
Natural Language Processing with
Transformers

Artificial Intelligence for Text Analytics

1

Min-Yuh Day, Ph.D,
Associate Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1121AITA04
MBA, IM, NTPU (M5265) (Fall 2023)

 Tue 2, 3, 4 (9:10-12:00) (B3F17)

2023-10-04

https://meet.google.com/
miy-fbif-max

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/miy-fbif-max
https://meet.google.com/miy-fbif-max

Syllabus
Week Date Subject/Topics

1 2023/09/13 Introduction to Artificial Intelligence for Text Analytics

2 2023/09/20 Foundations of Text Analytics:
 Natural Language Processing (NLP)

3 2023/09/27 Python for Natural Language Processing

4 2023/10/04 Natural Language Processing with Transformers

5 2023/10/11 Case Study on Artificial Intelligence for Text Analytics I

6 2023/10/18 Text Classification and Sentiment Analysis

2

Syllabus
Week Date Subject/Topics

7 2023/10/25 Multilingual Named Entity Recognition (NER)

8 2023/11/01 Midterm Project Report

9 2023/11/08 Text Similarity and Clustering

10 2023/11/15 Text Summarization and Topic Models

11 2023/11/22 Text Generation with Large Language Models (LLMs)

12 2023/11/29 Case Study on Artificial Intelligence for Text Analytics II

3

Syllabus
Week Date Subject/Topics

13 2023/12/06 Question Answering and Dialogue Systems

14 2023/12/13 Deep Learning, Generative AI, Transfer Learning,
 Zero-Shot, and Few-Shot Learning for Text Analytics

15 2023/12/20 Final Project Report I

16 2023/12/27 Final Project Report II

4

Natural Language Processing
with Transformers

5

Outline

6

•Natural Language Processing with Transformers
• Transformer (Attention is All You Need)
• BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding
• ChatGPT: Large Language Models (LLMs),

Foundation Models
• Encoder-Decoder
• Attention Mechanisms
• Transfer Learning in NLP: Pre-train, Fine-tune

Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022),
Natural Language Processing with Transformers:

Building Language Applications with Hugging Face,
O'Reilly Media.

7Source: https://www.amazon.com/Natural-Language-Processing-Transformers-Applications/dp/1098103246

https://www.amazon.com/Natural-Language-Processing-Transformers-Applications/dp/1098103246

Transformer (Attention is All You Need)
(Vaswani et al., 2017)

8Source: Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin.
"Attention is all you need." In Advances in neural information processing systems, pp. 5998-6008. 2017.

The Transformers Timeline

9Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

2017 2018 2019 2020 2021

Transformer GPT GPT-2
DistrilBERT

GPT-3

T5

GPT-J

ULMFit BERT RoBERTa XLM-R DeBERTa GPT-Neo

2022

BLOOM

PaLM

OPT-175B
ChatGPT

2023

Llama

Alpaca

Llama2

Transformer Models

10Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

Encoder Decoder

T5

BART

M2M-100

BigBird

BERTDistilBERT

RoBERTa

XLM

ALBERT

ELECTRA

DeBERTa

XLM-R

GPT

GPT-2 CTRL

GPT-3

GPT-Neo GPT-J

Transformer

BLOOM

ChatGPT

BLOOMZmT0

GPT-4

BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

11
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

BERT (Bidirectional Encoder Representations from Transformers)
Overall pre-training and fine-tuning procedures for BERT

BERT:
Pre-training of Deep

Bidirectional Transformers for
Language Understanding

12
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

BERT
Bidirectional Encoder Representations from Transformers

13
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

BERT uses a bidirectional Transformer.
OpenAI GPT uses a left-to-right Transformer.
ELMo uses the concatenation of independently trained left-to-right and right- to-left LSTM
to generate features for downstream tasks.
Among three, only BERT representations are jointly conditioned on both left and right
context in all layers.

Pre-training model architectures

BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

14
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

BERT (Bidirectional Encoder Representations from Transformers)

BERT input representation

The input embeddings is the sum of the token embeddings,
the segmentation embeddings and the position embeddings.

