Artificial Intelligence in Finance and Quantitative Analysis

Financial Econometrics and AI-First Finance

1121AIFQA06 MBA, IM, NTPU (M5276) (Fall 2023) Tue 2, 3, 4 (9:10-12:00) (B3F17)

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2023-11-07; 2023-11--14

https://meet.google.com/ paj-zhhj-mya

Week Date Subject/Topics

- 1 2023/09/12 Introduction to Artificial Intelligence in Finance and Quantitative Analysis
- 2 2023/09/19 AI in FinTech: Metaverse, Web3, DeFi, NFT, Financial Services Innovation and Applications
- 3 2023/09/26 Investing Psychology and Behavioral Finance
- 4 2023/10/03 Event Studies in Finance
- 5 2023/10/10 National Day (Day off)
- 6 2023/10/17 Case Study on AI in Finance and Quantitative Analysis I

Week Date Subject/Topics

- 7 2023/10/24 Finance Theory and Data-Driven Finance
- 8 2023/10/31 Midterm Project Report
- 9 2023/11/07 Financial Econometrics
- 10 2023/11/14 AI-First Finance
- 11 2023/11/21 Industry Practices of AI in Finance and Quantitative Analysis
- 12 2023/11/28 Case Study on AI in Finance and Quantitative Analysis II

Week Date Subject/Topics

- 13 2023/12/05 Deep Learning in Finance; Reinforcement Learning in Finance
- 14 2023/12/12 Algorithmic Trading; Risk Management; Trading Bot and Event-Based Backtesting
- 15 2023/12/19 Final Project Report I
- 16 2023/12/26 Final Project Report II
- 17 2024/01/02 Self-study
- 18 2024/01/09 Self-study

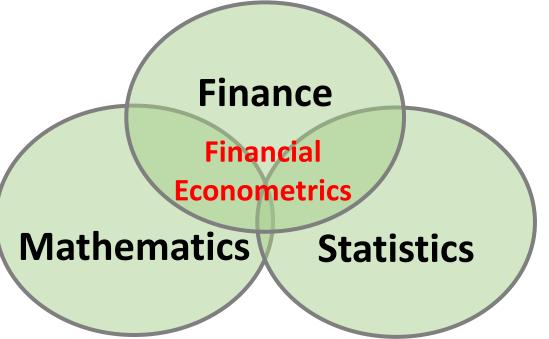
AI-First Finance

Outline

- Financial Econometrics
 - Financial Theories, OLS Regression
- Machine Learning
 - Learning, Evaluation, Bias and variance
 - Cross-validation
- Al-First Finance
 - Efficient Markets
 - Market Prediction Based on Returns Data
 - Market Prediction with More Features

- Financial Theories
- OLS Regression

 The discipline at the intersection of mathematics, statistics, and finance that applies such methods to financial market data is typically called financial econometrics.



(Chris Brooks, 2019)

- Financial econometrics
 - the application of statistical techniques to problems in finance
- Financial econometrics can be useful for testing theories in finance,

determining asset prices or returns,

testing hypotheses concerning the relationships between variables, examining the effect on financial markets of changes in economic conditions,

forecasting future values of financial variables and for financial decision-making.

- [Financial] econometrics is the quantitative application of statistical and mathematical models using [financial] data to develop financial theories or test existing hypotheses in finance and to forecast future trends from historical data.
- It subjects real-world [financial] data to statistical trials and then compares and contrasts the results against the [financial] theory or theories being tested.

Topics of Financial Econometrics

(Oliver Linton, 2019)

- 1. Econometric
- 2. Return Predictability and the Efficient Markets Hypothesis
- 3. Robust Tests and Tests of Nonlinear Predictability of Returns
- 4. Empirical Market Microstructure
- 5. Event Study Analysis
- 6. Portfolio Choice and Testing the Capital Asset Pricing Model
- 7. Multifactor Pricing Models

Topics of Financial Econometrics

(Oliver Linton, 2019)

- 8. Present Value Relations
- 9. Intertemporal Equilibrium Pricing
- **10.Volatility**
- **11.Continuous Time Processes**
- **12.Yield Curve**
- **13.Risk Management and Tail Estimation**

Applications of Financial Econometrics (Chris Brooks, 2019)

- 1. Testing whether financial markets are weak-form informationally efficient
- 2. Testing whether the capital asset pricing model (CAPM) or arbitrage pricing theory (APT) represent superior models for the determination of returns on risky assets
- 3. Measuring and forecasting the volatility of bond returns
- 4. Explaining the determinants of bond credit ratings used by the ratings agencies
- 5. Modelling long-term relationships between prices and exchange rates

Applications of Financial Econometrics (Chris Brooks, 2019)

- 6. Determining the optimal hedge ratio for a spot position in oil
- 7. Testing technical trading rules to determine which makes the most money
- 8. Testing the hypothesis that earnings or dividend announcements have no effect on stock prices
- 9. Testing whether spot or futures markets react more rapidly to news
- **10.Forecasting the correlation between the stock indices of two countries**

Machine Learning and Financial Econometrics

 ML and DL methods are able to discover statistical inefficiencies and even economic inefficiencies that are not discoverable by traditional econometric methods, such as multivariate OLS regression.

Normative Financial Theories

- Normative financial theories mostly rely on assumptions and axioms in combination with deduction as the major analytical method to arrive at their central results.
 - Expected utility theory (EUT) assumes that agents have the same utility function no matter what state of the world unfolds and that they maximize expected utility under conditions of uncertainty.
 - Mean-variance portfolio (MVP) theory describes how investors should invest under conditions of uncertainty assuming that only the expected return and the expected volatility of a portfolio over one period count.

Normative Financial Theories

- The capital asset pricing model (CAPM) assumes that only the nondiversifiable market risk explains the expected return and the expected volatility of a stock over one period.
- Arbitrage pricing theory (APT) assumes that a number of identifiable risk factors explains the expected return and the expected volatility of a stock over time; admittedly, compared to the other theories, the formulation of APT is rather broad and allows for wide-ranging interpretations.

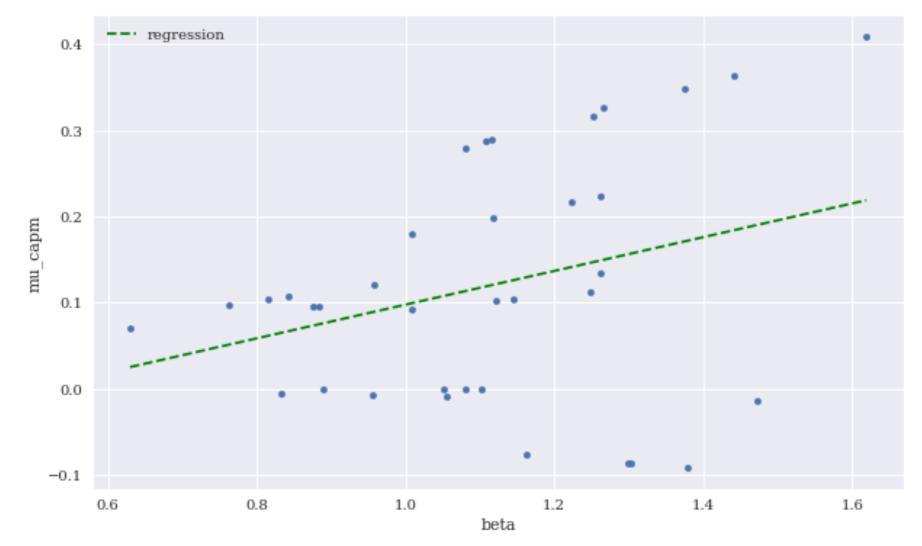
Financial Econometrics and Regression

- One of the major tools in financial econometrics is regression, in both its univariate and multivariate forms
 - $y = \alpha + \beta x$
 - $y = \alpha + \beta_1 x_1 + \beta_2 x_2$
 - $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$
- Regression is also a central tool in statistical learning in general

CAPM and APT OLS regression

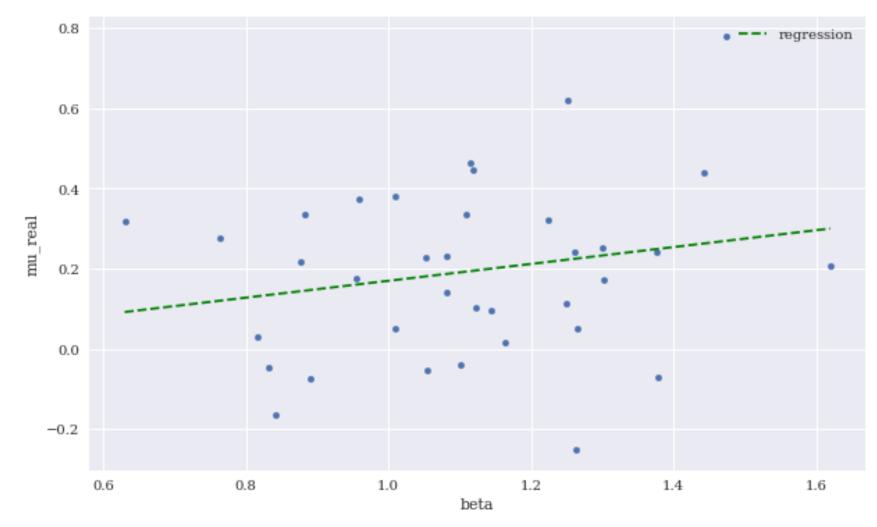
- Both the CAPM and the APT relate the output variables with the relevant input factors in linear fashion.
- From an econometric point of view, both models are implemented based on linear ordinary least-squares (OLS) regression.
- CAPM: univariate linear OLS regression
- APT: multivariate OLS regression

Expected CAPM return versus beta (including linear regression)



Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Expected CAPM return versus beta (including linear regression)



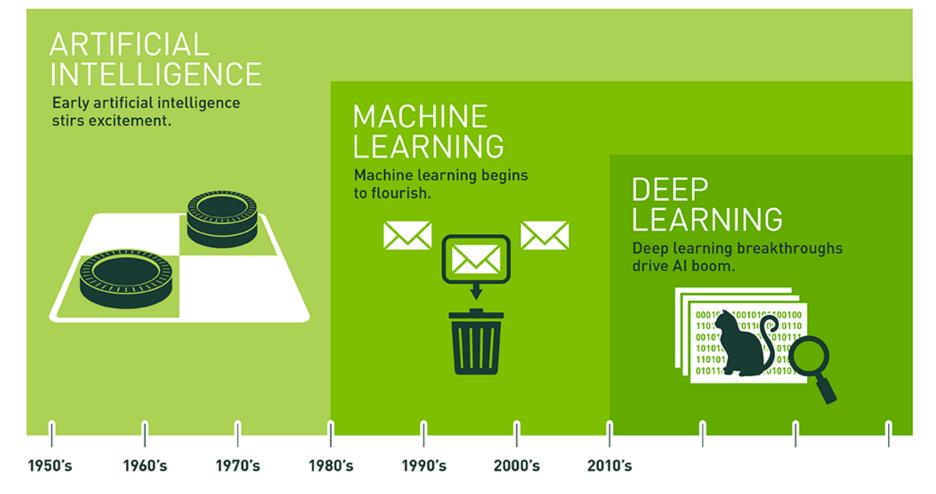
Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Machine Learning

Machine Learning

- Learning
- Evaluation
- Bias and variance
- Cross-validation

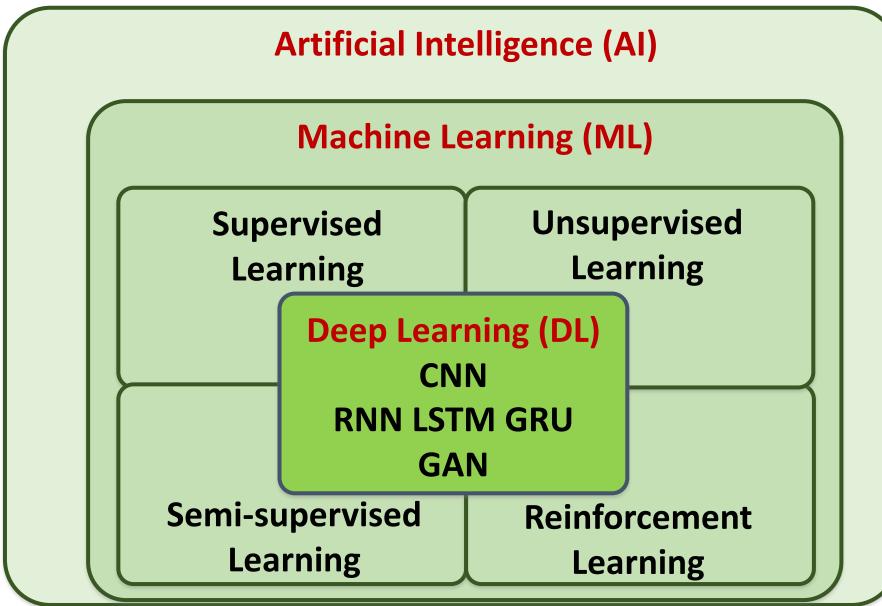
Artificial Intelligence Machine Learning & Deep Learning



Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

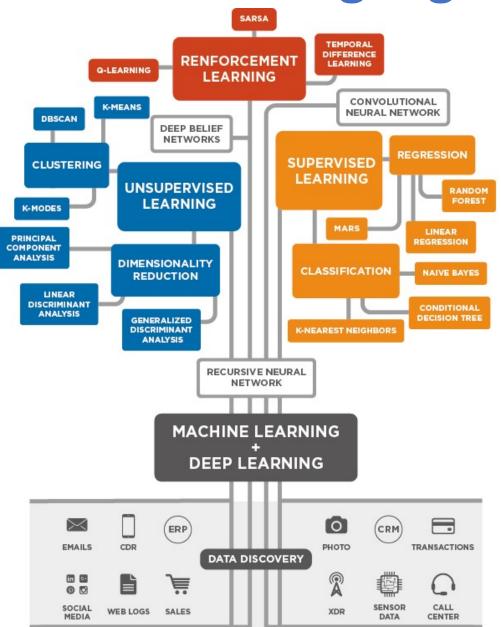
Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

AI, ML, DL



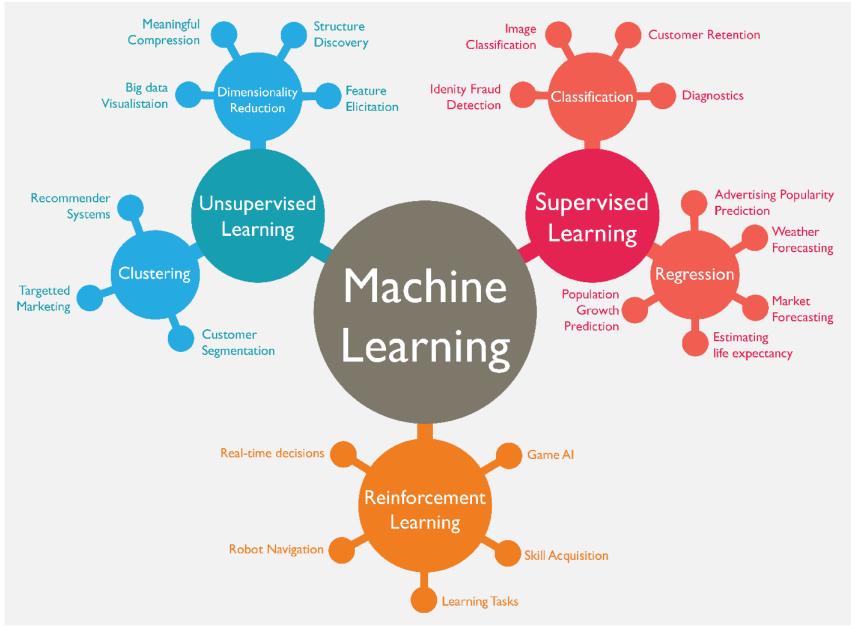
Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html

3 Machine Learning Algorithms



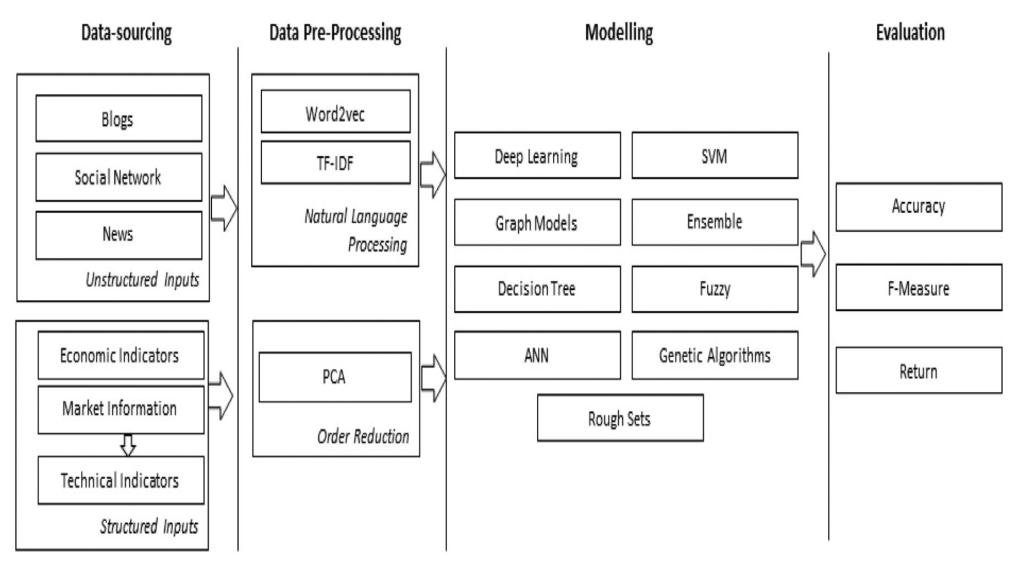
Source: Enrico Galimberti, http://blogs.teradata.com/data-points/tree-machine-learning-algorithms/

