#### **Artificial Intelligence in Finance and Quantitative Analysis**



### Algorithmic Trading; Risk Management; Trading Bot and Event-Based Backtesting

1121AIFQA08 MBA, IM, NTPU (M5276) (Fall 2023) Tue 2, 3, 4 (9:10-12:00) (B3F17)





#### **Associate Professor**

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2023-12-19



https://meet.google.com/ paj-zhhj-mya







#### Week Date Subject/Topics

- 1 2023/09/12 Introduction to Artificial Intelligence in Finance and Quantitative Analysis
- 2 2023/09/19 AI in FinTech: Metaverse, Web3, DeFi, NFT, Financial Services Innovation and Applications
- 3 2023/09/26 Investing Psychology and Behavioral Finance
- 4 2023/10/03 Event Studies in Finance
- 5 2023/10/10 National Day (Day off)
- 6 2023/10/17 Case Study on AI in Finance and Quantitative Analysis I





Week Date Subject/Topics

- 7 2023/10/24 Finance Theory and Data-Driven Finance
- 8 2023/10/31 Midterm Project Report
- 9 2023/11/07 Financial Econometrics
- 10 2023/11/14 AI-First Finance
- 11 2023/11/21 Deep Learning in Finance; Reinforcement Learning in Finance
- **12 2023/11/28 Case Study on AI in Finance and Quantitative Analysis II**





#### Week Date Subject/Topics

- 13 2023/12/05 Industry Practices of AI in Finance and Quantitative Analysis
- 14 2023/12/12 Self-study
- 15 2023/12/19 Algorithmic Trading; Risk Management; Trading Bot and Event-Based Backtesting
- 16 2023/12/26 Final Project Report I
- **17 2024/01/02** Final Project Report II
- 18 2024/01/09 Self-study

**Algorithmic Trading Risk Management Trading Bot Event-Based Backtesting** 

## Outline

- Algorithmic Trading
- Risk Management
- Trading Bot
- Event-Based Backtesting

#### Deep learning for financial applications: Topic-Model Heatmap

| RNN -   | 6                     | 0                 | 0                 | 4                     | 1                                                      | 3                                     | 2                               | 8                       | 0                                                 | 2               |  |        |
|---------|-----------------------|-------------------|-------------------|-----------------------|--------------------------------------------------------|---------------------------------------|---------------------------------|-------------------------|---------------------------------------------------|-----------------|--|--------|
| I STM - | 15                    | 8                 | 4                 | 6                     | 2                                                      | 4                                     | 13                              | 22                      | 0                                                 | 0               |  | - 20.0 |
| GRU -   | 2                     | 1                 | 1                 | 1                     | _<br>0                                                 | 0                                     | 2                               | 6                       | 0                                                 | 0               |  | - 17.5 |
| CNN -   | 12                    | 7                 | 1                 | 4                     | 1                                                      | 3                                     | 9                               | 11                      | 0                                                 | 1               |  | - 15.0 |
| DMI P - | 10                    | 11                | 4                 | 4                     | 6                                                      | 2                                     | 4                               | 7                       | 0                                                 | 3               |  | - 12.5 |
| DBN -   | 0                     | 4                 | 0                 | 1                     | 0                                                      | 0                                     | 0                               | 1                       | 0                                                 | 2               |  | - 10.0 |
| AE -    | 3                     | 1                 | 2                 | 0                     | 0                                                      | 1                                     | 0                               | 0                       | 0                                                 | 2               |  | -75    |
| RL -    | 6                     | 1                 | 2                 | 1                     | 1                                                      | 0                                     | 0                               | 0                       | 1                                                 | 1               |  | - 5 0  |
| RBM -   | 0                     | 1                 | 0                 | 0                     | 0                                                      | 0                                     | 0                               | 1                       | 0                                                 | 2               |  | 5.0    |
| Other - | 6                     | 2                 | 1                 | 3                     | 1                                                      | 0                                     | 3                               | 10                      | 1                                                 | 1               |  | - 2.5  |
|         | algorithmic trading - | risk assessment - | fraud detection - | ortfolio management - | asset pricing and _<br>derivatives market <sup>_</sup> | cryptocurrency and blockchain studies | financial sentiment<br>analysis | financial text mining - | theoretical or<br>conceptual studies <sup>–</sup> | other financial |  | - 0.0  |

RBN

#### Deep learning for financial applications: Topic-Feature Heatmap

| price data -                                  | 35                    | 3                 | 0                 | 16                     | 10                                   | 7                                        | 10                              | 22                      |     | - 35 |
|-----------------------------------------------|-----------------------|-------------------|-------------------|------------------------|--------------------------------------|------------------------------------------|---------------------------------|-------------------------|-----|------|
| technical indicator -                         | 15                    | 0                 | 0                 | 7                      | 1                                    | 4                                        | 3                               | 7                       |     |      |
| index data -                                  | 5                     | 1                 | 0                 | 0                      | 0                                    | 0                                        | 1                               | 1                       |     | - 30 |
| market characteristics -                      | 6                     | 2                 | 2                 | 0                      | 9                                    | 0                                        | 0                               | 0                       |     |      |
| fundamental -                                 | 2                     | 0                 | 0                 | 2                      | 3                                    | 0                                        | 0                               | 0                       |     | - 25 |
| market microstructure data -                  | 8                     | 4                 | 3                 | 0                      | 0                                    | 1                                        | 0                               | 1                       |     |      |
| sentiment -                                   | 1                     | 1                 | 0                 | 0                      | 0                                    | 1                                        | 7                               | 5                       |     | - 20 |
| text -                                        | 2                     | 7                 | 2                 | 1                      | 1                                    | 0                                        | 21                              | 36                      |     |      |
| news -                                        | 0                     | 1                 | 0                 | 0                      | 0                                    | 0                                        | 4                               | 22                      |     | - 15 |
| company/personal financial data -             | 0                     | 21                | 5                 | 2                      | 1                                    | 0                                        | 2                               | 3                       |     |      |
| macroeconomic data -                          | 1                     | 2                 | 2                 | 0                      | 0                                    | 1                                        | 0                               | 0                       |     | - 10 |
| risk measuring features -                     | 0                     | 3                 | 2                 | 0                      | 0                                    | 0                                        | 0                               | 0                       |     | _    |
| blockchain/cryptocurrency specific features - | 0                     | 0                 | 0                 | 0                      | 0                                    | 6                                        | 0                               | 0                       |     | - 5  |
| human inputs -                                | 0                     | 0                 | 0                 | 0                      | 0                                    | 0                                        | 0                               | 2                       |     |      |
|                                               | algorithmic trading - | risk assessment - | fraud detection - | portfolio management - | asset pricing and derivatives market | cryptocurrency and<br>blockchain studies | financial sentiment<br>analysis | financial text mining - | . – | 0    |