15

Fine-tuning BERT on NLP Tasks

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

BERT Sequence-level tasks

16
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

17
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

BERT Token-level tasks

18
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

Sentiment Analysis:
Single Sentence Classification

ChatGPT
Large Language Models

(LLMs)
Foundation Models

19

20Source: https://lifearchitect.ai/models/

Large Language Models (LLM)
(GPT-3, ChatGPT, PaLM, BLOOM, OPT-175B, LLaMA)

ChatGPT
175B

LLaMA
65B

Large Language Models (LLMs) (larger than 10B)

21Source: Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min et al. (2023) "A Survey of Large Language Models." arXiv preprint arXiv:2303.18223.

Large Language
Models (LLMs)
Evolutionary

Tree

22
Source: Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and Xia Hu (2023).

"Harnessing the power of llms in practice: A survey on chatgpt and beyond." arXiv preprint arXiv:2304.13712.

The Decision Flow for Choosing LLMs or
Fine-tuned Models for NLP Applications

23
Source: Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and Xia Hu (2023).

"Harnessing the power of llms in practice: A survey on chatgpt and beyond." arXiv preprint arXiv:2304.13712.

Generative AI
Foundation Models

24Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT."
arXiv preprint arXiv:2303.04226.

Generative AI Models

25Source: Gozalo-Brizuela, Roberto, and Eduardo C. Garrido-Merchan (2023). "ChatGPT is not all you need. A State of the Art Review of large Generative AI models." arXiv preprint arXiv:2301.04655 (2023).

ChatGPT
is not
all you need

Attention
is
all you need

Meta Llama-2 70B: Best Open Source and
Commercial LLM (Llama-2, Falcon, MPT)

26Source: https://ai.meta.com/llama/

Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1.
Its fine-tuned models have been trained on over 1 million human annotations.

Meta
Llama-2 70B:

Best
Open Source

and
Commercial

LLM
(Llama-2,

Falcon, MPT)

27Source: https://ai.meta.com/llama/

Llama 2 outperforms other open source language models on many external benchmarks,
including reasoning, coding, proficiency, and knowledge tests.

Llama-2: Comparison to
closed-source models (GPT-3.5, GPT-4, PaLM)

on academic benchmarks

28Source: Touvron, Hugo, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov et al. (2023) "Llama 2: Open Foundation and Fine-Tuned Chat Models." arXiv preprint arXiv:2307.09288 (2023).

Results for GPT-3.5 and GPT-4 are from OpenAI (2023).
Results for the PaLM model are from Chowdhery et al. (2022).
Results for the PaLM-2-L are from Anil et al. (2023).

Llama-2 Chat: Helpfulness Human Evaluation

29Source: Touvron, Hugo, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov et al. (2023) "Llama 2: Open Foundation and Fine-Tuned Chat Models." arXiv preprint arXiv:2307.09288 (2023).

MPT-30B, MPT-7B
LLaMa-30B, LLaMa-7B

30Source: https://www.mosaicml.com/blog/mpt-30b

https://www.mosaicml.com/blog/mpt-30b

Falcon 180B

31Source: https://huggingface.co/blog/falcon-180b

https://huggingface.co/blog/falcon-180b

Falcon 180B, Llama 2 70B, MPT 30B

32Source: https://huggingface.co/blog/falcon-180b

https://huggingface.co/blog/falcon-180b

Falcon 180B
Hardware requirements

33Source: https://huggingface.co/blog/falcon-180b

NVIDIA A100 80 GB:
$16,135

https://huggingface.co/blog/falcon-180b

Ratios of various data sources in the
pre-training data for existing LLMs

34Source: Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min et al. (2023) "A Survey of Large Language Models." arXiv preprint arXiv:2303.18223.

Typical Data Preprocessing Pipeline for
Pre-training Large Language Models (LLMs)

35Source: Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min et al. (2023) "A Survey of Large Language Models." arXiv preprint arXiv:2303.18223.

