
Artificial Intelligence in Finance and Quantitative Analysis

1

Min-Yuh Day, Ph.D,
Associate Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1121AIFQA08
MBA, IM, NTPU (M5276) (Fall 2023)

 Tue 2, 3, 4 (9:10-12:00) (B3F17)

2023-12-19

https://meet.google.com/
paj-zhhj-mya

Algorithmic Trading; Risk Management;
Trading Bot and Event-Based Backtesting

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/paj-zhhj-mya
https://meet.google.com/paj-zhhj-mya

Syllabus
Week Date Subject/Topics

1 2023/09/12 Introduction to Artificial Intelligence in Finance and
 Quantitative Analysis

2 2023/09/19 AI in FinTech: Metaverse, Web3, DeFi, NFT,
 Financial Services Innovation and Applications

3 2023/09/26 Investing Psychology and Behavioral Finance

4 2023/10/03 Event Studies in Finance

5 2023/10/10 National Day (Day off)

6 2023/10/17 Case Study on AI in Finance and Quantitative Analysis I

2

Syllabus
Week Date Subject/Topics

7 2023/10/24 Finance Theory and Data-Driven Finance

8 2023/10/31 Midterm Project Report

9 2023/11/07 Financial Econometrics

10 2023/11/14 AI-First Finance

11 2023/11/21 Deep Learning in Finance;
 Reinforcement Learning in Finance

12 2023/11/28 Case Study on AI in Finance and Quantitative Analysis II

3

Syllabus
Week Date Subject/Topics

13 2023/12/05 Industry Practices of AI in Finance and Quantitative
 Analysis

14 2023/12/12 Self-study

15 2023/12/19 Algorithmic Trading; Risk Management;
 Trading Bot and Event-Based Backtesting

16 2023/12/26 Final Project Report I

17 2024/01/02 Final Project Report II

18 2024/01/09 Self-study

4

Algorithmic Trading
Risk Management

Trading Bot
Event-Based Backtesting

5

Outline
• Algorithmic Trading
• Risk Management
• Trading Bot
• Event-Based Backtesting

6Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Deep learning for financial applications:
Topic-Model Heatmap

7
Source: Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft

Computing (2020): 106384.

A.M. Ozbayoglu, M.U. Gudelek and O.B. Sezer / Applied Soft Computing Journal 93 (2020) 106384 21

Fig. 9. The histogram of publication count in model types.

Fig. 10. Topic-model heatmap.

the model-topic heatmap, in this case, we saw a distinction
between the associations. Even though price data and technical
indicators have been very popular for most of the research areas
that are involved with time series forecasting, like algorithmic
trading, portfolio management, financial sentiment analysis and
financial text mining, the studies that had more significant spatial
characteristics like risk assessment and fraud detection did not
depend much on these temporal features. One other noteworthy
difference came up with the adaptation of text related features.
Highly text-based applications like financial sentiment analysis,
financial text mining, risk assessment and fraud detection pre-
ferred to use features like text (extracted from tweets, news or
financial data) and sentiments during their model development
and implementation. However, the temporal characteristics of
the financial time series data were also important for financial
sentiment analysis and financial text mining, since a significant
portion of these models were integrated into algorithmic trading
systems.

Fig. 12 elaborates on the distribution of the dataset types for
the research areas through a dataset-topic heatmap. If we analyze

the heatmap, we see similarities with the feature-topic associa-
tions. However, this time, we had three main clusters of dataset
types, the first one being the temporal datasets like Stock, Index,
ETF, Cryptocurrency, Forex and Commodity price datasets, and
the second one being the text-based datasets like News, Tweets,
Microblogs and Financial Reports, and the last one being the
datasets that had both numeric and textual components like Con-
sumer Data, Credit Data and Financial Reports from companies or
analysts. As far as the dataset vs. application area associations are
concerned, these three main clusters were distributed as follows:
Stock, Index, Cryptocurrency, ETF datasets were used almost in
every application area except Risk Assessment and Fraud Detec-
tion which had less of temporal properties. Meanwhile, Credit
Data, Financial Reports and Consumer Data were particularly
used by these two application areas, namely Risk Assessment
and Fraud Detection. Lastly, pure text based datasets like news,
tweets, microblogs were preferred by Financial Sentiment Analy-
sis and Financial Text Mining studies. However, as was the case in
the feature-topic associations, temporal datasets like stock, ETF,
Index price datasets were also used with these studies since some
of them were tied with algorithmic trading models.

6. Discussion and open issues

After reviewing all the publications based on the selected cri-
teria explained in the previous section, we wanted to provide our
findings of the current state-of-the-art situation. Our discussions
are categorized by the DL models and implementation topics.

6.1. Discussions on DL models

It is possible to claim that LSTM is the dominant DL model
that is preferred by most researchers, due to its well-established
structure for financial time series data forecasting. Most of the fi-
nancial implementations have time-varying data representations
requiring regression-type approaches which fits very well for
LSTM and its derivatives due to their easy adaptations to the
problems. As long as the temporal nature of the financial data
remains, LSTM and its related family models will maintain their
popularities.

Meanwhile, CNN based models started getting more traction
among researchers in the last two years. Unlike LSTM, CNN works
better for classification problems and is more suitable for either
non-time varying or static data representations. However, since
most financial data is time-varying, under normal circumstances,

Deep learning for financial applications:
Topic-Feature Heatmap

8
Source: Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft

Computing (2020): 106384.

22 A.M. Ozbayoglu, M.U. Gudelek and O.B. Sezer / Applied Soft Computing Journal 93 (2020) 106384

Fig. 11. Topic-feature heatmap.

Fig. 12. Topic-dataset heatmap.

CNN is not the natural choice for financial applications. However,
in some independent studies, the researchers performed an inno-
vative transformation of 1-D time-varying financial data into 2-D
mostly stationary image-like data to be able to utilize the power
of CNN through adaptive filtering and implicit dimensionality
reduction. This novel approach seems working remarkably well
in complex financial patterns regardless of the application area.
In the future, more examples of such implementations might be
more common; only time will tell.