### Deep learning for Financial applications: Topic-Dataset Heatmap

| Stock Data -         | 15                    | 2                 | 0                 | 11                     | 3                                    | 0                                        | 7                               | 20                      | 2                                    | 3                               | - 35         |  |
|----------------------|-----------------------|-------------------|-------------------|------------------------|--------------------------------------|------------------------------------------|---------------------------------|-------------------------|--------------------------------------|---------------------------------|--------------|--|
| Index/ETF Data -     | 35                    | 0                 | 0                 | 3                      | 3                                    | 0                                        | 9                               | 14                      | 0                                    | 1                               |              |  |
| Cryptocurrency -     | 9                     | 0                 | 0                 | 2                      | 0                                    | 15                                       | 2                               | 0                       | 0                                    | 0                               | - 30         |  |
| Forex Data -         | 5                     | 0                 | 0                 | 1                      | 0                                    | 0                                        | 0                               | 0                       | 0                                    | 2                               |              |  |
| Commodity Data -     | 6                     | 0                 | 0                 | 1                      | 0                                    | 0                                        | 0                               | 0                       | 0                                    | 2                               | - 25         |  |
| Options Data -       | 1                     | 0                 | 0                 | 0                      | 4                                    | 0                                        | 0                               | 0                       | 0                                    | 0                               |              |  |
| Transaction Data -   | 2                     | 3                 | 2                 | 0                      | 0                                    | 0                                        | 0                               | 1                       | 0                                    | 0                               | - 20         |  |
| News Text -          | 4                     | 3                 | 0                 | 0                      | 0                                    | 0                                        | 13                              | 36                      | 0                                    | 0                               |              |  |
| Tweet/microblog -    | 1                     | 0                 | 0                 | 0                      | 0                                    | 1                                        | 8                               | 10                      | 0                                    | 1                               | - 15         |  |
| Credit Data -        | 0                     | 10                | 1                 | 0                      | 0                                    | 0                                        | 0                               | 0                       | 0                                    | 0                               |              |  |
| Financial Reports -  | 0                     | 6                 | 2                 | 3                      | 2                                    | 0                                        | 4                               | 3                       | 0                                    | 3                               | - 10         |  |
| Consumer Data -      | 0                     | 8                 | 6                 | 0                      | 0                                    | 0                                        | 0                               | 1                       | 0                                    | 1                               |              |  |
| Macroeconomic Data - | 0                     | 2                 | 1                 | 0                      | 0                                    | 0                                        | 0                               | 0                       | 0                                    | 1                               | - 5          |  |
| Other -              | 5                     | 3                 | 1                 | 1                      | 3                                    | 0                                        | 0                               | 3                       | 1                                    | 0                               |              |  |
|                      | algorithmic trading - | risk assessment - | fraud detection - | oortfolio management - | asset pricing and derivatives market | cryptocurrency and<br>blockchain studies | financial sentiment<br>analysis | financial text mining - | theoretical or<br>conceptual studies | other financial<br>applications | <b>—</b> - 0 |  |

#### **Deep learning for financial applications:**

#### Algo-trading applications embedded with time series forecasting models

| Art. | Data set                                          | Period    | Feature set                                         | Method                                    | Performance<br>criteria                                  | Environment                            |
|------|---------------------------------------------------|-----------|-----------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------|
| [33] | GarantiBank in BIST,<br>Turkey                    | 2016      | OCHLV, Spread,<br>Volatility,<br>Turnover, etc.     | PLR, Graves LSTM                          | MSE, RMSE, MAE,<br>RSE, Correlation<br>R-square          | Spark                                  |
| [34] | CSI300, Nifty50, HSI,<br>Nikkei 225, S&P500, DJIA | 2010-2016 | OCHLV, Technical<br>Indicators                      | WT, Stacked<br>autoencoders,<br>LSTM      | MAPE, Correlation<br>coefficient,<br>THEIL-U             | -                                      |
| [35] | Chinese Stocks                                    | 2007-2017 | OCHLV                                               | CNN + LSTM                                | Annualized Return,<br>Mxm Retracement                    | Python                                 |
| [36] | 50 stocks from NYSE                               | 2007-2016 | Price data                                          | SFM                                       | MSE                                                      | -                                      |
| [37] | The LOB of 5 stocks of<br>Finnish Stock Market    | 2010      | FI-2010 dataset:<br>bid/ask and<br>volume           | WMTR, MDA                                 | Accuracy,<br>Precision, Recall,<br>F1-Score              | _                                      |
| 38]  | 300 stocks from SZSE,<br>Commodity                | 2014-2015 | Price data                                          | FDDR, DMLP+RL                             | Profit, return, SR,<br>profit-loss curves                | Keras                                  |
| [39] | S&P500 Index                                      | 1989–2005 | Price data, Volume                                  | LSTM                                      | Return, STD, SR,<br>Accuracy                             | Python,<br>TensorFlow, Keras<br>R, H2O |
| 40]  | Stock of National Bank of Greece (ETE).           | 2009–2014 | FTSE100, DJIA,<br>GDAX, NIKKEI225,<br>EUR/USD, Gold | GASVR, LSTM                               | Return, volatility,<br>SR, Accuracy                      | Tensorflow                             |
| 41]  | Chinese stock-IF-IH-IC contract                   | 2016-2017 | Decisions for price change                          | MODRL+LSTM                                | Profit and loss, SR                                      | -                                      |
| 42]  | Singapore Stock Market<br>Index                   | 2010-2017 | OCHL of last 10<br>days of Index                    | DMLP                                      | RMSE, MAPE,<br>Profit, SR                                | -                                      |
| [43] | GBP/USD                                           | 2017      | Price data                                          | Reinforcement<br>Learning + LSTM +<br>NES | SR, downside<br>deviation ratio,<br>total profit         | Python, Keras,<br>Tensorflow           |
| [44] | Commodity, FX future,<br>ETF                      | 1991–2014 | Price Data                                          | DMLP                                      | SR, capability<br>ratio, return                          | C++, Python                            |
| [45] | USD/GBP, S&P500,<br>FTSE100, oil, gold            | 2016      | Price data                                          | AE + CNN                                  | SR, % volatility,<br>avg return/trans,<br>rate of return | H2O                                    |

Source: Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft Computing (2020): 106384.

#### **Deep learning for financial applications:**

#### Algo-trading applications embedded with time series forecasting models

| Art. | Data set                                                               | Period    | Feature set                                                        | Method                   | Performance<br>criteria           | Environment           |
|------|------------------------------------------------------------------------|-----------|--------------------------------------------------------------------|--------------------------|-----------------------------------|-----------------------|
| [46] | Bitcoin, Dash, Ripple,<br>Monero, Litecoin,<br>Dogecoin, Nxt, Namecoin | 2014–2017 | MA, BOLL, the<br>CRIX returns,<br>Euribor interest<br>rates, OCHLV | LSTM, RNN, DMLP          | Accuracy,<br>F1-measure           | Python,<br>Tensorflow |
| [47] | S&P500, KOSPI, HSI, and<br>EuroStoxx50                                 | 1987–2017 | 200-days stock<br>price                                            | Deep Q-Learning,<br>DMLP | Total profit,<br>Correlation      | _                     |
| [48] | Stocks in the S&P500                                                   | 1990–2015 | Price data                                                         | DMLP, GBT, RF            | Mean return,<br>MDD, Calmar ratio | H2O                   |
| [49] | Fundamental and<br>Technical Data, Economic<br>Data                    | _         | Fundamental ,<br>technical and<br>market<br>information            | CNN                      | _                                 | _                     |

# Algorithmic Trading

## **Algorithmic Trading**



Source: Ernest P. Chan (2017), Machine Trading: Deploying Computer Algorithms to Conquer the Markets, Wiley

## Process of Machine Learning in Predicting Cryptocurrency



#### **Stock Market Movement Forecast: Phases of the stock market modeling**



Source: O. Bustos and A. Pomares-Quimbaya (2020), "Stock Market Movement Forecast: A Systematic Review." Expert Systems with Applications (2020): 113464.



