Software Engineering G

Cile 3 T
National Taipei University

Cloud-Based Software:

Virtualization and containers, Software as a service;

Cloud Computing and Cloud Software Architecture
&;

]

™ https://meet.google.com/
Min-Yuh Day, Ph.D, shzimiome
Professor
B Institute of Information Management, National Taipei University Okui0]
https://web.ntpu.edu.tw/~myday

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/ish-gzmy-pmo
https://meet.google.com/ish-gzmy-pmo

Syllabus \ <]}

National Taipei University

Week Date Subject/Topics
1 2024/02/21 Introduction to Software Engineering

3 2024/03/06 Software Products and Project Management:
Software product management and prototyping

4 2024/03/13 Agile Software Engineering: Agile methods, Scrum,
and Extreme Programming

5 2024/03/20 Case Study on Software Engineering |
6 2024/03/27 Features, Scenarios, and Stories

8 2024/04/10 Midterm Project Report

Syllabus \ <]}

National Taipei University

Week Date Subject/Topics

9 2024/04/17 Software Architecture: Architectural design,
System decomposition, and Distribution architecture

10 2024/04/24 Cloud-Based Software: Virtualization and containers,

Everything as a service, Software as a service;
Cloud Computing and Cloud Software Architecture

11 2024/05/01 Case Study on Software Engineering li

12 2024/05/08 Microservices Architecture, RESTful services,
Service deployment

Syllabus A<,

National Taipei University

Week Date Subject/Topics

13 2024/05/15 Security and Privacy; Reliable Programming;
Testing: Functional testing, Test automation,
Test-driven development, and Code reviews;
DevOps and Code Management:
Code management and DevOps automation

14 2024/05/22 Industry Practices of Software Engineering
15 2024/05/29 Final Project Report |

16 2024/06/05 Final Project Report Il

Cloud-Based Software:

Virtualization and containers,
Everything as a service,
Software as a service;

Cloud Computing and
Cloud Software Architecture

Software Engineering
and
Project Management

(N\ [N\ ([N ([N\ ([)
Analyze Design Build Test Deliver
Requirements > System and > Implementation > Integration > Operation

definition Software and and and
design unit testing system testing maintenance

g /L /L /L /L J

Project Management

Information Management (MIS)
Information Systems

Organizations Technology

Information
Systems

Management

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Fundamental MIS Concepts

Business

Business
Challenges
Management
Organization ,. Information
System
Technology

Solutions

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Project-based software engineering

CUSTOMER

Problem

generates helps-with

implemented-by

CUSTOMER and DEVELOPER

DEVELOPER

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product software engineering

DEVELOPER

®

inspires

Opportunity

realizes

implemented-by

Product
features

DEVELOPER DEVELOPER

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

10

Software execution models

Stand-alone execution Hybrid execution Software as a service
User’s computer User’s computer User’s computer
User interface User interface User interf
Product functionality Partial functionality >Er INtertace

User data User data (browser or app)

Additional functionality
Product updates User data backups
Product updates

Product functionality
User data

Vendor’s servers Vendor’s servers Vendor’s servers

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product ma nagement concerns

Business
needs

Product
manager

Technology
constraints

Customer
experience

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Technical interactions of
product managers

Product
vision

_ management

Product
backlog

_ management

Acceptance
testing

Product

manager

\

User
interface
design

User stories
and
scenarios

Customer
testing

J/

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

13

Software Development Life Cycle (sow)
The waterfall model

Requirements
definition
7y
System and
Software design
7'y
Implementation
and unit testing
7y
Integration and
system testing

‘ ﬂperation and
Kmaintenance

Source :lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

14

Plan-based and Agile development

r _______________________________

Plan-based development

Requirements Requirements Design and
engineering specification implementation

Requirements change requests

Agile development

Requirements Design and
engineering mplementatlon

Source: lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

15

The Continuum of Life Cycles

Frequency of Delivery

High

Low

A
Incremental Agile
Predictive Iterative
>
Low High

Degree of Change

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

16

Predictive Life Cycle

[AnalyzeH Design H Build H Test H Deliver]

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

17

Analyze

Prototype

Analyze
Design

Refine

7N

Iterative Life Cycle

f

Build
Test

~\

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Deliver

18

A Life Cycle of

Varying-Sized Increments

Analyze
Design
Build
Test
Deliver

e

_

Analyze
Design
Build
Test
Deliver

~

J

-

_

Analyze
Design
Build
Test
Deliver

\

J

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

19

Iteration-Based and Flow-Based
Agile Life Cycles

Iteration-Based Agile

4 Y Y Y Y Y Y)
Requirements | Requirements | Requirements | Requirements Requirements | Requirements
Analysis Analysis Analysis Analysis Repeat Analysis Analysis
Design Design Design Design as needed Design Design
Build Build Build Build Build Build
Test Test Test Test Test Test
_ A A A A A A J

Flow-Based Agile
e Y Y Y Y Y N
Requirements |Requirements Requirements Requirements Requirements
Analysis Analysis Analysis Analysis Analysis
Design Design Design Design Design
Build Build Build as“::::l ; Build Build
Test Test Test Test Test
the number of |the number of the number of the number of the number of
features in the features in features in the WIP features in the| featuresin the WIP
WIP limit the WIP limit limit WIP limit limit
_ A A AL A A _J

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

20

From personas to features

0{ Personas | A way of representing users

inspire

Natural language descriptions of a user
interacting with a software product

Scenarios

3

inspire

are-developed-into
. Natural language
Stories descriptions of

O

[Features

Fragments of product functionality

define

something that is
needed or wanted
by users

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

21

Multi-tier client-server architecture

Application
Server

Client 1
<Client 2
Web
Server
<Client 3

<Client

Database
Server

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Service-oriented Architecture

C

(o)

lient 1

C

(o)

lient 2

Web Service

C

(o)

Server gateway

lient 3

(o)

Client ...