Another model that has a rising interest is DRL based im-
plementations; in particular, the ones coupled with agent-based
modeling. Even though algorithmic trading is the most preferred
implementation area for such models, it is possible to develop the
working structures for any problem type.

Careful analyses of the reviews indicate in most of the papers
hybrid models are preferred over native models for better ac-
complishments. A lot of researchers configure the topologies and
network parameters for achieving higher performance. However,
there is also the danger of creating more complex hybrid models
that are not easy to build, and their interpretation also might be
difficult.

Through the performance evaluation results, it is possible to
claim that in general terms, DL models outperform ML coun-
terparts when working on the same problems. DL models also
have the advantage of being able to work on larger amount of
data. With the growing expansion of open-source DL libraries
and frameworks, DL model building and development process is
easier than ever.

Deep learning for financial applications:
Topic-Dataset Heatmap

9
Source: Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft

Computing (2020): 106384.

22 A.M. Ozbayoglu, M.U. Gudelek and O.B. Sezer / Applied Soft Computing Journal 93 (2020) 106384

Fig. 11. Topic-feature heatmap.

Fig. 12. Topic-dataset heatmap.

CNN is not the natural choice for financial applications. However,
in some independent studies, the researchers performed an inno-
vative transformation of 1-D time-varying financial data into 2-D
mostly stationary image-like data to be able to utilize the power
of CNN through adaptive filtering and implicit dimensionality
reduction. This novel approach seems working remarkably well
in complex financial patterns regardless of the application area.
In the future, more examples of such implementations might be
more common; only time will tell.

Another model that has a rising interest is DRL based im-
plementations; in particular, the ones coupled with agent-based
modeling. Even though algorithmic trading is the most preferred
implementation area for such models, it is possible to develop the
working structures for any problem type.

Careful analyses of the reviews indicate in most of the papers
hybrid models are preferred over native models for better ac-
complishments. A lot of researchers configure the topologies and
network parameters for achieving higher performance. However,
there is also the danger of creating more complex hybrid models
that are not easy to build, and their interpretation also might be
difficult.

Through the performance evaluation results, it is possible to
claim that in general terms, DL models outperform ML coun-
terparts when working on the same problems. DL models also
have the advantage of being able to work on larger amount of
data. With the growing expansion of open-source DL libraries
and frameworks, DL model building and development process is
easier than ever.

Deep learning for financial applications:
Algo-trading applications embedded with time series forecasting models

10
Source: Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft

Computing (2020): 106384.

6 A.M. Ozbayoglu, M.U. Gudelek and O.B. Sezer / Applied Soft Computing Journal 93 (2020) 106384

Table 1
Algo-trading applications embedded with time series forecasting models.
Art. Data set Period Feature set Method Performance

criteria
Environment

[33] GarantiBank in BIST,
Turkey

2016 OCHLV, Spread,
Volatility,
Turnover, etc.

PLR, Graves LSTM MSE, RMSE, MAE,
RSE, Correlation
R-square

Spark

[34] CSI300, Nifty50, HSI,
Nikkei 225, S&P500, DJIA

2010–2016 OCHLV, Technical
Indicators

WT, Stacked
autoencoders,
LSTM

MAPE, Correlation
coefficient,
THEIL-U

–

[35] Chinese Stocks 2007–2017 OCHLV CNN + LSTM Annualized Return,
Mxm Retracement

Python

[36] 50 stocks from NYSE 2007–2016 Price data SFM MSE –
[37] The LOB of 5 stocks of

Finnish Stock Market
2010 FI-2010 dataset:

bid/ask and
volume

WMTR, MDA Accuracy,
Precision, Recall,
F1-Score

–

[38] 300 stocks from SZSE,
Commodity

2014–2015 Price data FDDR, DMLP+RL Profit, return, SR,
profit-loss curves

Keras

[39] S&P500 Index 1989–2005 Price data, Volume LSTM Return, STD, SR,
Accuracy

Python,
TensorFlow, Keras,
R, H2O

[40] Stock of National Bank
of Greece (ETE).

2009–2014 FTSE100, DJIA,
GDAX, NIKKEI225,
EUR/USD, Gold

GASVR, LSTM Return, volatility,
SR, Accuracy

Tensorflow

[41] Chinese stock-IF-IH-IC
contract

2016–2017 Decisions for price
change

MODRL+LSTM Profit and loss, SR –

[42] Singapore Stock Market
Index

2010–2017 OCHL of last 10
days of Index

DMLP RMSE, MAPE,
Profit, SR

–

[43] GBP/USD 2017 Price data Reinforcement
Learning + LSTM +
NES

SR, downside
deviation ratio,
total profit

Python, Keras,
Tensorflow

[44] Commodity, FX future,
ETF

1991–2014 Price Data DMLP SR, capability
ratio, return

C++, Python

[45] USD/GBP, S&P500,
FTSE100, oil, gold

2016 Price data AE + CNN SR, % volatility,
avg return/trans,
rate of return

H2O

[46] Bitcoin, Dash, Ripple,
Monero, Litecoin,
Dogecoin, Nxt, Namecoin

2014–2017 MA, BOLL, the
CRIX returns,
Euribor interest
rates, OCHLV

LSTM, RNN, DMLP Accuracy,
F1-measure

Python,
Tensorflow

[47] S&P500, KOSPI, HSI, and
EuroStoxx50

1987–2017 200-days stock
price

Deep Q-Learning,
DMLP

Total profit,
Correlation

–

[48] Stocks in the S&P500 1990–2015 Price data DMLP, GBT, RF Mean return,
MDD, Calmar ratio

H2O

[49] Fundamental and
Technical Data, Economic
Data

– Fundamental ,
technical and
market
information

CNN – –

3.8. Other deep structures

The DL models are not limited to the ones mentioned in
the previous subsections. Some of the other well-known struc-
tures that exist in the literature are Deep Reinforcement Learn-
ing (DRL), Generative Adversarial Networks (GANs), Capsule Net-
works, Deep Gaussian Processes (DGPs). Meanwhile, we have not
encountered any noteworthy academic or industrial publication
on financial applications using these models so far, with the
exception of DRL which started getting attention lately. However,
that does not imply that these models do not fit well with the
financial domain. On the contrary, they offer great potentials for
researchers and practitioners participating in finance and deep
learning community who are willing to go the extra mile to come
up with novel solutions.