#### **Sharpe Ratio**

#### **Sharpe Ratio** Portofolio Return – Risk Free Return

#### Portofolio Risk

#### **Sharpe Ratio**

**Sharpe Ratio** 
$$SR = \frac{r_P - r_F}{\sigma_P}$$

Where  $r_P = \text{portfolio return}$   $r_F = \text{risk free rate}$  $\sigma_P = \text{portfolio risk}$  (variability, standard deviation of return)

#### **Sortino Ratio**

**Sortino Ratio** = 
$$\frac{r_P - r_T}{\sigma_D}$$

Where

 $r_P$  = portfolio return

 $r_T$  = Minimum Target Return

 $\sigma_D$  = Downside Risk

**Downside Risk** 
$$\sigma_D = \sqrt{\sum_{i=1}^{n} \frac{\min[(r_i - rT), 0]^2}{n}}$$

Source: Bacon, Carl. "How sharp is the Sharpe-ratio?-Risk-adjusted Performance Measures." *Statpro White Paper* (2000).

#### Max Drawdown



Portfolio Optimization Efficient Frontier



Source: Tucker Balch (2012), Investment Science: Portfolio Optimization, <u>https://www.youtube.com/watch?v=5qbMhXXq0vI</u>

### Backtesting

- Financial Functions (ffn)
  - <u>https://pmorissette.github.io/ffn/</u>
- backtesting.py
  - https://kernc.github.io/backtesting.py/
- Visualization
  - Plotly Express (px)
    - <u>https://plotly.com/python/plotly-express/</u>
  - Bokeh
    - <u>https://bokeh.org/</u>

```
!pip install ffn
import ffn
import plotly.express as px
%pylab inline
#BTC-USD Bitcoin USD
df = ffn.get('btc-usd', start='2016-01-01', end='2021-12-31')
print('df')
print(df.head())
print(df.head())
print(df.tail())
print(df.describe())
df.plot(figsize=(14,10))
```

```
returns = df.to_returns().dropna()
print('returns')
print(returns.head())
print(returns.tail())
print(returns.describe())
#ax = df.plot(figsize=(12,9))
```

```
perf = df.calc_stats()
perf.plot(figsize=(14, 10))
print(perf.display())
```

```
fig = px.line(df, x=df.index, y="btcusd", title='btcusd')
fig.update_layout(title='btcusd price', xaxis_title='Date', yaxis_title='Price')
#fig.update_traces(mode='markers+lines')
fig.show()
```

```
fig = px.line(returns, x=returns.index, y="btcusd", title='btcusd')
fig.update_layout(title='btcusd returns', xaxis_title='Date', yaxis_title='Returns')
fig.show()
```

```
fig = px.histogram(returns, x='btcusd', nbins=40, histnorm='probability', width=800, height=400)
fig.update_layout(title='btcusd returns histogram')
fig.show()
```

```
fig = px.box(returns, y='btcusd', points = 'all')
fig.update_layout(title='btcusd returns box')
fig.update_traces(boxmean='sd')
fig.show()
```

```
# Upgrade pandas-datareader
!pip install --upgrade pandas
!pip install --upgrade pandas-datareader
```

```
!pip install ffn
import ffn
import plotly.express as px
%pylab inline
#BTC-USD Bitcoin USD
df = ffn.get('btc-usd', start='2016-01-01', end='2021-12-31')
print('df')
print(df.head())
print(df.tail())
print(df.describe())
df.plot(figsize=(14,10))
```

```
returns = df.to_returns().dropna()
print('returns')
print(returns.head())
print(returns.tail())
print(returns.describe())
#ax = df.plot(figsize=(12,9))
```

```
perf = df.calc_stats()
perf.plot(figsize=(14, 10))
print(perf.display())
```

```
fig = px.line(df, x=df.index, y="btcusd", title='btcusd')
fig.update_layout(title='btcusd price', xaxis_title='Date',
yaxis_title='Price')
#fig.update_traces(mode='markers+lines')
fig.show()
```

```
fig = px.line(returns, x=returns.index, y="btcusd", title='btcusd')
fig.update_layout(title='btcusd returns', xaxis_title='Date',
yaxis_title='Returns')
fig.show()
```

fig = px.histogram(returns, x='btcusd', nbins=40, histnorm='probability', width=800, height=400)

fig.update\_layout(title='btcusd returns histogram')
fig.show()

fig = px.box(returns, y='btcusd', points = 'all')
fig.update\_layout(title='btcusd returns box')
fig.update\_traces(boxmean='sd')
fig.show()

#### **Financial Functions (ffn)**

btcusd

| Date    |       |         |       |
|---------|-------|---------|-------|
| 2016-01 | -01   | 434.334 | 015   |
| 2016-01 | -02   | 433.437 | 988   |
| 2016-01 | -03   | 430.010 | 986   |
| 2016-01 | -04   | 433.091 | 003   |
| 2016-01 | -05   | 431.959 | 991   |
|         |       | b       | tcusd |
| Date    |       |         |       |
| 2021-12 | 2-28  | 47588.8 | 55469 |
| 2021-12 | 2-29  | 46444.7 | 10938 |
| 2021-12 | 2-30  | 47178.1 | 25000 |
| 2021-12 | 2-31  | 46306.4 | 45312 |
| 2022-01 | -01   | 47686.8 | 12500 |
|         |       | btcusd  |       |
| count   | 2193  | .000000 |       |
| mean    | 13025 | .164562 |       |
| std     | 16489 | .530523 |       |
| min     | 364   | .330994 |       |
| 25%     | 2589  | .409912 |       |
| 50%     | 7397  | .796875 |       |
| 75%     | 11358 | .662109 |       |
| max     | 67566 | .828125 |       |

| Stat           | btcusd     |
|----------------|------------|
|                |            |
| Start          | 2016-01-01 |
| End            | 2022-01-01 |
| Risk-free rate | 0.00%      |
|                |            |
| Total Return   | 10879.29%  |
| Daily Sharpe   | 1.18       |
| Daily Sortino  | 1.95       |
| CAGR           | 118.79%    |
| Max Drawdown   | -83.40%    |
| Calmar Ratio   | 1.42       |

| 2.98%   |
|---------|
| -0.89%  |
| 42.04%  |
| 2.98%   |
| 62.34%  |
| 131.46% |
| 116.71% |
| -       |
| 118.79% |
|         |

| Daily  | Sharpe      | 1.18    |
|--------|-------------|---------|
| Daily  | Sortino     | 1.95    |
| Daily  | Mean (ann.) | 74.04%  |
| Daily  | Vol (ann.)  | 62.94%  |
| Daily  | Skew        | -0.10   |
| Daily  | Kurt        | 7.30    |
| Best I | Day         | 25.25%  |
| Worst  | Day         | -37.17% |