The Encoder-Decoder Framework

•The encoder-decoder framework
•Attention Mechanisms
•Transfer Learning in NLP

36Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

RNN

37Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

An encoder-decoder architecture
with a pair of RNN

38Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

Attention Mechanisms

39

An encoder-decoder architecture with an attention mechanism

Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

RNN Encoder-Decoder
alignment of words in English and the generated translation in French

40Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

Encoder-Decoder Architecture
of the Original Transformer

41Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

Comparison of Traditional Supervised Learning
and Transfer Learning

42Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

ULMFiT: 3 Steps
Transfer Learning in NLP

43

1. Pretraining 2. Domain adaptation 3. Fine-tuning

Language
Model

Wikitet
103

Language
Model

IMDB ClassifierIMDB

Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

Four Paradigms in NLP

44Source: Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. (2023) "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing." ACM Computing Surveys 55, no. 9 (2023): 1-35.

An overview of the Hugging Face Ecosystem

45Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

Tokenizers Transformers Datasets

Accelerate

Models Datasets Metrics Docs

Hugging Face Hub

A typical pipeline for
training transformer models

with the Datasets, Tokenizers, and Transformers libraries

46
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Datasets Tokenizers Transformers Datasets

Load and
process datasets

Tokenize
input texts

Load models,
train and infer

Load metrics
evaluate models

https://github.com/nlp-with-transformers/notebooks

The Illustrated Transformer
Jay Alammar (2018)

47Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Illustrated Transformer
Jay Alammar (2018)

48Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Illustrated Transformer
Jay Alammar (2018)

49Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Illustrated Transformer
Jay Alammar (2018)

50Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Illustrated Transformer
Jay Alammar (2018)

51Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Illustrated Transformer
Jay Alammar (2018)

52Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

Each word is embedded into a vector of size 512.

http://jalammar.github.io/illustrated-transformer/

The Illustrated Transformer
Jay Alammar (2018)

53Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Illustrated Transformer
Jay Alammar (2018)

54Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Illustrated Transformer
Jay Alammar (2018)

55Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

56Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated
with that word.

We end up creating a "query", a "key", and a "value" projection of each word in the input sentence.

http://jalammar.github.io/illustrated-transformer/

The Illustrated Transformer
Jay Alammar (2018)

57Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Illustrated Transformer
Jay Alammar (2018)

58Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

59Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

Matrix Calculation of Self-Attention

60Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The self-attention calculation in matrix form

61Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

Multi-headed Attention

62Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

Multi-headed Attention

63Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

64Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

Multi-headed Attention

http://jalammar.github.io/illustrated-transformer/

65Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

Multi-headed Attention

http://jalammar.github.io/illustrated-transformer/

As we encode the word "it", one attention head is focusing most on "the animal",
while another is focusing on "tired" -- in a sense, the model's representation of the word

"it" bakes in some of the representation of both "animal" and "tired".

66Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

Add all the attention heads

67Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

Positional Encoding

68Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

To give the model a sense of the order of the words, we add positional encoding vectors -- the values of which follow a specific pattern.

http://jalammar.github.io/illustrated-transformer/

Positional Encoding

69Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

Positional encoding with a toy embedding size of 4

http://jalammar.github.io/illustrated-transformer/

Positional encoding for 20 words (rows)
with an embedding size of 512 (columns)

70Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

You can see that it appears split in half down the center. That's because the values of the left half are generated by one function (which uses sine), and the right
half is generated by another function (which uses cosine). They're then concatenated to form each of the positional encoding vectors.

http://jalammar.github.io/illustrated-transformer/

Transformers Positional Encoding

71Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Residuals

72Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

73Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

74Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Decoder Side

75Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

76Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

The Decoder Side

http://jalammar.github.io/illustrated-transformer/

The Final Linear and Softmax Layer

77Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The output vocabulary

78Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

The output vocabulary of our model is created in the preprocessing phase before we even begin training.

http://jalammar.github.io/illustrated-transformer/

Example: one-hot encoding of output vocabulary

79Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

The Loss Function

80Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

81Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

82Source: Jay Alammar (2018), The Illustrated Transformer,
http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

• Transformers

• pytorch-transformers
• pytorch-pretrained-bert

• provides state-of-the-art general-purpose architectures

• (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...)
• for Natural Language Understanding (NLU) and

Natural Language Generation (NLG)
with over 32+ pretrained models
in 100+ languages
and deep interoperability between
TensorFlow 2.0 and
PyTorch.

