 Industry Practices of Software Engineering

[Agile Principles Patterns and Practices using AI and ChatGPT,
Invited Speaker: Shihyu (Alex) Chu, Division Director,
Software Industry Research Center, Market Intelligence & Consulting Institute (MIC)]

14 2023/05/24 Case Study on Software Engineering II

15 2023/05/31 Final Project Report I

16 2023/06/07 Final Project Report II

17 2023/06/14 Self-learning

18 2023/06/21 Self-learning
4

Microservices Architecture:
RESTful services,

Service deployment

5

Software Engineering
and

Project Management

6

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation
and

unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Information Management (MIS)
Information Systems

7Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Organizations Technology

Management

Information
Systems

Fundamental MIS Concepts

8

Management

Organization

Technology

Information
System

Business
Challenges

Business
Solutions

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Project-based software engineering

9

Problem

SoftwareRequirements

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

generates

implemented-by

helps-with

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

Product software engineering

10Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Opportunity

SoftwareProduct
features

DEVELOPER

DEVELOPER DEVELOPER

inspires

implemented-by

realizes

1

Software execution models

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User interface
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers

Product management concerns

12Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

13Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

14

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

15

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
eq

ue
nc

y
of

 D
el

iv
er

y
Lo

w
Hi

gh

Low High

Predictive Life Cycle

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

18Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Analyze
Design

Build
Test Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

19Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

20Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

21

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing
Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

32Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

33Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

Microservices Architecture:
RESTful services,

Service deployment

35

Outline
•Microservices Architecture
•RESTful services
•Service deployment

36

37Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices
Architecture

• A software service is a software component that can be
accessed from remote computers over the Internet. Given
an input, a service produces a corresponding output,
without side effects.
• The service is accessed through its published interface and all

details of the service implementation are hidden.

• Services do not maintain any internal state.
State information is either stored in a database or is
maintained by the service requestor.

38Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software services

•When a service request is made, the state
information may be included as part of the request
and the updated state information is returned as
part of the service result.
•As there is no local state, services can be

dynamically reallocated from one virtual server to
another and replicated across several servers.

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software services

• After various experiments in the 1990s with service-oriented
computing, the idea of ‘big’ Web Services emerged in the early 2000s.

• These were based on XML-based protocols and standards such as
Simple Object Access Protocol (SOAP) for service interaction and
Web Service Definition Language (WSDL) for interface description.

• Most software services don’t need the generality that’s inherent in
the design of web service protocols.

• Consequently, modern service-oriented systems, use simpler, ‘lighter
weight’ service-interaction protocols that have lower overheads and,
consequently, faster execution.

40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Modern web services

•Microservices are small-scale, stateless, services that have
a single responsibility. They are combined to create
applications.
• They are completely independent with their own

database and UI management code.
• Software products that use microservices have a

microservices architecture.

• Create cloud-based software products that are
adaptable, scaleable and resilient.

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices

• System authentication
• User registration, where users provide information about their

identity, security information, mobile (cell) phone number and
email address.

• Authentication using UID/password.

• Two-factor authentication using code sent to mobile phone.

• User information management e.g. change password or mobile
phone number.

• Reset forgotten password.

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A microservice example

• System authentication
• Each of these features could be implemented as a separate

service that uses a central shared database to hold
authentication information.

• However, these features are too large to be microservices.
To identify the microservices that might be used in the
authentication system, you need to break down the
coarse-grain features into more detailed functions.

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A microservice example

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional breakdown of
authentication features

Setup new login ID

Setup new Password

Setup Password
recovery information

Setup Two-factor
authentication

Confirm registration

Get login ID

Get Password

Check Credentials

Confirm authentication

User registration Authentication using
UID/Password

45Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authentication microservices

Authentication

UID
data

UID
management

Password
data

User
data

Password
management

User Info
management

• Self-contained
• Microservices do not have external dependencies. They manage their own data

and implement their own user interface.
• Lightweight
• Microservices communicate using lightweight protocols.

• Implementation-independent
• Microservices may be implemented using different programming languages and

may use different technologies in their implementation.
• Independently deployable
• Each microservice runs in its own process and is independently deployable, using

automated systems.
• Business-oriented
• Microservices should implement business capabilities and needs, rather than

simply provide a technical service.
46Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Characteristics of microservices

• Microservices communicate by exchanging messages.

• A message that is sent between services includes some
administrative information, a service request and the data required
to deliver the requested service.

• Services return a response to service request messages.
• An authentication service may send a message to a login service that

includes the name input by the user.

