
Artificial Intelligence in Finance and Quantitative Analysis

1

Min-Yuh Day, Ph.D,
Associate Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1121AIFQA06
MBA, IM, NTPU (M5276) (Fall 2023)

 Tue 2, 3, 4 (9:10-12:00) (B3F17)

2023-11-07; 2023-11--14

https://meet.google.com/
paj-zhhj-mya

Financial Econometrics
and AI-First Finance

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/paj-zhhj-mya
https://meet.google.com/paj-zhhj-mya

Syllabus
Week Date Subject/Topics

1 2023/09/12 Introduction to Artificial Intelligence in Finance and
 Quantitative Analysis

2 2023/09/19 AI in FinTech: Metaverse, Web3, DeFi, NFT,
 Financial Services Innovation and Applications

3 2023/09/26 Investing Psychology and Behavioral Finance

4 2023/10/03 Event Studies in Finance

5 2023/10/10 National Day (Day off)

6 2023/10/17 Case Study on AI in Finance and Quantitative Analysis I

2

Syllabus
Week Date Subject/Topics

7 2023/10/24 Finance Theory and Data-Driven Finance

8 2023/10/31 Midterm Project Report

9 2023/11/07 Financial Econometrics

10 2023/11/14 AI-First Finance

11 2023/11/21 Industry Practices of AI in Finance and Quantitative
 Analysis

12 2023/11/28 Case Study on AI in Finance and Quantitative Analysis II

3

Syllabus
Week Date Subject/Topics

13 2023/12/05 Deep Learning in Finance;
 Reinforcement Learning in Finance

14 2023/12/12 Algorithmic Trading; Risk Management;
 Trading Bot and Event-Based Backtesting

15 2023/12/19 Final Project Report I

16 2023/12/26 Final Project Report II

17 2024/01/02 Self-study

18 2024/01/09 Self-study

4

Financial
Econometrics

and
AI-First Finance

5

Outline
• Financial Econometrics
• Financial Theories, OLS Regression
• Machine Learning
• Learning, Evaluation, Bias and variance
• Cross-validation
• AI-First Finance
• Efficient Markets
• Market Prediction Based on Returns Data
• Market Prediction with More Features

6Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Financial
Econometrics

7

Financial Econometrics
• Financial Theories
• OLS Regression

8Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Financial Econometrics
• The discipline at the intersection of

mathematics, statistics, and finance
that applies such methods to financial market data
is typically called financial econometrics.

9Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Mathematics Statistics

Finance
Financial

Econometrics

Financial Econometrics
(Chris Brooks, 2019)

• Financial econometrics
• the application of statistical techniques to problems in finance

• Financial econometrics can be useful for
testing theories in finance,
determining asset prices or returns,
testing hypotheses concerning the relationships between variables,
examining the effect on financial markets of changes in economic
conditions,
forecasting future values of financial variables and for financial
decision-making.

10Source: Chris Brooks (2019), Introductory Econometrics for Finance, 4th Edition, Cambridge University Press

Financial Econometrics
• [Financial] econometrics is the quantitative application

of statistical and mathematical models using [financial]
data to develop financial theories or test existing
hypotheses in finance and to forecast future trends
from historical data.
• It subjects real-world [financial] data to statistical trials

and then compares and contrasts the results against the
[financial] theory or theories being tested.

11Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Topics of Financial Econometrics
(Oliver Linton, 2019)

1. Econometric
2. Return Predictability and the Efficient Markets Hypothesis
3. Robust Tests and Tests of Nonlinear Predictability of Returns
4. Empirical Market Microstructure
5. Event Study Analysis
6. Portfolio Choice and Testing the Capital Asset Pricing Model
7. Multifactor Pricing Models

12Source: Oliver Linton (2019), Financial Econometrics: Models and Methods, Cambridge University Press

8. Present Value Relations
9. Intertemporal Equilibrium Pricing
10.Volatility
11.Continuous Time Processes
12.Yield Curve
13.Risk Management and Tail Estimation

13Source: Oliver Linton (2019), Financial Econometrics: Models and Methods, Cambridge University Press

Topics of Financial Econometrics
(Oliver Linton, 2019)

Applications of Financial Econometrics
(Chris Brooks, 2019)

1. Testing whether financial markets are weak-form
informationally efficient

2. Testing whether the capital asset pricing model (CAPM) or
arbitrage pricing theory (APT) represent superior models for the
determination of returns on risky assets

3. Measuring and forecasting the volatility of bond returns
4. Explaining the determinants of bond credit ratings used by the

ratings agencies
5. Modelling long-term relationships between prices and

exchange rates
14Source: Chris Brooks (2019), Introductory Econometrics for Finance, 4th Edition, Cambridge University Press

6. Determining the optimal hedge ratio for a spot position in oil
7. Testing technical trading rules to determine which makes the

most money
8. Testing the hypothesis that earnings or dividend

announcements have no effect on stock prices
9. Testing whether spot or futures markets react more rapidly to

news
10.Forecasting the correlation between the stock indices of two

countries
15Source: Chris Brooks (2019), Introductory Econometrics for Finance, 4th Edition, Cambridge University Press

Applications of Financial Econometrics
(Chris Brooks, 2019)

Machine Learning and Financial Econometrics

• ML and DL methods are able to
discover statistical inefficiencies and even
economic inefficiencies
that are not discoverable by
traditional econometric methods,
such as multivariate OLS regression.

16Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Normative Financial Theories
• Normative financial theories mostly rely on assumptions and

axioms in combination with deduction as the major
analytical method to arrive at their central results.
• Expected utility theory (EUT) assumes that agents have the same

utility function no matter what state of the world unfolds and
that they maximize expected utility under conditions of
uncertainty.

