
Cloud-Based Software:
Virtualization and containers, Software as a service;
Cloud Computing and Cloud Software Architecture

Software Engineering

1

Min-Yuh Day, Ph.D,
Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1122SE06
MBA, IM, NTPU (M5010) (Spring 2024)

 Wed 2, 3, 4 (9:10-12:00) (B3F17)

2024-04-22

https://meet.google.com/
ish-gzmy-pmo

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/ish-gzmy-pmo
https://meet.google.com/ish-gzmy-pmo

Syllabus
Week Date Subject/Topics

1 2024/02/21 Introduction to Software Engineering
2 2024/02/28 Peace Memorial Day (Day Off)
3 2024/03/06 Software Products and Project Management:
 Software product management and prototyping
4 2024/03/13 Agile Software Engineering: Agile methods, Scrum,
 and Extreme Programming
5 2024/03/20 Case Study on Software Engineering I
6 2024/03/27 Features, Scenarios, and Stories
7 2024/04/03 Make-up holiday for NTPU Sports Day (No Classes)
8 2024/04/10 Midterm Project Report

2

Syllabus
Week Date Subject/Topics

9 2024/04/17 Software Architecture: Architectural design,
 System decomposition, and Distribution architecture
10 2024/04/24 Cloud-Based Software: Virtualization and containers,
 Everything as a service, Software as a service;
 Cloud Computing and Cloud Software Architecture
11 2024/05/01 Case Study on Software Engineering II
12 2024/05/08 Microservices Architecture, RESTful services,
 Service deployment

3

Syllabus
Week Date Subject/Topics

13 2024/05/15 Security and Privacy; Reliable Programming;
 Testing: Functional testing, Test automation,
 Test-driven development, and Code reviews;
 DevOps and Code Management:
 Code management and DevOps automation
14 2024/05/22 Industry Practices of Software Engineering
15 2024/05/29 Final Project Report I
16 2024/06/05 Final Project Report II

4

Cloud-Based Software:
Virtualization and containers,

Everything as a service,
Software as a service;

Cloud Computing and
Cloud Software Architecture

5

Software Engineering
and

Project Management

6

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation
and

unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Information Management (MIS)
Information Systems

7Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Organizations Technology

Management

Information
Systems

Fundamental MIS Concepts

8

Management

Organization

Technology

Information
System

Business
Challenges

Business
Solutions

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Project-based software engineering

9

Problem

SoftwareRequirements

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

generates

implemented-by

helps-with

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

Product software engineering

10Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Opportunity

SoftwareProduct
features

DEVELOPER

DEVELOPER DEVELOPER

inspires

implemented-by

realizes

1

Software execution models

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User interface
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers

Product management concerns

12Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

13Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
 and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

14

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

15

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
eq

ue
nc

y
of

 D
el

iv
er

y
Lo

w
Hi

gh

Low High

Predictive Life Cycle

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

18Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Analyze
Design

Build
Test Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

19Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

20Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

21

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing
Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

32Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

33Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

Cloud-Based Software:
Virtualization and containers,

Everything as a service,
Software as a service;

Cloud Computing and
Cloud Software Architecture

35

The cloud
•The cloud is made up of
very large number of remote servers
that are offered for rent
by companies that own these servers.
•Cloud-based servers are ‘virtual servers’,
which means that they are implemented in
software rather than hardware.

36Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The cloud
•You can rent as many servers as you need, run your

software on these servers and make them available to
your customers.
•Cloud servers can be started up and shut down as

demand changes.
•You may rent a server and install your own software,

or you may pay for access to software products that
are available on the cloud.

37Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Software:
Scaleability, elasticity and resilience

38Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Resilience
Maintain service in the
event of server failure

Scaleability
Maintain performance

as load increases

Elasticity
Adapt the server configuration

to changing demands
Cloud software
characteristics

Scaleability

• Scaleability reflects the ability of your software to
cope with increasing numbers of users.
•As the load on your software increases, your

software automatically adapts so that the system
performance and response time is maintained.