Since research for model developments in DL is ongoing, new
structures keep on coming. However, the aforementioned models
and their variations currently cover almost all of the published
work. Next section will provide details about the implementation
areas along with the preferred DL models.

4. Financial applications

There are a lot of financial applications of soft computing in
the literature. DL has been studied in most of them, although,
some opportunities still exist in a number of fields.

Throughout this section, we categorized the implementation
areas and presented them in separate subsections. Besides, in
each subsection we tabulated the representative models, datasets,
features of the relevant studies in order to provide as much
information as possible in the limited space.

In addition, we tried to elaborate on the preferred model, data
and feature choices for each financial application area separately
in the subsections. Our focus was to identify the dominant mod-
els, features and data types that standout for each application
area and very briefly explain the reasons behind those particular
choices. To provide an overall snapshot view, we accumulated
the corresponding model, feature and dataset associations cou-
pled with the financial application areas within three separate
heatmaps (Figs. 10–12) that are presented in Section 5.

11
Source: Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft

Computing (2020): 106384.

6 A.M. Ozbayoglu, M.U. Gudelek and O.B. Sezer / Applied Soft Computing Journal 93 (2020) 106384

Table 1
Algo-trading applications embedded with time series forecasting models.
Art. Data set Period Feature set Method Performance

criteria
Environment

[33] GarantiBank in BIST,
Turkey

2016 OCHLV, Spread,
Volatility,
Turnover, etc.

PLR, Graves LSTM MSE, RMSE, MAE,
RSE, Correlation
R-square

Spark

[34] CSI300, Nifty50, HSI,
Nikkei 225, S&P500, DJIA

2010–2016 OCHLV, Technical
Indicators

WT, Stacked
autoencoders,
LSTM

MAPE, Correlation
coefficient,
THEIL-U

–

[35] Chinese Stocks 2007–2017 OCHLV CNN + LSTM Annualized Return,
Mxm Retracement

Python

[36] 50 stocks from NYSE 2007–2016 Price data SFM MSE –
[37] The LOB of 5 stocks of

Finnish Stock Market
2010 FI-2010 dataset:

bid/ask and
volume

WMTR, MDA Accuracy,
Precision, Recall,
F1-Score

–

[38] 300 stocks from SZSE,
Commodity

2014–2015 Price data FDDR, DMLP+RL Profit, return, SR,
profit-loss curves

Keras

[39] S&P500 Index 1989–2005 Price data, Volume LSTM Return, STD, SR,
Accuracy

Python,
TensorFlow, Keras,
R, H2O

[40] Stock of National Bank
of Greece (ETE).

2009–2014 FTSE100, DJIA,
GDAX, NIKKEI225,
EUR/USD, Gold

GASVR, LSTM Return, volatility,
SR, Accuracy

Tensorflow

[41] Chinese stock-IF-IH-IC
contract

2016–2017 Decisions for price
change

MODRL+LSTM Profit and loss, SR –

[42] Singapore Stock Market
Index

2010–2017 OCHL of last 10
days of Index

DMLP RMSE, MAPE,
Profit, SR

–

[43] GBP/USD 2017 Price data Reinforcement
Learning + LSTM +
NES

SR, downside
deviation ratio,
total profit

Python, Keras,
Tensorflow

[44] Commodity, FX future,
ETF

1991–2014 Price Data DMLP SR, capability
ratio, return

C++, Python

[45] USD/GBP, S&P500,
FTSE100, oil, gold

2016 Price data AE + CNN SR, % volatility,
avg return/trans,
rate of return

H2O

[46] Bitcoin, Dash, Ripple,
Monero, Litecoin,
Dogecoin, Nxt, Namecoin

2014–2017 MA, BOLL, the
CRIX returns,
Euribor interest
rates, OCHLV

LSTM, RNN, DMLP Accuracy,
F1-measure

Python,
Tensorflow

[47] S&P500, KOSPI, HSI, and
EuroStoxx50

1987–2017 200-days stock
price

Deep Q-Learning,
DMLP

Total profit,
Correlation

–

[48] Stocks in the S&P500 1990–2015 Price data DMLP, GBT, RF Mean return,
MDD, Calmar ratio

H2O

[49] Fundamental and
Technical Data, Economic
Data

– Fundamental ,
technical and
market
information

CNN – –

3.8. Other deep structures

The DL models are not limited to the ones mentioned in
the previous subsections. Some of the other well-known struc-
tures that exist in the literature are Deep Reinforcement Learn-
ing (DRL), Generative Adversarial Networks (GANs), Capsule Net-
works, Deep Gaussian Processes (DGPs). Meanwhile, we have not
encountered any noteworthy academic or industrial publication
on financial applications using these models so far, with the
exception of DRL which started getting attention lately. However,
that does not imply that these models do not fit well with the
financial domain. On the contrary, they offer great potentials for
researchers and practitioners participating in finance and deep
learning community who are willing to go the extra mile to come
up with novel solutions.

Since research for model developments in DL is ongoing, new
structures keep on coming. However, the aforementioned models
and their variations currently cover almost all of the published
work. Next section will provide details about the implementation
areas along with the preferred DL models.

4. Financial applications

There are a lot of financial applications of soft computing in
the literature. DL has been studied in most of them, although,
some opportunities still exist in a number of fields.

Throughout this section, we categorized the implementation
areas and presented them in separate subsections. Besides, in
each subsection we tabulated the representative models, datasets,
features of the relevant studies in order to provide as much
information as possible in the limited space.