83

Transformers
State-of-the-art Natural Language Processing for

TensorFlow 2.0 and PyTorch

Source: https://github.com/huggingface/transformers

https://github.com/huggingface/transformers

84

Hugging Face

https://huggingface.co/

https://huggingface.co/

85

Hugging Face Transformers

https://huggingface.co/docs/transformers/index

https://huggingface.co/docs/transformers/index

86

Hugging Face Tasks
Natural Language Processing

https://huggingface.co/tasks

https://huggingface.co/

NLP with Transformers Github

87https://github.com/nlp-with-transformers/notebooks

https://github.com/nlp-with-transformers/notebooks

NLP with Transformers Github Notebooks

88https://github.com/nlp-with-transformers/notebooks

https://github.com/nlp-with-transformers/notebooks

89
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

NLP with Transformers

!git clone https://github.com/nlp-with-transformers/notebooks.git
%cd notebooks
from install import *
install_requirements()

from utils import *
setup_chapter()

https://github.com/nlp-with-transformers/notebooks

90
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Text Classification
text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
from your online store in Germany. Unfortunately, when I opened the package, \
I discovered to my horror that I had been sent an action figure of Megatron \
instead! As a lifelong enemy of the Decepticons, I hope you can understand my \
dilemma. To resolve the issue, I demand an exchange of Megatron for the \
Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""

https://github.com/nlp-with-transformers/notebooks

91
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Text Classification
text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
from your online store in Germany. Unfortunately, when I opened the package, \
I discovered to my horror that I had been sent an action figure of Megatron \
instead! As a lifelong enemy of the Decepticons, I hope you can understand my \
dilemma. To resolve the issue, I demand an exchange of Megatron for the \
Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""

from transformers import pipeline
classifier = pipeline("text-classification")

label score
0 NEGATIVE 0.901546

import pandas as pd
outputs = classifier(text)
pd.DataFrame(outputs)

https://github.com/nlp-with-transformers/notebooks

92
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Text Classification

from transformers import pipeline
classifier = pipeline("text-classification")

label score
0 NEGATIVE 0.901546

import pandas as pd
outputs = classifier(text)
pd.DataFrame(outputs)

https://github.com/nlp-with-transformers/notebooks

93
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Named Entity Recognition
ner_tagger = pipeline("ner", aggregation_strategy="simple")
outputs = ner_tagger(text)
pd.DataFrame(outputs)

https://github.com/nlp-with-transformers/notebooks

94
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Question Answering

reader = pipeline("question-answering")
question = "What does the customer want?"
outputs = reader(question=question, context=text)
pd.DataFrame([outputs])

score start end answer
0 0.631292 335 358 an exchange of Megatron

https://github.com/nlp-with-transformers/notebooks

95
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Summarization

summarizer = pipeline("summarization")
outputs = summarizer(text, max_length=45, clean_up_tokenization_spaces=True)
print(outputs[0]['summary_text'])

Bumblebee ordered an Optimus Prime action figure
from your online store in Germany. Unfortunately,
when I opened the package, I discovered to my horror
that I had been sent an action figure of Megatron
instead.

https://github.com/nlp-with-transformers/notebooks

96
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Translation
translator = pipeline("translation_en_to_de",
 model="Helsinki-NLP/opus-mt-en-de")
outputs = translator(text, clean_up_tokenization_spaces=True, min_length=100)
print(outputs[0]['translation_text'])

Sehr geehrter Amazon, letzte Woche habe ich eine Optimus Prime Action Figur aus
Ihrem Online-Shop in Deutschland bestellt. Leider, als ich das Paket öffnete,
entdeckte ich zu meinem Entsetzen, dass ich stattdessen eine Action Figur von
Megatron geschickt worden war! Als lebenslanger Feind der Decepticons, Ich
hoffe, Sie können mein Dilemma verstehen. Um das Problem zu lösen, Ich fordere
einen Austausch von Megatron für die Optimus Prime Figur habe ich bestellt.
Anbei sind Kopien meiner Aufzeichnungen über diesen Kauf. Ich erwarte, bald von
Ihnen zu hören. Aufrichtig, Bumblebee.

https://github.com/nlp-with-transformers/notebooks

97
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Text Generation
from transformers import set_seed
set_seed(42) # Set the seed to get reproducible results

generator = pipeline("text-generation")
response = "Dear Bumblebee, I am sorry to hear that your order was mixed up."