Machine Learning (ML)



Source: https://www.mactores.com/services/aws-big-data-machine-learning-cognitive-services/

Stock Market Movement Forecast: ML Phases of the stock market modeling



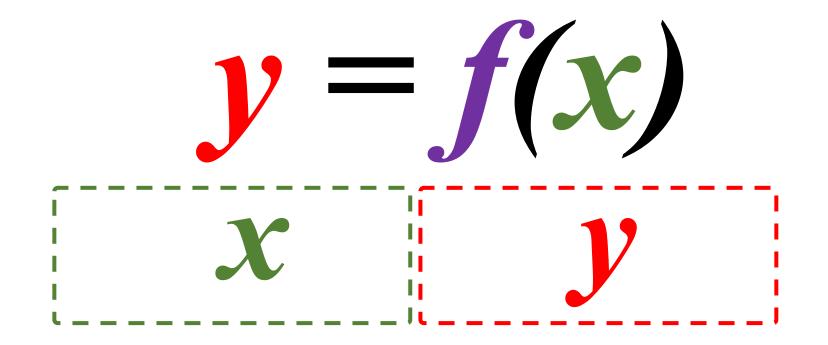
Machine Learning

- Learning
- Data: Features, Labels
- Success (Loss Function): MSE
- Capacity (Model Fit)
- Evaluation
- Bias and variance
- Cross-validation

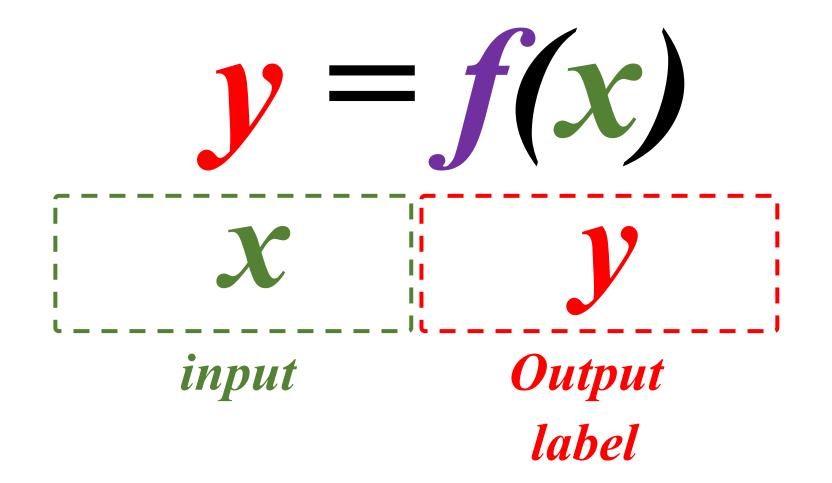
Learning (Mitchell, 1997)

 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Machine Learning Supervised Learning (Classification) Learning from Examples



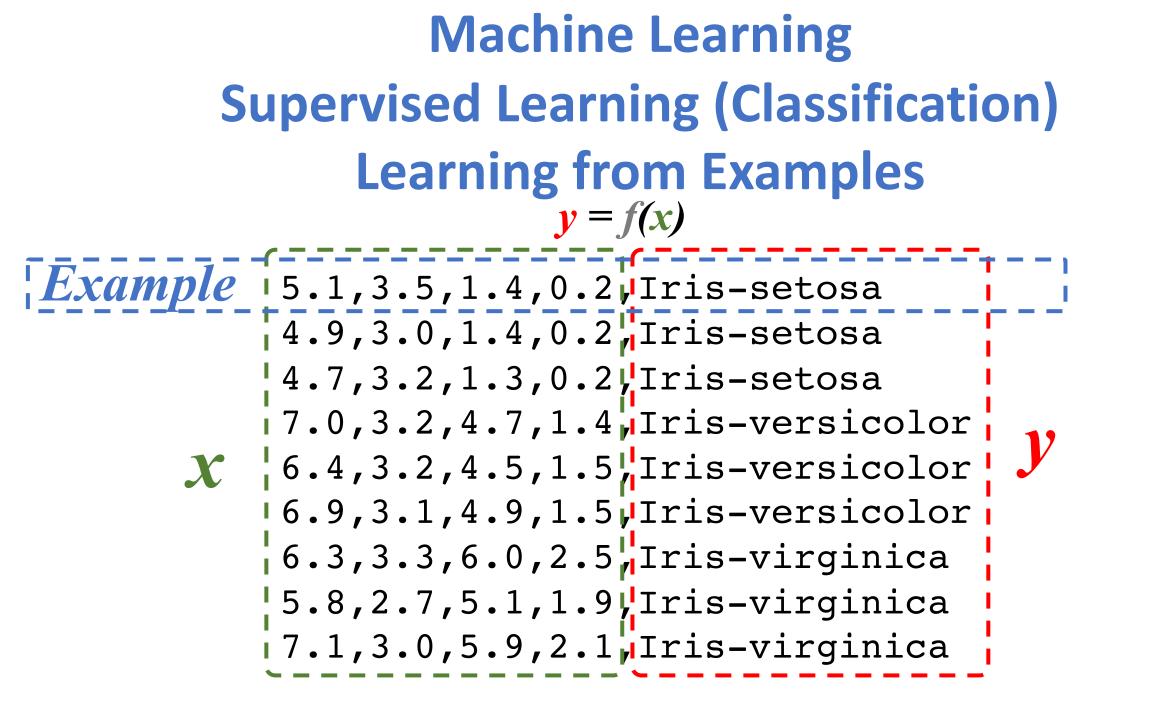
Machine Learning Supervised Learning (Classification) Learning from Examples



Machine Learning Supervised Learning (Classification) Learning from Examples y = f(x)

5.1,3.5,1.4,0.2, Iris-setosa 4.9,3.0,1.4,0.2, Iris-setosa 4.7,3.2,1.3,0.2, Iris-setosa 7.0,3.2,4.7,1.4, Iris-versicolor 6.4,3.2,4.5,1.5, Iris-versicolor 6.9,3.1,4.9,1.5, Iris-versicolor 6.3,3.3,6.0,2.5,Iris-virginica 5.8,2.7,5.1,1.9, Iris-virginica 7.1,3.0,5.9,2.1,Iris-virginica

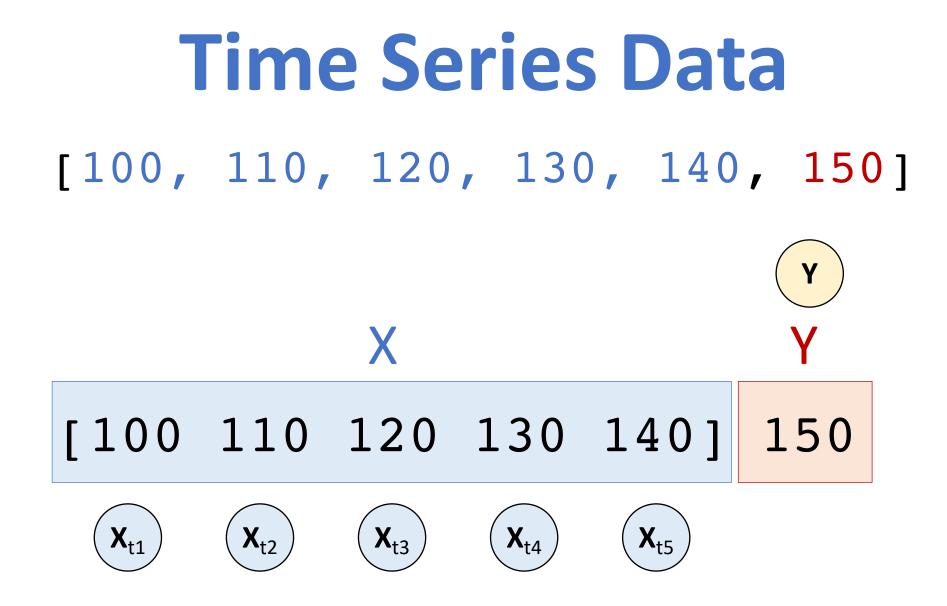
Machine Learning Supervised Learning (Classification) Learning from Examples $\mathbf{v} = f(\mathbf{x})$ *Example* 5.1,3.5,1.4,0.2, Iris-setosa 4.9,3.0,1.4,0.2, Iris-setosa 4.7,3.2,1.3,0.2, Iris-setosa 7.0,3.2,4.7,1.4, Iris-versicolor 6.4,3.2,4.5,1.5, Iris-versicolor 6.9,3.1,4.9,1.5, Iris-versicolor 6.3,3.3,6.0,2.5,Iris-virginica 5.8,2.7,5.1,1.9, Iris-virginica 7.1,3.0,5.9,2.1,Iris-virginica



Time Series Data

[10, 20, 30, 40, 50, 60, 70, 80, 90]

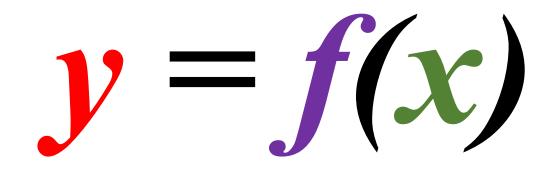
	Χ		Y
[10	20	30]	40
[20	30	40]	50
[30	40	50]	60
[40	50	60]	70
[50	60	70]	80
[60	70	80]	90



The Theory of Learning

- How can we be sure that our learned hypothesis will predict well for previously unseen inputs?
 - How do we know that the hypothesis h is close to the target function f if we don't know what is?
- How many examples do we need to get a good *h*?
- What hypothesis space should we use?
- If the hypothesis space is very complex, can we even find the best *h* or do we have to settle for a local maximum?
- How complex should *h* be?
- How do we avoid overfitting?

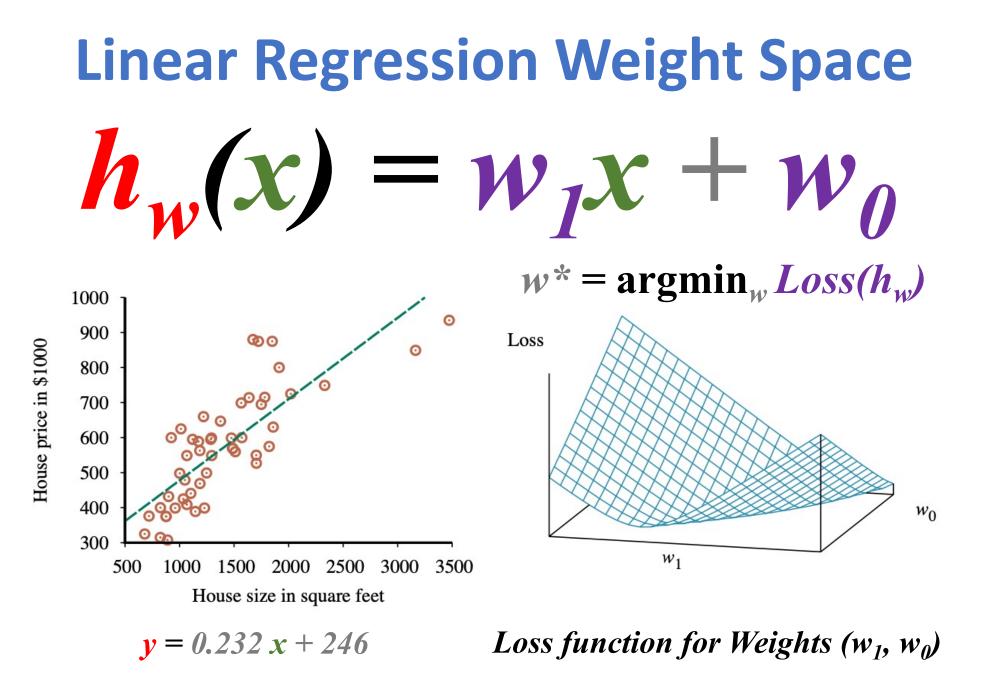
Linear function



 $y = w_1 x + w_0$

 $h_w(x) = w_1 x + w_0$

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Performance Measure

- The measure of success for estimation problems
 - mean-squared error (MSE)
- Classification problems
 - accuracy ratio

Evaluation (Accuracy of Classification Model)

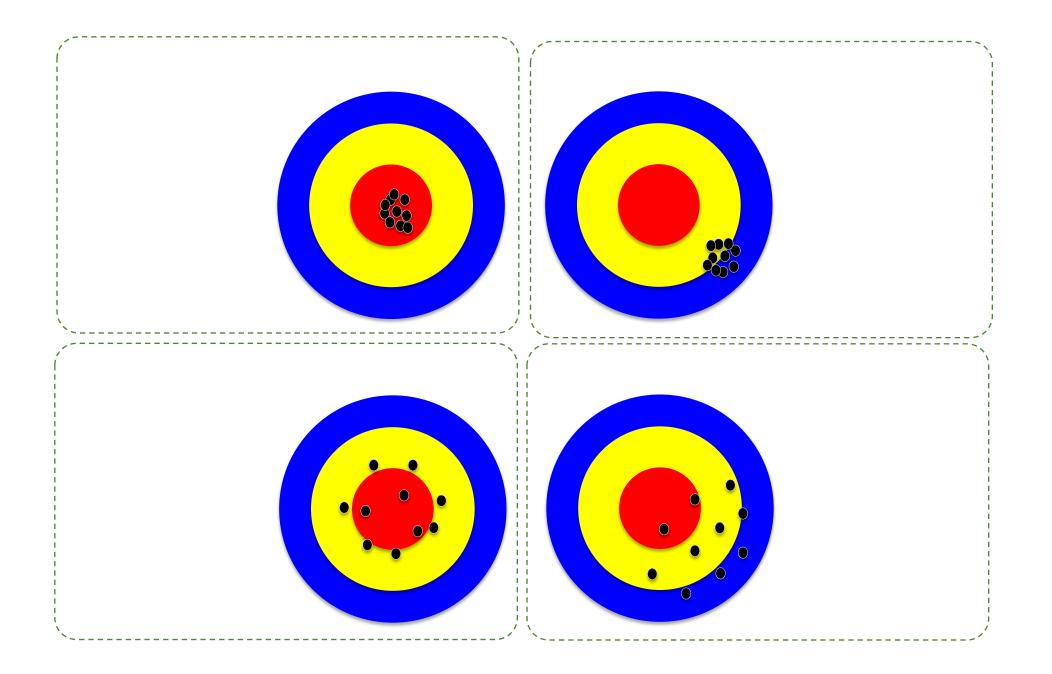
Assessing the Classification Model

- Predictive accuracy
 - Hit rate
- Speed
 - Model building; predicting
- Robustness
- Scalability
- Interpretability
 - Transparency, explainability