• Mean-variance portfolio (MVP) theory describes how investors
should invest under conditions of uncertainty assuming that only
the expected return and the expected volatility of a portfolio
over one period count.

17Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Normative Financial Theories
• The capital asset pricing model (CAPM) assumes that only the

nondiversifiable market risk explains the expected return and
the expected volatility of a stock over one period.

• Arbitrage pricing theory (APT) assumes that a number of
identifiable risk factors explains the expected return and the
expected volatility of a stock over time; admittedly,
compared to the other theories, the formulation of APT is
rather broad and allows for wide-ranging interpretations.

18Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Financial Econometrics and Regression
• One of the major tools in financial econometrics is

regression, in both its univariate and multivariate forms
• 𝒚 = 𝜶 + 𝜷	𝒙	
• 𝒚 = 𝜶 + 𝜷𝟏	𝒙𝟏 + 𝜷𝟐	𝒙𝟐
• 𝒚 = 𝜶 + 𝜷𝟏	𝒙𝟏 + 𝜷𝟐	𝒙𝟐 + 𝜷𝟑	𝒙𝟑

• Regression is also a central tool in statistical learning in
general

19Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

CAPM and APT
OLS regression

•Both the CAPM and the APT
relate the output variables
with the relevant input factors in linear fashion.
• From an econometric point of view,

both models are implemented based on
linear ordinary least-squares (OLS) regression.
•CAPM: univariate linear OLS regression
•APT: multivariate OLS regression

20Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Expected CAPM return versus beta
(including linear regression)

21Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Expected CAPM return versus beta
(including linear regression)

22Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Machine Learning

23

Machine Learning
• Learning
• Evaluation
• Bias and variance
• Cross-validation

24Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Artificial Intelligence
Machine Learning & Deep Learning

25Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

AI, ML, DL

26Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html

Artificial Intelligence (AI)

Machine Learning (ML)

Deep Learning (DL)
CNN

RNN LSTM GRU
GAN

Supervised
Learning

Unsupervised
Learning

Semi-supervised
Learning

Reinforcement
Learning

3 Machine Learning Algorithms

27Source: Enrico Galimberti, http://blogs.teradata.com/data-points/tree-machine-learning-algorithms/

Machine Learning (ML)

28Source: https://www.mactores.com/services/aws-big-data-machine-learning-cognitive-services/

29Source: O. Bustos and A. Pomares-Quimbaya (2020), "Stock Market Movement Forecast: A Systematic Review." Expert Systems with Applications (2020): 113464.

Stock Market Movement Forecast:
ML Phases of the stock market modeling

O. Bustos and A. Pomares-Quimbaya / Expert Systems With Applications 156 (2020) 113464 5

Fig. 2. Count of articles by publication year.

Fig. 3. Phases of the stock market modeling .

Fig. 4. Classifications of inputs.
reviewed use structured type inputs, for which processing tech-
niques already exist, and their importance has been extensively
studied. Most recent ones allow the use of unstructured informa-
tion, which is more difficult to process and to extract useful infor-
mation. Fig. 4 shows a proposed taxonomy for the inputs used to
forecast the stock market in the analyzed studies.
3.1. Structured inputs

The structured information refers to data groups with a prede-
fined skeleton, organized in tabular form, where the characteristics
or attributes can be described as columns of a table. That struc-
ture makes information more accessible to navigate, and simple or
complex searches can be done without further effort. Most arti-
cles use this type of information, which is usually open and ex-
posed through API programming interfaces. The most common is

the time series of historical stock prices, which can be used di-
rectly by different computational models.
3.1.1. Stock values

Given the technical analysis approach, stock prices reflect all the
information required to understand market behavior. In this way,
the important thing is to analyze the series of time correspond-
ing to the prices. Generally, this information is public and free and
can be downloaded from the pages of the stock markets (such as
Nasdaq Kazem, Sharifi, Hussain, Saberi, & Hussain (2013)), third
parties (such as Yahoo Finance Wen, Yang, Song, & Jia (2010)). Be-
sides, some companies like Bloomberg (Ding, Zhang, Liu, & Duan,
2015) provide paid services with more information related to stock
prices.

In some articles, daily stock information is used, which consists
of the opening price (OP), closing price (CP), the maximum (MAX)
and minimum price (MIN), and the volume (VOL) of transactions
performed Wang, Liu, Shang, and Wang (2018) Fischer and Krauss
(2018) Di Persio and Honchar (2016) . Closing prices are the most
commonly used information, but the volume and ranges have also
shown value in the prediction. Most of the studies employ a time-
span of 10 0 0 days, that can be handled easily for most of the ma-
chine learning algorithms.

In addition, there are other studies that use intraday informa-
tion for prediction (Huang & Li, 2017; Tsantekidis et al., 2017). The
most fine-grained intraday information is the bid-ask price for a
stock. When a stock is being traded in an exchange, there are buy-
ers and sellers interested in trading that stock. Ask price is the
minimum price a seller is willing to accept, while the bid price
is the maximum price that the buyer offers to pay for the share.
The consolidation of all these prices leads to an enormous number
of points having to be recorded to predict the intraday price.
3.1.2. Technical indicators

Technical indicators have been useful for predicting the stock
market. These have been increasing in sophistication, and are al-
ready part of the language of brokers. Technical indicators can
summarize the behavior or trends in the time series, making their

Machine Learning
• Learning
• Data: Features, Labels
• Success (Loss Function): MSE
• Capacity (Model Fit)
• Evaluation
• Bias and variance
• Cross-validation

30Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Learning
(Mitchell, 1997)

• A computer program is said
to learn from experience E
with respect to some class of tasks T
and performance measure P,
if its performance at tasks in T,
as measured by P,
improves with experience E.

31Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Machine Learning
Supervised Learning (Classification)

Learning from Examples

32

x y
y = f(x)

Machine Learning
Supervised Learning (Classification)

Learning from Examples

33

x y
y = f(x)
input Output

label

Machine Learning
Supervised Learning (Classification)

Learning from Examples

34

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica

y = f(x)

Machine Learning
Supervised Learning (Classification)

Learning from Examples

35

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica

Example
y = f(x)

Machine Learning
Supervised Learning (Classification)

Learning from Examples

36

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica

x y

y = f(x)

Example

Time Series Data

37

[10, 20, 30, 40, 50, 60, 70, 80, 90]

[10 20 30] 40
[20 30 40] 50
[30 40 50] 60
[40 50 60] 70
[50 60 70] 80
[60 70 80] 90

X Y

Time Series Data

38

[100, 110, 120, 130, 140, 150]

[100 110 120 130 140] 150

X Y

Xt3 Xt4Xt2Xt1 Xt5

Y

The Theory of Learning
• How can we be sure that our learned hypothesis will predict well for

previously unseen inputs?
• How do we know that the hypothesis h is close to the target function f

if we don’t know what is?
• How many examples do we need to get a good h?
• What hypothesis space should we use?
• If the hypothesis space is very complex,

can we even find the best h or do we have to settle for a local
maximum?
• How complex should h be?
• How do we avoid overfitting?

39

40Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Linear function

y = f(x)
y = w1x + w0
hw(x) = w1x + w0

41Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Linear Regression Weight Space

hw(x) = w1x + w0

Loss function for Weights (w1, w0)y = 0.232 x + 246

w* = argminw Loss(hw)

Performance Measure
• The measure of success for estimation problems
• mean-squared error (MSE)

• Classification problems
• accuracy ratio

42Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Evaluation
(Accuracy of Classification Model)

43

Assessing the Classification Model
•Predictive accuracy
•Hit rate

• Speed
•Model building; predicting

•Robustness
• Scalability
• Interpretability
• Transparency, explainability

44
Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

Accuracy

Precision

45

Validity

Reliability

46

Accuracy vs. Precision

High Accuracy
High Precision

High Accuracy
Low Precision

Low Accuracy
High Precision

Low Accuracy
Low Precision

A B

C D

47

Accuracy vs. Precision

High Accuracy
High Precision

High Accuracy
Low Precision

Low Accuracy
High Precision

Low Accuracy
Low Precision

A B

C D

High Validity
High Reliability

High Validity
Low Reliability

Low Validity
Low Reliability

Low Validity
High Reliability

48

Accuracy vs. Precision

High Accuracy
High Precision

High Accuracy
Low Precision

Low Accuracy
High Precision

Low Accuracy
Low Precision

A B

C D

High Validity
High Reliability

High Validity
Low Reliability

Low Validity
Low Reliability

Low Validity
High Reliability

49

50

Confusion Matrix
for Tabulation of Two-Class Classification Results

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

FNTP
TPRatePositiveTrue
+

=

FPTN
TNRateNegativeTrue
+

=

FNFPTNTP
TNTPAccuracy

+++
+

=

FPTP
TPrecision
+

=!
FNTP

TPcallRe
+

=

Sensitivity

Specificity

51

=True Positive Rate

=True Negative Rate

52

Estimation Methodologies for Classification

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

• Simple split (or holdout or test sample estimation)
• Split the data into 2 mutually exclusive sets

training (~70%) and testing (30%)

• For ANN, the data is split into three sub-sets
(training [~60%], validation [~20%], testing [~20%])

53

k-Fold Cross-Validation

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

54

Estimation Methodologies for Classification
Area under the ROC curve

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

True
Positive
(TP)

False
Negative
(FN)

False
Positive
(FP)

True
Negative
(TN)

True Class
(actual value)

Pr
ed

ic
tiv

e
C

la
ss

(p

re
di

ct
io

n
ou

tc
om

e)
Po
si
tiv
e

N
eg
at
iv
e

Positive Negative

total P

total

N

N’

P’

55

FNTP
TPRatePositiveTrue
+

=

FPTN
TNRateNegativeTrue
+

=

FNFPTNTP
TNTPAccuracy

+++
+

=

FPTP
TPrecision
+

=! FNTP
TPcallRe
+

=

FNTP
TPRatePositiveTrue
+

= ty)(Sensitivi

10.90.80.70.60.50.40.30.20.10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

0.9

0.8

False Positive Rate (1 - Specificity)
Tr

ue
 P

os
itiv

e
Ra

te
 (S

en
sit

ivi
ty

) A

B

C

TNFP
FPRatePositiveF
+

= alse

FPTN
TNRateNegativeTrue
+

=ty)(Specifici

TNFP
FPRatePositiveF
+

= y)Specificit-(1 alse
Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

True
Positive
(TP)

False
Negative
(FN)

False
Positive
(FP)

True
Negative
(TN)

True Class
(actual value)

Pr
ed

ic
tiv

e
C

la
ss

(p

re
di

ct
io

n
ou

tc
om

e)
Po
si
tiv
e

N
eg
at
iv
e

Positive Negative

total P

total

N

N’

P’

56

FNTP
TPRatePositiveTrue
+

=

FNTP
TPcallRe
+

=

FNTP
TPRatePositiveTrue
+

= ty)(Sensitivi

10.90.80.70.60.50.40.30.20.10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

0.9

0.8

False Positive Rate (1 - Specificity)
Tr

ue
 P

os
itiv

e
Ra

te
 (S

en
sit

ivi
ty

) A

B

C

Sensitivity
= True Positive Rate
= Recall
= Hit rate
= TP / (TP + FN) Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