In addition, we tried to elaborate on the preferred model, data
and feature choices for each financial application area separately
in the subsections. Our focus was to identify the dominant mod-
els, features and data types that standout for each application
area and very briefly explain the reasons behind those particular
choices. To provide an overall snapshot view, we accumulated
the corresponding model, feature and dataset associations cou-
pled with the financial application areas within three separate
heatmaps (Figs. 10–12) that are presented in Section 5.

6 A.M. Ozbayoglu, M.U. Gudelek and O.B. Sezer / Applied Soft Computing Journal 93 (2020) 106384

Table 1
Algo-trading applications embedded with time series forecasting models.
Art. Data set Period Feature set Method Performance

criteria
Environment

[33] GarantiBank in BIST,
Turkey

2016 OCHLV, Spread,
Volatility,
Turnover, etc.

PLR, Graves LSTM MSE, RMSE, MAE,
RSE, Correlation
R-square

Spark

[34] CSI300, Nifty50, HSI,
Nikkei 225, S&P500, DJIA

2010–2016 OCHLV, Technical
Indicators

WT, Stacked
autoencoders,
LSTM

MAPE, Correlation
coefficient,
THEIL-U

–

[35] Chinese Stocks 2007–2017 OCHLV CNN + LSTM Annualized Return,
Mxm Retracement

Python

[36] 50 stocks from NYSE 2007–2016 Price data SFM MSE –
[37] The LOB of 5 stocks of

Finnish Stock Market
2010 FI-2010 dataset:

bid/ask and
volume

WMTR, MDA Accuracy,
Precision, Recall,
F1-Score

–

[38] 300 stocks from SZSE,
Commodity

2014–2015 Price data FDDR, DMLP+RL Profit, return, SR,
profit-loss curves

Keras

[39] S&P500 Index 1989–2005 Price data, Volume LSTM Return, STD, SR,
Accuracy

Python,
TensorFlow, Keras,
R, H2O

[40] Stock of National Bank
of Greece (ETE).

2009–2014 FTSE100, DJIA,
GDAX, NIKKEI225,
EUR/USD, Gold

GASVR, LSTM Return, volatility,
SR, Accuracy

Tensorflow

[41] Chinese stock-IF-IH-IC
contract

2016–2017 Decisions for price
change

MODRL+LSTM Profit and loss, SR –

[42] Singapore Stock Market
Index

2010–2017 OCHL of last 10
days of Index

DMLP RMSE, MAPE,
Profit, SR

–

[43] GBP/USD 2017 Price data Reinforcement
Learning + LSTM +
NES

SR, downside
deviation ratio,
total profit

Python, Keras,
Tensorflow

[44] Commodity, FX future,
ETF

1991–2014 Price Data DMLP SR, capability
ratio, return

C++, Python

[45] USD/GBP, S&P500,
FTSE100, oil, gold

2016 Price data AE + CNN SR, % volatility,
avg return/trans,
rate of return

H2O

[46] Bitcoin, Dash, Ripple,
Monero, Litecoin,
Dogecoin, Nxt, Namecoin

2014–2017 MA, BOLL, the
CRIX returns,
Euribor interest
rates, OCHLV

LSTM, RNN, DMLP Accuracy,
F1-measure

Python,
Tensorflow

[47] S&P500, KOSPI, HSI, and
EuroStoxx50

1987–2017 200-days stock
price

Deep Q-Learning,
DMLP

Total profit,
Correlation

–

[48] Stocks in the S&P500 1990–2015 Price data DMLP, GBT, RF Mean return,
MDD, Calmar ratio

H2O

[49] Fundamental and
Technical Data, Economic
Data

– Fundamental ,
technical and
market
information

CNN – –

3.8. Other deep structures

The DL models are not limited to the ones mentioned in
the previous subsections. Some of the other well-known struc-
tures that exist in the literature are Deep Reinforcement Learn-
ing (DRL), Generative Adversarial Networks (GANs), Capsule Net-
works, Deep Gaussian Processes (DGPs). Meanwhile, we have not
encountered any noteworthy academic or industrial publication
on financial applications using these models so far, with the
exception of DRL which started getting attention lately. However,
that does not imply that these models do not fit well with the
financial domain. On the contrary, they offer great potentials for
researchers and practitioners participating in finance and deep
learning community who are willing to go the extra mile to come
up with novel solutions.

Since research for model developments in DL is ongoing, new
structures keep on coming. However, the aforementioned models
and their variations currently cover almost all of the published
work. Next section will provide details about the implementation
areas along with the preferred DL models.

4. Financial applications

There are a lot of financial applications of soft computing in
the literature. DL has been studied in most of them, although,
some opportunities still exist in a number of fields.

Throughout this section, we categorized the implementation
areas and presented them in separate subsections. Besides, in
each subsection we tabulated the representative models, datasets,
features of the relevant studies in order to provide as much
information as possible in the limited space.

In addition, we tried to elaborate on the preferred model, data
and feature choices for each financial application area separately
in the subsections. Our focus was to identify the dominant mod-
els, features and data types that standout for each application
area and very briefly explain the reasons behind those particular
choices. To provide an overall snapshot view, we accumulated
the corresponding model, feature and dataset associations cou-
pled with the financial application areas within three separate
heatmaps (Figs. 10–12) that are presented in Section 5.

Deep learning for financial applications:
Algo-trading applications embedded with time series forecasting models

Algorithmic
Trading

12

Algorithmic Trading

13Source: Ernest P. Chan (2017), Machine Trading: Deploying Computer Algorithms to Conquer the Markets, Wiley

Historical
Finance Market

Data

Backtest
Results

Computer
Program

Live Finance
Market Data

Broker API

Broker’s
Server

Order

Order Order Status

Order Status

Process of Machine Learning in
Predicting Cryptocurrency

14Source: Fan Fang, Carmine Ventre, Michail Basios, Leslie Kanthan, David Martinez-Rego, Fan Wu, and Lingbo Li. (2023) "Cryptocurrency trading: a comprehensive survey." Financial Innovation 8, no. 1 (2022): 1-59.

15
Source: O. Bustos and A. Pomares-Quimbaya (2020), "Stock Market Movement Forecast: A Systematic Review."

Expert Systems with Applications (2020): 113464.

