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Syllabus
Week    Date    Subject/Topics

1  2024/02/21  Introduction to Software Engineering
2  2024/02/28  Peace Memorial Day (Day Off)
3  2024/03/06  Software Products and Project Management: 
                            Software product management and prototyping
4  2024/03/13  Agile Software Engineering: Agile methods, Scrum, 
                            and Extreme Programming
5  2024/03/20  Case Study on Software Engineering I
6  2024/03/27  Features, Scenarios, and Stories
7  2024/04/03  Make-up holiday for NTPU Sports Day (No Classes)
8  2024/04/10  Midterm Project Report
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Syllabus
Week    Date    Subject/Topics

9  2024/04/17  Software Architecture: Architectural design, 
                            System decomposition, and Distribution architecture
10  2024/04/24  Cloud-Based Software: Virtualization and containers, 
                               Everything as a service, Software as a service; 
                               Cloud Computing and Cloud Software Architecture
11  2024/05/01  Case Study on Software Engineering II
12  2024/05/08  Microservices Architecture, RESTful services, 
                               Service deployment
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Syllabus
Week    Date    Subject/Topics

13  2024/05/15  Security and Privacy; Reliable Programming; 
                              Testing: Functional testing, Test automation, 
                              Test-driven development, and Code reviews; 
                              DevOps and Code Management: 
                              Code management and DevOps automation
14  2024/05/22  Industry Practices of Software Engineering
15  2024/05/29  Final Project Report I
16  2024/06/05  Final Project Report II
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Cloud-Based Software: 
Virtualization and containers, 

Everything as a service, 
Software as a service;

Cloud Computing and 
Cloud Software Architecture
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Software Engineering 
and 

Project Management
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Information Management (MIS)
Information Systems

7Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson. 
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Fundamental MIS Concepts
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Project-based software engineering
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Product software engineering

10Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software execution models

Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Product management concerns

12Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Technical interactions of 
product managers

13Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software Development Life Cycle (SDLC)

The waterfall model
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Plan-based and Agile development
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The Continuum of Life Cycles

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Predictive Life Cycle

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iterative Life Cycle

18Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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A Life Cycle of 
Varying-Sized Increments

19Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iteration-Based and Flow-Based 
Agile Life Cycles

20Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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From personas to features
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Multi-tier client-server architecture

22Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Service-oriented Architecture

23Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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VM

24Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Everything as a service

25Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software as a service

26Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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27Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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28Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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29Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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31Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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32Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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33Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Cloud-Based Software: 
Virtualization and containers, 

Everything as a service, 
Software as a service;

Cloud Computing and 
Cloud Software Architecture

35



The cloud
•The cloud is made up of 
very large number of remote servers 
that are offered for rent 
by companies that own these servers.
•Cloud-based servers are ‘virtual servers’, 
which means that they are implemented in 
software rather than hardware.  

36Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



The cloud
•You can rent as many servers as you need, run your 

software on these servers and make them available to 
your customers. 
•Cloud servers can be started up and shut down as 

demand changes.
•You may rent a server and install your own software, 

or you may pay for access to software products that 
are available on the cloud.

37Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Cloud Software:
Scaleability, elasticity and resilience

38Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Scaleability

• Scaleability reflects the ability of your software to 
cope with  increasing numbers of users. 
•As the load on your software increases, your 

software automatically adapts so that the system 
performance and response time is maintained. 

39Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Elasticity

• Elasticity is related to scaleability but also allows for 
scaling-down as well as scaling-up. 
•You can monitor the demand on your application 

and add or remove servers dynamically as the 
number of users change. 

40Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Resilience

•Resilience means that you can design your 
software architecture to tolerate server failures.
•You can make several copies of your software 

concurrently available. If one of these fails, the 
others continue to provide a service.

41Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Benefits of using the cloud for 
software development

• Cost
You avoid the initial capital costs of hardware procurement

• Startup time
Using the cloud, you can have servers up and running in a few minutes.

• Server choice 
If you find that the servers you are renting are not powerful enough, you can 
upgrade to more powerful systems. You can add servers for short-term 
requirements, such as load testing.

• Distributed development 
If you have a distributed development team, working from different locations, all 
team members have the same development environment and can seamlessly 
share all information.

42Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Virtual cloud servers
•A virtual server runs on an underlying physical 

computer and is made up of an operating system plus 
a set of software packages that provide the server 
functionality required. 
•A virtual server is a stand-alone system that can run 

on any hardware in the cloud. 
• This ‘run anywhere’ characteristic is possible 

because the virtual server has no external 
dependencies.  

43Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Virtual cloud servers
•Virtual machines (VMs), running on physical server 

hardware, can be used to implement virtual servers. 
•A hypervisor provides hardware emulation that 

simulates the operation of the underlying 
hardware. 

• If you use a virtual machine to implement virtual 
servers, you have exactly the same hardware 
platform as a physical server. 

44Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Implementing a virtual server as a 
Virtual Machine (VM)

45Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Container-based virtualization
• If you are running a cloud-based system with many 

instances of applications or services, these all use the same 
operating system, you can use a simpler virtualization 
technology called ‘containers’. 

• Using containers accelerates the process of deploying virtual 
servers on the cloud. 
• Containers are usually megabytes in size whereas VMs 

are gigabytes.
• Containers can be started and shut down in a few 

seconds rather than the few minutes required for a VM. 
46Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Container-based virtualization
•Containers are an operating system virtualization 

technology that allows independent servers to 
share a single operating system. 
• They are particularly useful for providing 

isolated application services where each user 
sees their own version of an application. 

47Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Using containers to provide 
isolated services

48Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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VM

49Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Docker
• Containers were developed by Google around 2007 but 

containers became a mainstream technology around 2015. 

• An open-source project called Docker provided a standard 
means of container management that is fast and easy to use. 

• Docker is a container management system that allows users 
to define the software to be included in a container as a 
Docker image. 

• It also includes a run-time system that can create and 
manage containers using these Docker images. 

50Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Docker client

The Docker container system

51Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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The elements of the 
Docker container system

•Docker daemon
This is a process that runs on a host server and is 
used to setup, start, stop, and monitor containers, as 
well as building and managing local images.
•Docker client

This software is used by developers and system 
managers to define and control containers

52Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



The elements of the 
Docker container system

•Dockerfiles
Dockerfiles define runnable applications (images) as a series 
of setup commands that specify the software to be included 
in a container. Each container must be defined by an 
associated Dockerfile.

• Image
A Dockerfile is interpreted to create a Docker image, which is 
a set of directories with the specified software and data 
installed in the right places. Images are set up to be runnable 
Docker applications.

53Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



The elements of the 
Docker container system

• Docker hub
This is a registry of images that has been created. These may be 
reused to setup containers or as a starting point for defining new 
images.

• Containers
Containers are executing images. An image is loaded into a container and 
the application defined bby the image starts execution. Containers may be 
moved from server to server without modification and replicated across 
many servers. You can make changes to a Docker container (e.g. by 
modifying files) but you then must commit these changes to create a new 
image and restart the container.

54Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Docker images
• Docker images are directories that can be archived, shared and 

run on different Docker hosts.  Everything that’s needed to run a 
software system - binaries, libraries, system tools, etc. is included 
in the directory. 

• A Docker image is a base layer, usually taken from the Docker 
registry, with your own software and data added as a layer on 
top of this. 
• The layered model means that updating Docker applications is fast and 

efficient. Each update to the filesystem is a layer on top of the existing system. 

• To change an application, all you have to do is to ship the changes that you 
have made to its image, often just a small number of files. 

55Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Benefits of containers
• They solve the problem of software dependencies. 
•You don’t have to worry about the libraries and 

other software on the application server being 
different from those on your development server. 
• Instead of shipping your product as stand-alone 

software, you can ship a container that includes all 
of the support software that your product needs.

56Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Benefits of containers
• They provide a mechanism for software portability across different 

clouds.  

• Docker containers can run on any system or cloud provider where the 
Docker daemon is available

• They provide an efficient mechanism for implementing software services 
and so support the development of service-oriented architectures.

• They simplify the adoption of DevOps. 

• This is an approach to software support where the same team are 
responsible for both developing and supporting operational 
software.

57Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Everything as a service
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Everything as a service

• The idea of a service that is rented rather than 
owned is fundamental to cloud computing. 
• Infrastructure as a service (IaaS)
•Platform as a service (PaaS) 
• Software as a service (SaaS)

59Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Infrastructure as a service (IaaS)

• Infrastructure as a service (IaaS)
•Cloud providers offer different kinds of 

infrastructure service such as a compute service, a 
network service and a storage service that you 
can use to implement virtual servers. 

60Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Platform as a service (PaaS) 

•Platform as a service (PaaS) 
• This is an intermediate level where you use 

libraries and frameworks provided by the cloud 
provider to implement your software. 
These provide access to a range of functions, 
including SQL and NoSQL databases. 

61Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Software as a service (SaaS)

• Software as a service (SaaS)
•Your software product runs on the cloud and is 

accessed by users through a web browser or 
mobile app.

62Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Management responsibilities for 
IaaS and PaaS

63Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software as a service
• Increasingly, software products are being delivered as a service, 

rather than installed on the buyer’s computers.

• If you deliver your software product as a service, you run the 
software on your servers, which you may rent from a cloud 
provider. 

• Customers don’t have to install software and they access the 
remote system through a web browser or dedicated mobile app. 

• The payment model for software as a service is usually a 
subscription model. 

• Users pay a monthly fee to use the software rather than buy it 
outright.

64Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Software as a service

65Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Benefits of SaaS for software 
product providers

• Cash flow
Customers either pay a regular subscription or pay as they use the software. This means 
you have a regular cash flow, with payments throughout the year. You don’t have a 
situation where you have a large cash injection when products are purchased but very 
little income between product releases.

• Update management
You are in control of updates to your product and all customers receive the update at the 
same time. You avoid the issue of several versions being simultaneously used and 
maintained. This reduces your costs and makes it easier to maintain a consistent 
software code base.

• Continuous deployment
You can deploy new versions of your software as soon as changes have been made and 
tested. This means you can fix bugs quickly so that your software reliability can 
continuously improve.

66Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Benefits of SaaS for software 
product providers

• Payment flexibility
You can have several different payment options so that you can attract a wider 
range of customers. Small companies or individuals need not be discouraged by 
having to pay large upfront software costs.

• Try before you buy
You can make early free or low-cost versions of the software available quickly 
with the aim of getting customer feedback on bugs and how the product could 
be approved.

• Data collection
You can easily collect data on how the product is used and so identify areas for 
improvement. You may also be able to collect customer data that allows you to 
market other products to these customers.

67Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Advantages and disadvantages of 
SaaS for customers

68Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Data storage and management 
issues for SaaS

• Regulation
Some countries, such as EU countries, have strict laws on the storage of 
personal information. These may be incompatible with the laws and 
regulations of the country where the SaaS provider is based. If a SaaS 
provider cannot guarantee that their storage locations conform to the laws 
of the customer’s country, businesses may be reluctant to use their product.

• Data transfer
If software use involves a lot of data transfer, the software response time 
may be limited by the network speed. This is a problem for individuals and 
smaller companies who can’t afford to pay for very high speed network 
connections.

69Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Data storage and management 
issues for SaaS

• Data security
Companies dealing with sensitive information may be unwilling to hand over 
the control of their data to an external software provider. As we have seen 
from a number of high profile cases, even large cloud providers have had 
security breaches. You can’t assume that they always provide better security 
than the customer’s own servers.

• Data exchange
If you need to exchange data between a cloud service and other services or 
local software applications, this can be difficult unless the cloud service 
provides an API that is accessible for external use.

70Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Design issues for software 
delivered as a service

71Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Multi-tenant systems
• A multi-tenant database is partitioned so that customer 

companies have their own space and can store and access 
their own data.  
• There is a single database schema, defined by the SaaS provider, 

that is shared by all of the system’s users.  

• Items in the database are tagged with a tenant identifier, 
representing a company that has stored data in the system.  The 
database access software uses this tenant identifier to provide 
‘logical isolation’, which means that users seem to be working 
with their own database. 
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Possible customisations for SaaS

• Authentication
Businesses may want users to authenticate using their 
business credentials rather than the account credentials 
set up by the software provider.

• Branding
Businesses may want a user interface that is branded to 
reflect their own organisation.
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Possible customisations for SaaS
• Business rules

Businesses may want to be able to define their own business rules and 
workflows that apply to their own data.

• Data schemas
Businesses may want to be able to extend the standard data model used 
in the system database to meet their own business needs.

• Access control
Businesses may want to be able to define their own access control model 
that sets out the data that specific users or user groups can access and 
the allowed operations on that data.

74Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Advantages of multi-tenant databases
• Resource utilization

The SaaS provider has control of all the resources used by the software and can 
optimize the software to make effective use of these resources. 

• Security
Multitenant databases have to be designed for security because the data for all 
customers is held in the same database.  They are, therefore, likely to have fewer 
security vulnerabilities than standard database products. Security management is 
simplified as there is only a single copy of the database software to be patched if a 
security vulnerability is discovered.