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineerin

Services

g, Pearson

23

VM

Virtual Virtual
web server mail server
S — | (mm—————————)
| 1 1 |
. | Server ||| Server |!
| 1 1 |
| software L software |
| 1 1 |
| 1 1 |
| 1 1 |
! Guest I Guest !
! oS | oS |
| 1 1 |
S —— J o o o o e e e e e e J
Hypervisor
Host OS

Server Hardware

Container

User 1
Container 1

Application
software

Server
software

4 Il EEN EEN NN NN N N N S N S . -

User 2
Container 2

Application
software

Server
software

Container manager

Host OS

Server Hardware

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

24

Everything as a service

Photo
editing

Cloud
management
Monitoring

Storage
Network

Software as a service
(Saa$)

Platform as a service
(PaaS)

Infrastructure as a service
(1aas)

Cloud data center

Logistics
management

Database
Software
development

Computing
Virtualization

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

25

Software as a service

Software
customers \ \ / /
SOftvf'are Software services
provider

Cloud
provider Cloud Infrastructure

Source :lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 26

Microservices architecture —
key designh questions

-

-

How should data
be distributed and

_

~

shared?
Y,

" How should the)
microservices in
the system be

make up the system?
19X Up the system:)

What are the
microservices that

~

. coordinated?

I

Microservices
architecture
design

" How should

each other?

microservices
communicate with

\

J

" Howshould)
service failure be
detected, reported

. and managed?

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

27

Types of security threat

An attacker attempts to An attacker attempts
deny access to the system to damage the
for legitimate users system or its data
Availability Integrity
PRODUCT
PROGRAM
Distributed denial of Virus
service (DDoS) attack DATA
Ransomware
Data theft T
Confidentiality
threats

An attacker tries to gain
access to private information
held by the system

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

28

Software product quality attributes

2,

Availability

1

Reliability

3

Resilience

Software
product
quality

attributes

6

Usability

Maintainability

Responsiveness

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

29

A refactoring process

0/\9

Start | | " ldentif
Identify code .y
, , refactoring
smell
strategy

A

Run automated
code tests

/

4, ©

Make small
improvement until
_strategy completed

“

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Functional testing

Start

Unit
Testing

2\

Feature
Testing

e

Release
Testing

System
Testing

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

31

Test-driven development (TDD)

5% Identify new
functionality

N

Identify partial implementation
of functionality

Write code stub
that will fail test

Y

Functionality Functionality

complete incomplete
Run all
automated test
Refactor code "
if required Implement code that should
cause failing test to pass
Test failure
Run all
All tests pass utomated test

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

32

Multi-skilled DevOps team

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

33

Code management and DevOps

DevOps automation

|

Continuous
integration

)

Continuous
deployment

)

Continuous
delivery

)

Infrastructure
as code

|

T Code management system *

4 . :
Branching and merging
R Save and
eco.ver Code .
version) retrieve
information repository versions
S Transfer code to/from developer’s filestore

f DevOps measurement *

Data

Data
collection

analysis

J |

|

Report
generation

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

34

Cloud-Based Software:

Virtualization and containers,
Everything as a service,
Software as a service;

Cloud Computing and
Cloud Software Architecture

The cloud

*The cloud is made up of
very large number of remote servers
that are offered for rent
by companies that own these servers.

e Cloud-based servers are ‘virtual servers’,
which means that they are implemented in
software rather than hardware.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

36

The cloud

* You can rent as many servers as you need, run your
software on these servers and make them available to
your customers.

* Cloud servers can be started up and shut down as
demand changes.

* You may rent a server and install your own software,
or you may pay for access to software products that
are available on the cloud.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

37

Cloud Software:
Scaleability, elasticity and resilience

Scaleability Elasticity
Maintain performance Adapt the server configuration
as load increases to changing demands

Cloud software
characteristics

Resilience
Maintain service in the
event of server failure

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

38

Scaleability

* Scaleability reflects the ability of your software to
cope with increasing numbers of users.

* As the load on your software increases, your
software automatically adapts so that the system
performance and response time is maintained.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

39

Elasticity

* Elasticity is related to scaleability but also allows for
scaling-down as well as scaling-up.

* You can monitor the demand on your application
and add or remove servers dynamically as the
number of users change.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

40

Resilience

* Resilience means that you can design your
software architecture to tolerate server failures.

* You can make several copies of your software
concurrently available. If one of these fails, the
others continue to provide a service.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

41

Benefits of using the cloud for

software development
* Cost

You avoid the initial capital costs of hardware procurement

e Startup time
Using the cloud, you can have servers up and running in a few minutes.

* Server choice
If you find that the servers you are renting are not powerful enough, you can
upgrade to more powerful systems. You can add servers for short-term
requirements, such as load testing.

* Distributed development
If you have a distributed development team, working from different locations, all
team members have the same development environment and can seamlessly
share all information.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

42

Virtual cloud servers

* A virtual server runs on an underlying physical
computer and is made up of an operating system plus
a set of software packages that provide the server
functionality required.

* A virtual server is a stand-alone system that can run
on any hardware in the cloud.

* This ‘run anywhere’ characteristic is possible
because the virtual server has no external
dependencies.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

43

Virtual cloud servers

* Virtual machines (VMs), running on physical server
hardware, can be used to implement virtual servers.

* A hypervisor provides hardware emulation that
simulates the operation of the underlying
hardware.

* If you use a virtual machine to implement virtual
servers, you have exactly the same hardware
platform as a physical server.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

44

Implementing a virtual server as a
Virtual Machine (VM)

Outlook

Windows Server

Virtual Virtual
web server mail server
f— \ — :
Apache i Server | ||| Server |!
Web Server ! software i i software i
: | :
| 1 1 1
_ || Guest | 11| Guest ||
Linux 11 os |}]i| os |!
S —— P _ ;
Hypervisor
Host OS

Server Hardware

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

45

Container-based virtualization

* If you are running a cloud-based system with many
instances of applications or services, these all use the same
operating system, you can use a simpler virtualization
technology called ‘containers’.

* Using containers accelerates the process of deploying virtual
servers on the cloud.

* Containers are usually megabytes in size whereas VMs
are gigabytes.

* Containers can be started and shut down in a few
seconds rather than the few minutes required for a VIVI.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 46

Container-based virtualization

* Containers are an operating system virtualization
technology that allows independent servers to
share a single operating system.