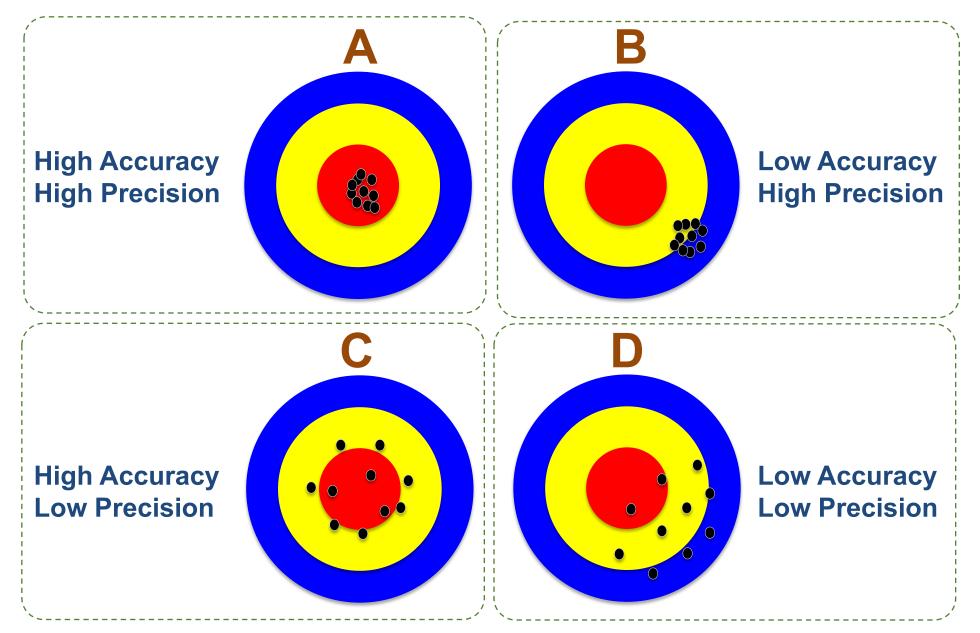
Accuracy Validity

Precision

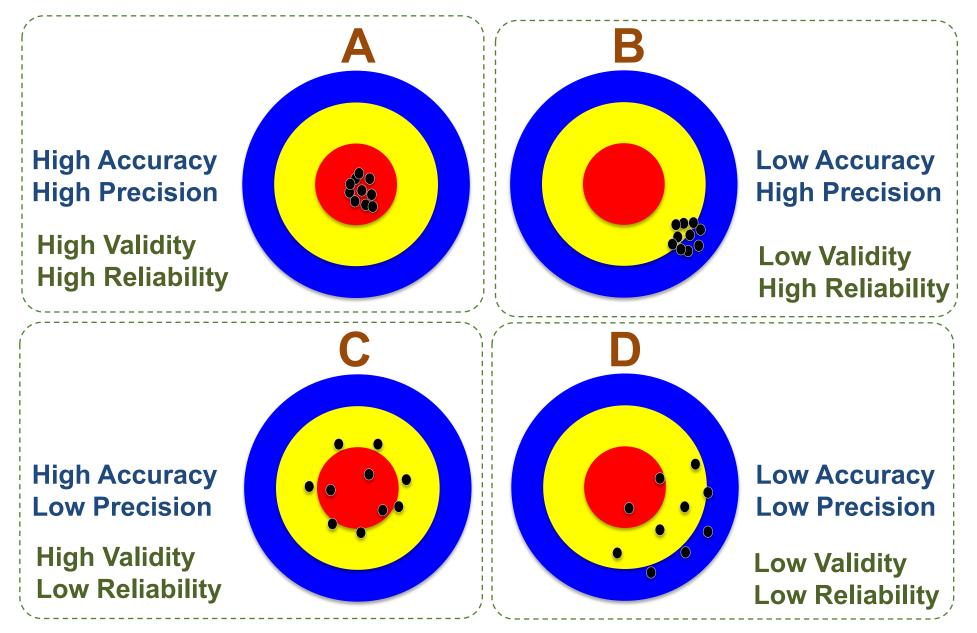
Reliability



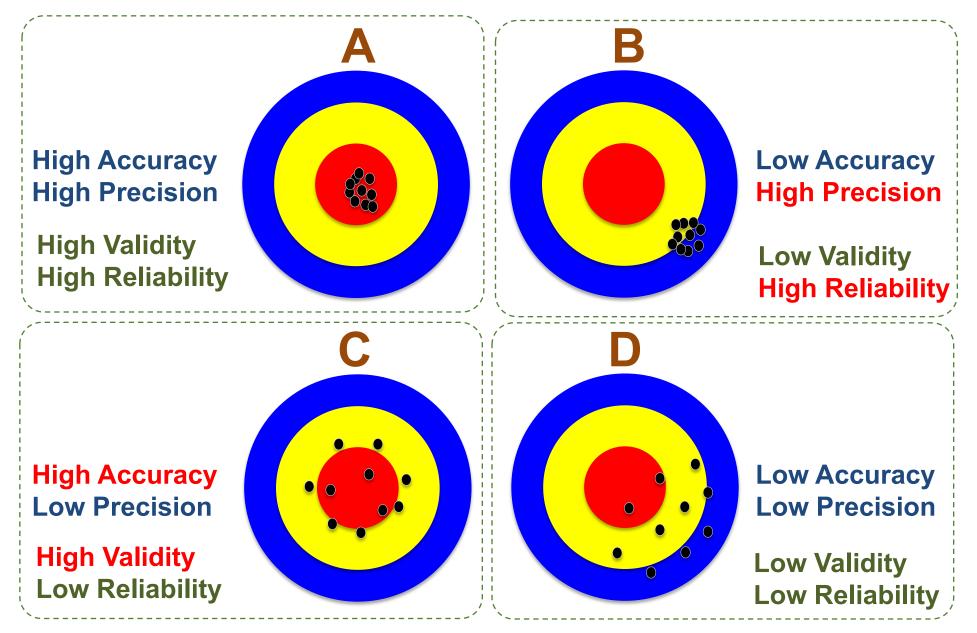
Accuracy vs. Precision



Accuracy vs. Precision

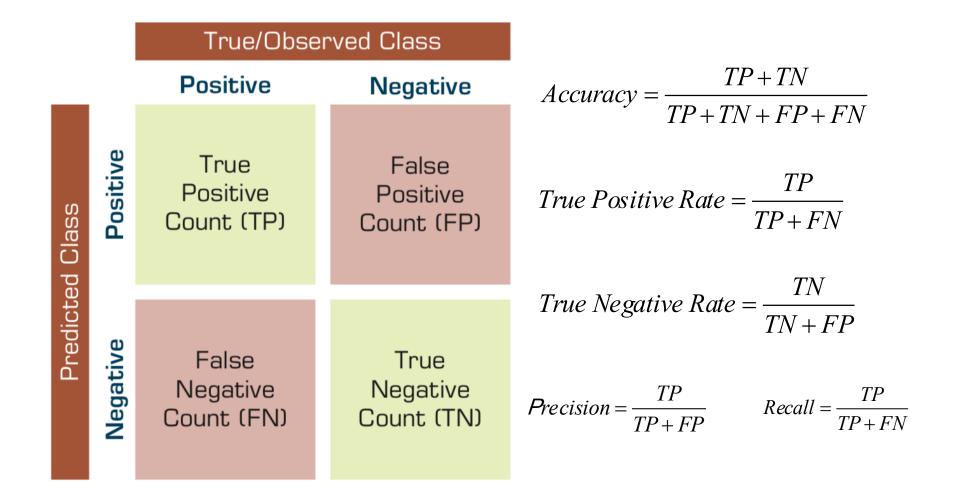


Accuracy vs. Precision



Confusion Matrix

for Tabulation of Two-Class Classification Results

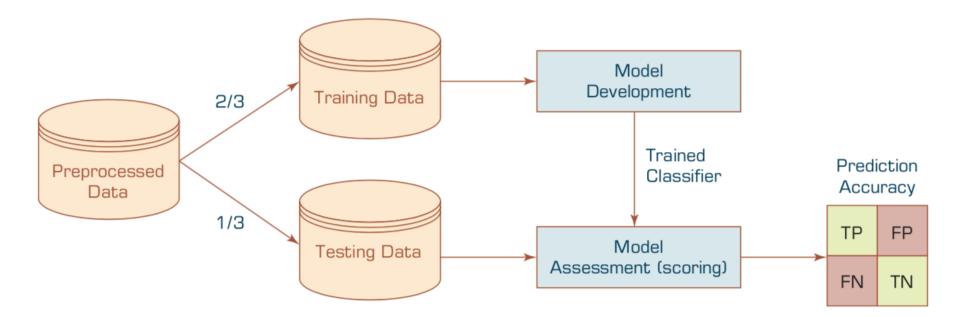


Sensitivity =True Positive Rate

Specificity =True Negative Rate

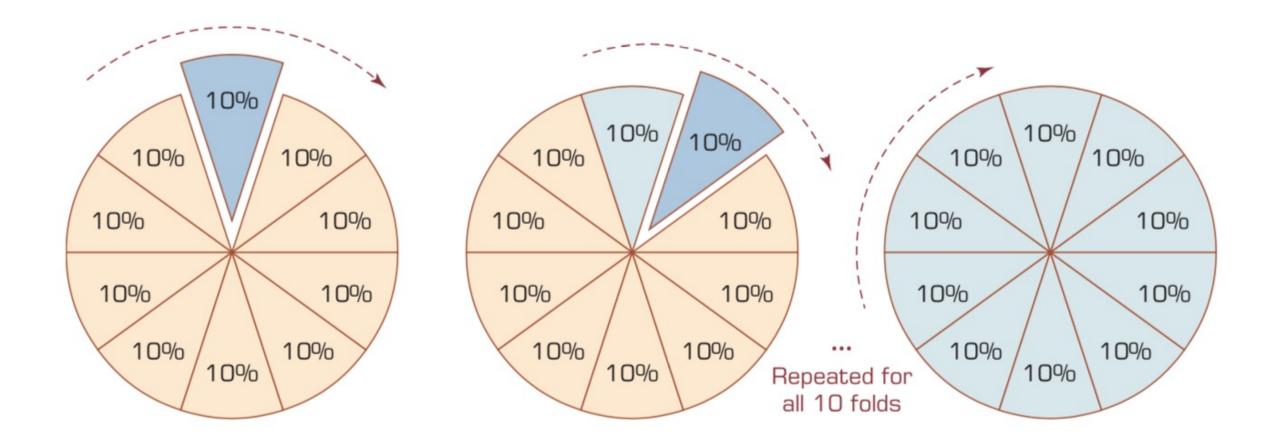
Estimation Methodologies for Classification

- Simple split (or holdout or test sample estimation)
 - Split the data into 2 mutually exclusive sets training (~70%) and testing (30%)

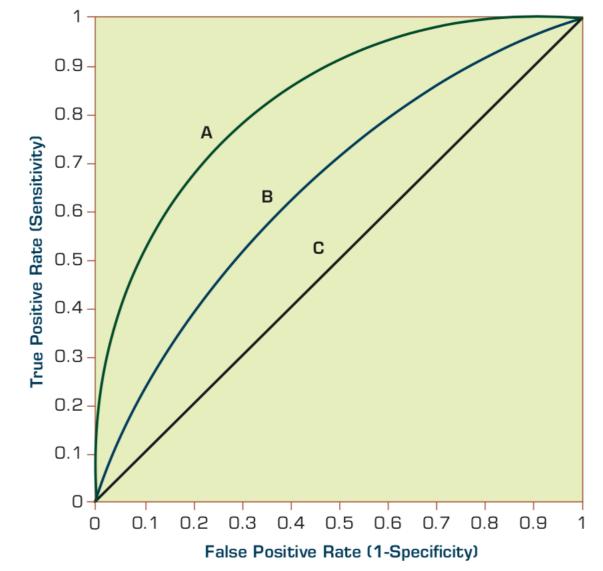


• For ANN, the data is split into three sub-sets (training [~60%], validation [~20%], testing [~20%])

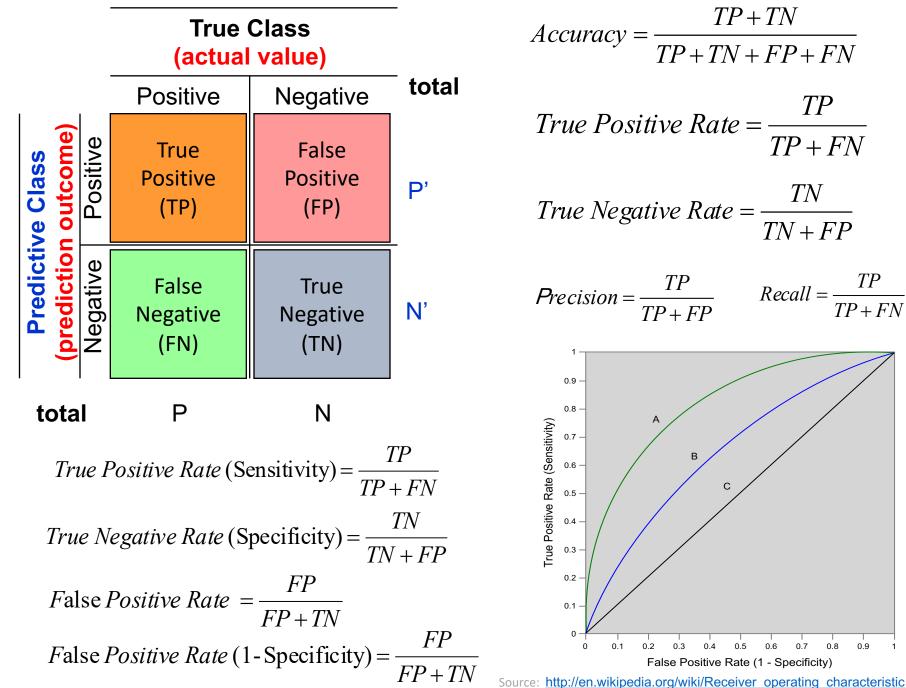
k-Fold Cross-Validation

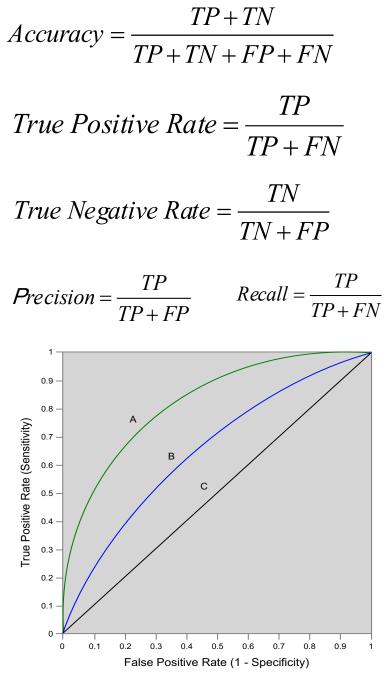


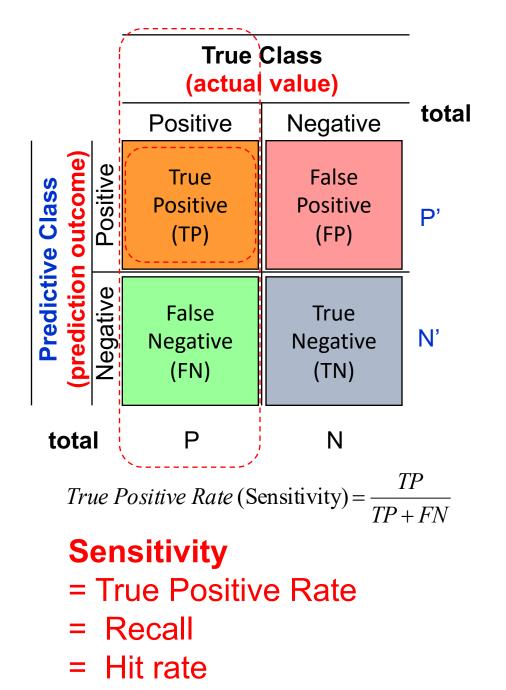
Estimation Methodologies for Classification Area under the ROC curve



Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson



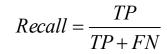


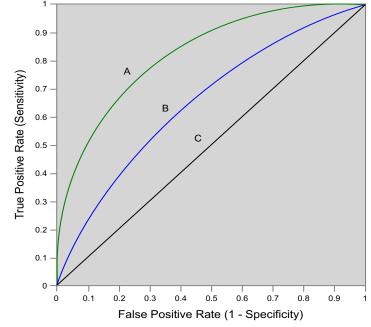


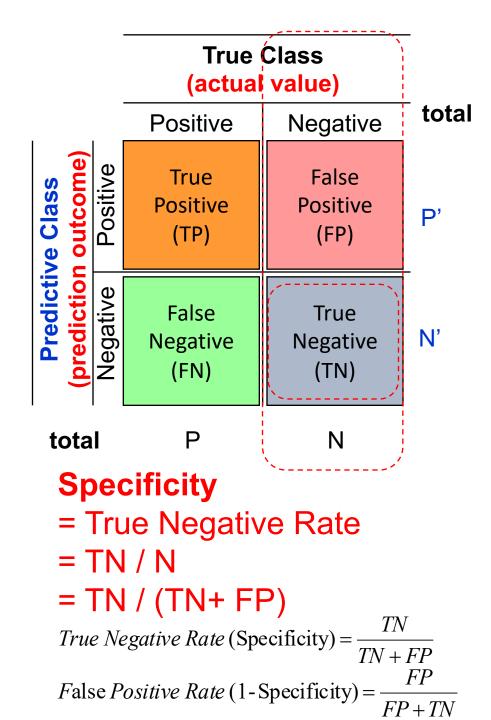
TP / (TP + FN)