• The response may be a token associated with a valid user name or
might be an error saying that there is no registered user.

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservice communication

• A well-designed microservice should have high cohesion
and low coupling.
• Cohesion is a measure of the number of relationships that parts of a

component have with each other.

• High cohesion means that all of the parts that are needed to
deliver the component’s functionality are included in the
component.

• Coupling is a measure of the number of relationships that one
component has with other components in the system.

• Low coupling means that components do not have many
relationships with other components.

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservice characteristics

• Each microservice should have a single responsibility
i.e. it should do one thing only and it should do it
well.
•However, ‘one thing only’ is difficult to define in a

way that’s applicable to all services.
•Responsibility does not always mean a single,

functional activity.

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservice characteristics

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Password management
functionality

Create password

Change password

Check password

Recover password

Check password validity

Delete password

Backup password database

Recover password database

User functions Supporting functions

Check database integrity

Repair database DB

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservice support code

Service functionality

Microservice X

Message
management

UI
implementation

Failure
management

Data consistency
management

• A microservices architecture is an architectural style – a tried and
tested way of implementing a logical software architecture.
• This architectural style addresses two problems with monolithic

applications
• The whole system has to be rebuilt, re-tested and re-deployed

when any change is made. This can be a slow process as
changes to one part of the system can adversely affect other
components.
• As the demand on the system increases, the whole system has

to be scaled, even if the demand is localized to a small number
of system components that implement the most popular
system functions.

52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture

• Microservices are self-contained and run in separate processes.

• In cloud-based systems, each microservice may be deployed in its
own container. This means a microservice can be stopped and
restarted without affecting other parts of the system.

• If the demand on a service increases, service replicas can be quickly
created and deployed. These do not require a more powerful server
so ‘scaling-out’ is, typically, much cheaper than ’scaling up’.

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of microservices architecture

54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A microservices architecture for
a photo printing system

Mobile
App

API
gateway

Registration

SERVICES

Authentication

Upload

Payment

Printing

Despatch

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

56Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Synchronous and asynchronous
microservice interaction

Processing Processing

Processing Processing

Waiting Processing

Processing Processing

Processing

Queue B Queue A

Synchronous –
A waits for B

Service A

Service B

Calls

Returns

Requests (B)

Service A

Service B

Asynchronous –
A and B execute concurrently

Requests (A)

57Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Direct and indirect service
communication

Service A

Direct communication –
A and B send message to each other

Service B

Indirect communication –
A and B communicate through a message broker

Service A Service B

Message broker

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservice data design
• You should isolate data within each system service with as

little data sharing as possible.
• If data sharing is unavoidable, you should design

microservices so that most sharing is ‘read-only’, with a
minimal number of services responsible for data updates.

• If services are replicated in your system, you must include a
mechanism that can keep the database copies used by
replica services consistent.

59Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Inconsistency management
• An ACID (atomicity, consistency, isolation, durability)

transaction bundles a set of data updates into a single unit
so that either all updates are completed or none of them
are.

• ACID transactions are impractical in a microservices
architecture.

• The databases used by different microservices or
microservice replicas need not be completely consistent all
of the time.

60Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Inconsistency management
• Dependent data inconsistency
– The actions or failures of one service can cause the data

managed by another service to become inconsistent.

• Replica inconsistency
– There are several replicas of the same service that are executing

concurrently. These all have their own database copy and each
updates its own copy of the service data. You need a way of
making these databases ‘eventually consistent’ so that all
replicas are working on the same data.

61Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Eventual consistency
• Eventual consistency is a situation where the system

guarantees that the databases will eventually become
consistent.

• You can implement eventual consistency by maintaining a
transaction log.

• When a database change is made, this is recorded on a
‘pending updates’ log.

• Other service instances look at this log, update their own
database and indicate that they have made the change

62Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Using a pending transaction log

Service A1
Database A

Service A2
Database A

A1/DB update 1

A1/DB update 2

A2/DB update 1

Pending transactions log

63Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Service coordination
• Most user sessions involve a series of interactions in

which operations have to be carried out in a specific
order.

• This is called a workflow.
–An authentication workflow for UID/password

authentication shows the steps involved in
authenticating a user.
– In this example, the user is allowed 3 login attempts

before the system indicates that the login has failed.

64Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authentication workflow

Start

attempts = 1
authfail = F

Get login Check
login

Get
password

Check
password

Increment
attempts

Indicate
failure

Retry
login

End

End

authfail = F

authfail = T

attempts > 3
attempts <= 3

login
invalid

login OK

password
invalid

password OK

authfail = T
authfail = F

65Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Orchestration and choreography

Login
service

Password
service

Authentication
controller

Login
service

Password
service

Authentication
events

Service
orchestration

Service
Choreography

66Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Failure types in a
microservices system

• Internal service failure
– These are conditions that are detected by the service and can be reported to the service

client in an error message. An example of this type of failure is a service that takes a URL as
an input and discovers that this is an invalid link.

• External service failure
– These failures have an external cause, which affects the availability of a service. Failure may

cause the service to become unresponsive and actions have to be taken to restart the
service.

• Service performance failure
– The performance of the service degrades to an unacceptable level. This may be due to a

heavy load or an internal problem with the service. External service monitoring can be used
to detect performance failures and unresponsive services.

67Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Timeouts and circuit breakers
• Timeout
– A timeout is a counter that this associated with the service requests and

starts running when the request is made.
– Once the counter reaches some predefined value, such as 10 seconds, the

calling service assumes that the service request has failed and acts
accordingly.

– The problem with the timeout approach is that every service call to a ‘failed
service’ is delayed by the timeout value so the whole system slows down.

• Circuit breaker
– Instead of using timeouts explicitly when a service call is made
– Like an electrical circuit breaker, this immediately denies access to a failed

service without the delays associated with timeouts.

68Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Using a circuit breaker to
cope with service failure

Service S1 Service S2

Check S2
availability

Response S2
availability

Route service
response

Set S2
unavailable

Increment
retries

Set
timeout

Check
timeout

Route service
request

Circuit breaker

S2 available

S2 unavailable

timeout
fail

timeout OK

retries >3

retries <=3

• The REST (REpresentational State Transfer) architectural
style is based on the idea of transferring representations of
digital resources from a server to a client.
• You can think of a resource as any chunk of data such as credit

card details, an individual’s medical record, a magazine or
newspaper, a library catalogue, and so on.

• Resources are accessed via their unique URI and RESTful services
operate on these resources.

69Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

RESTful services

• This is the fundamental approach used in the web where
the resource is a page to be displayed in the user’s browser.

• An HTML representation is generated by the server in
response to an HTTP GET request and is transferred to
the client for display by a browser or a special-purpose
app.

70Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

RESTful services

• Use HTTP verbs
• The basic methods defined in the HTTP protocol (GET, PUT, POST, DELETE) must be

used to access the operations made available by the service.

• Stateless services
• Services must never maintain internal state. As I have already explained,

microservices are stateless so fit with this principle.

• URI addressable
• All resources must have a URI, with a hierarchical structure, that is used to access

sub-resources.

• Use XML or JSON
• Resources should normally be represented in JSON or XML or both. Other

representations, such as audio and video representations, may be used if
appropriate.

71Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

RESTful service principles

• Create
• Implemented using HTTP POST, which creates the resource with the given URI. If the

resource has already been created, an error is returned.

• Read
• Implemented using HTTP GET, which reads the resource and returns its value. GET

operations should never update a resource so that successive GET operations with no
intervening PUT operations always return the same value.

• Update
• Implemented using HTTP PUT, which modifies an existing resource. PUT should not be

used for resource creation.

• Delete
• Implemented using HTTP DELETE, which makes the resource inaccessible using the

specified URI. The resource may or may not be physically deleted.

72Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

RESTful service operations

• Retrieve
• Returns information about a reported incident or incidents. Accessed using

the GET verb.

• Add
• Adds information about a new incident. Accessed using the POST verb.

• Update
• Updates the information about a reported incident. Accessed using the PUT

verb.

• Delete
• Deletes an incident. The DELETE verb is used when an incident has been

cleared.

73Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Service operations

• Imagine a system that maintains information about
incidents, such as traffic delays, roadworks and accidents
on a national road network. This system can be accessed
via a browser using the URL:
• https://trafficinfo.net/incidents/

• Users can query the system to discover incidents on the
roads on which they are planning to travel.

74Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Road information system

https://trafficinfo.net/incidents/

•When implemented as a RESTful web service, you need to
design the resource structure so that incidents are
organized hierarchically.
• For example, incidents may be recorded according to the

road identifier (e.g. A90), the location (e.g. stonehaven),
the carriageway direction (e.g. north) and an incident
number (e.g. 1). Therefore, each incident can be accessed
using its URI:
• https://trafficinfo.net/incidents/A90/stonehaven/north/1

75Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Road information system

https://trafficinfo.net/incidents/A90/stonehaven/north/1

76Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

HTTP request and response
processing

Request
processing

HTTP
request

Service
actions

Response
generation

HTTP
response

Microservice

77Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

HTTP request and response
processing

REQUEST
[HTTP verb] [URI] [HTTP version]

[Request header]

[Request body]

RESPONSE
[HTTP version] [Response code]

[Response header]

[Response body]

XML
<id>
A90N17061714391
</id>
<date>
20170617
</date>
<time>
1437
</time>
…
<description>Broken-down bus on north
carriageway. One lane closed. Expect
delays of up to 30 minutes.
</description>

78Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

XML and JSON descriptions
JSON
{
id: “A90N17061714391”,
“date”: “20170617”,
“time”: “1437”,
“road_id”: “A90”,
“place”: “Stonehaven”,
“direction”: “north”,
“severity”: “significant”,
“description”: “Broken-down bus on
north carriageway. One lane closed.
Expect delays of up to 30 minutes.”
}

• After a system has been developed and delivered, it has to be
deployed on servers, monitored for problems and updated as new
versions become available.

• When a system is composed of tens or even hundreds of
microservices, deployment of the system is more complex than for
monolithic systems.

• The service development teams decide which programming
language, database, libraries and other support software should be
used to implement their service. Consequently, there is no
‘standard’ deployment configuration for all services.

79Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Service deployment

• It is now normal practice for microservice
development teams to be responsible for
deployment and service management as well as
software development and to use continuous
deployment.
•Continuous deployment means that as soon as a

change to a service has been made and validated,
the modified service is redeployed.

80Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Service deployment

• Continuous deployment depends on automation so that as soon as
a change is committed, a series of automated activities is triggered
to test the software.

• If the software ‘passes’ these tests, it then enters another
automation pipeline that packages and deploys the software.

• The deployment of a new service version starts with the
programmer committing the code changes to a code management
system such as Git.

81Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Deployment automation

• This triggers a set of automated tests that run using
the modified service.
• If all service tests run successfully, a new version of the

system that incorporates the changed service is
created.

•Another set of automated system tests are then
executed.
• If these run successfully, the service is ready for

deployment.
82Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Deployment automation

83Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A continuous deployment pipeline

Run unit
tests

Triggers

Built test
system

Run integration
tests

Containerize
service

Deploy service
container

Run acceptance
tests

Replace current
service

Reject change Reject change Reject change

Reject change

pass
failfailfail

pass

pass

pass

fail

Commit change
to version

management

84Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Versioned services

API
gateway

Service
monitor

Service request
from cameras

service

cameras

cameras 001

cameras 002

cameras service
response

Monitor
response

service
response

Current
version link

• A microservice is an independent and self-contained software
component that runs in its own process and communicates with
other microservices using lightweight protocols.

• Microservices in a system can be implemented using different
programming languages and database technologies.

• Microservices have a single responsibility and should be designed so
that they can be easily changed without having to change other
microservices in the system.

85Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

•Microservices architecture is an architectural style in which
the system is constructed from communicating
microservices. It is well-suited to cloud based systems
where each microservice can run in its own container.

• The two most important responsibilities of architects of a
microservices system are to decide how to structure the
system into microservices and to decide how microservices
should communicate and be coordinated.

86Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Communication and coordination decisions include deciding on
microservice communication protocols, data sharing, whether
services should be centrally coordinated, and failure
management.

• The RESTful architectural style is widely used in microservice-
based systems. Services are designed so that the HTTP verbs,
GET, POST, PUT and DELETE, map onto the service operations.

• The RESTful style is based on digital resources that, in a
microservices architecture, may be represented using XML or,
more commonly, JSON.

87Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Continuous deployment is a process where new versions of
a service are put into production as soon as a service change
has been made. It is a completely automated process that
relies on automated testing to check that the new version is
of ‘production quality’.
• If continuous deployment is used, you may need to maintain

multiple versions of deployed services so that you can
switch to an older version if problems are discovered in a
newly-deployed service.

88Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

References
• Ian Sommerville (2019), Engineering Software Products: An Introduction to

Modern Software Engineering, Pearson.

• Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

• Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at
Google: Lessons Learned from Programming Over Time, O'Reilly Media.

• Project Management Institute (2021), A Guide to the Project Management Body of
Knowledge (PMBOK Guide) – Seventh Edition and The Standard for Project
Management, PMI.

• Project Management Institute (2017), A Guide to the Project Management Body of
Knowledge (PMBOK Guide), Sixth Edition, Project Management Institute.

• Project Management Institute (2017), Agile Practice Guide, Project Management
Institute.

89