• Update management 
It is easier to update a single instance of software rather than multiple instances. 
Updates are delivered to all customers at the same time so all use the latest version 
of the software.
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Disadvantages of multi-tenant databases

• Inflexibility
Customers must all use the same database schema with limited scope for adapting 
this schema to individual needs. I explain possible database adaptations later in this 
section.

• Security
As data for all customers is maintained in the same database, then there is a 
theoretical possibility that data will leak from one customer to another. In fact, there 
are very few instances of this happening. More seriously, perhaps, if there is a 
database security breach then it affects all customers.

• Complexity
Multitenant systems are usually more complex than multi-instance systems because 
of the need to manage many users. There is, therefore, an increased likelihood of 
bugs in the database software.
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User profiles for SaaS access
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Architectural decisions for cloud 
software engineering
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Questions to ask when choosing a 
database organization

1. Target customers
2. Transaction requirements
3. Database size and connectivity
4. Database interoperability
5. System structure
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Questions to ask when choosing a 
database organization

• Target customers
Do customers require different database schemas and database 
personalization? Do customers have security concerns about 
database sharing? If so, use a multi-instance database. 

• Transaction requirements
Is it critical that your products support ACID transactions where 
the data is guaranteed to be consistent at all times? If so, use a 
multi-tenant database or a VM-based multi-instance database.
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Questions to ask when choosing a 
database organization

• Database size and connectivity
How large is the typical database used by customers? How many 
relationships are there between database items? A multi-tenant model is 
usually best for very large databases as you can focus effort on 
optimizing performance.

• Database interoperability
Will customers wish to transfer information from existing databases? 
What are the differences in schemas between these and a possible 
multitenant database? What software support will they expect to do the 
data transfer? If customers have many different schemas, a multi-
instance database should be used.
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Questions to ask when choosing a 
database organization

• System structure
Are you using a service-oriented architecture for your 
system? Can customer databases be split into a set of 
individual service databases? If so, use containerized, 
multi-instance databases.
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Scalability and resilience
• The scalability of a system reflects its ability to adapt 

automatically to changes in the load on that system. 

• The resilience of a system reflects its ability to continue to 
deliver critical services in the event of system failure or 
malicious system use. 
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Scalability and resilience
• You achieve scalability in a system by making it possible to add new 

virtual servers (scaling-out) or increase the power of a system 
server (scaling-up) in response to increasing load. 

• In cloud-based systems, scaling-out rather than scaling-up is the 
normal approach used. Your software has to be organized so 
that individual software components can be replicated and run 
in parallel. 

• To achieve resilience, you need to be able to restart your software 
quickly after a hardware or software failure.
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Using a standby system to 
provide resilience
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Resilience
• Resilience relies on redundancy:
• Replicas of the software and data are maintained in 

different locations.
• Database updates are mirrored so that the standby 

database is a working copy of the operational database.
• A system monitor continually checks the system status. It 

can switch to the standby system automatically if the 
operational system fails.
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Resilience
• You should use redundant virtual servers that are not 

hosted on the same physical computer and locate servers in 
different locations.
• Ideally, these servers should be located in different data 

centers. 
• If a physical server fails or if there is a wider data center 

failure, then operation can be switched automatically to 
the software copies elsewhere. 
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System structure
• An object-oriented approach to software engineering has 

been that been extensively used for the development of 
client-server systems built around a shared database. 
• The system itself is, logically, a monolithic system with 

distribution across multiple servers running large 
software components. The traditional multi-tier client 
server architecture is based on this distributed system 
model. 

88Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



System structure
• The alternative to a monolithic approach to software 

organization is a service-oriented approach where the 
system is decomposed into fine-grain, stateless  services. 
• Because it is stateless, each service is independent and 

can be replicated, distributed and migrated from one 
server to another. 
• The service-oriented approach is particularly suitable 

for cloud-based software, with services deployed in 
containers.  
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Cloud platform
• Cloud platforms include general-purpose clouds such as Amazon 

Web Services or lesser known platforms oriented around a specific 
application, such as the SAP Cloud Platform. There are also smaller 
national providers that provide more limited services but who may 
be more willing to adapt their services to the needs of different 
customers. 
• There is no ‘best’ platform and you should choose a cloud provider 

based on your background and experience, the type of product that 
you are developing and the expectations of your customers. 
• You need to consider both technical issues and business issues when 

choosing a cloud platform for your product.
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Technical issues in 
cloud platform choice
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Business issues in 
cloud platform choice
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AWS Products and Services
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AWS Compute
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AWS Database
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AWS Storage
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AWS Networking & Content Dilivery
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AWS Security, Identity & Compliance
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AWS Cost Management
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• Amazon EC2