Stock Market Movement Forecast:
Phases of the stock market modeling

O. Bustos and A. Pomares-Quimbaya / Expert Systems With Applications 156 (2020) 113464 5

Fig. 2. Count of articles by publication year.

Fig. 3. Phases of the stock market modeling .

Fig. 4. Classifications of inputs.
reviewed use structured type inputs, for which processing tech-
niques already exist, and their importance has been extensively
studied. Most recent ones allow the use of unstructured informa-
tion, which is more difficult to process and to extract useful infor-
mation. Fig. 4 shows a proposed taxonomy for the inputs used to
forecast the stock market in the analyzed studies.
3.1. Structured inputs

The structured information refers to data groups with a prede-
fined skeleton, organized in tabular form, where the characteristics
or attributes can be described as columns of a table. That struc-
ture makes information more accessible to navigate, and simple or
complex searches can be done without further effort. Most arti-
cles use this type of information, which is usually open and ex-
posed through API programming interfaces. The most common is

the time series of historical stock prices, which can be used di-
rectly by different computational models.
3.1.1. Stock values

Given the technical analysis approach, stock prices reflect all the
information required to understand market behavior. In this way,
the important thing is to analyze the series of time correspond-
ing to the prices. Generally, this information is public and free and
can be downloaded from the pages of the stock markets (such as
Nasdaq Kazem, Sharifi, Hussain, Saberi, & Hussain (2013)), third
parties (such as Yahoo Finance Wen, Yang, Song, & Jia (2010)). Be-
sides, some companies like Bloomberg (Ding, Zhang, Liu, & Duan,
2015) provide paid services with more information related to stock
prices.

In some articles, daily stock information is used, which consists
of the opening price (OP), closing price (CP), the maximum (MAX)
and minimum price (MIN), and the volume (VOL) of transactions
performed Wang, Liu, Shang, and Wang (2018) Fischer and Krauss
(2018) Di Persio and Honchar (2016) . Closing prices are the most
commonly used information, but the volume and ranges have also
shown value in the prediction. Most of the studies employ a time-
span of 10 0 0 days, that can be handled easily for most of the ma-
chine learning algorithms.

In addition, there are other studies that use intraday informa-
tion for prediction (Huang & Li, 2017; Tsantekidis et al., 2017). The
most fine-grained intraday information is the bid-ask price for a
stock. When a stock is being traded in an exchange, there are buy-
ers and sellers interested in trading that stock. Ask price is the
minimum price a seller is willing to accept, while the bid price
is the maximum price that the buyer offers to pay for the share.
The consolidation of all these prices leads to an enormous number
of points having to be recorded to predict the intraday price.
3.1.2. Technical indicators

Technical indicators have been useful for predicting the stock
market. These have been increasing in sophistication, and are al-
ready part of the language of brokers. Technical indicators can
summarize the behavior or trends in the time series, making their

Risk and Return

16Source: Bacon, Carl. "How sharp is the Sharpe-ratio?-Risk-adjusted Performance Measures." Statpro White Paper (2000).

Sharpe Ratio

17Source: Bacon, Carl. "How sharp is the Sharpe-ratio?-Risk-adjusted Performance Measures." Statpro White Paper (2000).

𝐒𝐡𝐚𝐫𝐩𝐞	𝐑𝐚𝐭𝐢𝐨

=
𝑃𝑜𝑟𝑡𝑜𝑓𝑜𝑙𝑖𝑜	𝑅𝑒𝑡𝑢𝑟𝑛 − 𝑅𝑖𝑠𝑘	𝐹𝑟𝑒𝑒	𝑅𝑒𝑡𝑢𝑟𝑛

𝑃𝑜𝑟𝑡𝑜𝑓𝑜𝑙𝑖𝑜	𝑅𝑖𝑠𝑘

Sharpe Ratio

18Source: Bacon, Carl. "How sharp is the Sharpe-ratio?-Risk-adjusted Performance Measures." Statpro White Paper (2000).

Where
rP = portfolio return
rF = risk free rate
σP = portfolio risk (variability, standard deviation of return)

𝐒𝐡𝐚𝐫𝐩𝐞	𝐑𝐚𝐭𝐢𝐨	𝑆𝑅 =
𝑟! − 𝑟"
𝜎!

Sortino Ratio

19Source: Bacon, Carl. "How sharp is the Sharpe-ratio?-Risk-adjusted Performance Measures." Statpro White Paper (2000).

Where
rP = portfolio return
rT = Minimum Target Return
σD = Downside Risk

𝐒𝐨𝐫𝐭𝐢𝐧𝐨	𝐑𝐚𝐭𝐢𝐨	 =
𝑟! − 𝑟#
𝜎$

𝐃𝐨𝐰𝐧𝐬𝐢𝐝𝐞	𝐑𝐢𝐬𝐤	𝜎! = .
"#$

%
min 𝑟𝑖 − 𝑟𝑇 , 0 2

𝑛

Max Drawdown

20Source: Bacon, Carl. "How sharp is the Sharpe-ratio?-Risk-adjusted Performance Measures." Statpro White Paper (2000).