* They are particularly useful for providing
isolated application services where each user
sees their own version of an application.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 47

Using containers to provide
isolated services

User1 User 2
Container 1 Container 2
(mm=—=—————= | frmmmm - |
Graphic design i Application i i Application i Graphic design
Software | | software | i | | software | | Software
| 11 i
|
Graphics | i i i Graphics
libraries i AR i i SEES i libraries
Photo Manager i SR L SEUATELE I Photo Manager
___________ A Y

Container manager

Host OS

Server Hardware

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

48

VM

Virtual Virtual
web server mail server
S — | (mm—————————)
| 1 1 |
. | Server ||| Server |!
| 1 1 |
| software L software |
| 1 1 |
| 1 1 |
| 1 1 |
! Guest I Guest !
! oS | oS |
| 1 1 |
S —— J o o o o e e e e e e J
Hypervisor
Host OS

Server Hardware

Container

User 1
Container 1

Application
software

Server
software

4 Il EEN EEN NN NN N N N S N S . -

User 2
Container 2

Application
software

Server
software

Container manager

Host OS

Server Hardware

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

49

. Docker
docker

* Containers were developed by Google around 2007 but
containers became a mainstream technology around 2015.

* An open-source project called Docker provided a standard
means of container management that is fast and easy to use.

* Docker is a container management system that allows users
to define the software to be included in a container as a
Docker image.

* It also includes a run-time system that can create and
manage containers using these Docker images.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 50

The Docker container system

%

Docker hub
: h docker

Registries

Images

Containers

Docker host

Docker client

Dockerfiles

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

51

The elements of the
Docker container system

* Docker daemon
This is a process that runs on a host server and is
used to setup, start, stop, and monitor containers, as
well as building and managing local images.

* Docker client
This software is used by developers and system
managers to define and control containers

52

The elements of the
Docker container system

* Dockerfiles
Dockerfiles define runnable applications (images) as a series
of setup commands that specify the software to be included
in a container. Each container must be defined by an
associated Dockerfile.

° Image
A Dockerfile is interpreted to create a Docker image, which is
a set of directories with the specified software and data
installed in the right places. Images are set up to be runnable
Docker applications.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

53

The elements of the

Docker container system

 Docker hub

This is a registry of images that has been created. These may be
reused to setup containers or as a starting point for defining new
images.

e Containers

Containers are executing images. An image is loaded into a container and
the application defined bby the image starts execution. Containers may be
moved from server to server without modification and replicated across
many servers. You can make changes to a Docker container (e.g. by
modifying files) but you then must commit these changes to create a new
image and restart the container.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

54

Docker images

* Docker images are directories that can be archived, shared and
run on different Docker hosts. Everything that’s needed to run a
software system - binaries, libraries, system tools, etc. is included
in the directory.

* A Docker image is a base layer, usually taken from the Docker
registry, with your own software and data added as a layer on
top of this.

* The layered model means that updating Docker applications is fast and

efficient. Each update to the filesystem is a layer on top of the existing system.

* To change an application, all you have to do is to ship the changes that you
have made to its image, often just a small number of files.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

55

Benefits of containers

* They solve the problem of software dependencies.

* You don’t have to worry about the libraries and
other software on the application server being
different from those on your development server.

* Instead of shipping your product as stand-alone
software, you can ship a container that includes all
of the support software that your product needs.

Benefits of containers

* They provide a mechanism for software portability across different
clouds.

* Docker containers can run on any system or cloud provider where the
Docker daemon is available

* They provide an efficient mechanism for implementing software services
and so support the development of service-oriented architectures.

* They simplify the adoption of DevOps.

* This is an approach to software support where the same team are
responsible for both developing and supporting operational
software.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 57

Everything as a service

Photo
editing

Cloud
management
Monitoring

Storage
Network

Software as a service
(Saa$)

Platform as a service
(PaaS)

Infrastructure as a service
(1aas)

Cloud data center

Logistics
management

Database
Software
development

Computing
Virtualization

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

58

Everything as a service

* The idea of a service that is rented rather than
owned is fundamental to cloud computing.

* Infrastructure as a service (laaS)
* Platform as a service (Paa$)

e Software as a service (SaaS)

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

59

Infrastructure as a service (laaS)

* Infrastructure as a service (laaS)

* Cloud providers offer different kinds of
infrastructure service such as a compute service, a
network service and a storage service that you
can use to implement virtual servers.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

60

Platform as a service (PaaS)

* Platform as a service (Paa$)

* This is an intermediate level where you use
libraries and frameworks provided by the cloud
provider to implement your software.

These provide access to a range of functions,
including SQL and NoSQL databases.

SSSSSS : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

61

Software as a service (SaaS)

e Software as a service (SaaS)

* Your software product runs on the cloud and is
accessed by users through a web browser or
mobile app.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

62

Management responsibilities for
laaS and Paa$S

Managed by
software provider

Managed by
software provider

Managed by
software provider

Managed by
Cloud vendor

Infrastructure as a Service

Software as a Service

(Saa$)

Application Services
(database etc.)

Application Services
(database etc.)

Cloud management
Services

Cloud management
Services

Basic Computational
Services

Basic Computational
Services

(l1aaS)

(Paa$)

Managed by
software provider

Managed by
Cloud vendor

Managed by
Cloud vendor

Managed by
Cloud vendor

Platform as a Service

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 63

Software as a service

* Increasingly, software products are being delivered as a service,
rather than installed on the buyer’s computers.

* If you deliver your software product as a service, you run the
software on your servers, which you may rent from a cloud
provider.

* Customers don’t have to install software and they access the
remote system through a web browser or dedicated mobile app.

* The payment model for software as a service is usually a
subscription model.

* Users pay a monthly fee to use the software rather than buy it
outright.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

64

Software as a service

Software
customers \ \ / /
SOftvf'are Software services
provider

Cloud
provider Cloud Infrastructure

Source :lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 65

Benefits of SaaS for software
product providers

e Cash flow
Customers either pay a regular subscription or pay as they use the software. This means
you have a regular cash flow, with payments throughout the year. You don’t have a
situation where you have a large cash injection when products are purchased but very
little income between product releases.