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Elasticity

• Elasticity is related to scaleability but also allows for
scaling-down as well as scaling-up.
•You can monitor the demand on your application

and add or remove servers dynamically as the
number of users change.

40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Resilience

•Resilience means that you can design your
software architecture to tolerate server failures.
•You can make several copies of your software

concurrently available. If one of these fails, the
others continue to provide a service.

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of using the cloud for
software development

• Cost
You avoid the initial capital costs of hardware procurement

• Startup time
Using the cloud, you can have servers up and running in a few minutes.

• Server choice
If you find that the servers you are renting are not powerful enough, you can
upgrade to more powerful systems. You can add servers for short-term
requirements, such as load testing.

• Distributed development
If you have a distributed development team, working from different locations, all
team members have the same development environment and can seamlessly
share all information.

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Virtual cloud servers
•A virtual server runs on an underlying physical

computer and is made up of an operating system plus
a set of software packages that provide the server
functionality required.
•A virtual server is a stand-alone system that can run

on any hardware in the cloud.
• This ‘run anywhere’ characteristic is possible

because the virtual server has no external
dependencies.

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Virtual cloud servers
•Virtual machines (VMs), running on physical server

hardware, can be used to implement virtual servers.
•A hypervisor provides hardware emulation that

simulates the operation of the underlying
hardware.

• If you use a virtual machine to implement virtual
servers, you have exactly the same hardware
platform as a physical server.

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Implementing a virtual server as a
Virtual Machine (VM)

45Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Apache
Web Server

Linux Windows Server

Outlook

Virtual
web server

Virtual
mail server

Container-based virtualization
• If you are running a cloud-based system with many

instances of applications or services, these all use the same
operating system, you can use a simpler virtualization
technology called ‘containers’.

• Using containers accelerates the process of deploying virtual
servers on the cloud.
• Containers are usually megabytes in size whereas VMs

are gigabytes.
• Containers can be started and shut down in a few

seconds rather than the few minutes required for a VM.
46Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Container-based virtualization
•Containers are an operating system virtualization

technology that allows independent servers to
share a single operating system.
• They are particularly useful for providing

isolated application services where each user
sees their own version of an application.

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Using containers to provide
isolated services

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

Graphic design
Software

Graphics
libraries

Photo Manager

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Graphic design
Software

Graphics
libraries

Photo Manager

VM

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Docker
• Containers were developed by Google around 2007 but

containers became a mainstream technology around 2015.

• An open-source project called Docker provided a standard
means of container management that is fast and easy to use.

• Docker is a container management system that allows users
to define the software to be included in a container as a
Docker image.

• It also includes a run-time system that can create and
manage containers using these Docker images.

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Docker client

The Docker container system

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Docker
Daemon

Images

Docker hub

Containers

Dockerfiles Docker host

Registries

ImagesImages

The elements of the
Docker container system

•Docker daemon
This is a process that runs on a host server and is
used to setup, start, stop, and monitor containers, as
well as building and managing local images.
•Docker client

This software is used by developers and system
managers to define and control containers

52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The elements of the
Docker container system

•Dockerfiles
Dockerfiles define runnable applications (images) as a series
of setup commands that specify the software to be included
in a container. Each container must be defined by an
associated Dockerfile.

• Image
A Dockerfile is interpreted to create a Docker image, which is
a set of directories with the specified software and data
installed in the right places. Images are set up to be runnable
Docker applications.

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The elements of the
Docker container system

• Docker hub
This is a registry of images that has been created. These may be
reused to setup containers or as a starting point for defining new
images.

• Containers
Containers are executing images. An image is loaded into a container and
the application defined bby the image starts execution. Containers may be
moved from server to server without modification and replicated across
many servers. You can make changes to a Docker container (e.g. by
modifying files) but you then must commit these changes to create a new
image and restart the container.