21

Risk

R
et

ur
n

Efficient Frontier

Portfolio Optimization
Efficient Frontier

Source: Tucker Balch (2012), Investment Science: Portfolio Optimization,
https://www.youtube.com/watch?v=5qbMhXXq0vI

https://www.youtube.com/watch?v=5qbMhXXq0vI

Backtesting
• Financial Functions (ffn)
• https://pmorissette.github.io/ffn/

• backtesting.py
• https://kernc.github.io/backtesting.py/

• Visualization
• Plotly Express (px)

• https://plotly.com/python/plotly-express/

• Bokeh
• https://bokeh.org/

22

https://pmorissette.github.io/ffn/
https://kernc.github.io/backtesting.py/
https://plotly.com/python/plotly-express/
https://bokeh.org/

23

!pip install ffn
import ffn
import plotly.express as px
%pylab inline
#BTC-USD Bitcoin USD
df = ffn.get('btc-usd', start='2016-01-01', end='2021-12-31')
print('df')
print(df.head())
print(df.tail())
print(df.describe())
df.plot(figsize=(14,10))

returns = df.to_returns().dropna()
print('returns')
print(returns.head())
print(returns.tail())
print(returns.describe())
#ax = df.plot(figsize=(12,9))

perf = df.calc_stats()
perf.plot(figsize=(14, 10))
print(perf.display())

fig = px.line(df, x=df.index, y="btcusd", title='btcusd')
fig.update_layout(title='btcusd price', xaxis_title='Date', yaxis_title='Price')
#fig.update_traces(mode='markers+lines')
fig.show()

fig = px.line(returns, x=returns.index, y="btcusd", title='btcusd')
fig.update_layout(title='btcusd returns', xaxis_title='Date', yaxis_title='Returns')
fig.show()

fig = px.histogram(returns, x='btcusd', nbins=40, histnorm='probability', width=800, height=400)
fig.update_layout(title='btcusd returns histogram')
fig.show()

fig = px.box(returns, y='btcusd', points = 'all')
fig.update_layout(title='btcusd returns box')
fig.update_traces(boxmean='sd')
fig.show()

Financial Functions (ffn)
plotly.express (px)

24

!pip install ffn
import ffn
import plotly.express as px
%pylab inline
#BTC-USD Bitcoin USD
df = ffn.get('btc-usd', start='2016-01-01', end='2021-12-31')
print('df')
print(df.head())
print(df.tail())
print(df.describe())
df.plot(figsize=(14,10))

Upgrade pandas-datareader
!pip install --upgrade pandas
!pip install --upgrade pandas-datareader

Financial Functions (ffn)
plotly.express (px)

25

returns = df.to_returns().dropna()
print('returns')
print(returns.head())
print(returns.tail())
print(returns.describe())
#ax = df.plot(figsize=(12,9))

Financial Functions (ffn)
plotly.express (px)

26

perf = df.calc_stats()
perf.plot(figsize=(14, 10))

print(perf.display())

fig = px.line(df, x=df.index, y="btcusd", title='btcusd')
fig.update_layout(title='btcusd price', xaxis_title='Date',
yaxis_title='Price')
#fig.update_traces(mode='markers+lines')
fig.show()

fig = px.line(returns, x=returns.index, y="btcusd", title='btcusd')
fig.update_layout(title='btcusd returns', xaxis_title='Date',
yaxis_title='Returns')
fig.show()

Financial Functions (ffn)
plotly.express (px)

27

fig = px.histogram(returns, x='btcusd', nbins=40,
histnorm='probability', width=800, height=400)

fig.update_layout(title='btcusd returns histogram')
fig.show()

fig = px.box(returns, y='btcusd', points = 'all')
fig.update_layout(title='btcusd returns box')
fig.update_traces(boxmean='sd')
fig.show()

Financial Functions (ffn)
plotly.express (px)

28

Financial Functions (ffn)
btcusd

Date
2016-01-01 434.334015
2016-01-02 433.437988
2016-01-03 430.010986
2016-01-04 433.091003
2016-01-05 431.959991
 btcusd
Date
2021-12-28 47588.855469
2021-12-29 46444.710938
2021-12-30 47178.125000
2021-12-31 46306.445312
2022-01-01 47686.812500
 btcusd
count 2193.000000
mean 13025.164562
std 16489.530523
min 364.330994
25% 2589.409912
50% 7397.796875
75% 11358.662109
max 67566.828125

29

Financial Functions (ffn)
calc_stats() display()

Stat btcusd
------------------- ----------
Start 2016-01-01
End 2022-01-01
Risk-free rate 0.00%

Total Return 10879.29%
Daily Sharpe 1.18
Daily Sortino 1.95
CAGR 118.79%
Max Drawdown -83.40%
Calmar Ratio 1.42

30

MTD 2.98%
3m -0.89%
6m 42.04%
YTD 2.98%
1Y 62.34%
3Y (ann.) 131.46%
5Y (ann.) 116.71%
10Y (ann.) -
Since Incep. (ann.) 118.79%

Financial Functions (ffn)
calc_stats() display()

31

Daily Sharpe 1.18
Daily Sortino 1.95
Daily Mean (ann.) 74.04%
Daily Vol (ann.) 62.94%
Daily Skew -0.10
Daily Kurt 7.30
Best Day 25.25%
Worst Day -37.17%

Financial Functions (ffn)
calc_stats() display()

32

Monthly Sharpe 1.38
Monthly Sortino 3.75
Monthly Mean (ann.) 114.20%
Monthly Vol (ann.) 82.59%
Monthly Skew 0.43
Monthly Kurt -0.16
Best Month 69.63%
Worst Month -36.41%

Financial Functions (ffn)
calc_stats() display()

33

Yearly Sharpe 0.54
Yearly Sortino 9.73
Yearly Mean 292.22%
Yearly Vol 542.38%
Yearly Skew 2.17
Yearly Kurt 4.86
Best Year 1368.90%
Worst Year -73.56%

Financial Functions (ffn)
calc_stats() display()

34

Avg. Drawdown -10.25%
Avg. Drawdown Days 36.55
Avg. Up Month 25.13%
Avg. Down Month -12.35%
Win Year % 83.33%
Win 12m % 85.48%

Financial Functions (ffn)
calc_stats() display()

35

Visualization
plotly.express (px)

36

Backtesting Output
backtesing output
Start 2016-01-01 00:00:00
End 2022-01-01 00:00:00
Duration 2192 days 00:00:00
Exposure Time [%] 97.993616
Equity Final [$] 4237449.058157
Equity Peak [$] 6165339.439633
Return [%] 4137.449058
Buy & Hold Return [%] 10879.294935
Return (Ann.) [%] 86.557668
Volatility (Ann.) [%] 144.748975
Sharpe Ratio 0.597985
Sortino Ratio 1.946086
Calmar Ratio 1.362652
Max. Drawdown [%] -63.521467
Avg. Drawdown [%] -12.142095
Max. Drawdown Duration 557 days 00:00:00
Avg. Drawdown Duration 44 days 00:00:00
Trades 116
Win Rate [%] 35.344828
Best Trade [%] 119.026467
Worst Trade [%] -23.393531
Avg. Trade [%] 3.291328
Max. Trade Duration 74 days 00:00:00
Avg. Trade Duration 19 days 00:00:00
Profit Factor 2.293983
Expectancy [%] 5.036865
SQN 1.236071
_strategy SmaCross
_equity_curve ...
_trades Size Entry..