| Monthly  | Sharpe      | 1.38    |
|----------|-------------|---------|
| Monthly  | Sortino     | 3.75    |
| Monthly  | Mean (ann.) | 114.20% |
| Monthly  | Vol (ann.)  | 82.59%  |
| Monthly  | Skew        | 0.43    |
| Monthly  | Kurt        | -0.16   |
| Best Mor | nth         | 69.63%  |
| Worst Mc | onth        | -36.41% |

| Yearly  | Sharpe  | 0.54     |
|---------|---------|----------|
| Yearly  | Sortino | 9.73     |
| Yearly  | Mean    | 292.22%  |
| Yearly  | Vol     | 542.38%  |
| Yearly  | Skew    | 2.17     |
| Yearly  | Kurt    | 4.86     |
| Best Ye | ear     | 1368.90% |
| Worst M | Zear    | -73.56%  |

| Avg. Drawdown      | -10.25% |
|--------------------|---------|
| Avg. Drawdown Days | 36.55   |
| Avg. Up Month      | 25.13%  |
| Avg. Down Month    | -12.35% |
| Win Year %         | 83.33%  |
| Win 12m %          | 85.48%  |

#### Visualization plotly.express (px)



Price

### **Backtesting Output**

| backtesing output      |                     |
|------------------------|---------------------|
| Start                  | 2016-01-01 00:00:00 |
| End                    | 2022-01-01 00:00:00 |
| Duration               | 2192 days 00:00:00  |
| Exposure Time [%]      | 97.993616           |
| Equity Final [\$]      | 4237449.058157      |
| Equity Peak [\$]       | 6165339.439633      |
| Return [%]             | 4137.449058         |
| Buy & Hold Return [%]  | 10879.294935        |
| Return (Ann.) [%]      | 86.557668           |
| Volatility (Ann.) [%]  | 144.748975          |
| Sharpe Ratio           | 0.597985            |
| Sortino Ratio          | 1.946086            |
| Calmar Ratio           | 1.362652            |
| Max. Drawdown [%]      | -63.521467          |
| Avg. Drawdown [%]      | -12.142095          |
| Max. Drawdown Duration | 557 days 00:00:00   |
| Avg. Drawdown Duration | 44 days 00:00:00    |
| # Trades               | 116                 |
| Win Rate [%]           | 35.344828           |
| Best Trade [%]         | 119.026467          |
| Worst Trade [%]        | -23.393531          |
| Avg. Trade [%]         | 3.291328            |
| Max. Trade Duration    | 74 days 00:00:00    |
| Avg. Trade Duration    | 19 days 00:00:00    |
| Profit Factor          | 2.293983            |
| Expectancy [%]         | 5.036865            |
| SQN                    | 1.236071            |
| _strategy              | SmaCross            |
| _equity_curve          |                     |
| _trades                | Size Entry          |
# describe()

| High  | Low      | Open     | Close    | Vol      | ume Adj Close |          |
|-------|----------|----------|----------|----------|---------------|----------|
| count | 2193.00  | 2193.00  | 2193.00  | 2193.00  | 2.193000e+03  | 2193.00  |
| mean  | 13363.00 | 12616.08 | 13005.79 | 13025.16 | 1.757591e+10  | 13025.16 |
| std   | 16935.24 | 15960.65 | 16480.00 | 16489.53 | 2.085247e+10  | 16489.53 |
| min   | 374.95   | 354.91   | 365.07   | 364.33   | 2.851400e+07  | 364.33   |
| 25%   | 2682.26  | 2510.48  | 2577.77  | 2589.41  | 1.182870e+09  | 2589.41  |
| 50%   | 7535.72  | 7233.40  | 7397.13  | 7397.80  | 9.175292e+09  | 7397.80  |
| 75%   | 11570.79 | 11018.13 | 11354.30 | 11358.66 | 2.886756e+10  | 11358.66 |
| max   | 68789.62 | 66382.06 | 67549.73 | 67566.83 | 3.509679e+11  | 67566.83 |

```
# Upgrade pandas-datareader
                                                         Backtesting
!pip install --upgrade pandas
!pip install --upgrade pandas-datareader
!pip install backtesting
from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.test import SMA
import pandas as pd
import pandas datareader.data as web
df = web.DataReader("BTC-USD", 'yahoo', '2016-01-01', '2021-12-31')
df.to csv('BTC-USD.csv')
print(df.head().round(2))
print(df.tail().round(2))
print(df.describe().round(2))
class SmaCross(Strategy):
     n1 = 5
     n2 = 20
     def init(self):
           close = self.data.Close
           self.sma1 = self.I(SMA, close, self.n1)
           self.sma2 = self.I(SMA, close, self.n2)
     def next(self):
           if crossover(self.sma1, self.sma2):
               self.buy()
           elif crossover(self.sma2, self.sma1):
               self.sell()
bt = Backtest(df, SmaCross, cash=100000, commission=.002, exclusive orders=True)
output = bt.run()
print('backtesing output')
print(output)
```

```
bt.plot()
```

```
#!pip install backtesting
from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.lib import plot_heatmaps
from backtesting.test import SMA
import pandas as pd
import pandas_datareader.data as web
from google.colab import files
```

```
#BTC-USD ETH-USD
v_symbol = 'BTC-USD'
v_time_start = '2016-01-01'
v_time_end = '2021-12-31'
v_to_csv_filename = v_symbol + '_' + v_time_start + '_' + v_time_end + '.csv'
df = web.DataReader(v_symbol, 'yahoo', v_time_start, v_time_end)
df.to csv(v to csv filename)
```

```
print(df.head().round(2))
print(df.tail().round(2))
print(df.describe().round(2))
v_n1 = 5 #5 #20 #60 #120
v_n2 = 200 #20 #60 #120 #240
```

import time

```
class SmaCross(Strateqy):
   n1 = v n1 #5
   n2 = v n2 \#60
   def init(self):
      close = self.data.Close
      self.sma1 = self.I(SMA, close, self.n1)
       self.sma2 = self.I(SMA, close, self.n2)
   def next(self):
      if crossover(self.sma1, self.sma2):
             self.buy()
      elif crossover(self.sma2, self.sma1):
             self.sell()
```

bt = Backtest(df, SmaCross, cash=100000, commission=.002, exclusive\_orders=True)
stats = bt.run()

```
filename = v_symbol + '_' + v_time_start + '_' + v_time_end + '_' + 'MA_' +
str(v_n1) + '_' + str(v_n2) + '.csv'
print('filename:', filename)
stats.to_csv(filename)
```

```
print('backtesing stats')
print(stats)
bt.plot()
```

```
print('filename:\t', filename)
print("stats._strategy:\t", stats._strategy)
print("# Trades:\t", stats['# Trades'])
print("stats['Equity Final [$]']:\t", round(stats['Equity Final [$]'], 4))
print("stats['Avg. Trade [%]']:\t", round(stats['Avg. Trade [%]'], 4))
print("Sharpe Ratio:\t", round(stats['Sharpe Ratio'], 4))
```

```
#download file
time.sleep(1) # time sleep 1 second
files.download(filename)
print('file downloaded:', filename)
```

```
print('****bt.optimize****')
stats, heatmap = bt.optimize(
  n1 = range(5, 65, 5),
  n2 = range(10, 205, 5),
  constraint = lambda param: param.n1 <param.n2,
  maximize = 'Avg. Trade [%]',
  max tries = 600,
  random state = 0,
  return heatmap = True)
#'Equity Final [$]' 'Avg. Trade [%]'
```