54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Docker images
• Docker images are directories that can be archived, shared and

run on different Docker hosts. Everything that’s needed to run a
software system - binaries, libraries, system tools, etc. is included
in the directory.

• A Docker image is a base layer, usually taken from the Docker
registry, with your own software and data added as a layer on
top of this.
• The layered model means that updating Docker applications is fast and

efficient. Each update to the filesystem is a layer on top of the existing system.

• To change an application, all you have to do is to ship the changes that you
have made to its image, often just a small number of files.

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of containers
• They solve the problem of software dependencies.
•You don’t have to worry about the libraries and

other software on the application server being
different from those on your development server.
• Instead of shipping your product as stand-alone

software, you can ship a container that includes all
of the support software that your product needs.

56Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of containers
• They provide a mechanism for software portability across different

clouds.

• Docker containers can run on any system or cloud provider where the
Docker daemon is available

• They provide an efficient mechanism for implementing software services
and so support the development of service-oriented architectures.

• They simplify the adoption of DevOps.

• This is an approach to software support where the same team are
responsible for both developing and supporting operational
software.

57Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Everything as a service

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Everything as a service

• The idea of a service that is rented rather than
owned is fundamental to cloud computing.
• Infrastructure as a service (IaaS)
•Platform as a service (PaaS)
• Software as a service (SaaS)

59Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service (IaaS)

• Infrastructure as a service (IaaS)
•Cloud providers offer different kinds of

infrastructure service such as a compute service, a
network service and a storage service that you
can use to implement virtual servers.

60Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Platform as a service (PaaS)

•Platform as a service (PaaS)
• This is an intermediate level where you use

libraries and frameworks provided by the cloud
provider to implement your software.
These provide access to a range of functions,
including SQL and NoSQL databases.

61Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software as a service (SaaS)

• Software as a service (SaaS)
•Your software product runs on the cloud and is

accessed by users through a web browser or
mobile app.

62Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Management responsibilities for
IaaS and PaaS

63Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software as a Service
(SaaS)

Application Services
(database etc.)

Basic Computational
Services

Cloud management
Services

Application Services
(database etc.)

Basic Computational
Services

Cloud management
Services

Infrastructure as a Service
(IaaS)

Platform as a Service
(PaaS)

Managed by
software provider

Managed by
software provider

Managed by
software provider

Managed by
software provider

Managed by
Cloud vendor

Managed by
Cloud vendor

Managed by
Cloud vendor

Managed by
Cloud vendor

Software as a service
• Increasingly, software products are being delivered as a service,

rather than installed on the buyer’s computers.

• If you deliver your software product as a service, you run the
software on your servers, which you may rent from a cloud
provider.

• Customers don’t have to install software and they access the
remote system through a web browser or dedicated mobile app.

• The payment model for software as a service is usually a
subscription model.

• Users pay a monthly fee to use the software rather than buy it
outright.

64Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software as a service

65Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

Benefits of SaaS for software
product providers

• Cash flow
Customers either pay a regular subscription or pay as they use the software. This means
you have a regular cash flow, with payments throughout the year. You don’t have a
situation where you have a large cash injection when products are purchased but very
little income between product releases.

• Update management
You are in control of updates to your product and all customers receive the update at the
same time. You avoid the issue of several versions being simultaneously used and
maintained. This reduces your costs and makes it easier to maintain a consistent
software code base.

• Continuous deployment
You can deploy new versions of your software as soon as changes have been made and
tested. This means you can fix bugs quickly so that your software reliability can
continuously improve.

66Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of SaaS for software
product providers

• Payment flexibility
You can have several different payment options so that you can attract a wider
range of customers. Small companies or individuals need not be discouraged by
having to pay large upfront software costs.

• Try before you buy
You can make early free or low-cost versions of the software available quickly
with the aim of getting customer feedback on bugs and how the product could
be approved.

