
Eighth Eurographics Workshop on Virtual Environments (2002)
S. Müller, W. Stürzlinger (Editors)

© The Eurographics Association 2002.

An Interactive Toolkit Library for 3D Applications: it3d

Noritaka OSAWA†∗, Kikuo ASAI†, and Fumihiko SAITO‡

†National Institute of Multimedia Education, JAPAN
*The Graduate University of Advanced Studies, JAPAN

‡Solidray Co. Ltd, JAPAN

Abstract
An interactive toolkit library for developing 3D applications called “it3d” is described that utilize
artificial reality (AR) technologies. It was implemented by using the Java language and the Java 3D class
library to enhance its portability. It3d makes it easy to construct AR applications that are portable and
adaptable. It3d consists of three sub-libraries: an input/output library for distributed devices, a 3D
widget library for multimodal interfacing, and an interaction-recognition library. The input/output
library for distributed devices has a uniform programming interface style for various types of devices.
The interfaces are defined by using OMG IDL. The library utilizes multicast peer-to-peer communication
to enable efficient device discovery and exchange of events and data. Multicast-capable CORBA
functions have been developed and used. The 3D widget library for the multimodal interface has useful
3D widgets that support efficient and flexible customization based on prototype-based object orientation,
or a delegation model. The attributes of a widget are used to customize it dynamically. The attributes
constitute a hierarchical structure. The interaction-recognition library is used to recognize basic motions
in a 3D space, such as pointing, selecting, pinching, grasping, and moving. The library is flexible, and the
recognition conditions can be given as parameters. A new recognition engine can be developed by using
a new circular event history buffer to efficiently manage and retrieve past events. Development of
immersive AR applications using it3d demonstrated that less time is needed to develop the applications
with it3d than without it. It3d makes it easy to construct AR applications that are portable and adaptable.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Software support

1. Introduction
Distributed processing has been increasingly put to

practical use as computers and network equipment have
become less expensive and more capable. However, the
main contents currently used in distributed processing
are text documents, 2D still images, 2D video, and audio.
As computers and networks continue to become
commodity devices, however, distributed processing
will become even more widely used and easier to
implement. This will encourage the distribution of
interactive 3D content. First, though, we need to make
3D information visualization and manipulation easier
and more flexible to facilitate the adoption of such rich
and advanced interactive content.

Many artificial reality (AR) technologies (including
virtual reality and augmented reality) have moved to the
production level from the laboratory level, and there are
several multimodal input/output devices on the market.
However, developing AR applications is more difficult
than developing 2D or desktop applications because
appropriate toolkit libraries are not sufficiently available
for many platforms. More useful and portable toolkits
for developing interactive applications are therefore

needed to facilitate the research and development of AR
applications and the rapid prototyping of advanced
applications. We have developed an interactive toolkit
library for 3D applications, that we call it3d * . It is
implemented with the Java programming language6 and
the Java 3D class library18 in order to improve the
portability of applications and it3d itself. It3d has high-
level functions such as 3D widgets and gesture
recognition, and it uses multicast communication for
efficient and flexible data exchange.

Related work is discussed in Section 2. Section 3
gives an overview of it3d; the features and functions of
the it3d sub-libraries are described in Sections 4, 5, and
6. Section 7 explains how we used it3d to develop
practical AR applications and why it is particularly
useful. Our plans for future work are given in Section 8,
and Section 9 summarizes this paper.

* Refer to http://www.nime.ac.jp/~osawa/research/it3d/

(in English) or http://www.nime.ac.jp/it3d (in
Japanese, as of writing). The library can be accessed
through http://www.nime.ac.jp/it3d

149149

 Osawa, Asai and Saito / An Interactive Toolkit Library for 3D Applications

 © The Eurographics Association 2002.

2. Related Work
There are several 3D graphics libraries and toolkits.

Some of them are low-level 3D graphics libraries such
as OpenGL17 and DirectX8. Java3D18 and Performer15
are scene-graph-based 3D graphics toolkits at a slightly
higher level than OpenGL and DirectX. Although low-
level 3D graphics libraries and scene-graph-based 3D
graphics libraries support fine rendering control, they are
too low-level and unsuitable for rapid prototyping of
interactive AR applications because it takes too long to
develop practical AR applications using only their
rendering toolkits. They do not provide high-level
functions such as widgets in a 2D GUI. Therefore,
programmers have to develop similar high-level
functions for each application. This means the user
interfaces of AR applications often lack uniformity and
are confusing.