• Virtual servers in the cloud

• Amazon Simple Storage Service (S3)

• Scalable storage in the cloud

• Amazon Aurora

• High performance managed relational database

• Amazon DynamoDB

• Managed NoSQL database

• Amazon RDS

• Managed relational database service for MySQL, PostgreSQL, Oracle, SQL Server, and 
MariaDB
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AWS Services
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• AWS Lambda
• Run code without thinking about servers

• AWS Elastic Beanstalk
• Run and manage web apps

• Amazon VPC
• Isolated cloud resources

• Amazon Lightsail
• Launch and manage virtual private servers

• Amazon SageMaker
• Build, train, and deploy machine learning models at scale
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AWS Services
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AWS Serverless Airline Booking
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AWS Serverless Airline Booking 
Stack
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AWS Serverless Airline Booking 
High level infrastructure architecture
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AWS Serverless Architecture
AWS Operational Responsibility Models
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https://www.youtube.com/watch?v=MyoOeHTp2pg


Build 
a 

Serverless 
Web Application

116



Build a Serverless Web Application
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Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway, 

Amazon DynamoDB, and Amazon Cognito
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Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway, 

Amazon DynamoDB, and Amazon Cognito
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Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway, 

Amazon DynamoDB, and Amazon Cognito
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1
Static Web Hosting
Amazon S3 hosts static web 
resources including HTML, CSS, 
JavaScript, and image files 
which are loaded in the user's 
browser.
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Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway, 

Amazon DynamoDB, and Amazon Cognito
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Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway, 

Amazon DynamoDB, and Amazon Cognito
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2 User Management
Amazon Cognito provides 
user management and 
authentication functions to 
secure the backend API.
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Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway, 

Amazon DynamoDB, and Amazon Cognito
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Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway, 

Amazon DynamoDB, and Amazon Cognito
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3 Serverless Backend
Amazon DynamoDB provides a 
persistence layer where data can be 
stored by the API's Lambda 
function.
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Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway, 

Amazon DynamoDB, and Amazon Cognito
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Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway, 

Amazon DynamoDB, and Amazon Cognito
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4 RESTful API
JavaScript executed in the browser 
sends and receives data from a 
public backend API built using 
Lambda and API Gateway.
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Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway, 

Amazon DynamoDB, and Amazon Cognito
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Terminate resources
Resource Cleanup
You will terminate an Amazon S3 bucket, an 
Amazon Cognito User Pool, an AWS Lambda 
function, an IAM role, a DynamoDB table, a REST 
API, and a CloudWatch Log. 
It is a best practice to delete resources you are no 
longer using to avoid unwanted charges.
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Summary
• The cloud is made up of a large number of virtual servers 

that you can rent for your own use. You and your customers 
access these servers remotely over the internet and pay for 
the amount of server time used.

• Virtualization is a technology that allows multiple server 
instances to be run on the same physical computer. This 
means that you can create isolated instances of your 
software for deployment on the cloud.
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Summary
• Virtual machines are physical server replicas on which you 

run your own operating system, technology stack and 
applications. 
• Containers are a lightweight virtualization technology that 

allow rapid replication and deployment of virtual servers. 
All containers run the same operating system. 
Docker is currently the most widely used container 
technology. 
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Summary
• A fundamental feature of the cloud is that ‘everything’ can 

be delivered as a service and accessed over the internet. 
A service is rented rather than owned and is shared with 
other users.
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Summary
• Infrastructure as a service (IaaS) means computing, storage 

and other services are available over the cloud. There is no 
need to run your own physical servers. 
• Platform as a service (PaaS) means using services provided 

by a cloud platform vendor to make it possible to auto-scale 
your software in response to demand.
• Software as a service (SaaS) means that application software 

is delivered as a service to users. This has important benefits 
for users, such as lower capital costs, and software vendors, 
such as simpler deployment of new software releases.
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Summary
•Multitenant systems are SaaS systems where all users share 

the same database, which may be adapted at run-time to 
their individual needs. Multi-instance systems are SaaS 
applications where each user has their own separate 
database.
• The key architectural issues for cloud-based software are the 

cloud platform to be used, whether to use a multitenant or 
multi-instance database, the scaleability and resilience 
requirements, and whether to use objects or services as the 
basic components in the system.
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