* Update management
You are in control of updates to your product and all customers receive the update at the
same time. You avoid the issue of several versions being simultaneously used and
maintained. This reduces your costs and makes it easier to maintain a consistent
software code base.

* Continuous deployment
You can deploy new versions of your software as soon as changes have been made and
tested. This means you can fix bugs quickly so that your software reliability can
continuously improve.

66

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of SaaS for software

product providers

* Payment flexibility
You can have several different payment options so that you can attract a wider
range of customers. Small companies or individuals need not be discouraged by
having to pay large upfront software costs.

* Try before you buy
You can make early free or low-cost versions of the software available quickly

with the aim of getting customer feedback on bugs and how the product could
be approved.

e Data collection
You can easily collect data on how the product is used and so identify areas for
improvement. You may also be able to collect customer data that allows you to

market other products to these customers.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

67

Advantages and disadvantages of
SaaSs for customers

Advantages

No upfront costs .
Mobile, laptop and P Immediate Reduced software
for software or

desktop access corvers software updates management costs

Software
customer

Disadvantages
regulation

over updates

conformance Security concerns Data exchange

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

68

Data storage and management
issues for Saas

* Regulation

Some countries, such as EU countries, have strict laws on the storage of
personal information. These may be incompatible with the laws and
regulations of the country where the SaaS provider is based. If a SaaS
provider cannot guarantee that their storage locations conform to the laws

of the customer’s country, businesses may be reluctant to use their product.

e Data transfer

If software use involves a lot of data transfer, the software response time
may be limited by the network speed. This is a problem for individuals and
smaller companies who can’t afford to pay for very high speed network
connections.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

69

Data storage and management
issues for Saas

* Data security

Companies dealing with sensitive information may be unwilling to hand over
the control of their data to an external software provider. As we have seen
from a number of high profile cases, even large cloud providers have had

security breaches. You can’t assume that they always provide better security
than the customer’s own servers.

* Data exchange

If you need to exchange data between a cloud service and other services or
local software applications, this can be difficult unless the cloud service
provides an APl that is accessible for external use.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

70

Design issues for software
delivered as a service

-

"

Local/remote
processing

~

J

-

o

Information
leakage

~

J

Saa$
design issue

4)

Authentication

- v

Multitenant or\

multi-instance
database

_ Management

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

71

Multi-tenant systems

* A multi-tenant database is partitioned so that customer
companies have their own space and can store and access

their own data.

* There is a single database schema, defined by the SaaS provider,
that is shared by all of the system’s users.

* Iltems in the database are tagged with a tenant identifier,
representing a company that has stored data in the system. The
database access software uses this tenant identifier to provide
‘logical isolation’, which means that users seem to be working

with their own database.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

72

Possible customisations for SaaS

* Authentication
Businesses may want users to authenticate using their
business credentials rather than the account credentials
set up by the software provider.

* Branding
Businesses may want a user interface that is branded to
reflect their own organisation.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

73

Possible customisations for SaaS

* Business rules

Businesses may want to be able to define their own business rules and
workflows that apply to their own data.

e Data schemas

Businesses may want to be able to extend the standard data model used
in the system database to meet their own business needs.

 Access control

Businesses may want to be able to define their own access control model

that sets out the data that specific users or user groups can access and
the allowed operations on that data.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

74

Advantages of multi-tenant databases

 Resource utilization

The SaaS provider has control of all the resources used by the software and can
optimize the software to make effective use of these resources.

* Security

Multitenant databases have to be designed for security because the data for all
customers is held in the same database. They are, therefore, likely to have fewer
security vulnerabilities than standard database products. Security management is

simplified as there is only a single copy of the database software to be patched if a
security vulnerability is discovered.

* Update management

It is easier to update a single instance of software rather than multiple instances.

Updates are delivered to all customers at the same time so all use the latest version
of the software.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 75

Disadvantages of multi-tenant databases

* Inflexibility
Customers must all use the same database schema with limited scope for adapting

this schema to individual needs. | explain possible database adaptations later in this
section.

* Security
As data for all customers is maintained in the same database, then there is a
theoretical possibility that data will leak from one customer to another. In fact, there

are very few instances of this happening. More seriously, perhaps, if there is a
database security breach then it affects all customers.

* Complexity
Multitenant systems are usually more complex than multi-instance systems because

of the need to manage many users. There is, therefore, an increased likelihood of
bugs in the database software.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 76

User profiles for SaaS access

i) @) G

Profile
col
Profile Profile

co2 co6

Profile \application/profile
co3 co5
@ Profile

&

Source : lan Sommervi ille (2019), ring Software Products: An Introduction to Modern Software Engin

77

Architectural decisions for cloud
software engineering

Database
organization

U

multi-instance
database?

(Should the software\
use a multitenant or

J

Scalability and
resilience

What are the
software scalability
and resilience

r

' ?
_requirements?

l

‘What cloud platform\
should be used for
development and

Software
structure

(Should the software\
structure be
monolithic or

i ?
g delivery?)

Cloud platform

S -
_ service oriented?)

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

78

Questions to ask when choosing a
database organization

1. Target customers

2. Transaction requirements

3. Database size and connectivity
4. Database interoperability

5. System structure

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

79

Questions to ask when choosing a
database organization

* Target customers

Do customers require different database schemas and database
personalization? Do customers have security concerns about
database sharing? If so, use a multi-instance database.

* Transaction requirements

Is it critical that your products support ACID transactions where
the data is guaranteed to be consistent at all times? If so, use a
multi-tenant database or a VM-based multi-instance database.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

80

Questions to ask when choosing a
database organization

* Database size and connectivity
How large is the typical database used by customers? How many
relationships are there between database items? A multi-tenant model is
usually best for very large databases as you can focus effort on
optimizing performance.

* Database interoperability
Will customers wish to transfer information from existing databases?
What are the differences in schemas between these and a possible
multitenant database? What software support will they expect to do the
data transfer? If customers have many different schemas, a multi-
instance database should be used.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

81

Questions to ask when choosing a

database organization

* System structure

Are you using a service-oriented architecture for your
system? Can customer databases be split into a set of
individual service databases? If so, use containerized,
multi-instance databases.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 82

Scalability and resilience

* The scalability of a system reflects its ability to adapt
automatically to changes in the load on that system.