True
Positive
(TP)

False
Negative
(FN)

False
Positive
(FP)

True
Negative
(TN)

True Class
(actual value)

Pr
ed

ic
tiv

e
C

la
ss

(p

re
di

ct
io

n
ou

tc
om

e)
Po

si
tiv

e
N

eg
at

iv
e

Positive Negative

total P

total

N

N’

P’

57

FPTN
TNRateNegativeTrue
+

=

10.90.80.70.60.50.40.30.20.10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

0.9

0.8

False Positive Rate (1 - Specificity)
Tr

ue
 P

os
itiv

e
Ra

te
 (S

en
sit

ivi
ty

) A

B

C

FPTN
TNRateNegativeTrue
+

=ty)(Specifici

TNFP
FPRatePositiveF
+

= y)Specificit-(1 alse

Specificity
= True Negative Rate
= TN / N
= TN / (TN+ FP)

Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

True
Positive
(TP)

False
Negative
(FN)

False
Positive
(FP)

True
Negative
(TN)

True Class
(actual value)

Pr
ed

ic
tiv

e
C

la
ss

(p

re
di

ct
io

n
ou

tc
om

e)
Po

si
tiv

e
N

eg
at

iv
e

Positive Negative

total P

total

N

N’

P’

58

FPTP
TPrecision
+

=!

FNTP
TPcallRe
+

=

F1 score (F-score)(F-measure)
is the harmonic mean of
precision and recall
= 2TP / (P + P’)
= 2TP / (2TP + FP + FN)

Precision
= Positive Predictive Value (PPV)

Recall
= True Positive Rate (TPR)
= Sensitivity
= Hit Rate

recallprecision
recallprecisionF

+
=

**2

Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

59Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

A
63
(TP)
37
(FN)

28
(FP)
72
(TN)

100 100

109

91

200
TPR = 0.63

FPR = 0.28
PPV = 0.69
 =63/(63+28)
 =63/91
F1 = 0.66
= 2*(0.63*0.69)/(0.63+0.69)
= (2 * 63) /(100 + 91)
= (0.63 + 0.69) / 2 =1.32 / 2 =0.66
ACC = 0.68
= (63 + 72) / 200
= 135/200 = 67.5

FPTP
TPrecision
+

=!

FNTP
TPcallRe
+

=

F1 score (F-score)
(F-measure)
is the harmonic mean of
precision and recall
= 2TP / (P + P’)
= 2TP / (2TP + FP + FN)

Precision
= Positive Predictive Value (PPV)

Recall
= True Positive Rate (TPR)
= Sensitivity
= Hit Rate
= TP / (TP + FN)

recallprecision
recallprecisionF

+
=

**2

FNFPTNTP
TNTPAccuracy

+++
+

=

FPTN
TNRateNegativeTrue
+

=ty)(Specifici

TNFP
FPRatePositiveF
+

= y)Specificit-(1 alse

Specificity
= True Negative Rate
= TN / N
= TN / (TN + FP)

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

60Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

A
63
(TP)
37
(FN)

28
(FP)
72
(TN)

100 100

109

91

200
TPR = 0.63

FPR = 0.28
PPV = 0.69
 =63/(63+28)
 =63/91
F1 = 0.66
= 2*(0.63*0.69)/(0.63+0.69)
= (2 * 63) /(100 + 91)
= (0.63 + 0.69) / 2 =1.32 / 2 =0.66
ACC = 0.68
= (63 + 72) / 200
= 135/200 = 67.5

B
77
(TP)
23
(FN)

77
(FP)
23
(TN)

100 100

46

154

200
TPR = 0.77
FPR = 0.77
PPV = 0.50
F1 = 0.61
ACC = 0.50

FNTP
TPcallRe
+

=
Recall
= True Positive Rate (TPR)
= Sensitivity
= Hit Rate

Precision
= Positive Predictive Value (PPV) FPTP

TPrecision
+

=!

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

61

C’
76
(TP)
24
(FN)

12
(FP)
88
(TN)

100 100

112

88

200
TPR = 0.76
FPR = 0.12
PPV = 0.86
F1 = 0.81
ACC = 0.82

C
24
(TP)
76
(FN)

88
(FP)
12
(TN)

100 100

88

112

200
TPR = 0.24
FPR = 0.88
PPV = 0.21
F1 = 0.22
ACC = 0.18

Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

FNTP
TPcallRe
+

=
Recall
= True Positive Rate (TPR)
= Sensitivity
= Hit Rate

Precision
= Positive Predictive Value (PPV) FPTP

TPrecision
+

=!

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

EUR/USD exchange rate as time series
(monthly)

62Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Sample data set

63Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Sample data and cubic regression line

64Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Sample data and neural network approximation

65Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

MSE values against number of training epochs

66Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Regression lines for different highest degrees

67Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Sample data and DNN approximation
(higher capacity)

68Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Training and validation data
including regression fits

69Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Training and validation data
including DNN predictions

70Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

MSE values for DNN model
on the training and validation data sets

71Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Test data and predictions
from OLS regression and the DNN model

72Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

High bias and high variance OLS regression fits

73Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

AI-First Finance

74

AI-First Finance

• Efficient Markets
• Market Prediction Based on Returns Data
• Market Prediction with More Features
• Market Prediction Intraday

75Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Life 3.0:
Being human in the age of artificial intelligence

Max Tegmark (2017)

A computation takes information and transforms it,
implementing what mathematicians call a

function....
If you’re in possession of a function that
inputs all the world’s financial data and

outputs the best stocks to buy,
you’ll soon be extremely rich.

76Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Efficient Markets
• Efficient Market Hypothesis (EMH)
• Random Walk Hypothesis (RWH)

• Weak form of EMH
• The information set θt only encompasses

the past price and return history of the market.
• Semi-strong form of EMH
• The information set θt is taken to be all publicly available information,

including not only the past price and return history
but also financial reports, news articles, weather data, and so on.

• Strong form of EMH
• The information set θt includes all information available to anyone

(that is, even private information).

77Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

78Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

import numpy as np
import pandas as pd
from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['savefig.dpi'] = 300
mpl.rcParams['font.family'] = 'serif'
pd.set_option('precision', 4)
np.set_printoptions(suppress=True, precision=4)

url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'

data = pd.read_csv(url, index_col=0, parse_dates=True).dropna()

(data / data.iloc[0]).plot(figsize=(10, 6), cmap='coolwarm')

Normalized time series data (end-of-day)

79Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

80Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

lags = 7

def add_lags(data, ric, lags):
cols = []
df = pd.DataFrame(data[ric])
for lag in range(1, lags + 1):

col = 'lag_{}'.format(lag)
df[col] = df[ric].shift(lag)
cols.append(col)

df.dropna(inplace=True)
return df, cols

dfs = {}
for sym in data.columns:

df, cols = add_lags(data, sym, lags)
dfs[sym] = df

dfs[sym].head(7)

81Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

lagged prices

82Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

regs = {}
for sym in data.columns:
df = dfs[sym]
reg = np.linalg.lstsq(df[cols], df[sym], rcond=-1)[0]
#Return the least-squares solution to a linear matrix equation
regs[sym] = reg

rega = np.stack(tuple(regs.values()))
regd = pd.DataFrame(rega, columns=cols, index=data.columns)
regd

83Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

reg = np.linalg.lstsq(df[cols], df[sym], rcond=-1)[0]

regression analysis

Average optimal regression parameters for the
lagged prices

84Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

regd.mean().plot(kind='bar', figsize=(10, 6))

85Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

dfs[sym].corr()

Correlations between the lagged time series

86Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

from statsmodels.tsa.stattools import adfuller
#Tests for stationarity using the Augmented Dickey-Fuller (ADF) test

adfuller(data[sym].dropna())

(-1.9488969577009954,
 0.3094193074034718,
 0,
 2515,
 {'1%': -3.4329527780962255,
 '10%': -2.567382133955709,
 '5%': -2.8626898965523724},
 8446.683102944744)

Market Prediction Based on Returns Data

• Statistical inefficiencies
• are given when a model is able to predict the direction

of the future price movement with a certain edge (say,
the prediction is correct in 55% or 60% of the cases)

• Economic inefficiencies
•would only be given if the statistical inefficiencies can

be exploited profitably through a trading strategy that
takes into account, for example, transaction costs.

87Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Market Prediction Based on Returns Data
•Create data sets with lagged log returns data
• The normalized lagged log returns data is also tested for

stationarity (given)
• The features are tested for correlation (not correlated)
• Time-series-related data
•weak form market efficiency

88Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

89Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

rets = np.log(data / data.shift(1))
rets.dropna(inplace=True)
rets

log returns

90Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

dfs = {}
for sym in data:

df, cols = add_lags(rets, sym, lags)
mu, std = df[cols].mean(), df[cols].std()
df[cols] = (df[cols] - mu) / std
dfs[sym] = df

dfs[sym].head()

91Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

adfuller(dfs[sym]['lag_1'])

(-51.568251505825536,
 0.0,
 0,
 2507,
 {'1%': -3.4329610922579095,
 '10%': -2.567384088736619,
 '5%': -2.8626935681060375},
 7017.165474260225)

Augmented Dickey-Fuller (ADF)
Tests for stationarity of the time series data

92Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

dfs[sym].corr()

Shows the correlation data for the features

93Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

from sklearn.metrics import accuracy_score

%%time
for sym in data:

df = dfs[sym]
reg = np.linalg.lstsq(df[cols], df[sym], rcond=-1)[0]
pred = np.dot(df[cols], reg)
acc = accuracy_score(np.sign(df[sym]), np.sign(pred))
print(f'OLS | {sym:10s} | acc={acc:.4f}')

OLS Regression

94Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

OLS | AAPL.O | acc=0.5056
OLS | MSFT.O | acc=0.5088
OLS | INTC.O | acc=0.5040
OLS | AMZN.O | acc=0.5048
OLS | GS.N | acc=0.5080
OLS | SPY | acc=0.5080
OLS | .SPX | acc=0.5167
OLS | .VIX | acc=0.5291
OLS | EUR= | acc=0.4984
OLS | XAU= | acc=0.5207
OLS | GDX | acc=0.5307
OLS | GLD | acc=0.5072

OLS Regression Accuracy

95Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

from sklearn.neural_network import MLPRegressor

%%time
for sym in data.columns:

df = dfs[sym]
model = MLPRegressor(hidden_layer_sizes=[512],

random_state=100,
max_iter=1000,
early_stopping=True,
validation_fraction=0.15,
shuffle=False)

model.fit(df[cols].values, df[sym].values)
pred = model.predict(df[cols].values)
acc = accuracy_score(np.sign(df[sym].values),
np.sign(pred))
print(f'MLP | {sym:10s} | acc={acc:.4f}')

96Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

MLP | AAPL.O | acc=0.6005
MLP | MSFT.O | acc=0.5853
MLP | INTC.O | acc=0.5766
MLP | AMZN.O | acc=0.5510
MLP | GS.N | acc=0.6527
MLP | SPY | acc=0.5419
MLP | .SPX | acc=0.5399
MLP | .VIX | acc=0.6579
MLP | EUR= | acc=0.5642
MLP | XAU= | acc=0.5522
MLP | GDX | acc=0.6029
MLP | GLD | acc=0.5259