optimize strategy = stats. strategy

```
optimize filename = v symbol + ' ' + v time start + ' ' + v time end + ' ' +
'bt optimize strategy' + str(optimize strategy) + '.csv'
print('optimize filename:', optimize filename)
print('backtesing optimize strategy stats')
print(stats)
stats.to csv(optimize filename)
plot heatmaps (heatmap, agg='mean', plot width = 1800)
print('backtesting optimize strategy heatmap')
print(heatmap)
print ('backtesting optimize strategy heatmap Top 10')
print(heatmap.sort values().iloc[-10:])
hm = heatmap.groupby(['n1', 'n2']).mean().unstack()
print('backtesting optimize strategy heatmap mean')
print(hm)
hm filename = v symbol + ' ' + v time start + ' ' + v time end + ' ' +
'hm heatmap.csv'
hm.to csv(hm filename)
```

```
print("filename:\t", optimize_filename)
print("stats._strategy:\t", stats._strategy)
print("# Trades:\t", stats['# Trades'])
print("stats['Equity Final [$]']:\t", round(stats['Equity Final [$]'], 4))
print("stats['Avg. Trade [%]']:\t", round(stats['Avg. Trade [%]'], 4))
print("Sharpe Ratio:\t", round(stats['Sharpe Ratio'], 4))
```

```
#download file
time.sleep(1) # time sleep 1 second
files.download(hm_filename)
print('file downloaded:', hm_filename)
files.download(optimize_filename)
print('file downloaded:', optimize_filename)
```



# Time series data for EUR/USD and SMAs



Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

# Time series data for EUR/USD, SMAs, and resulting positions



# Gross performance of passive benchmark investment and SMA strategy



## Gross performance of the SMA strategy before and after transaction costs



# Gross performance of the passive benchmark investment and the daily DNN strategy (in-sample)



# Gross performance of the passive benchmark investment and the daily DNN strategy (out-of-sample)



Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

# Gross performance of the daily DNN strategy before and after transaction costs (out-of-sample)



Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

# Gross performance of the passive benchmark investment and the DNN intraday strategy (out-of-sample)



# Gross performance of the DNN intraday strategy before and after higher/ lower transaction costs (out-of-sample)



# Gross performance on training and validation data set



# Gross performance of the passive benchmark investment and the trading bot (out-of-sample)



# Gross performance of the trading bot before and after transaction costs (in-sample)



# Gross performance of the passive benchmark investment and the trading bot (vectorized and event-based backtesting)



Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

# Average true range (ATR) in absolute (price) and relative (%) terms



Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

## **BTC-USD**



Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

### **BTC-USD Returns**

btcusd returns



### **BTC-USD Returns Box**

#### btcusd returns box



### **The Quant Finance PyData Stack**



Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview\_slides.ipynb#/5



### Yves Hilpisch (2020), Python for Algorithmic Trading: From Idea to Cloud Deployment,

**O'Reilly** 



#### Stefan Jansen (2020), Machine Learning for Algorithmic Trading:

Predictive models to extract signals from market and alternative data for systematic trading strategies with Python, 2nd Edition,

Packt Publishing.



### Chris Kelliher (2022), Quantitative Finance With Python:

A Practical Guide to Investment Management, Trading, and Financial Engineering, Chapman and Hall/CRC.



| yhilpisch / aiif Public                                | https://github.co                                        | om/yhilpisch/aiif                                                                           | Notifications 🔀 Star     | 98 😵 Fork 77                  |  |
|--------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|-------------------------------|--|
| <> Code                                                | ) Pull requests () Actions () Projects                   | 🕮 Wiki ! Security 🛛 🗠 Insights                                                              |                          |                               |  |
| 양 main ▾ 양 1 branch                                    | 🛇 <b>0</b> tags                                          | Go to file Code -                                                                           | About                    |                               |  |
| <b>yves</b> Code updates for TF                        | - 2.3.                                                   | Jupyter Notebooks and code for the book<br>Artificial Intelligence in Finance (O'Reilly) by |                          |                               |  |
| <b>code</b>                                            | Code updates for TF 2.3.                                 | 11 months ago                                                                               | Yves Hilpisch.           |                               |  |
| 🗅 .gitignore                                           | Code updates for TF 2.3.                                 | 11 months ago                                                                               | ♂ home.tpq.io/books/aiif |                               |  |
| LICENSE.txt                                            | Code updates.                                            | 11 months ago                                                                               |                          | O'REILLY'                     |  |
| C README.md                                            | Code updates.                                            | 11 months ago                                                                               |                          | Artificial                    |  |
| E README.md                                            |                                                          |                                                                                             | Releases                 | Intelligence                  |  |
|                                                        |                                                          | No releases published                                                                       | A Python-Based Guide     |                               |  |
| Artificial Inte                                        | Iligence in Finance                                      |                                                                                             |                          |                               |  |
|                                                        | •-                                                       |                                                                                             | Packages                 |                               |  |
| About this Repos                                       | sitory                                                   | No packages published                                                                       |                          |                               |  |
| This repository provides <b>Finance</b> book published | Python code and Jupyter Notebooks accomp<br>by O'Reilly. | Languages                                                                                   | Yves Hi                  |                               |  |
| <b>O'REILLY</b> °                                      |                                                          |                                                                                             | Jupyter Notebook 97.4%   | <ul><li>Python 2.6%</li></ul> |  |

#### Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly



Source: https://github.com/yhilpisch/aiif/tree/main/code

### Python in Google Colab (Python101)

#### https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

| python 101. ipynd - Colaboratory x +                                                                                                                                                           |               |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|
| → C https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3                                                                                 |               | ☆ 🖾 🕠   |
| ▲ python101.ipynb ☆ File Edit View Insert Runtime Tools Help                                                                                                                                   |               | SHARE   |
| ■ CODE ■ TEXT                                                                                                                                                                                  | ✓ CONNECTED ▼ | EDITING |
| <pre></pre>                                                                                                                                                                                    |               |         |
| [→ 194.87                                                                                                                                                                                      |               |         |
| <pre>[11] 1 amount = 100<br/>2 interest = 10 #10% = 0.01 * 10<br/>3 years = 7<br/>4<br/>5 future_value = amount * ((1 + (0.01 * interest)) ** years)<br/>6 print(round(future_value, 2))</pre> |               |         |
| <u></u> [→ 194.87                                                                                                                                                                              |               |         |
| <pre>[12] 1 # Python Function def 2 def getfv(pv, r, n): 3     fv = pv * ((1 + (r)) ** n) 4     return fv 5     fv = getfv(100, 0.1, 7) 6     print(round(fv, 2))</pre>                        |               |         |
| [→ 194.87                                                                                                                                                                                      |               |         |
| <pre>[13] 1 # Python if else 2 score = 80 3 if score &gt;=60 : 4     print("Pass") 5 else: 6     print("Fail")</pre>                                                                           |               |         |
| [→ Pass                                                                                                                                                                                        |               |         |