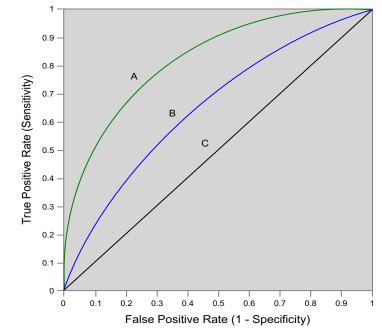
=

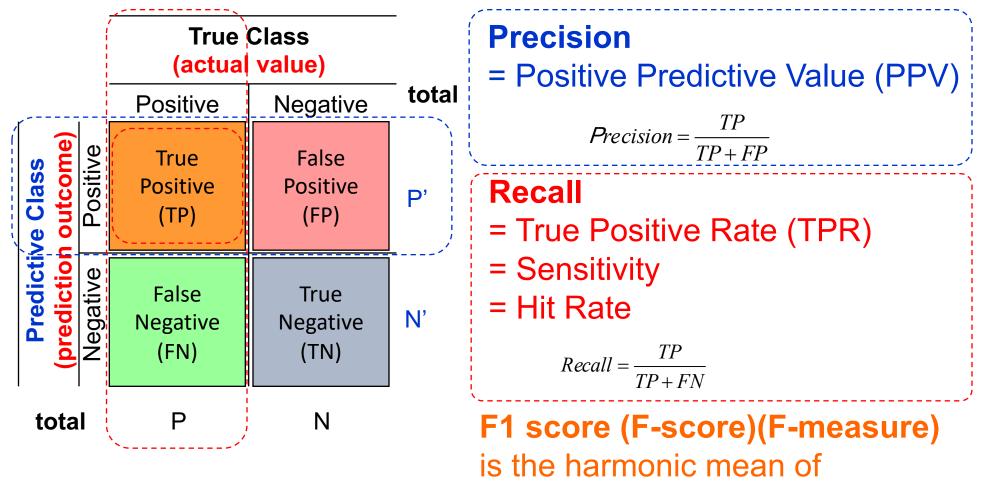
True Positive Rate =
$$\frac{TP}{TP + FN}$$





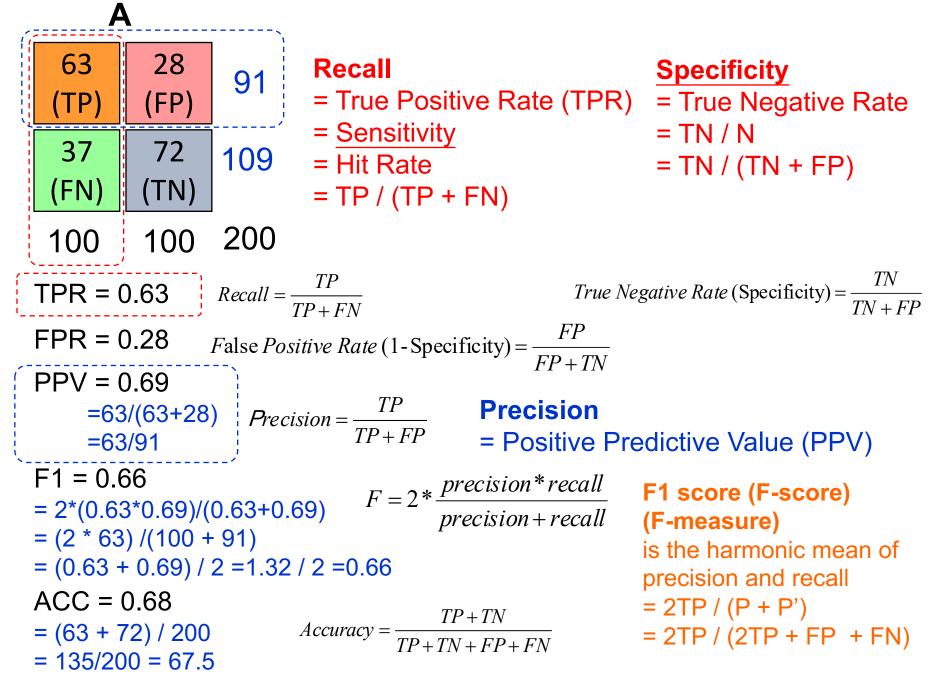




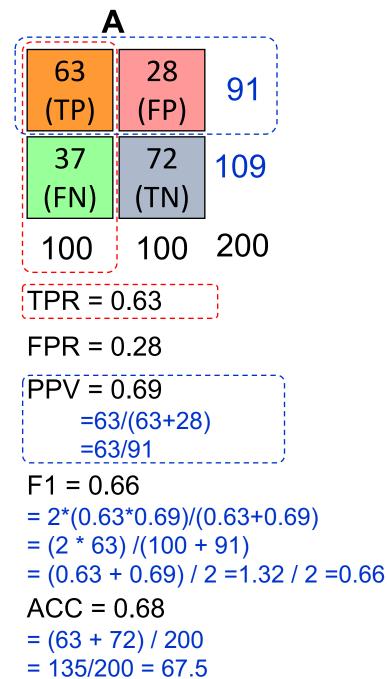


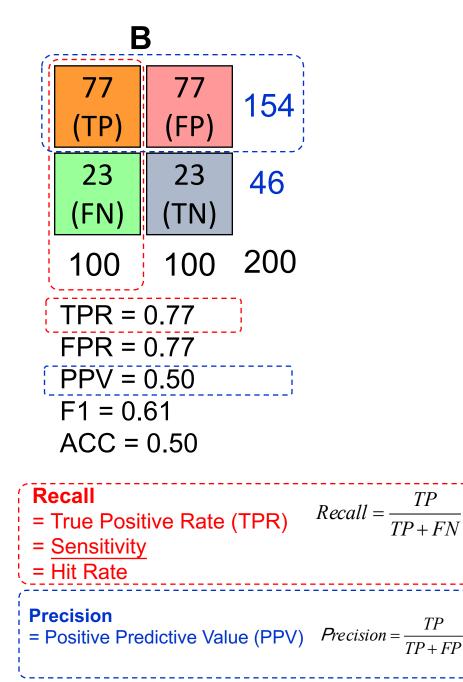
- precision and recall
- = 2TP / (P + P')
- = 2TP / (2TP + FP + FN)

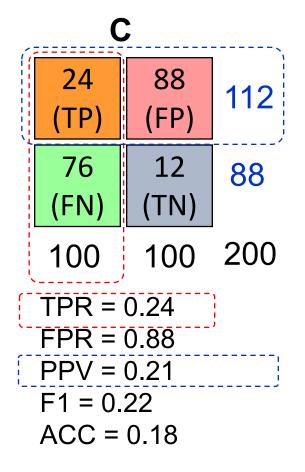
 $F = 2*\frac{precision*recall}{precision+recall}$

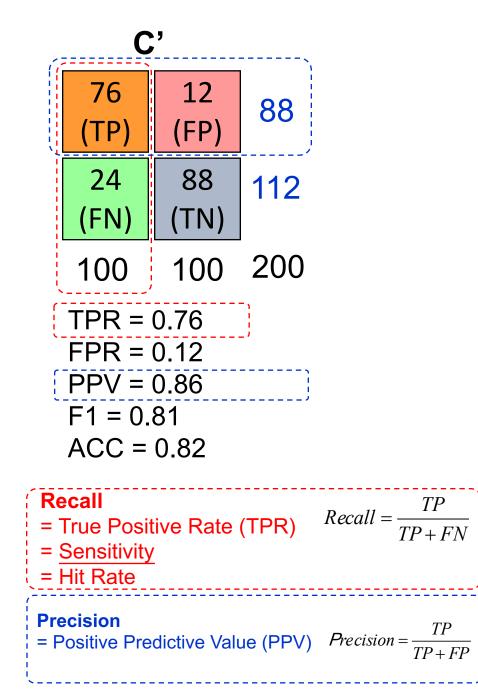


Source: http://en.wikipedia.org/wiki/Receiver operating characteristic



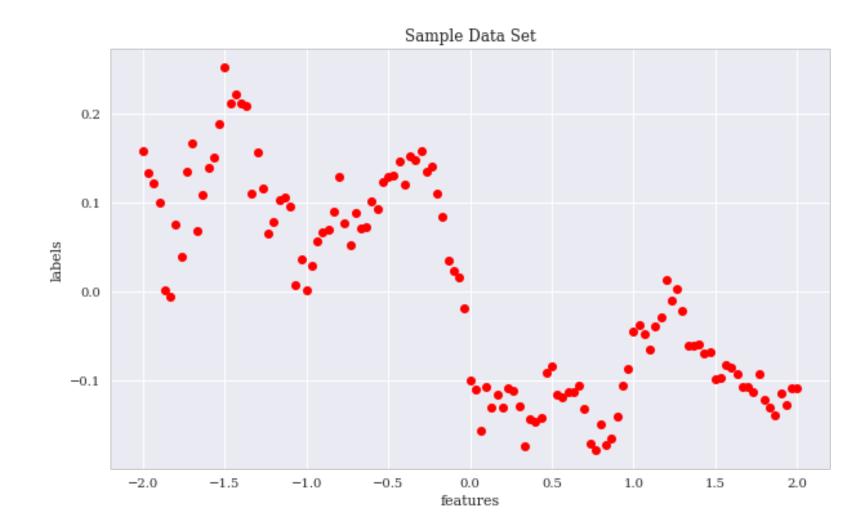




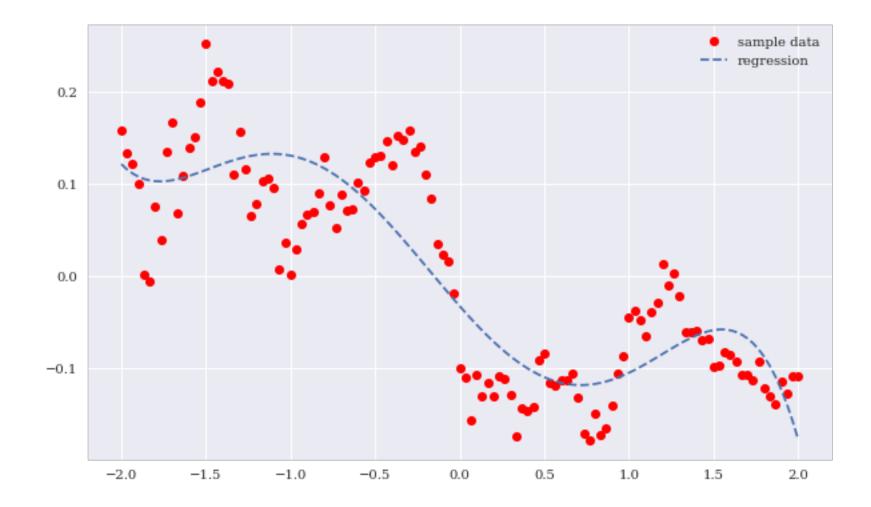


EUR/USD exchange rate as time series (monthly)

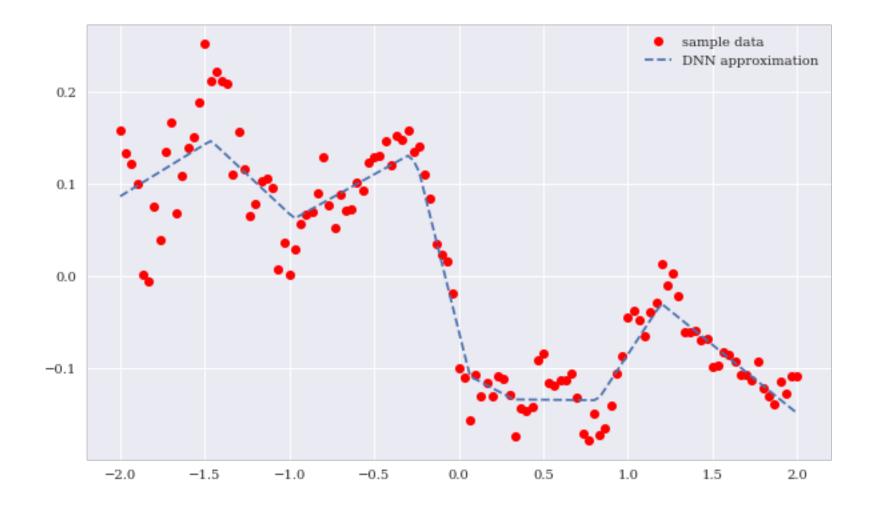
Sample data set



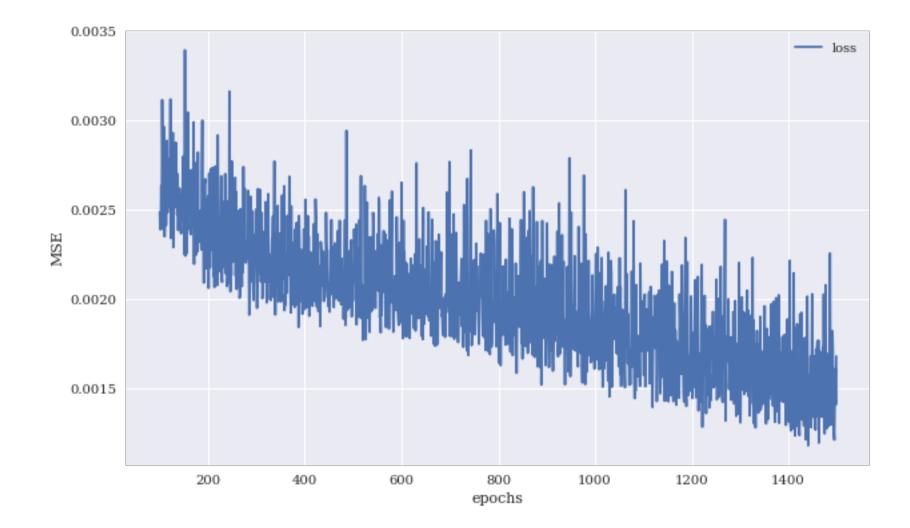
Sample data and cubic regression line



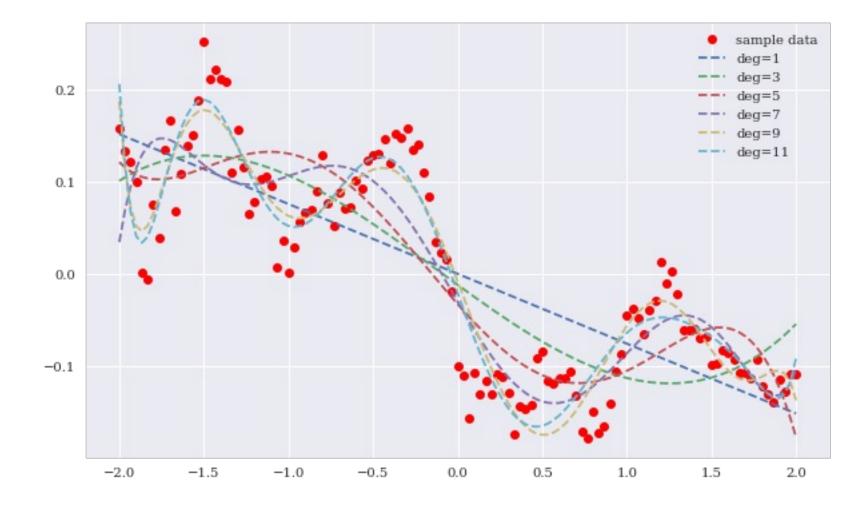
Sample data and neural network approximation



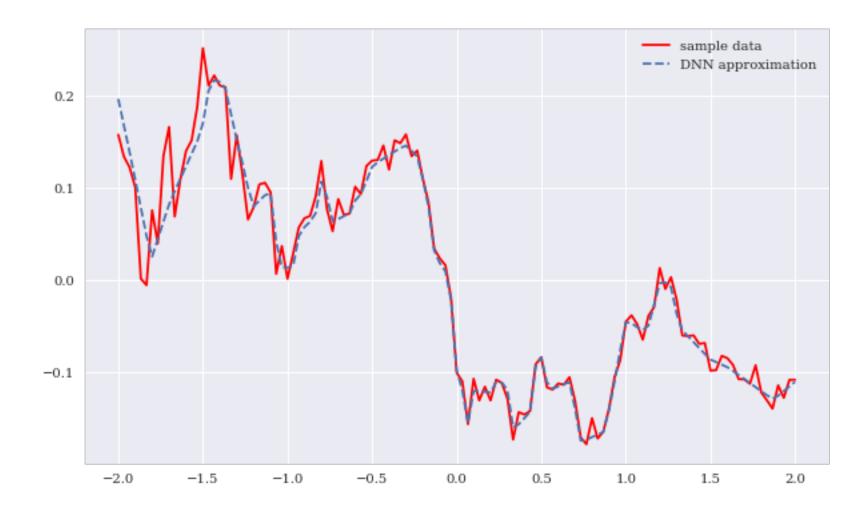
MSE values against number of training epochs



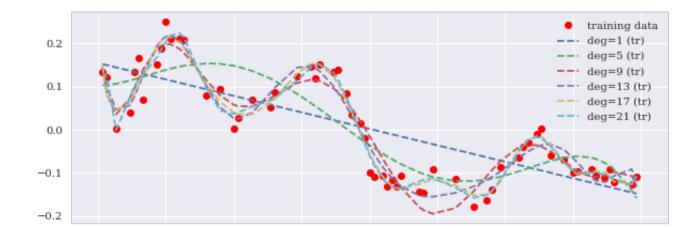
Regression lines for different highest degrees