Scikit-learn MLPRegressor Accuracy

97Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

import tensorflow as tf
from keras.layers import Dense
from keras.models import Sequential

np.random.seed(100)
tf.random.set_seed(100)

def create_model(problem='regression'):
model = Sequential()
model.add(Dense(512, input_dim=len(cols), activation='relu'))
if problem == 'regression’:
 model.add(Dense(1, activation='linear’))
 model.compile(loss='mse', optimizer='adam')
else:
 model.add(Dense(1, activation='sigmoid’))
 model.compile(loss='binary_crossentropy', optimizer='adam')
return model

98Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

%%time
for sym in data.columns[:]:

df = dfs[sym]
model = create_model()
model.fit(df[cols], df[sym], epochs=25, verbose=False)
pred = model.predict(df[cols])
acc = accuracy_score(np.sign(df[sym]), np.sign(pred))
print(f'DNN | {sym:10s} | acc={acc:.4f}')

99Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

DNN | AAPL.O | acc=0.6069
DNN | MSFT.O | acc=0.6260
DNN | INTC.O | acc=0.6344
DNN | AMZN.O | acc=0.6316
DNN | GS.N | acc=0.6045
DNN | SPY | acc=0.5610
DNN | .SPX | acc=0.5435
DNN | .VIX | acc=0.6096
DNN | EUR= | acc=0.5817
DNN | XAU= | acc=0.6017
DNN | GDX | acc=0.6164
DNN | GLD | acc=0.5973

TF Keras DNN Accuracy

100Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

split = int(len(dfs[sym]) * 0.8)

%%time
for sym in data.columns:

df = dfs[sym]
train = df.iloc[:split]
reg = np.linalg.lstsq(train[cols], train[sym], rcond=-1)[0]
test = df.iloc[split:]
pred = np.dot(test[cols], reg)
acc = accuracy_score(np.sign(test[sym]), np.sign(pred))
print(f'OLS | {sym:10s} | acc={acc:.4f}')

Train Data (0.8): In-Sample
Test Data (0.2): Out-of-Sample

101Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

OLS | AAPL.O | acc=0.5219
OLS | MSFT.O | acc=0.4960
OLS | INTC.O | acc=0.5418
OLS | AMZN.O | acc=0.4841
OLS | GS.N | acc=0.4980
OLS | SPY | acc=0.5020
OLS | .SPX | acc=0.5120
OLS | .VIX | acc=0.5458
OLS | EUR= | acc=0.4482
OLS | XAU= | acc=0.5299
OLS | GDX | acc=0.5159
OLS | GLD | acc=0.5100

OLS Out-of-Sample Accuracy

102Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

%%time
for sym in data.columns:

df = dfs[sym]
train = df.iloc[:split]
model = MLPRegressor(hidden_layer_sizes=[512],

random_state=100,
max_iter=1000,
early_stopping=True,
validation_fraction=0.15,
shuffle=False)

model.fit(train[cols].values, train[sym].values)
test = df.iloc[split:]
pred = model.predict(test[cols].values)
acc = accuracy_score(np.sign(test[sym].values), np.sign(pred))
print(f'MLP | {sym:10s} | acc={acc:.4f}')

103Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

MLP | AAPL.O | acc=0.4920
MLP | MSFT.O | acc=0.5279
MLP | INTC.O | acc=0.5279
MLP | AMZN.O | acc=0.4641
MLP | GS.N | acc=0.5040
MLP | SPY | acc=0.5259
MLP | .SPX | acc=0.5478
MLP | .VIX | acc=0.5279
MLP | EUR= | acc=0.4980
MLP | XAU= | acc=0.5239
MLP | GDX | acc=0.4880
MLP | GLD | acc=0.5000

MLP Out-of-Sample Accuracy

104Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

%%time
for sym in data.columns:

df = dfs[sym]
train = df.iloc[:split]
model = create_model()
model.fit(train[cols], train[sym], epochs=50,
verbose=False)
test = df.iloc[split:]
pred = model.predict(test[cols])
acc = accuracy_score(np.sign(test[sym]), np.sign(pred))
print(f'DNN | {sym:10s} | acc={acc:.4f}')

105Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

DNN | AAPL.O | acc=0.4701
DNN | MSFT.O | acc=0.4960
DNN | INTC.O | acc=0.5040
DNN | AMZN.O | acc=0.4920
DNN | GS.N | acc=0.5538
DNN | SPY | acc=0.5299
DNN | .SPX | acc=0.5458
DNN | .VIX | acc=0.5020
DNN | EUR= | acc=0.5100
DNN | XAU= | acc=0.4940
DNN | GDX | acc=0.4661
DNN | GLD | acc=0.4880

DNN Out-of-Sample Accuracy

Market Prediction with More Features
• In trading, there is a long tradition of

using technical indicators to generate,
based on observed patterns, buy or sell signals.
• Such technical indicators, basically of any kind,

can also be used as features
for the training of neural networks.
• SMA, rolling minimum and maximum values,

momentum, and rolling volatility as features

106Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

107Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'

data = pd.read_csv(url, index_col=0, parse_dates=True).dropna()
data

108Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

def add_lags(data, ric, lags, window=50):
cols = []
df = pd.DataFrame(data[ric])
df.dropna(inplace=True)
df['r'] = np.log(df / df.shift())
df['sma'] = df[ric].rolling(window).mean()
df['min'] = df[ric].rolling(window).min()
df['max'] = df[ric].rolling(window).max()
df['mom'] = df['r'].rolling(window).mean()
df['vol'] = df['r'].rolling(window).std()
df.dropna(inplace=True)
df['d'] = np.where(df['r'] > 0, 1, 0)
features = [ric, 'r', 'd', 'sma', 'min', 'max', 'mom', 'vol']
for f in features:

for lag in range(1, lags + 1):
col = f'{f}_lag_{lag}'
df[col] = df[f].shift(lag)
cols.append(col)

df.dropna(inplace=True)
return df, cols

109Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

lags = 5

dfs = {}
for ric in data:

df, cols = add_lags(data, ric, lags)
dfs[ric] = df.dropna(), cols

len(cols)