### Python in Google Colab (Python101)

#### https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



### Python in Google Colab (Python101)

```
ll ≤ python101.ipynb d
 Comment
                                                                                                                                                   👪 Share
        File Edit View Insert Runtime Tools Help All changes saved
                                                                                                                                     V RAM Disk
                                                                                                                                                         Editing
                                               + Code + Text
                                                                                                                                                   \bullet
                                        X
    Table of contents
≣

    Data Driven Finance

      Data Driven Finance
Q
         Financial Econometrics and
          Regression
\langle \rangle

    Financial Econometrics and Regression

         Data Availability
\{X\}
          Normative Theories Revisited
             Mean-Variance Portfolio Theory
                                             [18] 1 import numpy as np
2
             Capital Asset Pricing Model
                                                       3 \det f(x):
             Arbitrage-Pricing Theory
                                                             return 2 + 1 / 2 * x
                                                       5
         Debunking Central Assumptions
                                                      6 x = np.arange(-4, 5)
         Normality
                                                      7 x
             Sample Data Sets
                                                     array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
             Real Financial Returns
         Linear Relationships
                                                 1 y = f(x)
                                                       2 y
      Deep Learning for Financial Time Series
      Forecasting
                                                 Ŀ
                                                     array([ 0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00])
      Portfolio Optimization and Algorithmic
                                                                                                                                            Trading
                                                      1 \text{ print}(\mathbf{x}', \mathbf{x})
                                                Investment Portfolio Optimisation
                                                       2
         with Python
                                                       3 print('y', y)
          Efficient Frontier Portfolio
          Optimisation in Python
                                                      5 \text{ beta} = \text{np.cov}(x, y, \text{ ddof=0})[0, 1] / x.var()
                                                       6 print('beta', beta)
=:
         Investment Portfolio Optimization
```
| C                  | > 🍐 python101.ipynb ☆<br>File Edit View Insert Runtime To                                                                                                                                      | ools | Help All changes saved                                                                                                                                                                                                                                                                                                                                                                                | Comment               | * | Share | \$      | A |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---|-------|---------|---|--|
| ≣                  | Table of contents ×                                                                                                                                                                            |      | + Code + Text                                                                                                                                                                                                                                                                                                                                                                                         | V RAM Disk            | • |       | Editing | ^ |  |
| Q                  | Financial Econometrics and<br>Regression<br>Data Availability                                                                                                                                  |      | Machine Learning                                                                                                                                                                                                                                                                                                                                                                                      | $\uparrow \downarrow$ | Ð |       | ŗ       |   |  |
| <><br>{ <i>x</i> } | Normative Theories Revisited<br>Mean-Variance Portfolio Theory<br>Capital Asset Pricing Model                                                                                                  | •    | Data                                                                                                                                                                                                                                                                                                                                                                                                  |                       |   |       |         |   |  |
|                    | Arbitrage-Pricing Theory<br>Debunking Central Assumptions<br>Normality<br>Sample Data Sets<br>Real Financial Returns<br>Linear Relationships<br>Financial Econometrics and Machine<br>Learning | Os   | <pre>1 import numpy as np<br/>2 import pandas as pd<br/>3 from pylab import plt, mpl<br/>4 np.random.seed(100)<br/>5 plt.style.use('seaborn')<br/>6 mpl.rcParams['savefig.dpi'] = 300<br/>7 mpl.rcParams['font.family'] = 'serif'<br/>8<br/>9 url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'<br/>10<br/>11 raw = pd.read_csv(url, index_col=0, parse_dates=True)['EUR=']<br/>12 raw.head()</pre> |                       |   |       |         |   |  |
| III                | Machine Learning Data Success Capacity Evaluation Bias & Variance                                                                                                                              |      | <pre> ▷ Date 2010-01-01 1.4323 2010-01-04 1.4411 2010-01-05 1.4368 2010-01-06 1.4412 2010-01-07 1.4318 Name: EUR=, dtype: float64  [2] 1 raw.tail()</pre>                                                                                                                                                                                                                                             |                       |   |       |         |   |  |



| C               | O Apython101.ipynb 🕁<br>File Edit View Insert Runtime                                                                                    | Tools Help All changes saved                                                                                                                                                                                                                                                                                                  | Comment 👫 Share 🏟 🗛                 |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| ≣               | Table of contents X                                                                                                                      | + Code + Text                                                                                                                                                                                                                                                                                                                 | Connect 👻 🎤 Editing 🔨               |
| Q<br><>><br>{x} | Deep Learning (DL) in Finance Dense Neural Networks (DNN) Baseline Prediction Normalization Dropout Regularization Bagging               | <ul> <li>Deep Learning (DL) in Finance</li> <li>Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, C</li> <li>Github: <u>https://github.com/yhilpisch/aiif/</u></li> <li>Dense Neural Networks (DNN)</li> </ul>                                                                          | ↑ ↓ ເ⊃ 🔲 🖍 💭 🔋 :<br>D'Reilly Media. |
|                 | Optimizers<br>Recurrent Neural Networks<br>(RNN)<br>First Example<br>Second Example<br>Financial Price Series<br>Financial Return Series | <pre>1 import os 2 import numpy as np 3 import pandas as pd 4 from pylab import plt, mpl 5 plt.style.use('seaborn') 6 mpl.rcParams['savefig.dpi'] = 300 7 mpl.rcParams['font.family'] = 'serif' 8 pd.set_option('precision', 4) 9 np.set_printoptions(suppress=True, precision=4) 10 os.environ['PYTHONHASHSEED'] = '0'</pre> |                                     |
|                 | Financial Features<br>Deep RNNs<br>Convolutional Neural<br>Networks (CNN)                                                                | <pre>[ ] 1 url = 'http://hilpisch.com/aiif_eikon_id_eur_usd.csv'<br/>2 symbol = 'EUR_USD'<br/>3 raw = pd.read_csv(url, index_col=0, parse_dates=True)<br/>4 raw.head()</pre>                                                                                                                                                  |                                     |
| =               | Reinforcement Learning (RL) in<br>Finance                                                                                                | HIGH LOW OPEN CLOSE                                                                                                                                                                                                                                                                                                           |                                     |

| C               | A python101.ipynb<br>File Edit View Insert Runtime                                                                                                                                                                                                                                                                                  | Tools Help <u>All changes saved</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comment           | 🛃 Share | \$      | A |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|---------|---|
| ≣               | Table of contents $\times$                                                                                                                                                                                                                                                                                                          | + Code + Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Connect           | -       | Editing | ^ |
| Q<br><>><br>{x} | Deep RNNs<br>Convolutional Neural<br>Networks (CNN)<br>Reinforcement Learning (RL) in<br>Finance<br>Reinforcement Learning (RL)<br>CartPole Environment<br>Dimensionality<br>Reduction<br>Action Rule<br>Total Reward per<br>Episode<br>Simple Learning<br>Testing the Results<br>DNN Learning<br>Q Learning<br>Finance Environment | <ul> <li>Reinforcement Learning (RL) in Finance</li> <li>Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'</li> <li>Github: https://github.com/yhilpisch/alif/</li> <li>Reinforcement Learning (RL)</li> <li>1 import os         <ul> <li>2 import math</li> <li>3 import random</li> <li>4 import numpy as np</li> <li>5 import pandas as pd</li> <li>6 from pylab import plt, mpl</li> <li>7 plt.style.use('seaborn')</li> <li>8 mpl.rcParams['savefig.dpi'] = 300</li> <li>9 mpl.rcParams['font.family'] = 'serif'</li> <li>10 np.set_printoptions(precision=4, suppress=True)</li> <li>11 os.environ['PYTHONHASHSEED'] = '0'</li> </ul> </li> </ul> | ↑ ↓ Reilly Media. |         |         | j |
|                 | Environment<br>Improved Financial QL<br>Agent                                                                                                                                                                                                                                                                                       | [] 1 import gym                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |         |         |   |