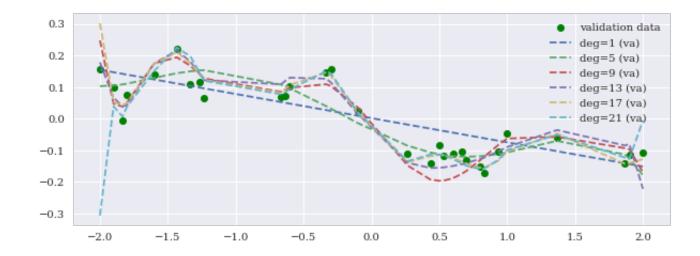


Sample data and DNN approximation (higher capacity)



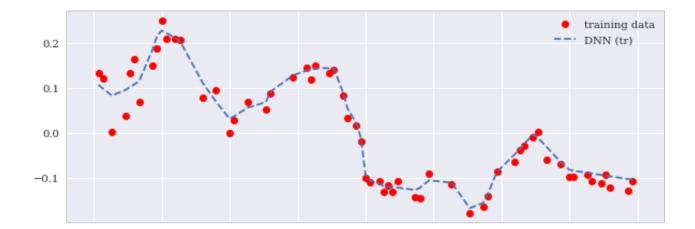
Training and validation data including regression fits

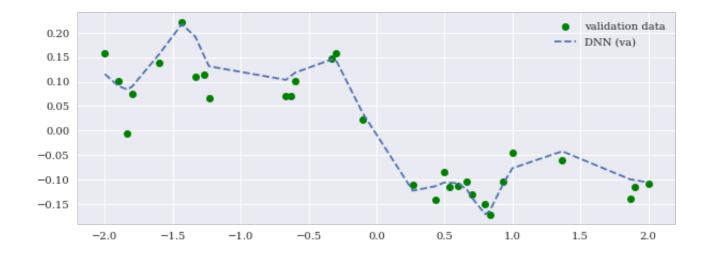




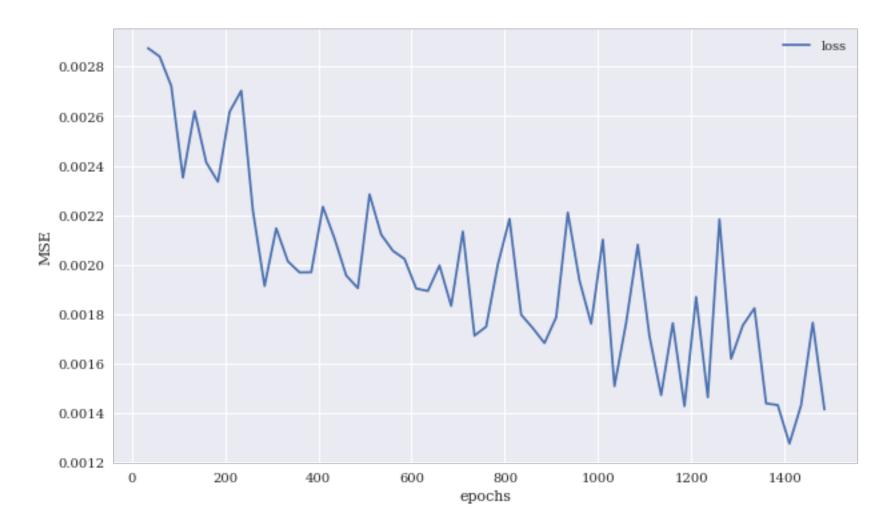
Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Training and validation data including DNN predictions

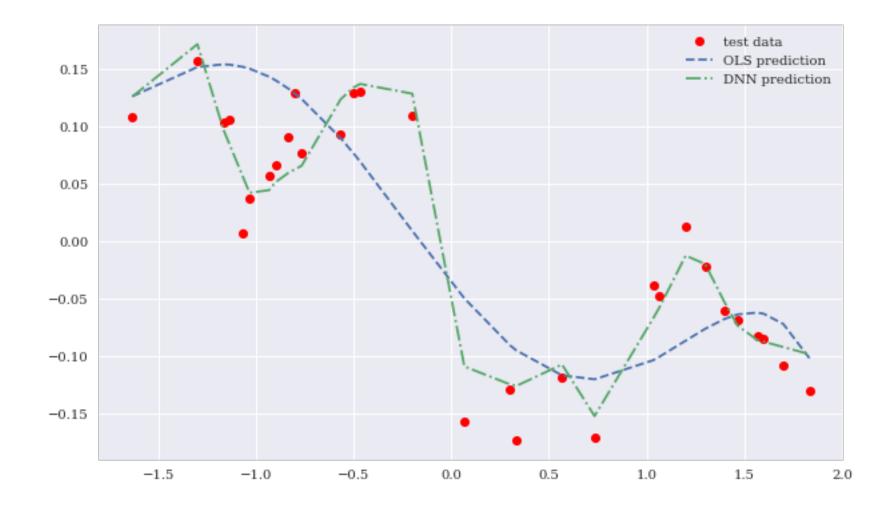




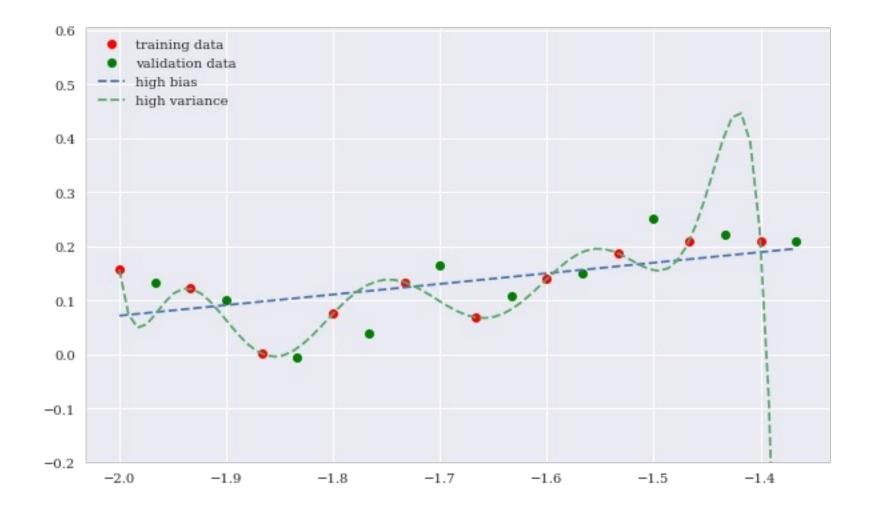
MSE values for DNN model on the training and validation data sets



Test data and predictions from OLS regression and the DNN model



High bias and high variance OLS regression fits



Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

AI-First Finance

AI-First Finance

- Efficient Markets
- Market Prediction Based on Returns Data
- Market Prediction with More Features
- Market Prediction Intraday

Life 3.0:

Being human in the age of artificial intelligence Max Tegmark (2017)

A computation takes information and transforms it, implementing what mathematicians call a function....

> If you're in possession of a function that inputs all the world's financial data and outputs the best stocks to buy, you'll soon be extremely rich.

Efficient Markets

- Efficient Market Hypothesis (EMH)
 - Random Walk Hypothesis (RWH)
- Weak form of EMH
 - The information set θ_t only encompasses the past price and return history of the market.
- Semi-strong form of EMH
 - The information set θ_t is taken to be all publicly available information, including not only the past price and return history but also financial reports, news articles, weather data, and so on.
- Strong form of EMH
 - The information set θ_t includes all information available to anyone (that is, even private information).

```
import numpy as np
import pandas as pd
from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['savefig.dpi'] = 300
mpl.rcParams['font.family'] = 'serif'
pd.set option('precision', 4)
np.set printoptions(suppress=True, precision=4)
url = 'http://hilpisch.com/aiif eikon eod data.csv'
data = pd.read csv(url, index col=0, parse dates=True).dropna()
(data / data.iloc[0]).plot(figsize=(10, 6), cmap='coolwarm')
```

Normalized time series data (end-of-day)

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

lags = 7

```
def add_lags(data, ric, lags):
    cols = []
    df = pd.DataFrame(data[ric])
    for lag in range(1, lags + 1):
        col = 'lag_{}'.format(lag)
        df[col] = df[ric].shift(lag)
        cols.append(col)
    df.dropna(inplace=True)
    return df, cols
```

```
dfs = {}
for sym in data.columns:
    df, cols = add_lags(data, sym, lags)
    dfs[sym] = df
dfs[sym].head(7)
```

lagged prices

GLD lag_1 lag_2 lag_3 lag_4 lag_5 lag_6 lag_7

Date

2010-01-13	111.54	110.49	112.85	111.37	110.82	111.51	109.70	109.80
2010-01-14	112.03	111.54	110.49	112.85	111.37	110.82	111.51	109.70
2010-01-15	110.86	112.03	111.54	110.49	112.85	111.37	110.82	111.51
2010-01-19	111.52	110.86	112.03	111.54	110.49	112.85	111.37	110.82
2010-01-20	108.94	111.52	110.86	112.03	111.54	110.49	112.85	111.37
2010-01-21	107.37	108.94	111.52	110.86	112.03	111.54	110.49	112.85
2010-01-22	107.17	107.37	108.94	111.52	110.86	112.03	111.54	110.49

```
regs = \{\}
for sym in data.columns:
df = dfs[sym]
reg = np.linalg.lstsq(df[cols], df[sym], rcond=-1)[0]
#Return the least-squares solution to a linear matrix equation
regs[sym] = reg
rega = np.stack(tuple(regs.values()))
regd = pd.DataFrame(rega, columns=cols, index=data.columns)
regd
```

regression analysis

reg = np.linalg.lstsq(df[cols], df[sym], rcond=-1)[0]

	lag_1	lag_2	lag_3	lag_4	lag_5	lag_6	lag_7
AAPL.O	1.0106	-0.0592	0.0258	0.0535	-0.0172	0.0060	-0.0184
MSFT.O	0.8928	0.0112	0.1175	-0.0832	-0.0258	0.0567	0.0323
INTC.O	0.9519	0.0579	0.0490	-0.0772	-0.0373	0.0449	0.0112
AMZN.O	0.9799	-0.0134	0.0206	0.0007	0.0525	-0.0452	0.0056
GS.N	0.9806	0.0342	-0.0172	0.0042	-0.0387	0.0585	-0.0215
SPY	0.9692	0.0067	0.0228	-0.0244	-0.0237	0.0379	0.0121
.SPX	0.9672	0.0106	0.0219	-0.0252	-0.0318	0.0515	0.0063
.VIX	0.8823	0.0591	-0.0289	0.0284	-0.0256	0.0511	0.0306
EUR=	0.9859	0.0239	-0.0484	0.0508	-0.0217	0.0149	-0.0055
XAU=	0.9864	0.0069	0.0166	-0.0215	0.0044	0.0198	-0.0125
GDX	0.9765	0.0096	-0.0039	0.0223	-0.0364	0.0379	-0.0065
GLD	0.9766	0.0246	0.0060	-0.0142	-0.0047	0.0223	-0.0106

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Average optimal regression parameters for the lagged prices

regd.mean().plot(kind='bar', figsize=(10, 6))



Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Correlations between the lagged time series

	GLD	lag_1	lag_2	lag_3	lag_4	lag_5	lag_6	lag_7
GLD	1.0000	0.9972	0.9946	0.9920	0.9893	0.9867	0.9841	0.9815
lag_1	0.9972	1.0000	0.9972	0.9946	0.9920	0.9893	0.9867	0.9842
lag_2	0.9946	0.9972	1.0000	0.9972	0.9946	0.9920	0.9893	0.9867
lag_3	0.9920	0.9946	0.9972	1.0000	0.9972	0.9946	0.9920	0.9893
lag_4	0.9893	0.9920	0.9946	0.9972	1.0000	0.9972	0.9946	0.9920
lag_5	0.9867	0.9893	0.9920	0.9946	0.9972	1.0000	0.9972	0.9946
lag_6	0.9841	0.9867	0.9893	0.9920	0.9946	0.9972	1.0000	0.9972
lag_7	0.9815	0.9842	0.9867	0.9893	0.9920	0.9946	0.9972	1.0000

from statsmodels.tsa.stattools import adfuller
#Tests for stationarity using the Augmented Dickey-Fuller (ADF) test

adfuller(data[sym].dropna())

```
(-1.9488969577009954,
0.3094193074034718,
0,
2515,
{'1%': -3.4329527780962255,
'10%': -2.567382133955709,
'5%': -2.8626898965523724},
8446.683102944744)
```

Market Prediction Based on Returns Data

Statistical inefficiencies

 are given when a model is able to predict the direction of the future price movement with a certain edge (say, the prediction is correct in 55% or 60% of the cases)

Economic inefficiencies

 would only be given if the statistical inefficiencies can be exploited profitably through a trading strategy that takes into account, for example, transaction costs.

Market Prediction Based on Returns Data

- Create data sets with lagged log returns data
- The normalized lagged log returns data is also tested for stationarity (given)
- The features are tested for correlation (not correlated)
- Time-series-related data
 - weak form market efficiency

rets = np.log(data / data.shift(1)) rets.dropna(inplace=True) rets

log returns

	AAPL.O	MSFT.O	INTC.O	AMZN.O	GS.N	SPY	.SPX	.vix	EUR=	XAU=	GDX	GLD
Date												
2010- 01-05	0.0017	0.0003	-0.0005	0.0059	0.0175	2.6436e- 03	3.1108e- 03	-0.0350	-2.9883e- 03	-0.0012	0.0096	-0.0009
2010- 01-06	-0.0160	-0.0062	-0.0034	-0.0183	-0.0107	7.0379e- 04	5.4538e- 04	-0.0099	3.0577e- 03	0.0176	0.0240	0.0164
2010- 01-07	-0.0019	-0.0104	-0.0097	-0.0172	0.0194	4.2124e- 03	3.9933e- 03	-0.0052	-6.5437e- 03	-0.0058	-0.0049	-0.0062
2010- 01-08	0.0066	0.0068	0.0111	0.0267	-0.0191	3.3223e- 03	2.8775e- 03	-0.0500	6.5437e- 03	0.0037	0.0150	0.0050
2010- 01-11	-0.0089	-0.0128	0.0057	-0.0244	-0.0159	1.3956e- 03	1.7452e- 03	-0.0325	6.9836e- 03	0.0144	0.0066	0.0132
2019- 12-24	0.0010	-0.0002	0.0030	-0.0021	0.0036	3.1131e- 05	-1.9543e- 04	0.0047	9.0200e- 05	0.0091	0.0315	0.0094
2019- 12-26	0.0196	0.0082	0.0069	0.0435	0.0056	5.3092e- 03	5.1151e- 03	-0.0016	8.1143e- 04	0.0083	0.0145	0.0078
2019- 12-27	-0.0004	0.0018	0.0043	0.0006	-0.0024	-2.4775e- 04	3.3951e- 05	0.0598	7.0945e- 03	-0.0006	-0.0072	-0.0004
2019- 12-30	0.0059	-0.0087	-0.0077	-0.0123	-0.0037	-5.5285e- 03	-5.7976e- 03	0.0985	1.9667e- 03	0.0031	0.0212	0.0021
2019- 12-31	0.0073	0.0007	0.0039	0.0005	0.0006	2.4264e- 03	2.9417e- 03	-0.0728	1.1604e- 03	0.0012	-0.0071	0.0019

2515 rows × 12 columns

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

```
dfs = {}
for sym in data:
    df, cols = add_lags(rets, sym, lags)
    mu, std = df[cols].mean(), df[cols].std()
    df[cols] = (df[cols] - mu) / std
    dfs[sym] = df
dfs[sym].head()
```

GLD lag_1 lag_2 lag_3 lag_4 lag_5 lag_6 lag_7

Date

2010-01-14	0.0044	0.9570	-2.1692	1.3386	0.4959	-0.6434	1.6613	-0.1028
2010-01-15	-0.0105	0.4379	0.9571	-2.1689	1.3388	0.4966	-0.6436	1.6614
2010-01-19	0.0059	-1.0842	0.4385	0.9562	-2.1690	1.3395	0.4958	-0.6435
2010-01-20	-0.0234	0.5967	-1.0823	0.4378	0.9564	-2.1686	1.3383	0.4958
2010-01-21	-0.0145	-2.4045	0.5971	-1.0825	0.4379	0.9571	-2.1680	1.3384

Augmented Dickey-Fuller (ADF) Tests for stationarity of the time series data

adfuller(dfs[sym]['lag_1'])

(-51.568251505825536, 0.0, 0, 2507, {'1%': -3.4329610922579095, '10%': -2.567384088736619, '5%': -2.8626935681060375}, 7017.165474260225)

Shows the correlation data for the features

dfs[sym].corr()