• Data collection
You can easily collect data on how the product is used and so identify areas for
improvement. You may also be able to collect customer data that allows you to
market other products to these customers.

67Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Advantages and disadvantages of
SaaS for customers

68Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software
customer

Advantages

Disadvantages

Mobile, laptop and
desktop access

No upfront costs
for software or

servers

Immediate
software updates

Reduced software
management costs

Privacy
regulation

conformance

Network constraints

Security concerns

Lost of control
over updates

Service lock-in

Data exchange

Data storage and management
issues for SaaS

• Regulation
Some countries, such as EU countries, have strict laws on the storage of
personal information. These may be incompatible with the laws and
regulations of the country where the SaaS provider is based. If a SaaS
provider cannot guarantee that their storage locations conform to the laws
of the customer’s country, businesses may be reluctant to use their product.

• Data transfer
If software use involves a lot of data transfer, the software response time
may be limited by the network speed. This is a problem for individuals and
smaller companies who can’t afford to pay for very high speed network
connections.

69Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data storage and management
issues for SaaS

• Data security
Companies dealing with sensitive information may be unwilling to hand over
the control of their data to an external software provider. As we have seen
from a number of high profile cases, even large cloud providers have had
security breaches. You can’t assume that they always provide better security
than the customer’s own servers.

• Data exchange
If you need to exchange data between a cloud service and other services or
local software applications, this can be difficult unless the cloud service
provides an API that is accessible for external use.

70Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Design issues for software
delivered as a service

71Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

SaaS
design issue

AuthenticationLocal/remote
processing

Information
leakage

Multitenant or
multi-instance

database
management

Multi-tenant systems
• A multi-tenant database is partitioned so that customer

companies have their own space and can store and access
their own data.
• There is a single database schema, defined by the SaaS provider,

that is shared by all of the system’s users.

• Items in the database are tagged with a tenant identifier,
representing a company that has stored data in the system. The
database access software uses this tenant identifier to provide
‘logical isolation’, which means that users seem to be working
with their own database.

72Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Possible customisations for SaaS

• Authentication
Businesses may want users to authenticate using their
business credentials rather than the account credentials
set up by the software provider.

• Branding
Businesses may want a user interface that is branded to
reflect their own organisation.

73Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Possible customisations for SaaS
• Business rules

Businesses may want to be able to define their own business rules and
workflows that apply to their own data.

• Data schemas
Businesses may want to be able to extend the standard data model used
in the system database to meet their own business needs.

• Access control
Businesses may want to be able to define their own access control model
that sets out the data that specific users or user groups can access and
the allowed operations on that data.

74Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Advantages of multi-tenant databases
• Resource utilization

The SaaS provider has control of all the resources used by the software and can
optimize the software to make effective use of these resources.

• Security
Multitenant databases have to be designed for security because the data for all
customers is held in the same database. They are, therefore, likely to have fewer
security vulnerabilities than standard database products. Security management is
simplified as there is only a single copy of the database software to be patched if a
security vulnerability is discovered.

• Update management
It is easier to update a single instance of software rather than multiple instances.
Updates are delivered to all customers at the same time so all use the latest version
of the software.

75Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Disadvantages of multi-tenant databases

• Inflexibility
Customers must all use the same database schema with limited scope for adapting
this schema to individual needs. I explain possible database adaptations later in this
section.

• Security
As data for all customers is maintained in the same database, then there is a
theoretical possibility that data will leak from one customer to another. In fact, there
are very few instances of this happening. More seriously, perhaps, if there is a
database security breach then it affects all customers.

• Complexity
Multitenant systems are usually more complex than multi-instance systems because
of the need to manage many users. There is, therefore, an increased likelihood of
bugs in the database software.

76Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User profiles for SaaS access

77Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

SaaS
application

co1 user co1 user co1 user

co3 user

co3 user

co3 user

co4 user co4 user co4 user co4 user

co6 user

co6 user

Profile
co1

Profile
co2

Profile
co3

Profile
co4

Profile
co5

Profile
co6

Architectural decisions for cloud
software engineering

78Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Should the software
use a multitenant or

multi-instance
database?

Database
organization

What are the
software scalability

and resilience
requirements?

Scalability and
resilience

Software
structure

Cloud platform

Should the software
structure be

monolithic or
service-oriented?

What cloud platform
should be used for
development and

delivery?

Questions to ask when choosing a
database organization

1. Target customers
2. Transaction requirements
3. Database size and connectivity
4. Database interoperability
5. System structure

79Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Questions to ask when choosing a
database organization

• Target customers
Do customers require different database schemas and database
personalization? Do customers have security concerns about
database sharing? If so, use a multi-instance database.

• Transaction requirements
Is it critical that your products support ACID transactions where
the data is guaranteed to be consistent at all times? If so, use a
multi-tenant database or a VM-based multi-instance database.

80Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Questions to ask when choosing a
database organization

• Database size and connectivity
How large is the typical database used by customers? How many
relationships are there between database items? A multi-tenant model is
usually best for very large databases as you can focus effort on
optimizing performance.

• Database interoperability
Will customers wish to transfer information from existing databases?
What are the differences in schemas between these and a possible
multitenant database? What software support will they expect to do the
data transfer? If customers have many different schemas, a multi-
instance database should be used.

81Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Questions to ask when choosing a
database organization

• System structure
Are you using a service-oriented architecture for your
system? Can customer databases be split into a set of
individual service databases? If so, use containerized,
multi-instance databases.

82Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scalability and resilience
• The scalability of a system reflects its ability to adapt

automatically to changes in the load on that system.

• The resilience of a system reflects its ability to continue to
deliver critical services in the event of system failure or
malicious system use.

83Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scalability and resilience
• You achieve scalability in a system by making it possible to add new

virtual servers (scaling-out) or increase the power of a system
server (scaling-up) in response to increasing load.

• In cloud-based systems, scaling-out rather than scaling-up is the
normal approach used. Your software has to be organized so
that individual software components can be replicated and run
in parallel.

• To achieve resilience, you need to be able to restart your software
quickly after a hardware or software failure.

84Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Using a standby system to
provide resilience

85Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

System monitor

Active system

Database 1

Standby system

Database 2

Location A Location B

Database
mirror

Resilience
• Resilience relies on redundancy:
• Replicas of the software and data are maintained in

different locations.
• Database updates are mirrored so that the standby

database is a working copy of the operational database.
• A system monitor continually checks the system status. It

can switch to the standby system automatically if the
operational system fails.

86Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Resilience
• You should use redundant virtual servers that are not

hosted on the same physical computer and locate servers in
different locations.
• Ideally, these servers should be located in different data

centers.
• If a physical server fails or if there is a wider data center

failure, then operation can be switched automatically to
the software copies elsewhere.

87Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

System structure
• An object-oriented approach to software engineering has

been that been extensively used for the development of
client-server systems built around a shared database.
• The system itself is, logically, a monolithic system with

distribution across multiple servers running large
software components. The traditional multi-tier client
server architecture is based on this distributed system
model.

88Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

System structure
• The alternative to a monolithic approach to software

organization is a service-oriented approach where the
system is decomposed into fine-grain, stateless services.
• Because it is stateless, each service is independent and

can be replicated, distributed and migrated from one
server to another.
• The service-oriented approach is particularly suitable

for cloud-based software, with services deployed in
containers.

89Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud platform
• Cloud platforms include general-purpose clouds such as Amazon

Web Services or lesser known platforms oriented around a specific
application, such as the SAP Cloud Platform. There are also smaller
national providers that provide more limited services but who may
be more willing to adapt their services to the needs of different
customers.
• There is no ‘best’ platform and you should choose a cloud provider

based on your background and experience, the type of product that
you are developing and the expectations of your customers.
• You need to consider both technical issues and business issues when

choosing a cloud platform for your product.

90Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technical issues in
cloud platform choice

91Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud
platform

choice

Resilience
Expected load

and
load predictability

Supported
cloud services

Privacy and
data protection

Business issues in
cloud platform choice

92Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Business
issues

Cost

Target
customers

Portability and
cloud migration

Service-level
agreements

Developer
experience

Cloud Computing and
Cloud Software

Architecture

93

Web Application
with

AWS Core Services
94

95

AWS Products and Services

Source: https://aws.amazon.com/

https://aws.amazon.com/

96

AWS Compute

Source: https://aws.amazon.com/

https://aws.amazon.com/

97

AWS Database

Source: https://aws.amazon.com/

https://aws.amazon.com/

98

AWS Storage

Source: https://aws.amazon.com/

https://aws.amazon.com/

99

AWS Networking & Content Dilivery

Source: https://aws.amazon.com/

https://aws.amazon.com/

100

AWS Security, Identity & Compliance

Source: https://aws.amazon.com/

https://aws.amazon.com/

101

AWS Cost Management

Source: https://aws.amazon.com/

https://aws.amazon.com/

• Amazon EC2

• Virtual servers in the cloud

• Amazon Simple Storage Service (S3)

• Scalable storage in the cloud

• Amazon Aurora

• High performance managed relational database

• Amazon DynamoDB

• Managed NoSQL database

• Amazon RDS

• Managed relational database service for MySQL, PostgreSQL, Oracle, SQL Server, and
MariaDB

102

AWS Services

Source: https://aws.amazon.com/

https://aws.amazon.com/

• AWS Lambda
• Run code without thinking about servers

• AWS Elastic Beanstalk
• Run and manage web apps

• Amazon VPC
• Isolated cloud resources

• Amazon Lightsail
• Launch and manage virtual private servers

• Amazon SageMaker
• Build, train, and deploy machine learning models at scale

103

AWS Services

Source: https://aws.amazon.com/

https://aws.amazon.com/

104Source: AWS Training Center (2019), Introduction to AWS Services, https://youtu.be/Z3SYDTMP3ME

105Source: AWS Training Center (2019), Introduction to AWS Services, https://youtu.be/Z3SYDTMP3ME

106Source: AWS Training Center (2019), Introduction to AWS Services, https://youtu.be/Z3SYDTMP3ME

107Source: AWS Training Center (2019), Introduction to AWS Services, https://youtu.be/Z3SYDTMP3ME

108Source: AWS Training Center (2019), Introduction to AWS Services, https://youtu.be/Z3SYDTMP3ME

109Source: AWS Training Center (2019), Introduction to AWS Services, https://youtu.be/Z3SYDTMP3ME

110Source: AWS Training Center (2019), Introduction to AWS Services, https://youtu.be/Z3SYDTMP3ME

AWS
Serverless

Architecture
111

AWS Serverless Airline Booking

112Source: https://github.com/aws-samples/aws-serverless-airline-booking

https://github.com/aws-samples/aws-serverless-airline-booking

AWS Serverless Airline Booking
Stack

113Source: https://github.com/aws-samples/aws-serverless-airline-booking

https://github.com/aws-samples/aws-serverless-airline-booking

AWS Serverless Airline Booking
High level infrastructure architecture

114Source: https://github.com/aws-samples/aws-serverless-airline-booking

https://github.com/aws-samples/aws-serverless-airline-booking

AWS Serverless Architecture
AWS Operational Responsibility Models

115Source: Heitor Lessa (2019), How to build a full stack serverless airline ticketing web app, https://www.youtube.com/watch?v=MyoOeHTp2pg

https://www.youtube.com/watch?v=MyoOeHTp2pg

Build
a

Serverless
Web Application

116

Build a Serverless Web Application

117Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway,

Amazon DynamoDB, and Amazon Cognito

118Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway,

Amazon DynamoDB, and Amazon Cognito

119Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

1

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway,

Amazon DynamoDB, and Amazon Cognito

120Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

1
Static Web Hosting
Amazon S3 hosts static web
resources including HTML, CSS,
JavaScript, and image files
which are loaded in the user's
browser.