40

110Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

from sklearn.neural_network import MLPClassifier

%%time
for ric in data:

model = MLPClassifier(hidden_layer_sizes=[512],
random_state=100,
max_iter=1000,
early_stopping=True,
validation_fraction=0.15,
shuffle=False)

df, cols = dfs[ric]
df[cols] = (df[cols] - df[cols].mean()) / df[cols].std()
model.fit(df[cols].values, df['d'].values)
pred = model.predict(df[cols].values)
acc = accuracy_score(df['d'].values, pred)
print(f'IN-SAMPLE | {ric:7s} | acc={acc:.4f}')

111Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

IN-SAMPLE | AAPL.O | acc=0.5510
IN-SAMPLE | MSFT.O | acc=0.5376
IN-SAMPLE | INTC.O | acc=0.5607
IN-SAMPLE | AMZN.O | acc=0.5559
IN-SAMPLE | GS.N | acc=0.5794
IN-SAMPLE | SPY | acc=0.5729
IN-SAMPLE | .SPX | acc=0.5941
IN-SAMPLE | .VIX | acc=0.6940
IN-SAMPLE | EUR= | acc=0.5766
IN-SAMPLE | XAU= | acc=0.5672
IN-SAMPLE | GDX | acc=0.5847
IN-SAMPLE | GLD | acc=0.5567

MLP In-Sample Accuracy

112Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

%%time
for ric in data:

model = create_model('classification')
df, cols = dfs[ric]
df[cols] = (df[cols] - df[cols].mean()) / df[cols].std()
model.fit(df[cols], df['d'], epochs=50, verbose=False)
pred = np.where(model.predict(df[cols]) > 0.5, 1, 0)
acc = accuracy_score(df['d'], pred)
print(f'IN-SAMPLE | {ric:7s} | acc={acc:.4f}')

113Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

IN-SAMPLE | AAPL.O | acc=0.7042
IN-SAMPLE | MSFT.O | acc=0.6928
IN-SAMPLE | INTC.O | acc=0.6969
IN-SAMPLE | AMZN.O | acc=0.6713
IN-SAMPLE | GS.N | acc=0.6924
IN-SAMPLE | SPY | acc=0.6806
IN-SAMPLE | .SPX | acc=0.6920
IN-SAMPLE | .VIX | acc=0.7347
IN-SAMPLE | EUR= | acc=0.6766
IN-SAMPLE | XAU= | acc=0.7038
IN-SAMPLE | GDX | acc=0.6806
IN-SAMPLE | GLD | acc=0.6936

TF Keras DNN In-Sample Accuracy

114Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

def train_test_model(model):
for ric in data:
df, cols = dfs[ric]
split = int(len(df) * 0.85)
train = df.iloc[:split].copy()
mu, std = train[cols].mean(), train[cols].std()
train[cols] = (train[cols] - mu) / std
model.fit(train[cols].values, train['d'].values)
test = df.iloc[split:].copy()
test[cols] = (test[cols] - mu) / std
pred = model.predict(test[cols].values)
acc = accuracy_score(test['d'].values, pred)
print(f'OUT-OF-SAMPLE | {ric:7s} | acc={acc:.4f}')

115Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

model_mlp = MLPClassifier(hidden_layer_sizes=[512],
random_state=100,
max_iter=1000,
early_stopping=True,
validation_fraction=0.15,
shuffle=False)

train_test_model(model_mlp)

116Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

OUT-OF-SAMPLE | AAPL.O | acc=0.4432
OUT-OF-SAMPLE | MSFT.O | acc=0.4595
OUT-OF-SAMPLE | INTC.O | acc=0.5000
OUT-OF-SAMPLE | AMZN.O | acc=0.5270
OUT-OF-SAMPLE | GS.N | acc=0.4838
OUT-OF-SAMPLE | SPY | acc=0.4811
OUT-OF-SAMPLE | .SPX | acc=0.5027
OUT-OF-SAMPLE | .VIX | acc=0.5676
OUT-OF-SAMPLE | EUR= | acc=0.4649
OUT-OF-SAMPLE | XAU= | acc=0.5514
OUT-OF-SAMPLE | GDX | acc=0.5162
OUT-OF-SAMPLE | GLD | acc=0.4946

train_test_model(model_mlp)

117Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

from sklearn.ensemble import BaggingClassifier

base_estimator = MLPClassifier(hidden_layer_sizes=[256],
random_state=100,
max_iter=1000,
early_stopping=True,
validation_fraction=0.15,
shuffle=False)

model_bag = BaggingClassifier(base_estimator=base_estimator,
n_estimators=35,
max_samples=0.25,
max_features=0.5,
bootstrap=False,
bootstrap_features=True,
n_jobs=8,
random_state=100
)

118Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

OUT-OF-SAMPLE | AAPL.O | acc=0.5000
OUT-OF-SAMPLE | MSFT.O | acc=0.5703
OUT-OF-SAMPLE | INTC.O | acc=0.5054
OUT-OF-SAMPLE | AMZN.O | acc=0.5270
OUT-OF-SAMPLE | GS.N | acc=0.5135
OUT-OF-SAMPLE | SPY | acc=0.5568
OUT-OF-SAMPLE | .SPX | acc=0.5514
OUT-OF-SAMPLE | .VIX | acc=0.5432
OUT-OF-SAMPLE | EUR= | acc=0.5054
OUT-OF-SAMPLE | XAU= | acc=0.5351
OUT-OF-SAMPLE | GDX | acc=0.5054
OUT-OF-SAMPLE | GLD | acc=0.5189

train_test_model(model_bag)