* The resilience of a system reflects its ability to continue to
deliver critical services in the event of system failure or

malicious system use.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

83

Scalability and resilience

* You achieve scalability in a system by making it possible to add new
virtual servers (scaling-out) or increase the power of a system
server (scaling-up) in response to increasing load.

* In cloud-based systems, scaling-out rather than scaling-up is the
normal approach used. Your software has to be organized so
that individual software components can be replicated and run
in parallel.

* To achieve resilience, you need to be able to restart your software
quickly after a hardware or software failure.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

84

Using a standby system to
provide resilience

System monitor

Location A

Active system

Location B

Database
mirror

Standby system

Source :lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

85

Resilience

* Resilience relies on redundancy:

* Replicas of the software and data are maintained in
different locations.

e Database updates are mirrored so that the standby
database is a working copy of the operational database.

* A system monitor continually checks the system status. It
can switch to the standby system automatically if the
operational system fails.

Resilience

* You should use redundant virtual servers that are not
hosted on the same physical computer and locate servers in
different locations.

* Ideally, these servers should be located in different data
centers.

* If a physical server fails or if there is a wider data center
failure, then operation can be switched automatically to
the software copies elsewhere.

System structure

* An object-oriented approach to software engineering has
been that been extensively used for the development of
client-server systems built around a shared database.

* The system itself is, logically, a monolithic system with
distribution across multiple servers running large
software components. The traditional multi-tier client
server architecture is based on this distributed system
model.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 88

System structure

* The alternative to a monolithic approach to software
organization is a service-oriented approach where the
system is decomposed into fine-grain, stateless services.

* Because it is stateless, each service is independent and
can be replicated, distributed and migrated from one
server to another.

* The service-oriented approach is particularly suitable
for cloud-based software, with services deployed in
containers.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 89

Cloud platform

* Cloud platforms include general-purpose clouds such as Amazon
Web Services or lesser known platforms oriented around a specific
application, such as the SAP Cloud Platform. There are also smaller
national providers that provide more limited services but who may
be more willing to adapt their services to the needs of different
customers.

* There is no ‘best’ platform and you should choose a cloud provider
based on your background and experience, the type of product that
you are developing and the expectations of your customers.

 You need to consider both technical issues and business issues when
choosing a cloud platform for your product.

Technical issues in
cloud platform choice

4)
Expected load

and

load predictability
. J

4)

Supported
cloud services

. v

Cloud
platform
choice

-

Resilience

-

o

Privacy and
data protection

~

J

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

91

Business issues in
cloud platform choice

Cost

Developer Target
experience customers
Service-level Portability and

agreements cloud migration

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

92

Cloud Computing and
Cloud Software
Architecture

dWS
~—""

Web Application
with
AWS Core Services

dWs$s

_/7

v

Analytics

Business Applications

)

End User Computing

D}l

Media Services

Con)

Robotics

AWS Products and Services

-

Application Integration

Compute

G

Game Tech

&

Migration & Transfer

=~

&

Satellite

Customer Engagement

i

Internet of Things

(1]

Mobile

Security, Identity &
Compliance

https://aws.amazon.com/

KAWS Cost Management)
é)
\ Database y

P

Machine Learning

4 % N

Networking & Content

\ Delivery y
é)
. J

Blockchain

/S

Developer Tools

(LT3

Management & Governance

&

Quantum Technologies

95

https://aws.amazon.com/

dWs$s

_/‘7

O

LERER]

Compute

Amazon EC2

Virtual servers in the cloud

Amazon Elastic Container Service
Run and manage docker containers

AWS Batch

Run batch jobs at any scale

AWS Lambda

Run code without thinking about servers

AWS Wavelength
Deliver ultra-low latency applications for 5G devices

AWS Compute

Amazon EC2 Auto Scaling
Scale compute capacity to meet demand

Amazon Elastic Kubernetes Service
Run managed Kubernetes on AWS

AWS Elastic Beanstalk
Run and manage web apps

AWS Outposts

Run AWS infrastructure on-premises

VMware Cloud on AWS
Build a hybrid cloud without custom hardware

https://aws.amazon.com/

Amazon Elastic Container Registry
Store and retrieve docker images

Amazon Lightsail
Launch and manage virtual private servers

AWS Fargate

Run containers without managing servers or clusters

AWS Serverless Application Repository
Discover, deploy, and publish serverless applications

96

https://aws.amazon.com/

\aWS, AWS Database

S

Database
Amazon Aurora Amazon DynamoDB Amazon DocumentDB (with MongoDB
High Performance Managed Relational Database Managed NoSQL Database compatibility)
Fully managed document database
Amazon ElastiCache Amazon Managed Apache Cassandra Service Amazon Neptune
In-memory Caching System Managed Cassandra-compatible database Fully Managed Graph Database Service
Amazon Quantum Ledger Database (QLDB) Amazon RDS Amazon RDS on VMware
Fully managed ledger database Managed Relational Database Service for MySQL, Automate on-premises database management
PostgreSQL, Oracle, SQL Server, and MariaDB
Amazon Redshift Amazon Timestream AWS Database Migration Service
Fast, Simple, Cost-effective Data Warehousing Fully managed time series database Migrate Databases with Minimal Downtime

https://aws.amazon.com/ 97

https://aws.amazon.com/

\aWS‘, AWS Storage

[)
Storage
. J
()
Amazon Simple Storage Service (S3) Amazon Elastic Block Store (EBS) Amazon Elastic File System (EFS)
Scalable Storage in the Cloud EC2 block storage volumes Fully managed file system for EC2
. J
()
Amazon FSx for Lustre Amazon FSx for Windows File Server Amazon S3 Glacier
High-performance file system integrated with S3 Fully managed Windows native file system Low-cost Archive Storage in the Cloud
. J
()
AWS Backup AWS Snow Family AWS Storage Gateway
Centralized backup across AWS services Physical devices to migrate data into and out of AWS Hybrid Storage Integration
. J

CloudEndure Disaster Recovery
Highly automated disaster recovery

https://aws.amazon.com/ 98

https://aws.amazon.com/

dWs$s

VY2 AWS Networking & Content Dilivery

(

é;)% N

Networking & Content

r
Amazon VPC
Isolated Cloud Resources
.
r
Amazon Route 53
Scalable Domain Name System
.