37

describe()

High Low Open Close Volume Adj Close
count 2193.00 2193.00 2193.00 2193.00 2.193000e+03 2193.00
mean 13363.00 12616.08 13005.79 13025.16 1.757591e+10 13025.16
std 16935.24 15960.65 16480.00 16489.53 2.085247e+10 16489.53
min 374.95 354.91 365.07 364.33 2.851400e+07 364.33
25% 2682.26 2510.48 2577.77 2589.41 1.182870e+09 2589.41
50% 7535.72 7233.40 7397.13 7397.80 9.175292e+09 7397.80
75% 11570.79 11018.13 11354.30 11358.66 2.886756e+10 11358.66
max 68789.62 66382.06 67549.73 67566.83 3.509679e+11 67566.83

38

!pip install backtesting
from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.test import SMA

import pandas as pd
import pandas_datareader.data as web
df = web.DataReader("BTC-USD", 'yahoo', '2016-01-01', '2021-12-31')
df.to_csv('BTC-USD.csv')
print(df.head().round(2))
print(df.tail().round(2))
print(df.describe().round(2))

class SmaCross(Strategy):
n1 = 5
n2 = 20

def init(self):
close = self.data.Close
self.sma1 = self.I(SMA, close, self.n1)
self.sma2 = self.I(SMA, close, self.n2)

def next(self):
if crossover(self.sma1, self.sma2):

self.buy()
elif crossover(self.sma2, self.sma1):

self.sell()

bt = Backtest(df, SmaCross, cash=100000, commission=.002, exclusive_orders=True)

output = bt.run()
print('backtesing output')
print(output)

bt.plot()

Upgrade pandas-datareader
!pip install --upgrade pandas
!pip install --upgrade pandas-datareader

Backtesting

39

#!pip install backtesting
from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.lib import plot_heatmaps
from backtesting.test import SMA

import pandas as pd
import pandas_datareader.data as web

from google.colab import files
import time
#BTC-USD ETH-USD
v_symbol = 'BTC-USD'
v_time_start = '2016-01-01'
v_time_end = '2021-12-31'
v_to_csv_filename = v_symbol + '_' + v_time_start + '_' + v_time_end + '.csv'
df = web.DataReader(v_symbol, 'yahoo', v_time_start, v_time_end)
df.to_csv(v_to_csv_filename)

print(df.head().round(2))
print(df.tail().round(2))
print(df.describe().round(2))
v_n1 = 5 #5 #20 #60 #120
v_n2 = 200 #20 #60 #120 #240

Backtesting

40

class SmaCross(Strategy):
n1 = v_n1 #5
n2 = v_n2 #60

def init(self):
close = self.data.Close
self.sma1 = self.I(SMA, close, self.n1)
self.sma2 = self.I(SMA, close, self.n2)

def next(self):
if crossover(self.sma1, self.sma2):
 self.buy()
elif crossover(self.sma2, self.sma1):
 self.sell()

bt = Backtest(df, SmaCross, cash=100000, commission=.002, exclusive_orders=True)

stats = bt.run()

Backtesting

41

filename = v_symbol + '_' + v_time_start + '_' + v_time_end + '_' + 'MA_' +
str(v_n1) + '_' + str(v_n2) + '.csv'
print('filename:', filename)
stats.to_csv(filename)

print('backtesing stats')
print(stats)
bt.plot()

print('filename:\t', filename)
print("stats._strategy:\t", stats._strategy)
print("# Trades:\t", stats['# Trades'])
print("stats['Equity Final [$]']:\t", round(stats['Equity Final [$]'], 4))
print("stats['Avg. Trade [%]']:\t", round(stats['Avg. Trade [%]'], 4))
print("Sharpe Ratio:\t", round(stats['Sharpe Ratio'], 4))

#download file
time.sleep(1) # time sleep 1 second
files.download(filename)
print('file downloaded:', filename)

Backtesting

42

print('*****bt.optimize*****')
stats, heatmap = bt.optimize(

n1 = range(5, 65, 5),
n2 = range(10, 205, 5),
constraint = lambda param: param.n1 <param.n2,
maximize = 'Avg. Trade [%]',
max_tries = 600,
random_state = 0,
return_heatmap = True)

#'Equity Final [$]' 'Avg. Trade [%]'

optimize_strategy = stats._strategy

Backtesting

43

optimize_filename = v_symbol + '_' + v_time_start + '_' + v_time_end + '_' +
'bt_optimize_strategy' + str(optimize_strategy) + '.csv'
print('optimize_filename:', optimize_filename)
print('backtesing optimize strategy stats')

print(stats)
stats.to_csv(optimize_filename)
plot_heatmaps(heatmap, agg='mean', plot_width = 1800)

print('backtesting optimize strategy heatmap')

print(heatmap)
print('backtesting optimize strategy heatmap Top 10')
print(heatmap.sort_values().iloc[-10:])

hm = heatmap.groupby(['n1', 'n2']).mean().unstack()
print('backtesting optimize strategy heatmap mean')

print(hm)
hm_filename = v_symbol + '_' + v_time_start + '_' + v_time_end + '_' +
'hm_heatmap.csv'

hm.to_csv(hm_filename)

Backtesting

44

print("filename:\t", optimize_filename)
print("stats._strategy:\t", stats._strategy)
print("# Trades:\t", stats['# Trades'])
print("stats['Equity Final [$]']:\t", round(stats['Equity Final [$]'], 4))
print("stats['Avg. Trade [%]']:\t", round(stats['Avg. Trade [%]'], 4))
print("Sharpe Ratio:\t", round(stats['Sharpe Ratio'], 4))