	GLD	lag_1	lag_2	lag_3	lag_4	lag_5	lag_6	lag_7
GLD	1.0000	-0.0297	0.0003	1.2635e-02	-0.0026	-5.9392e-03	0.0099	-0.0013
lag_1	-0.0297	1.0000	-0.0305	8.1418e-04	0.0128	-2.8765e-03	-0.0053	0.0098
lag_2	0.0003	-0.0305	1.0000	-3.1617e-02	0.0003	1.3234e-02	-0.0043	-0.0052
lag_3	0.0126	0.0008	-0.0316	1.0000e+00	-0.0313	-6.8542e-06	0.0141	-0.0044
lag_4	-0.0026	0.0128	0.0003	-3.1329e-02	1.0000	-3.1761e-02	0.0002	0.0141
lag_5	-0.0059	-0.0029	0.0132	-6.8542e-06	-0.0318	1.0000e+00	-0.0323	0.0002
lag_6	0.0099	-0.0053	-0.0043	1.4115e-02	0.0002	-3.2289e-02	1.0000	-0.0324
lag_7	-0.0013	0.0098	-0.0052	-4.3869e-03	0.0141	2.1707e-04	-0.0324	1.0000

OLS Regression

from sklearn.metrics import accuracy score

```
%%time
for sym in data:
    df = dfs[sym]
    reg = np.linalg.lstsq(df[cols], df[sym], rcond=-1)[0]
    pred = np.dot(df[cols], reg)
    acc = accuracy_score(np.sign(df[sym]), np.sign(pred))
    print(f'OLS | {sym:10s} | acc={acc:.4f}')
```

OLS Regression Accuracy

- OLS | AAPL.O | acc=0.5056
- OLS | MSFT.O | acc=0.5088
- OLS | INTC.O | acc=0.5
 - OLS | AMZN.O
 - OLS | GS.N
- OLS | SPY
- OLS | .SPX
- OLS | .VIX
- OLS | EUR=
- OLS | XAU=

GLD

OLS | GDX

OLS

- | acc=0.5088| acc=0.5040
 - acc=0.5048
- | acc=0.5080
- | acc=0.5080
- | acc=0.5167
- acc=0.5291
- acc=0.4984
- acc=0.5207
- acc=0.5307
- | acc=0.5072

from sklearn.neural network import MLPRegressor

```
%%time
for sym in data.columns:
  df = dfs[sym]
  model = MLPRegressor(hidden layer sizes=[512],
                    random state=100,
                    max iter=1000,
                    early stopping=True,
                    validation fraction=0.15,
                    shuffle=False)
  model.fit(df[cols].values, df[sym].values)
  pred = model.predict(df[cols].values)
  acc = accuracy score(np.sign(df[sym].values),
  np.sign(pred))
  print(f'MLP | {sym:10s} | acc={acc:.4f}')
```

Scikit-learn MLPRegressor Accuracy

MLP	AAPL.O	acc=0.6005

MLP	MSFT.O	acc=0.5853
-----	--------	------------

MLP	INTC.O	acc=0.5766
-----	--------	------------

- AMZN.O MLP
- MLP GS.N
- SPY MLP
- MLP .SPX

XAU=

GDX

GLD

- MLP .VIX
- MLP EUR=

MLP

MLP

MLP

- acc=0.5510 acc=0.6527 acc=0.5419 acc=0.5399 acc=0.6579 acc=0.5642 acc=0.5522 acc=0.6029
- acc=0.5259

```
import tensorflow as tf
from keras.layers import Dense
from keras.models import Sequential
np.random.seed(100)
tf.random.set seed(100)
def create model(problem='regression'):
  model = Sequential()
  model.add(Dense(512, input dim=len(cols), activation='relu'))
  if problem == 'regression':
     model.add(Dense(1, activation='linear'))
     model.compile(loss='mse', optimizer='adam')
  else:
     model.add(Dense(1, activation='sigmoid'))
     model.compile(loss='binary crossentropy', optimizer='adam')
  return model
```

```
%%time
for sym in data.columns[:]:
    df = dfs[sym]
    model = create_model()
    model.fit(df[cols], df[sym], epochs=25, verbose=False)
    pred = model.predict(df[cols])
    acc = accuracy_score(np.sign(df[sym]), np.sign(pred))
    print(f'DNN | {sym:10s} | acc={acc:.4f}')
```

TF Keras DNN Accuracy

DNN	AAPL.O	acc=0.6069
DNN	MSFT.O	acc=0.6260
DNN	INTC.O	acc=0.6344
DNN	AMZN.O	acc=0.6316
DNN	GS.N	acc=0.6045
DNN	SPY	acc=0.5610
DNN	I.SPX	acc=0.5435
DNN	I .VIX	acc=0.6096
DNN	EUR=	acc=0.5817
DNN	XAU=	acc=0.6017
DNN	GDX	acc=0.6164
DNN	GLD	acc=0.5973

Train Data (0.8): In-Sample Test Data (0.2): Out-of-Sample

split = int(len(dfs[sym]) * 0.8)

```
%%time
for sym in data.columns:
    df = dfs[sym]
    train = df.iloc[:split]
    reg = np.linalg.lstsq(train[cols], train[sym], rcond=-1)[0]
    test = df.iloc[split:]
    pred = np.dot(test[cols], reg)
    acc = accuracy_score(np.sign(test[sym]), np.sign(pred))
    print(f'OLS | {sym:10s} | acc={acc:.4f}')
```

OLS Out-of-Sample Accuracy

OLS	AAPL.O	I	acc=0.5219
OLS	MSFT.O		acc=0.4960
OLS	INTC.O	l	acc=0.5418
OLS	AMZN.O	l	acc=0.4841
OLS	GS.N	I	acc=0.4980
OLS	SPY	I	acc=0.5020
OLS	.SPX	I	acc=0.5120
OLS	.VIX	I	acc=0.5458
OLS	EUR=		acc=0.4482
OLS	XAU=	I	acc=0.5299
OLS	GDX	I	acc=0.5159
OLS	GLD	I	acc=0.5100

```
%%time
for sym in data.columns:
  df = dfs[sym]
  train = df.iloc[:split]
  model = MLPRegressor(hidden layer sizes=[512],
                   random state=100,
                   max iter=1000,
                   early stopping=True,
                   validation fraction=0.15,
                   shuffle=False)
  model.fit(train[cols].values, train[sym].values)
  test = df.iloc[split:]
  pred = model.predict(test[cols].values)
  acc = accuracy score(np.sign(test[sym].values), np.sign(pred))
  print(f'MLP | {sym:10s} | acc={acc:.4f}')
```

MLP Out-of-Sample Accuracy

- acc=0.4920 MLP AAPL.O
- acc=0.5279 MLP MSFT.O
- MLP INTC.O
- AMZN.O MLP
- MLP GS.N
- MLP SPY
- MLP .SPX
- MLP .VIX
- EUR= MLP
- MLP
- MLP GDX

MLP

- XAU =

GLD

- acc=0.5279
 - acc=0.4641
 - acc=0.5040
 - acc=0.5259
 - acc=0.5478
 - acc=0.5279
 - acc=0.4980
 - acc=0.5239
 - acc=0.4880
- acc=0.5000

```
%%time
for sym in data.columns:
  df = dfs[sym]
  train = df.iloc[:split]
  model = create model()
  model.fit(train[cols], train[sym], epochs=50,
  verbose=False)
  test = df.iloc[split:]
  pred = model.predict(test[cols])
  acc = accuracy score(np.sign(test[sym]), np.sign(pred))
  print(f'DNN | {sym:10s} | acc={acc:.4f}')
```

DNN Out-of-Sample Accuracy

DNN	AAPL.O	acc=0.4701
-----	--------	------------

- DNN | MSFT.O | acc=0.4960
- DNN | INTC.O | acc=0.5040
- DNN | AMZN.O | acc=0.4920
- DNN | GS.N | acc=0.5538
- DNN | SPY | acc=0.5299
- DNN | .SPX | acc=0.5458
- DNN | .VIX | acc=0.5020
- DNNEUR=acc=DNNXAU=acc=
- DNN | GDX

GLD

DNN

- | acc=0.5100
 | acc=0.4940
 | acc=0.4661
- | acc=0.4880

Market Prediction with More Features

- In trading, there is a long tradition of using technical indicators to generate, based on observed patterns, buy or sell signals.
- Such technical indicators, basically of any kind, can also be used as features for the training of neural networks.
- SMA, rolling minimum and maximum values, momentum, and rolling volatility as features

url = 'http://hilpisch.com/aiif eikon eod data.csv'

```
data = pd.read_csv(url, index_col=0, parse_dates=True).dropna()
data
```

	AAPL.O	MSFT.0	INTC.O	AMZN.O	GS.N	SPY	.SPX	.vix	EUR=	XAU=	GDX	GLD
Date												
2010-01-04	30.5728	30.950	20.88	133.90	173.08	113.33	1132.99	20.04	1.4411	1120.0000	47.71	109.80
2010-01-05	30.6257	30.960	20.87	134.69	176.14	113.63	1136.52	19.35	1.4368	1118.6500	48.17	109.70
2010-01-06	30.1385	30.770	20.80	132.25	174.26	113.71	1137.14	19.16	1.4412	1138.5000	49.34	111.51
2010-01-07	30.0828	30.452	20.60	130.00	177.67	114.19	1141.69	19.06	1.4318	1131.9000	49.10	110.82
2010-01-08	30.2828	30.660	20.83	133.52	174.31	114.57	1144.98	18.13	1.4412	1136.1000	49.84	111.37
2019-12-24	284.2700	157.380	59.41	1789.21	229.91	321.23	3223.38	12.67	1.1087	1498.8100	28.66	141.27
2019-12-26	289.9100	158.670	59.82	1868.77	231.21	322.94	3239.91	12.65	1.1096	1511.2979	29.08	142.38
2019-12-27	289.8000	158.960	60.08	1869.80	230.66	322.86	3240.02	13.43	1.1175	1510.4167	28.87	142.33
2019-12-30	291.5200	157.590	59.62	1846.89	229.80	321.08	3221.29	14.82	1.1197	1515.1230	29.49	142.63
2019-12-31	293.6500	157.700	59.85	1847.84	229.93	321.86	3230.78	13.78	1.1210	1517.0100	29.28	142.90
0510	0											

2516 rows × 12 columns

```
def add lags(data, ric, lags, window=50):
   cols = []
   df = pd.DataFrame(data[ric])
   df.dropna(inplace=True)
   df['r'] = np.log(df / df.shift())
   df['sma'] = df[ric].rolling(window).mean()
   df['min'] = df[ric].rolling(window).min()
   df['max'] = df[ric].rolling(window).max()
   df['mom'] = df['r'].rolling(window).mean()
   df['vol'] = df['r'].rolling(window).std()
   df.dropna(inplace=True)
   df['d'] = np.where(df['r'] > 0, 1, 0)
   features = [ric, 'r', 'd', 'sma', 'min', 'max', 'mom', 'vol']
   for f in features:
      for lag in range(1, lags + 1):
         col = f'{f} lag {lag}'
         df[col] = df[f].shift(lag)
         cols.append(col)
   df.dropna(inplace=True)
   return df, cols
```

```
lags = 5
dfs = {}
for ric in data:
   df, cols = add_lags(data, ric, lags)
   dfs[ric] = df.dropna(), cols
```

len(cols)

40

from sklearn.neural network import MLPClassifier

```
%%time
for ric in data:
  model = MLPClassifier(hidden layer sizes=[512],
                    random state=100,
                    max iter=1000,
                    early stopping=True,
                    validation fraction=0.15,
                    shuffle=False)
  df, cols = dfs[ric]
  df[cols] = (df[cols] - df[cols].mean()) / df[cols].std()
  model.fit(df[cols].values, df['d'].values)
  pred = model.predict(df[cols].values)
  acc = accuracy score(df['d'].values, pred)
  print(f'IN-SAMPLE | {ric:7s} | acc={acc:.4f}')
```

MLP In-Sample Accuracy

- IN-SAMPLE | AAPL.O | acc=0.5510
- IN-SAMPLE | MSFT.O | acc=0.5376
- IN-SAMPLE | INTC.O | acc=0.5607
- IN-SAMPLE | AMZN.O | acc=0.5559
- IN-SAMPLE | GS.N | acc=0.5794
- IN-SAMPLE | SPY | acc=0.5729 IN-SAMPLE | .SPX | acc=0.5941
- IN-SAMPLE | .VIX | acc=0.6940
- IN-SAMPLE | EUR= | acc=0.5766 IN-SAMPLE | XAU= | acc=0.5672
- IN-SAMPLE | GDX | acc=0.5847
- IN-SAMPLE | GLD | acc=0.5567

```
%%time
for ric in data:
    model = create_model('classification')
    df, cols = dfs[ric]
    df[cols] = (df[cols] - df[cols].mean()) / df[cols].std()
    model.fit(df[cols], df['d'], epochs=50, verbose=False)
    pred = np.where(model.predict(df[cols]) > 0.5, 1, 0)
    acc = accuracy_score(df['d'], pred)
    print(f'IN-SAMPLE | {ric:7s} | acc={acc:.4f}')
```

TF Keras DNN In-Sample Accuracy

IN-SAMPLE	AAPL.O	acc=0.7042

- IN-SAMPLE | MSFT.O | acc=0.6928
- IN-SAMPLE | INTC.O | acc=0.6969
- IN-SAMPLE | AMZN.O | a

GLD

- IN-SAMPLE | GS.N
- IN-SAMPLE | SPY
- IN-SAMPLE | .SPX
- IN-SAMPLE | .VIX
- IN-SAMPLE | EUR=
- IN-SAMPLE | XAU=
- IN-SAMPLE | GDX

IN-SAMPLE

-) | acc=0.6969) | acc=0.6713
- | acc=0.6924
- | acc=0.6806
- | acc=0.6920
 - | acc=0.7347
 - | acc=0.6766
 - | acc=0.7038
 - | acc=0.6806
 - | acc=0.6936

```
def train test model(model):
  for ric in data:
  df, cols = dfs[ric]
  split = int(len(df) * 0.85)
  train = df.iloc[:split].copy()
  mu, std = train[cols].mean(), train[cols].std()
  train[cols] = (train[cols] - mu) / std
  model.fit(train[cols].values, train['d'].values)
  test = df.iloc[split:].copy()
  test[cols] = (test[cols] - mu) / std
  pred = model.predict(test[cols].values)
  acc = accuracy score(test['d'].values, pred)
  print(f'OUT-OF-SAMPLE | {ric:7s} | acc={acc:.4f}')
```

train_test_model(model_mlp)

train_test_model(model_mlp)

OUT-OF-SAMPLE		AAPL.O	acc=0.4432
OUT-OF-SAMPLE	I	MSFT.O	acc=0.4595
OUT-OF-SAMPLE		INTC.O	acc=0.5000
OUT-OF-SAMPLE	I	AMZN.O	acc=0.5270
OUT-OF-SAMPLE	I	GS.N	acc=0.4838
OUT-OF-SAMPLE		SPY	acc=0.4811
OUT-OF-SAMPLE	I	.SPX	acc=0.5027
OUT-OF-SAMPLE		.VIX	acc=0.5676
OUT-OF-SAMPLE	I	EUR=	acc=0.4649
OUT-OF-SAMPLE		XAU=	acc=0.5514
OUT-OF-SAMPLE		GDX	acc=0.5162
OUT-OF-SAMPLE		GLD	acc=0.4946

from sklearn.ensemble import BaggingClassifier

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

OUT-OF-SAMPLE	AAPL.O	acc=0.5000
OUT-OF-SAMPLE	MSFT.O	acc=0.5703
OUT-OF-SAMPLE	INTC.O	acc=0.5054
OUT-OF-SAMPLE	AMZN.O	acc=0.5270
OUT-OF-SAMPLE	GS.N	acc=0.5135
OUT-OF-SAMPLE	SPY	acc=0.5568
OUT-OF-SAMPLE	.SPX	acc=0.5514
OUT-OF-SAMPLE	.VIX	acc=0.5432
OUT-OF-SAMPLE	EUR=	acc=0.5054
OUT-OF-SAMPLE	XAU=	acc=0.5351
OUT-OF-SAMPLE	GDX	acc=0.5054
OUT-OF-SAMPLE	GLD	acc=0.5189

train_test_model(model_bag)

Market Prediction Intraday

- Weakly efficient on an end-of-day basis
- Weakly inefficient intraday
 - Intraday Data
 - hourly data

Intraday Data

url = 'http://hilpisch.com/aiif_eikon_id_data.csv'
data = pd.read_csv(url, index_col=0, parse_dates=True) # .dropna()
data.tail()

	AAPL.O	MSFT.0	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	EUR=	XAU=	GDX	GLD
Date												
2019-12-31 20:00:00	292.36	157.2845	59.575	1845.22	228.92	320.94	3219.75	14.16	1.1215	1519.6451	29.40	143.12
2019-12-31 21:00:00	293.37	157.4900	59.820	1846.95	229.89	321.89	3230.56	13.92	1.1216	1517.3600	29.29	142.93
2019-12-31 22:00:00	293.82	157.9000	59.990	1850.20	229.93	322.39	3230.78	13.78	1.1210	1517.0100	29.30	142.90
2019-12-31 23:00:00	293.75	157.8300	59.910	1851.00	NaN	322.22	NaN	NaN	1.1211	1516.8900	29.40	142.88
2020-01-01 00:00:00	293.81	157.8800	59.870	1850.10	NaN	322.32	NaN	NaN	1.1211	NaN	29.34	143.00

```
lags = 5
dfs = {}
for ric in data:
    df, cols = add_lags(data, ric, lags)
    dfs[ric] = df, cols
```