AWS Cloud Map

Application resource registry for microservices

AWS Transit Gateway
Easily scale VPC and account connections

\ Delivery Yy,
Amazon API Gateway Amazon CloudFront
Build, Deploy, and Manage APIs Global Content Delivery Network
AWS PrivateLink AWS App Mesh
Securely Access Services Hosted on AWS Monitor and control microservices
)
AWS Direct Connect AWS Global Accelerator
Dedicated Network Connection to AWS Improve application availability and performance
J
)
Elastic Load Balancing
Distribute incoming traffic across multiple targets

https://aws.amazon.com/

99

https://aws.amazon.com/

dWs$s

Y2 AWS Security, Identity & Compliance

AWS ldentity & Access Management
Manage User Access and Encryption Keys

Amazon GuardDuty
Managed Threat Detection Service

AWS Artifact
On-demand access to AWS compliance reports

AWS Directory Service
Host and Manage Active Directory

AWS Resource Access Manager
Simple, secure service to share AWS resources

AWS Shield
DDoS Protection

4 N

0

Security, Identity &
Compliance

\. J

Amazon Cognito
Identity Management for your Apps

Amazon Inspector
Analyze Application Security

AWS Certificate Manager
Provision, Manage, and Deploy SSL/TLS Certificates

AWS Firewall Manager
Central Management of Firewall Rules

AWS Secrets Manager
Rotate, Manage, and Retrieve Secrets

AWS Single Sign-On
Cloud Single Sign-On (SSO) Service

https://aws.amazon.com/

Amazon Detective
Investigate potential security issues

Amazon Macie
Discover, Classify, and Protect your Data

AWS CloudHSM

Hardware-based Key Storage for Regulatory Compliance

é)

. J

AWS Key Management Service
Managed Creation and Control of Encryption Keys

é)

. J

AWS Security Hub
Unified security and compliance center

AWS WAF
Filter Malicious Web Traffic

100

https://aws.amazon.com/

a\VY,S, AWS Cost Management

AWS Cost Explorer
Analyze Your AWS Cost and Usage

Reserved Instance Reporting
Dive Deeper into Your Reserved Instances (RIs)

.

AWS Cost Management

J

AWS Budgets
Set Custom Cost and Usage Budgets

AWS Cost and Usage Report

Access Comprehensive Cost and Usage Information

Savings Plans

Save up to 72% on compute usage with flexible pricing

https://aws.amazon.com/

101

https://aws.amazon.com/

aWs AWS Services

* Amazon EC2
* Virtual servers in the cloud
« Amazon Simple Storage Service (S3)
e Scalable storage in the cloud
* Amazon Aurora
* High performance managed relational database
* Amazon DynamoDB
 Managed NoSQL database
* Amazon RDS

 Managed relational database service for MySQL, PostgreSQL, Oracle, SQL Server, and
MariaDB

https://aws.amazon.com/ 102

https://aws.amazon.com/

aWs AWS Services

* AWS Lambda
* Run code without thinking about servers
* AWS Elastic Beanstalk
 Run and manage web apps
* Amazon VPC
* Isolated cloud resources
 Amazon Lightsail
* Launch and manage virtual private servers
* Amazon SageMaker

* Build, train, and deploy machine learning models at scale

https://aws.amazon.com/ 103

https://aws.amazon.com/

[)
'&. users. Web Mobile — =@w

DB Cache Data Warehouse

Monitoring | i
Dashboard i :
-1 % |ENecsGHN _____________ 1= S

“ Relational]

\Database DB i

—— i —— — — —

fb.com Browser -
fb.com | DNS Content Delivery Network (Cache)
Private._____________| ISR | S \
Network - e
o Load Balancer %
/ \
,’/ —— X
| l : e ‘.
SMS ! Web | VM 1 n: > Business :
Mobile Push |y | Server : == Media | | | Video Intelligence i
Notifications R I Disk i Fhos Convert !
s A - 4'. —— External External | !
. W Storage Storage !
Email (e-——___| App - Content !
T APP oy vM Filter |
. Server m !
< Click T |
Message |a —» Stream - i - i
Queue Analysis |
Storage - :
|
|
I
I
|
|
I
I
I
!

104

0% Web ClodFront 2%

fb.com on AWS @ 5 g ser A g Mobile gy
Edge Edge
‘ =

Location localich

T — — W— W—— W— W— W—— W— W— — — —_— e — —] —— —— —— —— —

Medi
a
Files

Rekognition
User clicks /
Aqtions

R R S S =R I SIS I USSR SR SR TS SRy SR S L SN

105

0% Web ClodFront 2%

fb.com on AWS @ 5 g ser A g Mobile gy
Edge Edge
‘ =

Location localich

T — — W— W—— W— W— W—— W— W— — — —_— e — —] —— —— —— —— —

Medi
a
Files

=
|
|
|
|
|
|
|

Rekognition
User clicks /
Aqtions

R R S S =R I SIS I USSR SR SR TS SRy SR S L SN

106

Edge

e
e
—

@©

O

o
—

Rekognitioh

er clicks /

|||||||||||

users. | Web

DynamoDB

- ————————— —

RDS

W ct— i . i

fbo.com on AWS

107

AWS Application Services

y "API Ga"eway

Wb and Mobile User Manageent

REST API

108

AWS Security Services

i
- Web CloydFront | Mobile g.
ﬂs M ON AVWS Browser ’ |
x—- H Edge
IAM g Location
- g!‘ !ﬁ - Quicksight
KMS SNS ll Web —
Server s Meo W
' o Corvert
lV Rekognmon S3 S3
— SES ‘ L _apd |
ACM Server
l SQSsS |‘! h ' ! > !E, >- —- :

*' ines| E R
ElastiCache ‘ Kinesis Redshift
< - w "