#download file
time.sleep(1) # time sleep 1 second
files.download(hm_filename)
print('file downloaded:', hm_filename)
files.download(optimize_filename)
print('file downloaded:', optimize_filename)

Backtesting

45

Backtesting

Time series data for EUR/USD and SMAs

46Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Time series data for EUR/USD, SMAs, and
resulting positions

47Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of passive benchmark
investment and SMA strategy

48Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of the SMA strategy before
and after transaction costs

49Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of the passive benchmark
investment and the daily DNN strategy

 (in-sample)

50Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of the passive benchmark
investment and the daily DNN strategy

(out-of-sample)

51Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of the daily DNN strategy
before and after transaction costs

(out-of-sample)

52Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of the passive benchmark
investment and the DNN intraday strategy

(out-of-sample)

53Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of the DNN intraday strategy
before and after higher/ lower transaction costs

(out-of-sample)

54Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance on training and
validation data set

55Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of the passive benchmark
investment and the trading bot (out-of-sample)

56Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of the trading bot before and
after transaction costs (in-sample)

57Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of the passive benchmark
investment and the trading bot

(vectorized and event-based backtesting)

58Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Average true range (ATR) in absolute (price) and
relative (%) terms

59Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

BTC-USD

60Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

BTC-USD Returns

61Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

BTC-USD Returns Box

62Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

The Quant Finance PyData Stack

63Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#/5

Yves Hilpisch (2020),
Artificial Intelligence in Finance:

A Python-Based Guide,
O’Reilly

64Source: https://www.amazon.com/Artificial-Intelligence-Finance-Python-Based-Guide/dp/1492055433

https://www.amazon.com/Artificial-Intelligence-Finance-Python-Based-Guide/dp/1492055433

Yves Hilpisch (2020),
Python for Algorithmic Trading:

From Idea to Cloud Deployment,
O’Reilly

65Source: https://www.amazon.com/Python-Algorithmic-Trading-Cloud-Deployment/dp/149205335X

https://www.amazon.com/Python-Algorithmic-Trading-Cloud-Deployment/dp/149205335X

Stefan Jansen (2020),
Machine Learning for Algorithmic Trading:

Predictive models to extract signals from market and alternative data for systematic trading strategies
with Python, 2nd Edition,

Packt Publishing.

66Source: https://www.amazon.com/Machine-Learning-Algorithmic-Trading-alternative/dp/1839217715/

https://www.amazon.com/Machine-Learning-Algorithmic-Trading-alternative/dp/1839217715/

Chris Kelliher (2022),
Quantitative Finance With Python:

A Practical Guide to Investment Management, Trading, and Financial Engineering,
Chapman and Hall/CRC.

67Source: https://www.amazon.com/Quantitative-Finance-Python-Engineering-Mathematics/dp/1032014431/

https://www.amazon.com/Quantitative-Finance-Python-Engineering-Mathematics/dp/1032014431/

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly

68Source: https://github.com/yhilpisch/aiif

https://github.com/yhilpisch/aiif

https://github.com/yhilpisch/aiif/tree/main/code
https://github.com/yhilpisch/aiif/tree/main/code

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly

69Source: https://github.com/yhilpisch/aiif/tree/main/code

https://github.com/yhilpisch/aiif/tree/main/code

https://github.com/yhilpisch/aiif/tree/main/code
https://github.com/yhilpisch/aiif/tree/main/code

70

Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101

71

Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101

72

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

73

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

74

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

75

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

76

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

77

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

78

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

79

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

80

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

81

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

82

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

83

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

84

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

85

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

86

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

87https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

Summary
• Algorithmic Trading
• Risk Management
• Trading Bot
• Event-Based Backtesting

88Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

References
• Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media, https://github.com/yhilpisch/aiif .
• Yves Hilpisch (2020), Python for Algorithmic Trading: From Idea to Cloud Deployment, O’Reilly Media.
• Stefan Jansen (2020), Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading

strategies with Python, 2nd Edition, Packt Publishing.
• Aurélien Géron (2022), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd

Edition, O’Reilly Media.
• Hariom Tatsat, Sahil Puri, Brad Lookabaugh (2020), Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-

Advisors Using Python, O'Reilly Media
• Chris Kelliher (2022), Quantitative Finance With Python: A Practical Guide to Investment Management, Trading, and Financial Engineering, Chapman and

Hall/CRC.
• Abdullah Karasan (2021), Machine Learning for Financial Risk Management with Python: Algorithms for Modeling Risk, O’Reilly Media.
• Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft Computing

(2020): 106384.
• Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature

review: 2005–2019." Applied Soft Computing 90 (2020): 106181.
• Yuanhang Zheng, Zeshui Xu, and Anran Xiao (2023). "Deep learning in economics: a systematic and critical review." Artificial Intelligence Review (2023): 1-43.
• Ajitha Kumari Vijayappan Nair Biju, Ann Susan Thomas, and J. Thasneem (2023). "Examining the research taxonomy of artificial intelligence, deep learning &

machine learning in the financial sphere—a bibliometric analysis." Quality & Quantity (2023): 1-30.
• Min-Yuh Day, Ching-Ying Yang, and Yensen Ni (2023), "Portfolio dynamic trading strategies using deep reinforcement learning." Soft Computing (2023): 1-16.
• Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020), "Deep learning for financial applications: A survey." Applied Soft Computing

(2020): 106384.
• Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature

review: 2005–2019." Applied Soft Computing 90 (2020): 106181.
• Fan Fang, Carmine Ventre, Michail Basios, Leslie Kanthan, David Martinez-Rego, Fan Wu, and Lingbo Li. (2023) "Cryptocurrency trading: a comprehensive

survey." Financial Innovation 8, no. 1 (2022): 1-59.
• Min-Yuh Day (2023), Python 101, https://tinyurl.com/aintpupython101

89

https://github.com/yhilpisch/aiif
https://tinyurl.com/aintpupython101