Market Prediction Intraday
•Weakly efficient on an end-of-day basis
•Weakly inefficient intraday
• Intraday Data
•hourly data

119Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

120Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

url = 'http://hilpisch.com/aiif_eikon_id_data.csv'
data = pd.read_csv(url, index_col=0, parse_dates=True) # .dropna()
data.tail()

Intraday Data

121Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

lags = 5

dfs = {}
for ric in data:

df, cols = add_lags(data, ric, lags)
dfs[ric] = df, cols

122Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

OUT-OF-SAMPLE | AAPL.O | acc=0.5420
OUT-OF-SAMPLE | MSFT.O | acc=0.4930
OUT-OF-SAMPLE | INTC.O | acc=0.5549
OUT-OF-SAMPLE | AMZN.O | acc=0.4709
OUT-OF-SAMPLE | GS.N | acc=0.5184
OUT-OF-SAMPLE | SPY | acc=0.4860
OUT-OF-SAMPLE | .SPX | acc=0.5019
OUT-OF-SAMPLE | .VIX | acc=0.4885
OUT-OF-SAMPLE | EUR= | acc=0.5130
OUT-OF-SAMPLE | XAU= | acc=0.4824
OUT-OF-SAMPLE | GDX | acc=0.4765
OUT-OF-SAMPLE | GLD | acc=0.5455

train_test_model(model_mlp)

123Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

train_test_model(model_bag)

OUT-OF-SAMPLE | AAPL.O | acc=0.5660
OUT-OF-SAMPLE | MSFT.O | acc=0.5551
OUT-OF-SAMPLE | INTC.O | acc=0.5072
OUT-OF-SAMPLE | AMZN.O | acc=0.4830
OUT-OF-SAMPLE | GS.N | acc=0.5020
OUT-OF-SAMPLE | SPY | acc=0.4680
OUT-OF-SAMPLE | .SPX | acc=0.4677
OUT-OF-SAMPLE | .VIX | acc=0.5161
OUT-OF-SAMPLE | EUR= | acc=0.5242
OUT-OF-SAMPLE | XAU= | acc=0.5229
OUT-OF-SAMPLE | GDX | acc=0.5107
OUT-OF-SAMPLE | GLD | acc=0.5475

The Quant Finance PyData Stack

124Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#/5

Yves Hilpisch (2020),
Artificial Intelligence in Finance:

A Python-Based Guide,
O’Reilly

125Source: https://www.amazon.com/Artificial-Intelligence-Finance-Python-Based-Guide/dp/1492055433

https://www.amazon.com/Artificial-Intelligence-Finance-Python-Based-Guide/dp/1492055433

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly

126Source: https://github.com/yhilpisch/aiif

https://github.com/yhilpisch/aiif

https://github.com/yhilpisch/aiif/tree/main/code
https://github.com/yhilpisch/aiif/tree/main/code

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly

127Source: https://github.com/yhilpisch/aiif/tree/main/code

https://github.com/yhilpisch/aiif/tree/main/code

https://github.com/yhilpisch/aiif/tree/main/code
https://github.com/yhilpisch/aiif/tree/main/code

128

Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101

129

Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

AI in Finance

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101

130

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

Data Driven Finance

https://tinyurl.com/aintpupython101

131

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

Machine Learning

https://tinyurl.com/aintpupython101

132

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

133

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

134

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

135

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

136

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

def create_dnn_model(hl=1, hu=256):
''' Function to create Keras DNN model.
Parameters
==========
hl: int
number of hidden layers
hu: int
number of hidden units (per layer)
'''
model = Sequential()
for _ in range(hl):

model.add(Dense(hu, activation='relu', input_dim=1))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer='rmsprop')
return model

model = create_dnn_model(3)

model.summary()

https://tinyurl.com/aintpupython101

137

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

138

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

139

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

Efficient Markets

https://tinyurl.com/aintpupython101

140

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

Market Prediction
Based on Returns Data

https://tinyurl.com/aintpupython101

141

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

Market Prediction
with More Features

https://tinyurl.com/aintpupython101

142

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

Market Prediction Intraday

https://tinyurl.com/aintpupython101

Summary
• Financial Econometrics
• Financial Theories, OLS Regression
• Machine Learning
• Learning, Evaluation, Bias and variance
• Cross-validation
• AI-First Finance
• Efficient Markets
• Market Prediction Based on Returns Data
• Market Prediction with More Features

143Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

References
• Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media,

https://github.com/yhilpisch/aiif .
• Chris Brooks (2019), Introductory Econometrics for Finance, 4th Edition, Cambridge University

Press
• Oliver Linton (2019), Financial Econometrics: Models and Methods, Cambridge University

Press
• Tom Mitchell (1997), Machine Learning, McGraw-Hill.
• Max Tegmark (2017), Life 3.0: Being human in the age of artificial intelligence. Vintage.
• Ajay Agrawal, Joshua Gans, and Avi Goldfarb (2018). Prediction machines: the simple

economics of artificial intelligence. Harvard Business Press.
• Eugene F. Fama (1995), "Random walks in stock market prices." Financial Analysts Journal 51,

no. 1, 75-80.
• Ruey S. Tsay (2005), Analysis of financial time series, Wiley.
• Min-Yuh Day (2023), Python 101, https://tinyurl.com/aintpupython101

144

https://github.com/yhilpisch/aiif
https://tinyurl.com/aintpupython101