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway,

Amazon DynamoDB, and Amazon Cognito

121Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

2

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway,

Amazon DynamoDB, and Amazon Cognito

122Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

2 User Management
Amazon Cognito provides
user management and
authentication functions to
secure the backend API.

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway,

Amazon DynamoDB, and Amazon Cognito

123Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

3

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway,

Amazon DynamoDB, and Amazon Cognito

124Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

3 Serverless Backend
Amazon DynamoDB provides a
persistence layer where data can be
stored by the API's Lambda
function.

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway,

Amazon DynamoDB, and Amazon Cognito

125Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

4

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway,

Amazon DynamoDB, and Amazon Cognito

126Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

4 RESTful API
JavaScript executed in the browser
sends and receives data from a
public backend API built using
Lambda and API Gateway.

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Build a Serverless Web Application
with Amazon S3, AWS Lambda, Amazon API Gateway,

Amazon DynamoDB, and Amazon Cognito

127Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Terminate resources
Resource Cleanup
You will terminate an Amazon S3 bucket, an
Amazon Cognito User Pool, an AWS Lambda
function, an IAM role, a DynamoDB table, a REST
API, and a CloudWatch Log.
It is a best practice to delete resources you are no
longer using to avoid unwanted charges.

5

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Summary
• The cloud is made up of a large number of virtual servers

that you can rent for your own use. You and your customers
access these servers remotely over the internet and pay for
the amount of server time used.

• Virtualization is a technology that allows multiple server
instances to be run on the same physical computer. This
means that you can create isolated instances of your
software for deployment on the cloud.

128Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• Virtual machines are physical server replicas on which you

run your own operating system, technology stack and
applications.
• Containers are a lightweight virtualization technology that

allow rapid replication and deployment of virtual servers.
All containers run the same operating system.
Docker is currently the most widely used container
technology.

129Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• A fundamental feature of the cloud is that ‘everything’ can

be delivered as a service and accessed over the internet.
A service is rented rather than owned and is shared with
other users.

130Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• Infrastructure as a service (IaaS) means computing, storage

and other services are available over the cloud. There is no
need to run your own physical servers.
• Platform as a service (PaaS) means using services provided

by a cloud platform vendor to make it possible to auto-scale
your software in response to demand.
• Software as a service (SaaS) means that application software

is delivered as a service to users. This has important benefits
for users, such as lower capital costs, and software vendors,
such as simpler deployment of new software releases.

131Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
•Multitenant systems are SaaS systems where all users share

the same database, which may be adapted at run-time to
their individual needs. Multi-instance systems are SaaS
applications where each user has their own separate
database.
• The key architectural issues for cloud-based software are the

cloud platform to be used, whether to use a multitenant or
multi-instance database, the scaleability and resilience
requirements, and whether to use objects or services as the
basic components in the system.

132Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

References
• Ian Sommerville (2019), Engineering Software Products: An Introduction to

Modern Software Engineering, Pearson.

• Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

• Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at
Google: Lessons Learned from Programming Over Time, O'Reilly Media.

• Project Management Institute (2021), A Guide to the Project Management Body of
Knowledge (PMBOK Guide) – Seventh Edition and The Standard for Project
Management, PMI.

• Project Management Institute (2017), A Guide to the Project Management Body of
Knowledge (PMBOK Guide), Sixth Edition, Project Management Institute.

• Project Management Institute (2017), Agile Practice Guide, Project Management
Institute.

133