Libraries such as Open Inventor16, CAVE library4,
World Toolkit (WTK)13, MR Toolkit14, Avocado19, and
VR Juggler2 have higher-level functions than do
OpenGL, DirectX, Java3D, and Performer.

Open Inventor works on SGI IRIX and Linux
operating systems. There are also its ports to the
Windows operating system. The CAVE library requires
the CAVE hardware or some other variation. At present,
these are not platform-independent toolkits.

WTK is a cross-platform system for building 3D
applications for scientific and commercial use. However,
customization requires programming in C or C++, re-
compilation, and re-linking. This impedes the quick
modification of user interfaces. In contrast, it3d supports
dynamic customization based on prototype-based object-
orientation.

MR Toolkit has many useful packages. Although it
supports C, C++ and FORTRAN applications, it does
not use a language-neutral IDL such as OMG IDL to
define communication interfaces. It used unicast
communication.

Avocado is a framework for distributed virtual
reality applications. It is based on C++ and the
Performer API. Since it focuses on the data distribution,
it does not have high-level 3D widgets.

VR Juggler is a C++ class library and a platform for
virtual reality applications. It has a runtime
configuration management tool. It does avoid rendering
functions intentionally to enable it to work with various
rendering libraries. Therefore, it does not have high-
level 3D widgets for an interactive user interface. In
contrast, it3d has various useful 3D widgets and they can
be used to quickly develop applications.

Since many conventional 3D toolkits do not have
interaction-recognition libraries, programmers need to
develop a recognition engine or combine an existing
recognition engine with their applications. This may
stand in the way of establishing a uniform user-interface
for AR applications. On the other hand, it3d has a basic
gesture-recognition library.

3. It3d
It3d is an interactive toolkit library for developing

3D applications utilizing AR technologies. In this
section, we explain our goals in developing it3d and its
overall structure.

3.1. Goals
The main purpose of it3d is to enable rapid

prototyping for the research and development of
interactive 3D applications, especially for information
visualization3 and the manipulation of abstract
information. Our goals for it3d are as follows.

• Rapid prototyping

Development of a toolkit library for
multimodal interactive 3D applications in
distributed environments.

• Enhanced portability

Implementation using the Java programming
language and Java 3D class library. Unification of
device interfaces at the network level.

• Customizable high-level function components

Development of highly customizable 3D
components, or widgets such as 3D buttons and
combo-boxes. Development of customizable
interaction recognition functions.

3.2. Structure
It3d is composed of three sub-libraries: an

input/output library for distributed devices, a 3D widget
library for multimodal interfacing, and an interaction
recognition library (The relationships between them are
illustrated in Figure 1). We will briefly overview the
features and functions of the sub-libraries in this
subsection, and then describe them in more detail in the
following sections.

150

User
反白

 Osawa, Asai and Saito / An Interactive Toolkit Library for 3D Applications

© The Eurographics Association 2002.

JavaVM

Application

Multimodal 3D Widget
Class Library (B)

Java3D Distributed I/O Device
Library (A)

 Interaction Recognition
Library (C)

Device

Device-Specific
Library

Uniform Program Interface

Uniform Protocol

Distributed I/O Device
Library (A) with JNI

Device

Device-Specific
Library

Figure 1: Relationships between it3d sub-libraries

 The input/output library for distributed devices has a
uniform programming interface style suitable for various
devices. The device interfaces are defined with OMG
IDL20, so the events and data of various devices can be
exchanged in a uniform and efficient form. The library
uses multicast peer-to-peer communication to enable
efficient device discovery for distributed plug-and-play
and the exchange of events and data.

The 3D widget library for multimodal interfacing
has useful 3D widgets that support efficient and flexible
customization based on prototype-based object
orientation, or a delegation model. The attributes of the
widgets are used to dynamically customize them. The
attributes constitute a hierarchical structure. The 3D
widget library includes useful 3D user-interface
components and a 3D layout manager for automatic
placement of 3D components. Rendering of 3D objects
is performed by Java 3D library, which uses OpenGL or
DirectX.