| C            | Python101.ipynb<br>File Edit View Insert Runtime  | Tools Help All changes saved                                                                                                                                                                 | E Comment             | 👪 Shar | e 🌣     | A          |
|--------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|---------|------------|
| ≣            | Table of contents X                               | + Code + Text                                                                                                                                                                                | V RAM Disk            | - /    | Editing | ^          |
| Q            | Algorithmic Trading Vectorized Backtesting        | Vectorized Realized                                                                                                                                                                          | $\uparrow \downarrow$ | c) 🖣 🌶 |         | <b>i</b> : |
| <>           | Backtesting an SMA-<br>Based Strategy             | • Vectorized backtesting                                                                                                                                                                     |                       |        |         |            |
| { <i>x</i> } | Backtesting a Daily DNN-<br>Based Strategy        | <pre>1 import os 2 import math</pre>                                                                                                                                                         |                       |        |         |            |
|              | Backtesting an Intraday<br>DNN-Based Strategy     | 3 import numpy as np<br>4 import pandas as pd<br>5 from pylab import plt, mpl                                                                                                                |                       |        |         |            |
|              | Risk Management<br>Trading Bot                    | <pre>6 plt.style.use('seaborn') 7 mpl.rcParams['savefig.dpi'] = 300 8 mpl.rcParams['font.family'] = 'serif'</pre>                                                                            |                       |        |         |            |
|              | Vectorized Backtesting<br>Event-Based Backtesting | <pre>9 pd.set_option('mode.chained_assignment', None) 10 pd.set_option('display.float_format', '{:.4f}'.format) 11 pp_sot_printentions(suppress=True_presision=4)</pre>                      |                       |        |         |            |
|              | Assessing Risk                                    | 12 os.environ['PYTHONHASHSEED'] = '0'                                                                                                                                                        |                       |        |         |            |
|              | Backtesting Risk<br>Measures<br>Stop Loss         | <ul> <li>Backtesting an SMA-Based Strategy</li> </ul>                                                                                                                                        |                       |        |         |            |
|              | Trailing Stop Loss<br>Take Profit<br>Combinations | <pre>[ ] 1 url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'<br/>2 symbol = 'EUR='<br/>3 data = pd.DataFrame(pd.read_csv(url, index_col=0,<br/>4 parse_dates=True).dropna()[symbol])</pre> |                       |        |         |            |
| =            | Backtesting Cryptocurrency<br>Bitcoin             | 5 data.info()                                                                                                                                                                                |                       |        |         |            |



https://tinyurl.com/aintpupython101



| C              | Python101.ipynb<br>File Edit View Insert Runtime                                                                                                                                      | Tools Help All changes saved                                                                                                                                                                                                                                                              | 🗐 Comment 👫 Share 🗱 🛕 |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| ≣              | Table of contents $\qquad 	imes$                                                                                                                                                      | + Code + Text                                                                                                                                                                                                                                                                             | ✓ RAM ► Editing ∧     |
| Q<br><><br>{x} | Algorithmic Trading<br>Vectorized Backtesting<br>Backtesting an SMA-<br>Based Strategy<br>Backtesting a Daily DNN-<br>Based Strategy<br>Backtesting an Intraday<br>DNN-Based Strategy | • Risk Management [ ] 1 import os 2 import numpy as np 3 import pandas as pd 4 from pylab import plt, mpl 5 plt.style.use('seaborn')                                                                                                                                                      |                       |
|                | Risk Management<br>Trading Bot<br>Vectorized Backtesting<br>Event-Based Backtesting                                                                                                   | <pre>6 mpl.rcParams['savefig.dpi'] = 300 7 mpl.rcParams['font.family'] = 'serif' 8 pd.set_option('mode.chained_assignment', None) 9 pd.set_option('display.float_format', '{:.4f}'.format) 10 np.set_printoptions(suppress=True, precision=4) 11 os.environ['PYTHONHASHSEED'] = '0'</pre> |                       |
|                | Assessing Risk<br>Backtesting Risk<br>Measures                                                                                                                                        | <ul> <li>Trading Bot</li> </ul>                                                                                                                                                                                                                                                           |                       |
|                | Stop Loss<br>Trailing Stop Loss<br>Take Profit<br>Combinations<br>Backtesting Cryptocurrency<br>Bitcoin                                                                               | <pre>[ ] 1 # import finance<br/>2 # finance.py<br/>3 # Finance Environment<br/>4 #<br/>5 # (c) Dr. Yves J. Hilpisch<br/>6 # Artificial Intelligence in Finance<br/>7 #</pre>                                                                                                              |                       |

| C            | Python101.ipynb<br>File Edit View Insert Runtime | Tools Help <u>All changes saved</u>                                                                   | Commen <sup>®</sup> |     | Shar | e 🌣     | A   |
|--------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------|-----|------|---------|-----|
| ≣            | Table of contents $\qquad 	imes$                 | + Code + Text                                                                                         | ✓ RAM<br>Disk       | •   |      | Editing | g ^ |
| Q            | Algorithmic Trading<br>Vectorized Backtesting    | - Event-Based Backtesting                                                                             | $\uparrow$          | √ ⇔ |      |         | •   |
| <>           | Backtesting an SMA-<br>Based Strategy            | 1 #import backtesting as bt<br>2                                                                      |                     |     |      |         |     |
| { <i>x</i> } | Backtesting a Daily DNN-<br>Based Strategy       | 3 # backtesting.py<br>4 # Event-Based Backtesting                                                     |                     |     |      |         |     |
|              | Backtesting an Intraday<br>DNN-Based Strategy    | 5 #Base Class (1)<br>6 #<br>7 # (c) Dr. Yves J. Hilpisch                                              |                     |     |      |         |     |
|              | Risk Management                                  | 8 # Artificial Intelligence in Finance                                                                |                     |     |      |         |     |
|              | Trading Bot                                      | 9 <b>#</b><br>10                                                                                      |                     |     |      |         |     |
|              | Vectorized Backtesting                           | 11 class BacktestingBase:                                                                             |                     |     |      |         |     |
|              | Event-Based Backtesting                          | <pre>12 definit(self, env, model, amount, ptc, ftc, verbose=False): 13 self.env = env</pre>           |                     |     |      |         |     |
|              | Assessing Risk                                   | 14 self.model = model                                                                                 |                     |     |      |         |     |
|              | Backtesting Risk<br>Measures                     | <pre>15 self.initial_amount = amount<br/>16 self.current_balance = amount<br/>17 self.ptc = ptc</pre> |                     |     |      |         |     |
|              | Stop Loss                                        | 18 self.ftc = ftc                                                                                     |                     |     |      |         |     |
|              | Trailing Stop Loss                               | 19self.verbose = verbose20self.units = 0                                                              |                     |     |      |         |     |
|              | Take Profit                                      | 21 self.trades = 0                                                                                    |                     |     |      |         |     |
|              | Combinations                                     | <pre>22 23 def get_date_price(self, bar):</pre>                                                       |                     |     |      |         |     |
| =            | Backtesting Cryptocurrency<br>Bitcoin            | 24 ''' Returns date and price for a given bar.                                                        |                     |     |      |         |     |