CloudWatch = l* &

RDS DynamoDB

Source: AWS Training Center (2019), Introduction to AWS Services, https://youtu.be/Z3SYDTMP3ME

,2

4

Inspector

109

AWS Development and DevOps Services

AWS Region

CloudFormatijon

Template

Developers

Project Management
Issue Tracking

| CodePipeline CodeStar Continuous Delivery

110

dWs$s
>

AWS
Serverless
Architecture

dWS
N

Where next?
oo i

L MAD “

SEARCH FLIGHTS >

LGW < MAD Er
Select your flight
DEPARTURE 16 JAN 2019
LGW + MAD
London Gatwick Madrid Barajas
o= 08:00 @ 2h1sm & 115
400 EUR Flight No #1812
DEPARTURE 16 JAN 2019
LGW + MAD
London Gatwick Madrid Barajas
D= 10330 @ 2hism A 1345
200 EUR Flight No #1813
DEPARTURE 16 JAN 2019
LGW + MAD
London Gatwick Madrid Barajas
2= 12:00 @ 2hism $ 1515
1000 EUR Flight No #1814

LGW < MAD

Review your selection

DEPARTURE 16 JAN 2019
LGW + MAD
London Gatwick Madrid Barajas
- 08:00 ® 2hism N a5
400 EUR Flight No #1812

Payment details

Name

Country

Postcode

Card number

Expiry date

CVC

AGREE AND PAY NOW »

https://github.com/aws-samples/aws-serverless-airline-booking

AWS Serverless Airline Booking

Heitor F. Lessa

purple
4,554,234

50,241 10%

Points Next Tier
Progress
Preferences
-_T,:" Dietary requirements
—F
4= Luggage

SIGN OUT

112

https://github.com/aws-samples/aws-serverless-airline-booking

aWs AWS Serverless Airline Booking

\-/‘7
Stack
Ul/UX Data/Lang API/Auth Messaging
- aq .
00 @
Quasar framework Amazon DynamoDB AWS AppSync Amazon SNS

v (4]
Vue.js Amazon API Gateway AWS Step Functions
AN Gz

AWS Amplify Typescript Amazon Cognito

stripe JS

Stripe Elements JavaScript

https://github.com/aws-samples/aws-serverless-airline-booking 113

https://github.com/aws-samples/aws-serverless-airline-booking

aWs AWS Serverless Airline Booking
T High level mfrastructure archltecture

Front-end
g .y
— & : ey
1 : ‘.1
3 :
Amazon : Amazon S3 Quasar Vue,js
CloudFront H ','.'.'.'.'_'_'_'_'_'_','.'.'.'_'_'_'_'_'_',','.'.'_'_'_'_'_'_',','.'.'.'_'_'_'_'_'_',','.'.'.'_'_' IIIIITIIIIIIIIITIIIIIIIIIIIIIII I NN
Catalog
—=) = &
; : Amazon o
Client Amazon DynamoDB Amazon AWS Lambda i
g B, APIGateway A Al
> :5 .. :
—>| 3 Booking
AWS AppSync
. _— / Amazon SNS
Automation & Monitoring AWS AWS Lambda
Step Functions | ARAZ6n
DynamoDB :
. . . '.'.'.'.'.'.'.'.'.'.' AR X R M SRR R 4 10 A A A SRR e AR AR R RNV .
. Payment
' AWS Amplify AWS CDK AWS AWS X-Ray =~ Amazon . i SYNC > ° :
! CloudFormation Cloudwatch 1 :: Y 0 o Strlpe

_Amazon API| Gateway AWS Lambda

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://github.com/aws-samples/aws-serverless-airline-booking

114

https://github.com/aws-samples/aws-serverless-airline-booking

dWs$s

AWS Serverless Architecture

\/AWS Operational Responsibility Models

I
I 1 I
: I I
I Less 1 |
| |
: ! i
I On-Premises | Cloud |
| - |
I . . [é—l I ;> i
Compute :Vn rtual Machine - i : |
I Amazon EC2 : AWS Elastic Beanstalk Fargate : AWS Lambda
1 1 1
| £ % :
F-J I B =X |
Databases : MySQL I o H I =
1 MySQL on EC2 : Amazon RDS MySQL Amazon Aurora Amazon Aurora Serverles# Amazon DynamoDB
[|
| l 1
' i i =
| | | R -
Storage | Storage I i :
I I I Amazon S3
N i I
1 1 ‘ 1
1 ,f_a Ll
Messaging | ESBs : . : .
: : Amazon MQ Amazon Kinesis :Amazon SNS /SQS
| 1 1
! 3 i i
Analytics | () . ! :
I Hadoop Hadoop on EC2 : Amazon EMR Amazon Elasticsearch Service | Amazon Athena
\ >

https://www.youtube.com/watch?v=MyoOeHTp2pg

_---------------I

\

https://www.youtube.com/watch?v=MyoOeHTp2pg

dWs$s
>

Build
a

Serverless
Web Application

i"l’é, Build a Serverless Web Application

Projects on AWS:

Build a Serverless Web Application ~
with AWS Lambda, Amazon APl Gateway, Amazon S3, Amazon DynamoDB, and Amazon Cognito i.

A @ @ (3] 0 (5]

Host a static website Manage users Build a serverless backend Deploy a RESTful API Terminate resources

Overview

: : : L AWS Experience: Beginner
In this tutorial, you'll create a simple serverless web application that enables users to request

unicorn rides from the Wild Rydes fleet. The application will present users with an HTML based Time to complete: 2 hours

user interface for indicating the location where they would like to be picked up and will interface _ o
. . .) , Cost to complete: Each service used in this
on the backend with a RESTful web service to submit the request and dispatch a nearby unicorn. _ e o '
—) : — _ : : . architecture is eligible for the AWS Free Tier.
The application will also provide facilities for users to register with the service and log in before . o
. If you are outside the usage limits of the Free
requesting rides. ' ' . = o
Tier, completing this tutorial will cost you

; ; : less than $0.25*.
Application Architecture

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/ 117

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

qws Build a Serverless Web Application

N with Amazon S3, AWS Lambda, Amazon API Gateway,
Amazon DynamoDB, and Amazon Cognito

HTML, CSS, JavaScript etc.