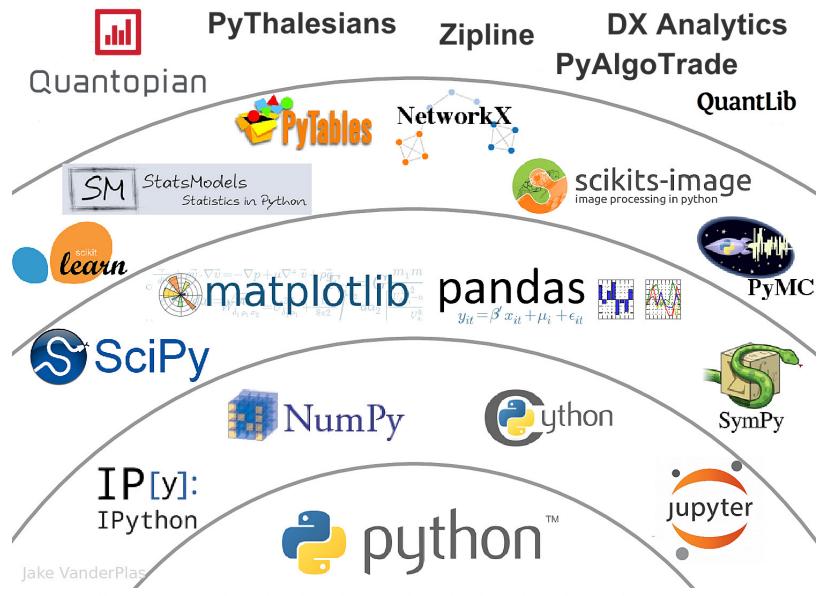
train_test_model(model_mlp)

OUT-OF-SAMPLE	AAPL.O		acc=0.5420
OUT-OF-SAMPLE	MSFT.O	I	acc=0.4930
OUT-OF-SAMPLE	INTC.O	I	acc=0.5549
OUT-OF-SAMPLE	AMZN.O		acc=0.4709
OUT-OF-SAMPLE	GS.N		acc=0.5184
OUT-OF-SAMPLE	SPY	I	acc=0.4860
OUT-OF-SAMPLE	. SPX	I	acc=0.5019
OUT-OF-SAMPLE	.VIX	I	acc=0.4885
OUT-OF-SAMPLE	EUR=		acc=0.5130
OUT-OF-SAMPLE	XAU=		acc=0.4824
OUT-OF-SAMPLE	GDX		acc=0.4765
OUT-OF-SAMPLE	GLD		acc=0.5455

train_test_model(model_bag)

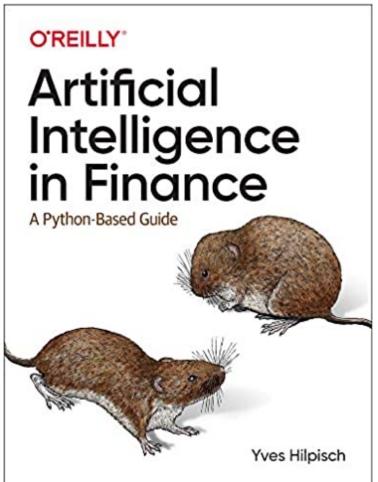
OUT-OF-SAMPLE	AAPL.O	acc=0.5660
OUT-OF-SAMPLE	MSFT.O	acc=0.5551
OUT-OF-SAMPLE	INTC.O	acc=0.5072
OUT-OF-SAMPLE	AMZN.O	acc=0.4830
OUT-OF-SAMPLE	GS.N	acc=0.5020
OUT-OF-SAMPLE	SPY	acc=0.4680
OUT-OF-SAMPLE	.SPX	acc=0.4677
OUT-OF-SAMPLE	.VIX	acc=0.5161
OUT-OF-SAMPLE	EUR=	acc=0.5242
OUT-OF-SAMPLE	XAU=	acc=0.5229
OUT-OF-SAMPLE	GDX	acc=0.5107
OUT-OF-SAMPLE	GLD	acc=0.5475

The Quant Finance PyData Stack



Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#/5

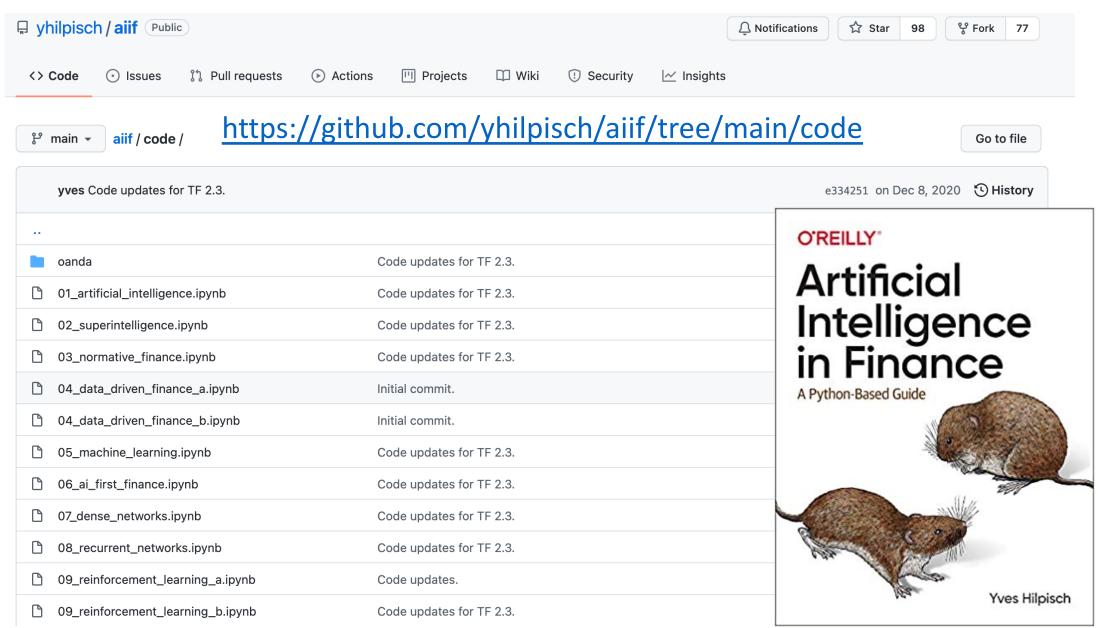
Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly



Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly

Jyhilpisch / aiif Public	https://github.co	om/yhilpisch/aiif	Notifications	98 🥰 Fork 77	
<> Code 💿 Issues 👔	Pull requests () Actions () Projects	🕮 Wiki 🔃 Security 🗠 Insights			
양 main ▾ 양 1 branch	장 0 tags	Go to file Code -	About		
yves Code updates for TF	2.3.	e334251 on Dec 8, 2020 🕚 4 commits	Jupyter Notebooks and Artificial Intelligence in		
code	Code updates for TF 2.3.	11 months ago	Yves Hilpisch.	114	
🗅 .gitignore	Code updates for TF 2.3.	11 months ago	home.tpq.io/books/a Readme	IIT	
LICENSE.txt	Code updates.	11 months ago	ム View license	O'REILLY'	
B README.md	Code updates.	11 months ago		Artificial	
E README.md			Releases	Intelligend	ce
			No releases published	In Finance	;
Artificial Inte	lligence in Finance				
	•-		Packages		
About this Repos	sitory		No packages published		
This repository provides Finance book published	Python code and Jupyter Notebooks accom by <mark>O'Reilly.</mark>	panying the Artificial Intelligence in	Languages	HAR CONTRACTOR	Yves Hilp
O'REILLY °			 Jupyter Notebook 97.4% 	6 ● Python 2.6%	

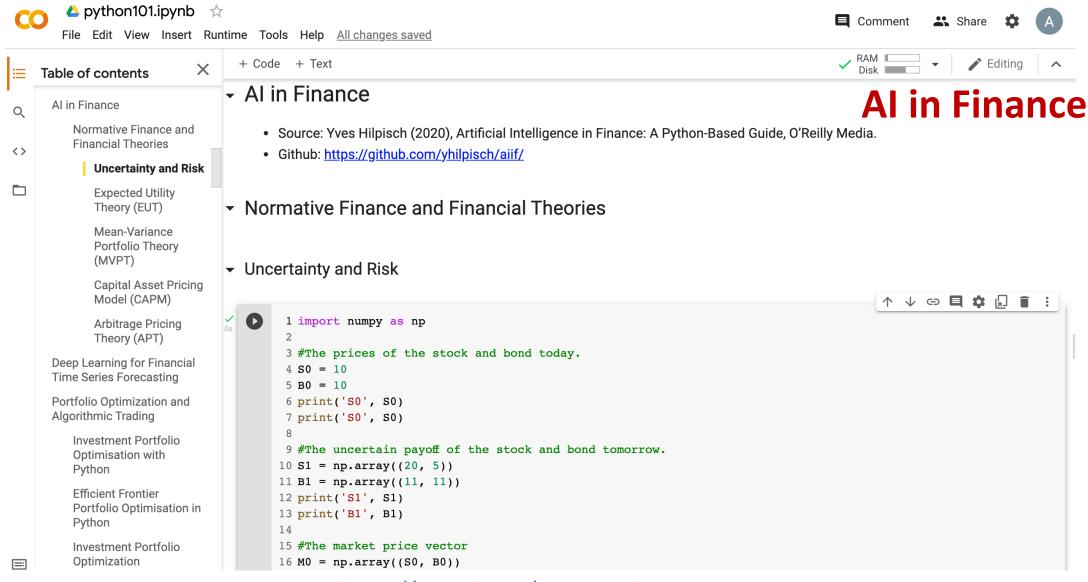
Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly



https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

co python101.ipynb - Colaboratory × +		
C https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3		☆ 🖸 🕠
CO A python101.ipynb ☆ File Edit View Insert Runtime Tools Help		SHARE A
■ CODE ■ TEXT	✓ CONNECTED ▼	EDITING
<pre> 1 # Future Value 2 pv = 100 3 r = 0.1 4 n = 7 5 fv = pv * ((1 + (r)) ** n) 6 print(round(fv, 2)) </pre>		
[→ 194.87		
<pre>[11] 1 amount = 100 2 interest = 10 #10% = 0.01 * 10 3 years = 7 4 5 future_value = amount * ((1 + (0.01 * interest)) ** years) 6 print(round(future_value, 2))</pre>		
[→ 194.87		
<pre>[12] 1 # Python Function def 2 def getfv(pv, r, n): 3 fv = pv * ((1 + (r)) ** n) 4 return fv 5 fv = getfv(100, 0.1, 7) 6 print(round(fv, 2))</pre>		
[→ 194.87		
<pre>[13] 1 # Python if else 2 score = 80 3 if score >=60 : 4 print("Pass") 5 else: 6 print("Fail")</pre>		
[→ Pass		

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

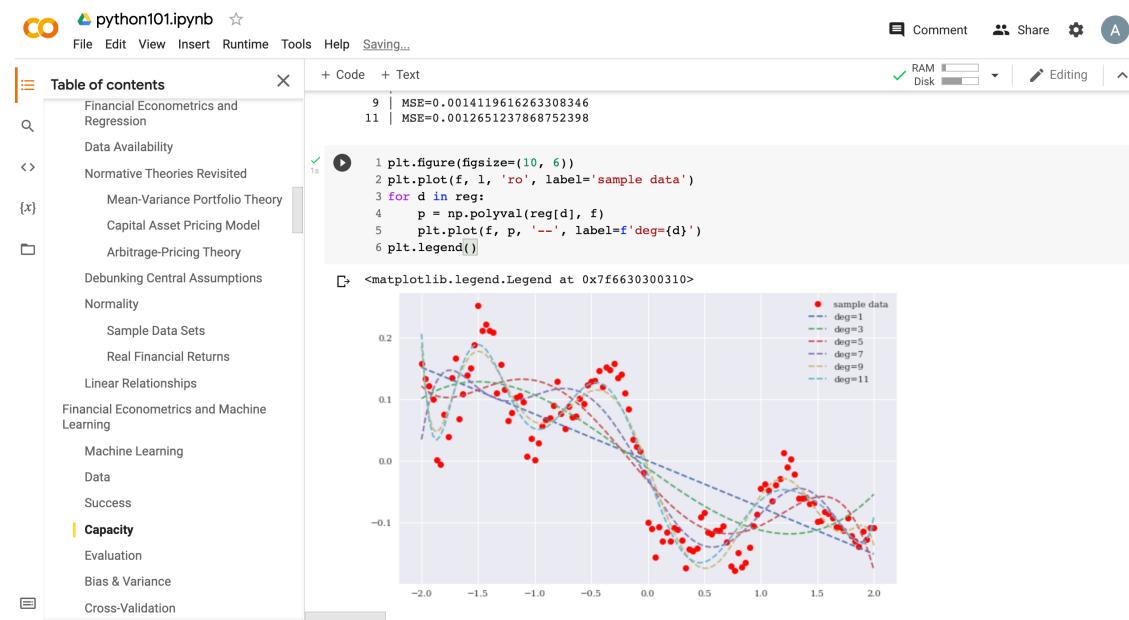


ll ≤ python101.ipynb d 🔲 Comment 🛛 🚢 Share 1 File Edit View Insert Runtime Tools Help All changes saved V RAM Disk + Code + Text Editing ~ X Table of contents ≣ Data Driven Finance Data Driven Finance Q **Data Driven Finance Financial Econometrics and** Regression $\langle \rangle$ Financial Econometrics and Regression Data Availability $\{X\}$ Normative Theories Revisited Mean-Variance Portfolio Theory / [18] 1 import numpy as np 2 Capital Asset Pricing Model $3 \det f(x)$: Arbitrage-Pricing Theory return 2 + 1 / 2 * x 5 **Debunking Central Assumptions** 6 x = np.arange(-4, 5)Normality 7 x Sample Data Sets array([-4, -3, -2, -1, 0, 1, 2, 3, 4])**Real Financial Returns** Linear Relationships 1 y = f(x)2 y Deep Learning for Financial Time Series Forecasting E→ array([0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00]) Portfolio Optimization and Algorithmic Trading $1 \text{ print}(\mathbf{x}', \mathbf{x})$ Investment Portfolio Optimisation 2 with Python 3 print('y', y) Efficient Frontier Portfolio Optimisation in Python 5 beta = np.cov(x, y, ddof=0)[0, 1] / x.var()6 print('beta', beta) =: Investment Portfolio Optimization

CO la python101.ipynb 🕁 File Edit View Insert Runtime Tool	Help <u>All changes saved</u>	Comment 👫 Share 🌣 🛕
\equiv Table of contents $ imes$	+ Code + Text	✓ RAM Disk ► Cditing ∧
C Financial Econometrics and Regression Data Availability	Machine Learning	↑↓ © ■ / ₪ i :
<> Normative Theories Revisited {x} Mean-Variance Portfolio Theory Capital Asset Pricing Model	- Data Mac	hine Learning
 Arbitrage-Pricing Theory Debunking Central Assumptions Normality Sample Data Sets Real Financial Returns Linear Relationships Financial Econometrics and Machine Learning 	<pre> 1 import numpy as np 2 import pandas as pd 3 from pylab import plt, mpl 4 np.random.seed(100) 5 plt.style.use('seaborn') 6 mpl.rcParams['savefig.dpi'] = 300 7 mpl.rcParams['font.family'] = 'serif' 8 9 url = 'http://hilpisch.com/aiif_eikon_eod_data.csv' 10 11 raw = pd.read_csv(url, index_col=0, parse_dates=True)['EUR='] 12 raw.head() </pre>	
Machine Learning Data Data Success Capacity Evaluation Bias & Variance Cross-Validation	<pre> Date 2010-01-01 1.4323 2010-01-04 1.4411 2010-01-05 1.4368 2010-01-06 1.4412 2010-01-07 1.4318 Name: EUR=, dtype: float64</pre>	