https://tinyurl.com/aintpupython101

| C            | <b>O A</b> python101.ipynb 🕁<br>File Edit View Insert Runtime | Tools Help <u>All changes saved</u>                      | 🗐 Comment 🛛 👫 Share 🏼 🏟 🗛 |
|--------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------|
| ≔            | Table of contents X                                           | + Code + Text                                            | ✓ RAM → ✓ Editing ∧       |
| Q            | Algorithmic Trading                                           | Combinations                                             |                           |
| <>           | Backtesting an SMA-<br>Based Strategy                         | <pre> 1 tb.backtest_strategy(sl=0.015, tsl=None, 2</pre> |                           |
| { <i>X</i> } | Backtesting a Daily DNN-<br>Based Strategy                    | [→ ====================================                  |                           |
|              | Backtesting an Intraday DNN-Based Strategy                    | 2018-01-17   current balance = 10000.00                  |                           |
|              | Risk Management                                               | *** STOP LOSS (SHORT   -0.0203) ***                      |                           |
|              | Trading Bot                                                   | *** STOP LOSS (SHORT   -0.0152) ***                      |                           |
|              | Vectorized Backtesting                                        | <br>*** TAKE PROFIT (SHORT   0.0189) ***                 |                           |
|              | Event-Based Backtesting<br>Assessing Risk                     | *** TAKE PROFIT (SHORT   0.0219) ***                     |                           |
|              | Backtesting Risk                                              | *** TAKE PROFIT (SHORT   0.0192) ***                     |                           |
|              | Measures                                                      | *** STOP LOSS (LONG   -0.0154) ***                       |                           |
|              | Stop Loss                                                     | <br>*** TAKE PROFIT (SHORT   0.0214) ***                 |                           |
|              | Trailing Stop Loss<br>Take Profit                             | *** STOP LOSS (SHORT   -0.0158) ***                      |                           |
|              | Combinations                                                  | *** TAKE PROFIT (SHORT   0.0223) ***                     |                           |
| =:           | Backtesting Cryptocurrency<br>Bitcoin                         | *** STOP LOSS (SHORT   -0.0162) ***                      |                           |

| C            | Python101.ipynb<br>File Edit View Insert Runtime                     | Tools Help <u>All changes saved</u>                                                                                                  | Comment 👫 Share 🏟 🗚 |
|--------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| ≣            | Table of contents X                                                  | + Code + Text                                                                                                                        | ✓ RAM → ✓ Editing ∧ |
| Q<br>()      | Algorithmic Trading<br>Vectorized Backtesting<br>Backtesting an SMA- | <ul> <li>Backtesting Cryptocurrency Bitcoin</li> <li>Financial Functions (ffn): <u>https://pmorissette.github.io/ffn/</u></li> </ul> | ↑ ↓ ☞ 🖣 🖌 🗐 🔋       |
| { <i>x</i> } | Based Strategy<br>Backtesting a Daily DNN-<br>Based Strategy         | backtesting.py: <u>https://kernc.github.io/backtesting.py/</u>                                                                       |                     |
|              | Backtesting an Intraday<br>DNN-Based Strategy                        | 1 !pip install ffn<br>2 import ffn<br>3 import plotly.express as px                                                                  |                     |
|              | Risk Management                                                      | 4 %pylab inline                                                                                                                      |                     |
|              | Trading Bot                                                          | 5                                                                                                                                    |                     |
|              | Vectorized Backtesting                                               | 7 print('df')                                                                                                                        |                     |
|              | Event-Based Backtesting                                              | <pre>8 print(df.head()) 9 print(df.tail())</pre>                                                                                     |                     |
|              | Assessing Risk                                                       | 10 print(df.describe())                                                                                                              |                     |
|              | Backtesting Risk<br>Measures                                         | <pre>11 df.plot(figsize=(14,10)) 12 13 returns = df.to_returns().dropna()</pre>                                                      |                     |
|              | Stop Loss                                                            | 14 print('returns')                                                                                                                  |                     |
|              | Trailing Stop Loss                                                   | <pre>15 print(returns.head()) 16 print(returns.tail())</pre>                                                                         |                     |
|              | Take Profit                                                          | 17 print(returns.describe())                                                                                                         |                     |
|              | Combinations                                                         | 19                                                                                                                                   |                     |
| Ē            | Backtesting Cryptocurrency<br>Bitcoin                                | <pre>20 perf = df.calc_stats() 21 perf.plot(figsize=(14, 10))</pre>                                                                  |                     |







https://tinyurl.com/aintpupython101

# Summary

- Algorithmic Trading
- Risk Management
- Trading Bot
- Event-Based Backtesting

# References

- Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media, https://github.com/yhilpisch/aiif.
- Yves Hilpisch (2020), Python for Algorithmic Trading: From Idea to Cloud Deployment, O'Reilly Media.
- Stefan Jansen (2020), Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python, 2nd Edition, Packt Publishing.
- Aurélien Géron (2022), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd Edition, O'Reilly Media.
- Hariom Tatsat, Sahil Puri, Brad Lookabaugh (2020), Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python, O'Reilly Media
- Chris Kelliher (2022), Quantitative Finance With Python: A Practical Guide to Investment Management, Trading, and Financial Engineering, Chapman and Hall/CRC.
- Abdullah Karasan (2021), Machine Learning for Financial Risk Management with Python: Algorithms for Modeling Risk, O'Reilly Media.
- Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft Computing (2020): 106384.
- Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.
- Yuanhang Zheng, Zeshui Xu, and Anran Xiao (2023). "Deep learning in economics: a systematic and critical review." Artificial Intelligence Review (2023): 1-43.
- Ajitha Kumari Vijayappan Nair Biju, Ann Susan Thomas, and J. Thasneem (2023). "Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis." Quality & Quantity (2023): 1-30.
- Min-Yuh Day, Ching-Ying Yang, and Yensen Ni (2023), "Portfolio dynamic trading strategies using deep reinforcement learning." Soft Computing (2023): 1-16.
- Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020), "Deep learning for financial applications: A survey." Applied Soft Computing (2020): 106384.
- Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.
- Fan Fang, Carmine Ventre, Michail Basios, Leslie Kanthan, David Martinez-Rego, Fan Wu, and Lingbo Li. (2023) "Cryptocurrency trading: a comprehensive survey." Financial Innovation 8, no. 1 (2022): 1-59.
- Min-Yuh Day (2023), Python 101, <u>https://tinyurl.com/aintpupython101</u>