prompt = text + "\n\nCustomer service response:\n" + response
outputs = generator(prompt, max_length=200)
print(outputs[0]['generated_text'])

Customer service response:
Dear Bumblebee, I am sorry to hear that your order was mixed up. The
order was completely mislabeled, which is very common in our online
store, but I can appreciate it because it was my understanding from this
site and our customer service of the previous day that your order was
not made correct in our mind and that we are in a process of resolving
this matter. We can assure you that your order

https://github.com/nlp-with-transformers/notebooks

98
Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Customer service response:
Dear Bumblebee, I am sorry to hear that your order was mixed up. The
order was completely mislabeled, which is very common in our online
store, but I can appreciate it because it was my understanding from this
site and our customer service of the previous day that your order was
not made correct in our mind and that we are in a process of resolving
this matter. We can assure you that your order

Text Generation
Dear Amazon, last week I ordered an Optimus Prime action figure from
your online store in Germany. Unfortunately, when I opened the package,
I discovered to my horror that I had been sent an action figure of
Megatron instead! As a lifelong enemy of the Decepticons, I hope you can
understand my dilemma. To resolve the issue, I demand an exchange of
Megatron for the Optimus Prime figure I ordered. Enclosed are copies of
my records concerning this purchase. I expect to hear from you soon.
Sincerely, Bumblebee.

https://github.com/nlp-with-transformers/notebooks

99

NLTK Gensim Word2Vec Visualization
import nltk
import gensim
import plotly.express as px
nltk.download('punkt')
text = 'king queen man woman'
data = [nltk.word_tokenize(text)]
model = gensim.models.Word2Vec(sentences=data, min_count=1,
vector_size=100, window=5)

words = list(model.wv.index_to_key)
vectors = model.wv[words]

fig = px.scatter(x=vectors[:, 0], y=vectors[:, 1], text=words)
fig.show()

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

100

NLTK Gensim Word2Vec Visualization

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

101

Transformers Tokenizer Embeddings
!pip install transformers
!pip install torch
import torch
from transformers import BertTokenizer, BertModel
model_name = 'bert-base-uncased' #'bert-base-chinese'
model = BertModel.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)
def get_bert_embeddings(text):

inputs = tokenizer(text, return_tensors="pt", truncation=True,
padding=True, max_length=512)
with torch.no_grad():

outputs = model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
return embeddings

text = "I love apple."
embeddings = get_bert_embeddings(text)
print(embeddings)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

102

Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101

Summary

103

•Natural Language Processing with Transformers
• Transformer (Attention is All You Need)
• BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding
• ChatGPT: Large Language Models (LLMs),

Foundation Models
• Encoder-Decoder
• Attention Mechanisms
• Transfer Learning in NLP: Pre-train, Fine-tune

References
• Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with

Hugging Face, O'Reilly Media.
• Denis Rothman (2021), Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch,

TensorFlow, BERT, RoBERTa, and more, Packt Publishing.
• Savaş Yıldırım and Meysam Asgari-Chenaghlu (2021), Mastering Transformers: Build state-of-the-art models from scratch with advanced natural

language processing techniques, Packt Publishing.
• Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta (2020), Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP

Systems, O'Reilly Media.
• Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding." arXiv preprint arXiv:1810.04805.
• Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov et al. (2023) "Llama 2: Open Foundation

and Fine-Tuned Chat Models." arXiv preprint arXiv:2307.09288 (2023).
• Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of AI-Generated Content (AIGC): A

History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.
• Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. (2023) "Pre-train, prompt, and predict: A systematic survey of

prompting methods in natural language processing." ACM Computing Surveys 55, no. 9 (2023): 1-35.
• Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min et al. (2023) "A Survey of Large Language Models." arXiv

preprint arXiv:2303.18223.
• The Super Duper NLP Repo, https://notebooks.quantumstat.com/
• Jay Alammar (2018), The Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/
• Jay Alammar (2019), A Visual Guide to Using BERT for the First Time, http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
• NLP with Transformer, https://github.com/nlp-with-transformers/notebooks
• Min-Yuh Day (2023), Python 101, https://tinyurl.com/aintpupython101 104

https://notebooks.quantumstat.com/
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://github.com/nlp-with-transformers/notebooks
https://tinyurl.com/aintpupython101