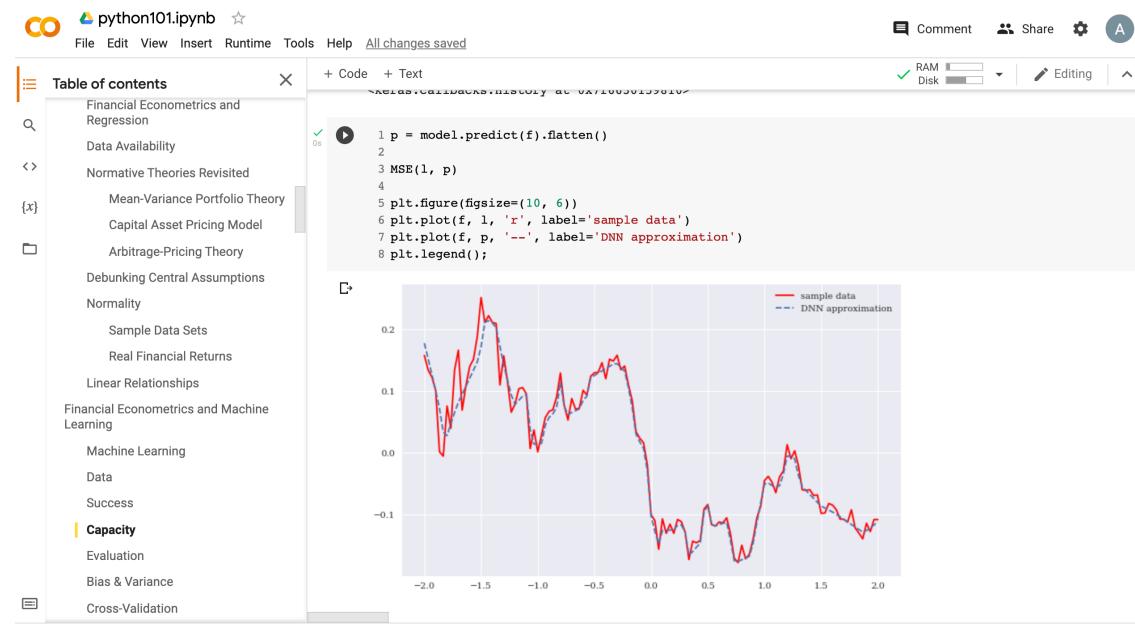
C	A python101.ipynb 🕁 File Edit View Insert Runtime T	ools	Help <u>Savir</u>	<u>ng</u>	E	Comment	🚓 Share 🌣 🗛
≣	Table of contents		+ Code +	Text	~	RAM Disk	► Editing ∧
Q	Financial Econometrics and Regression	•	Succe	SS		$\uparrow \downarrow$	☞ 🔲 🖌 💭 📋 🗄
	Data Availability						
<>	Normative Theories Revisited	0s		<pre>def MSE(1, p):</pre>			
{ <i>x</i> }	Mean-Variance Portfolio Theory		2	return np.mean((l - p) ** 2)			
	Capital Asset Pricing Model		[9] 1:	reg = np.polyfit(f, l, deg=5)			
	Arbitrage-Pricing Theory	Os		reg			
	Debunking Central Assumptions		arra	ay([-0.01910626, -0.0147182 , 0.10990388, 0.06007211, -0.3	20833598,		
	Normality			-0.03275423])			
	Sample Data Sets						
	Real Financial Returns	Os	[10] 1] 2]	<pre>p = np.polyval(reg, f) p</pre>			
	Linear Relationships			ay([0.12088427, 0.11526131, 0.11080193, 0.10739461, 0.1	10403296		
	Financial Econometrics and Machine Learning		allo	0.10331514, 0.10244475, 0.10222973, 0.10258281, 0. 0.10466683, 0.10624564, 0.1080881, 0.1101288, 0.	10342126, 11230643,		
	Machine Learning			0.11456366, 0.11684709, 0.11910711, 0.12129784, 0. 0.12530587, 0.12704913, 0.12857481, 0.1298542, 0.	123377 , 1308617 ,		
	Data			0.1315748, 0.13197395, 0.13204243, 0.13176634, 0.1			
	Success			0.13013803, 0.12877097, 0.12702948, 0.12491207, 0. 0.11955452, 0.11632208, 0.11272891, 0.10878364, 0.	1044966 ,		
	Capacity			0.09987977, 0.09494668, 0.0897123, 0.08419296, 0.0 0.07237098, 0.06610693, 0.05963494, 0.05297671, 0.0			
	Evaluation			0.03919218, 0.03211286, 0.02494106, 0.01770149, 0.0 0.00311939, -0.00417251, -0.0114311, -0.01863101, -0.0			
	Bias & Variance			-0.03275423, -0.03962796, -0.04634406, -0.05287887, -0.	05920936,		
=	Cross-Validation			-0.06531322, -0.07116897, -0.07675602, -0.08205478, -0.	08704677,		

C	> 🔺 python101.ipynb 🕁 File Edit View Insert Runtime To	ools	Help	All changes saved	I	Comment	🕌 Shar	e 🌣	A
⊫	Table of contents ×		+ Code	e + Text		✓ RAM Disk	-	Editing	^
Q	Financial Econometrics and Regression	•	Cap	pacity		$\uparrow \downarrow$	c) 🔲 🖌	r 🗋 Í	
<>	Data Availability Normative Theories Revisited	~	[21]	1 reg = {}					
{ <i>x</i> }	Mean-Variance Portfolio Theory Capital Asset Pricing Model	0s	5	<pre>2 for d in range(1, 12, 2): 3 reg[d] = np.polyfit(f, l, deg=d)</pre>					
	Arbitrage-Pricing Theory			<pre>4</pre>					
	Debunking Central Assumptions Normality			1 MSE=0.005322474034260403 3 MSE=0.004353110724143185					
	Sample Data Sets Real Financial Returns			5 MSE=0.003416642295737103 7 MSE=0.002738950177235401					
	Linear Relationships			9 MSE=0.0014119616263308346 11 MSE=0.0012651237868752398					
	Financial Econometrics and Machine Learning	1 s		<pre>1 plt.figure(figsize=(10, 6)) 2 plt.plot(f, l, 'ro', label='sample data')</pre>					
	Machine Learning			<pre>2 pit.pict(1, 1, 10, 1aber Sample data) 3 for d in reg: 4</pre>					
	Data Success			<pre>5 plt.plot(f, p, '', label=f'deg={d}') 6 plt.legend()</pre>					
	Capacity		Ŀ	<matplotlib.legend.legend 0x7f6630300310="" at=""></matplotlib.legend.legend>					
	Evaluation		_	•	 sample data 				
	Bias & Variance			0.2	deg=1 deg=3 deg=5				
=:	Cross-Validation			https://tinyurl.com/aintpupython101					



<pre>def create_dnn_model(hl=1, hu=256):</pre>	Model: "sequential_1"		
<pre>''' Function to create Keras DNN model.</pre>	Layer (type)	Output Shape	Param #
Parameters	dense_2 (Dense)	(None, 256)	512
========	dense_3 (Dense)	(None, 256)	65792
hl: int number of hidden layers	dense_4 (Dense)	(None, 256)	65792
hu: int	dense_5 (Dense)	(None, 1)	257
<pre>number of hidden units (per layer) ''' model = Sequential() for in manage(bl);</pre>	Total params: 132,353 Trainable params: 132,3 Non-trainable params: 0		
<pre>for _ in range(hl): model.add(Dense(hu, activation='relu', model.add(Dense(1, activation='linear')) model.compile(loss='mse', optimizer='rmspr return model</pre>			

model.summary()





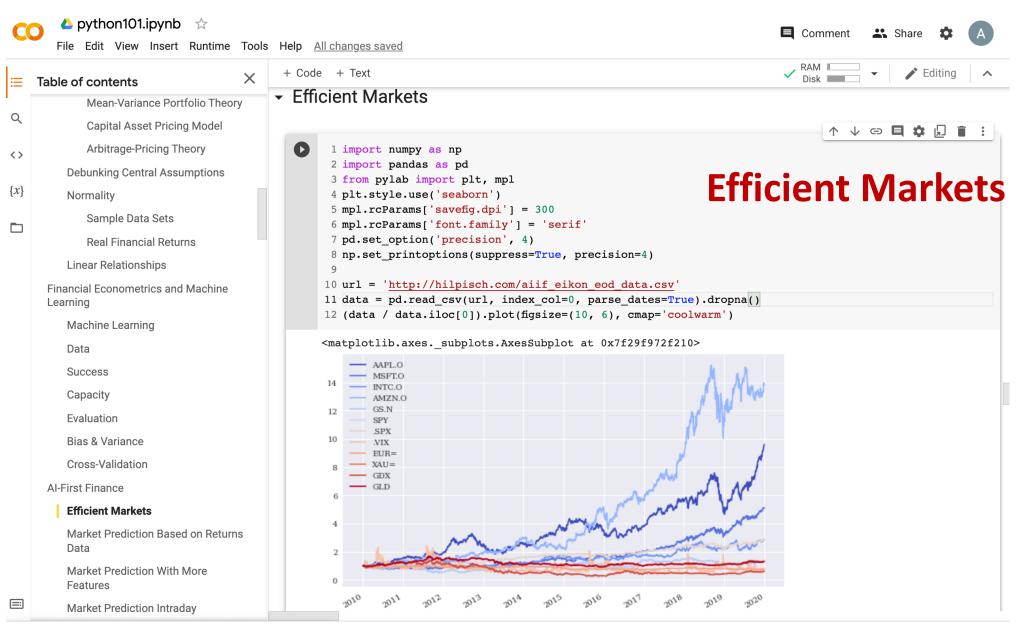


Table of conten	ts >	<	+ Code + Text									~	Disk	•	🖍 Editing	g ^	
Mean-Variance Portfolio Theory Capital Asset Pricing Model												<u> </u>	/ c) E		i :		
-	e-Pricing Theory entral Assumptions	v Os	0	2							et Prediction						
Sample	Data Sets				3 rets.dropna(inplace=True) 4 rets Racod								on Returns D				
) Real Fin	ancial Returns		C→		AAPL.O	MSFT.0	INTC.O	AMZN.O	GS.N	SPY	. SPX	.VIX	EUR=	XAU=	GDX	GLD	
Linear Relat	onships			Date													
Financial Econor Learning	metrics and Machine			2010- 01-05	0.0017	0.0003	-0.0005	0.0059	0.0175	2.6436e- 03	3.1108e- 03	-0.0350	-2.9883e- 03	-0.0012	0.0096	-0.0009	
Machine Lea	arning			2010-	-0.0160	-0.0062	-0.0034	-0.0183	-0.0107	7.0379e-	5.4538e-	-0.0099	3.0577e-	0.0176	0.0240	0.0164	
Data				01-06						04	04		03				
Success				2010- 01-07	-0.0019	-0.0104	-0.0097	-0.0172	0.0194	4.2124e- 03	3.9933e- 03	-0.0052	-6.5437e- 03	-0.0058	-0.0049	-0.0062	
Capacity Evaluation				2010- 01-08	0.0066	0.0068	0.0111	0.0267	-0.0191	3.3223e- 03	2.8775e- 03	-0.0500	6.5437e- 03	0.0037	0.0150	0.0050	
Bias & Varia Cross-Valida				2010- 01-11	-0.0089	-0.0128	0.0057	-0.0244	-0.0159	1.3956e- 03	1.7452e- 03	-0.0325	6.9836e- 03	0.0144	0.0066	0.0132	
AI-First Finance																	
Efficient Ma	kets			2019-	0.0010	-0.0002	0.0030	-0.0021	0.0036	3.1131e-	-1.9543e-	0.0047	9.0200e-	0.0091	0.0315	0.0094	
Market Pred Data	iction Based on Returns			12-24 2019-	0.0010	0.0002	0.0030	0.0435	0.0036	05 5.3092e-	04 5.1151e-	-0.0016	05 8.1143e-	0.0091	0.0315	0.0094	
	iction With More			12-26	0.0190	0.0002	0.0009	0.0435	0.0000	03	03	-0.0010	04	0.0003	0.0140	0.0078	
Features				2019- 12-27	-0.0004	0.0018	0.0043	0.0006	-0.0024	-2.4775e-	3.3951e- 05	0.0598	7.0945e- 03	-0.0006	-0.0072	-0.0004	

C	▶ ▲ python101.ipynb ☆ File Edit View Insert Runtime Tools He	elp <u>All changes sa</u>	ived								目 Con	nment 上	Share	\$
=	Table of contents × +	Code + Text									✓ RAM Disk	•		Editing ^
ζ	Mean-Variance Portfolio Theory Capital Asset Pricing Model	[] 1						N	lar	ke	t P	red	ict	ion
	Arbitrage-Pricing Theory Debunking Central Assumptions	Market Pred	liction \	With M	ore Fe	atures		W	vith	N	101		ea:	ture
}	Normality Sample Data Sets	2	http://h:						e).dropn	a()		1 V		
	Real Financial Returns Linear Relationships Financial Econometrics and Machine	4 <mark>data</mark>		MSFT.0		_	GS.N	SPY	.SPX	.vix	EUR=	XAU=	GDX	GLD
	Learning Machine Learning	Date 2010-01-04	30.5728	30.950	20.88	133.90	173.08	113.33	1132.99	20.04	1.4411	1120.0000	47.71	109.80
	Data Success	2010-01-05 2010-01-06	30.6257 30.1385	30.960 30.770	20.87 20.80	134.69 132.25	176.14 174.26	113.63 113.71	1136.52 1137.14		1.4368 1.4412	1118.6500 1138.5000	48.17 49.34	109.70 111.51
	Capacity Evaluation Bias & Variance	2010-01-07 2010-01-08	30.0828 30.2828	30.452 30.660	20.60 20.83	130.00 133.52	177.67 174.31		1141.69 1144.98		1.4318 1.4412	1131.9000 1136.1000	49.10 49.84	110.82 111.37
	Cross-Validation	 2019-12-24	 284.2700	 157.380	 59.41	 1789.21	 229.91	 321.23	 3223.38	 12.67	 1.1087	 1498.8100	 28.66	 141.27
	Efficient Markets Market Prediction Based on Returns	2019-12-26 2019-12-27		158.670 158.960	59.82 60.08	1868.77 1869.80	231.21 230.66	322.94 322.86	3239.91 3240.02		1.1096 1.1175	1511.2979 1510.4167	29.08 28.87	142.38 142.33
	Data Market Prediction With More Features	2019-12-30 2019-12-31		157.590 157.700	59.62 59.85	1846.89 1847.84	229.80 229.93	321.08 321.86	3221.29 3230.78		1.1197 1.1210	1515.1230 1517.0100	29.49 29.28	142.63 142.90
]	Market Prediction Intraday	2516 rows ×	12 columns											

Table of contents	× + C	+ Code + Text										✓ RAM → Editing ∧				
Mean-Variance Portfolio Theory Capital Asset Pricing Model Arbitrage-Pricing Theory Debunking Central Assumptions	′ - M •	2 data = pd.r	o://hilpi cead_csv(sch.com/a	aiif_eik	on_id_da	ta.csv	,				on ↓ ⇔ ∎		ra •		
Normality Sample Data Sets Real Financial Returns Linear Relationships	I.	3 data.tail() Date	AAPL.O	MSFT.0	INTC.0	AMZN.O	GS.N	SPY	. SPX	.vix	EUR=	XAU=	GDX	GLI		
Financial Econometrics and Machine Learning		2019-12-31 20:00:00	292.36	157.2845	59.575	1845.22	228.92	320.94	3219.75	14.16	1.1215	1519.6451	29.40	143.12		
Machine Learning		2019-12-31 21:00:00	293.37	157.4900	59.820	1846.95	229.89	321.89	3230.56	13.92	1.1216	1517.3600	29.29	142.93		
Data Success		2019-12-31 22:00:00	293.82	157.9000	59.990	1850.20	229.93	322.39	3230.78	13.78	1.1210	1517.0100	29.30	142.90		
Capacity Evaluation		2019-12-31 23:00:00	293.75	157.8300	59.910	1851.00	NaN	322.22	NaN	NaN	1.1211	1516.8900	29.40	142.88		
Bias & Variance		2020-01-01 00:00:00	293.81	157.8800	59.870	1850.10	NaN	322.32	NaN	NaN	1.1211	NaN	29.34	143.00		
Cross-Validation Al-First Finance Efficient Markets Market Prediction Based on Return Data Market Prediction With More	0		.core.fr 5529 en total 12	tries, 20 columns;	019-03-0	1 00:00:	00 to 2	2020-01	-01 00:0	0:00						
Features Market Prediction Intraday		0 AAPL.O 3 1 MSFT.O 3	384 non- 378 non-		Loat64 Loat64											

Summary

- Financial Econometrics
 - Financial Theories, OLS Regression
- Machine Learning
 - Learning, Evaluation, Bias and variance
 - Cross-validation
- Al-First Finance
 - Efficient Markets
 - Market Prediction Based on Returns Data
 - Market Prediction with More Features

References

- Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media, <u>https://github.com/yhilpisch/aiif</u>.
- Chris Brooks (2019), Introductory Econometrics for Finance, 4th Edition, Cambridge University Press
- Oliver Linton (2019), Financial Econometrics: Models and Methods, Cambridge University Press
- Tom Mitchell (1997), Machine Learning, McGraw-Hill.
- Max Tegmark (2017), Life 3.0: Being human in the age of artificial intelligence. Vintage.
- Ajay Agrawal, Joshua Gans, and Avi Goldfarb (2018). Prediction machines: the simple economics of artificial intelligence. Harvard Business Press.
- Eugene F. Fama (1995), "Random walks in stock market prices." Financial Analysts Journal 51, no. 1, 75-80.
- Ruey S. Tsay (2005), Analysis of financial time series, Wiley.
- Min-Yuh Day (2023), Python 101, <u>https://tinyurl.com/aintpupython101</u>