AMAZON S3

e— |
Web Browser
| AMAZON COGNITO
USER POOL
¥
Dynamic API calls over HTTP
AMAZON API GATEWAY AWS LAMBDA AMAZON DYNAMODB

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/ 118

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

qws Build a Serverless Web Application

) with Amazon S3, AWS Lambda, Amazon API Gateway,
Amazon DynamoDB, and Amazon Cognito _

1 HTML, CSS, JavaScript, etc

N

AMAZON S3

.
A
\-----’

Web Browser

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/ 119

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

qws Build a Serverless Web Application

with Amazon S3, AWS Lambda, Amazon APl Gateway,
Amazon DynamoDB, and Amazon Cognito

I HTML, CSS, JavaScript, etc

Static Web Hosting
Amazon S3 hosts static web
resources including HTML, CSS,
JavaScript, and image files

which are loaded in the user's
browser.

AMAZON S3

Oy,
\-----‘

ttttt ://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/ 120

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

qws Build a Serverless Web Application

N

with Amazon S3, AWS Lambda, Amazon APl Gateway,
Amazon DynamoDB, and Amazon Cognito

2 |' 1
|
Authentication I I
_ : ® [
|
.) !
I i
e | |
Web Browser | I
5 : AMAZON COGNITO |
: \ USER POOL J
) A T T L LT -

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

121

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

qws Build a Serverless Web Application

with Amazon S3, AWS Lambda, Amazon APl Gateway,
Amazon DynamoDB, and Amazon Cognito

2 User Management
Amazon Cognito provides
user management and
authentication functions to o
secure the backend API. "~ S

o
(] 7
v

122

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

qws Build a Serverless Web Application

) with Amazon S3, AWS Lambda, Amazon API Gateway,
Amazon DynamoDB, and Amazon Cognito

Web Browser

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
i
|
i
1
|
1
/

AWS LAMBDA AMAZON DYNAMODB

I
|
|
|
v
O T e —,
v

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/ 123

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

qws Build a Serverless Web Application

with Amazon S3, AWS Lambda, Amazon APl Gateway,
Amazon DynamoDB, and Amazon Cognito

Serverless Backend

Amazon DynamoDB provides a
persistence layer where data can be
stored by the APIl's Lambda
function.

AWS LAMBDA AMAZON DYNAMODB |

-_— ----/

P 8 F F N F & N F §F B B F §F B B N § 4

ttttt ://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/ 124

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

qws Build a Serverless Web Application

N’ with Amazon S3, AWS Lambda, Amazon APl Gateway,
Amazon DynamoDB, and Amazon Cognito

Dynamic APl calls over HTTP

HTML, CSS, JavaScript, etc

Authentication
»
\
{ 1
|
: i
I |
I |
I p----- AN\ N\ oo R *
I |
] :
|
1 AMAZON API GATEWAY :
\~ ------------ I

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

125

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

qws Build a Serverless Web Application

with Amazon S3, AWS Lambda, Amazon APl Gateway,
Amazon DynamoDB, and Amazon Cognito

RESTful API

JavaScript executed in the browser
sends and receives data from a
public backend API built using
Lambda and API Gateway.

------------- \
}
|
|
R |
|
|
|
|

Dynamic AP calls over HTTP

AMAZON API GATEWAY

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/ 126

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

qws Build a Serverless Web Application

with Amazon S3, AWS Lambda, Amazon APl Gateway,
Amazon DynamoDB, and Amazon Cognito

Terminate resources

Resource Cleanup

You will terminate an Amazon S3 bucket, an
Amazon Cognito User Pool, an AWS Lambda
function, an IAM role, a DynamoDB table, a REST
APIl, and a CloudWatch Log.

It is a best practice to delete resources you are no
longer using to avoid unwanted charges.

ttttt ://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/ 127

https://aws.amazon.com/getting-started/projects/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/

Summary

* The cloud is made up of a large number of virtual servers
that you can rent for your own use. You and your customers

access these servers remotely over the internet and pay for
the amount of server time used.

* Virtualization is a technology that allows multiple server
instances to be run on the same physical computer. This
means that you can create isolated instances of your
software for deployment on the cloud.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 128

Summary

* Virtual machines are physical server replicas on which you
run your own operating system, technology stack and

applications.

* Containers are a lightweight virtualization technology that
allow rapid replication and deployment of virtual servers.
All containers run the same operating system.

Docker is currently the most widely used container

technology.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson 129

Summary

* A fundamental feature of the cloud is that ‘everything’ can
be delivered as a service and accessed over the internet.
A service is rented rather than owned and is shared with
other users.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 130

Summary

* Infrastructure as a service (laaS) means computing, storage
and other services are available over the cloud. There is no
need to run your own physical servers.

* Platform as a service (PaaS) means using services provided
by a cloud platform vendor to make it possible to auto-scale
your software in response to demand.

* Software as a service (SaaS) means that application software
is delivered as a service to users. This has important benefits
for users, such as lower capital costs, and software vendors,
such as simpler deployment of new software releases.

Summary

* Multitenant systems are Saa$S systems where all users share
the same database, which may be adapted at run-time to
their individual needs. Multi-instance systems are SaaS
applications where each user has their own separate
database.

* The key architectural issues for cloud-based software are the
cloud platform to be used, whether to use a multitenant or
multi-instance database, the scaleability and resilience
requirements, and whether to use objects or services as the
basic components in the system.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 132

References

lan Sommerville (2019), Engineering Software Products: An Introduction to
Modern Software Engineering, Pearson.

lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at
Google: Lessons Learned from Programming Over Time, O'Reilly Media.

Project Management Institute (2021), A Guide to the Project Management Body of
Knowledge (PMBOK Guide) — Seventh Edition and The Standard for Project
Management, PMI.

Project Management Institute (2017), A Guide to the Project Management Body of
Knowledge (PMBOK Guide), Sixth Edition, Project Management Institute.

Project Management Institute (2017), Agile Practice Guide, Project Management
Institute.