The interaction-recognition library has recognition
functions for 3D direct manipulation and gestures. It
recognizes basic motions – such as pointing, selecting,
pinching, grasping, and moving – in a 3D space. The
library is flexible, and the recognition conditions can be
given as parameters.

As mentioned, we developed it3d using the Java
programming language6 and Java 3D class library18 in
order to enhance its portability.

4. Distributed input/output device library
The various multimodal input/output devices have

different native application-program interfaces (APIs).
The operating environment in which their device drivers
will work depends on specific computers and operating
systems. In other words, they are not portable. It is very
difficult to make all of them work on one computing
platform. Therefore, a distributed I/O device interface is
required. The programming interfaces of these devices
should be unified at the network level. A uniform
interface for the same kind of devices is also needed to
enable efficient programming and to enhance application
portability.

It3d absorbs the diversity in device interfaces and
provides programmers with a uniform interface. In other
words, this library not only wraps native programming
interfaces of input/output devices, but also gives
programmers a uniform application interface for the
same kind of functions.

The input/output library we developed for
distributed devices is based on a model in which
applications are separated from devices at the network
level and the interfaces of the different devices are
integrated. This model enables applications to work in
different environments that have different devices. The
library uses multicast communication to permit efficient
distribution and exchange of events and data.

4.1. Multicast peer-to-peer communication
We use multicast communication between devices

and applications because multicasting enables efficient
device discovery and management. Unlike with unicast
communication, a central server is not needed for device.

First, multicasting is used to find appropriate devices
in a network. A fixed multicast address is used for
device discovery where an application can obtain
information or events from devices of interest. Each
device dynamically acquires a unique multicast address
for its own use. A coordination protocol for dynamic
multicast address allocation is implemented in the
library. In addition to device discovery, an application
communicates with devices through multicasting.

In a laboratory, classroom, or office, we can
reasonably assume that devices can be connected with a
fast- switching network such as a 100Base-TX or
1000BASE-T Ethernet LAN. A fast-switching network
usually supports full-duplex communication and flow-
control, thus it is collision-free unless the network traffic
overflows the throughput of the network. Moreover, the
data or events are often sent periodically from devices to
an application. Therefore, we do not need to worry
about error correction when using one-way multicasting
in many cases. Since fast-switching network devices are
now relatively inexpensive, it is also not important to
consider legacy network devices such as 10Base-5
Ethernet LAN or dumb hubs.

Multicasting enables different computers to monitor
the status of a device. This often helps to find a problem
in the system. A distribution server or a packet-relay
function is not needed.

Moreover, each computer can configure devices
remotely. One computer can execute an application and
another computer can be used to configure the devices.
This eases the device configuration. Configuration
updates are transmitted from configured devices to
applications through multicasting as an event. Therefore,

151

 Osawa, Asai and Saito / An Interactive Toolkit Library for 3D Applications

 © The Eurographics Association 2002.

the applications can be easily kept up to date on the
configuration.

4.2. Uniform interfaces and protocols
The interfaces of distributed devices are defined

using OMG IDL20 which was designed for CORBA
(Common Object Request Broker Architecture)21.

Although we implemented drivers in the system
using the Java programming language, the Java Native
Interface (JNI), and some native codes, device-specific
drivers may work only on a platform that does not
support the Java runtime environment. Because of this,
we developed an interface program written in a
programming language other than Java. We used IDL
because it supports multiple language bindings.

The standard Java libraries include CORBA
functions, but do not support multicast communication.
We therefore developed a multicast CORBA support
library in which all calls are one-way and return values
cannot be obtained automatically. Our distributed I/O
device library has routines that wrap up CORBA
functions and provide an interface for remote procedure
calls that request an invocation, wait for a result, and
then send the request again if a result is not returned
within a certain time limit.

4.3. Supported Devices
As of this writing, the following devices are

supported by it3d.

• Mouse (2 or 3 DoF + buttons)
• Joystick (more than 2 DoF + buttons)
• Microsoft DirectInput devices (Drivers that

work on the Windows operating systems)
 Mouse
 Joystick (with force-feedback)
 Game pad
 Wheel (with force-feedback)
 USB human interface devices

• Sensor gloves
 CyberGlove
 CyberTouch (with vibration)
 CyberGrasp (with force-feedback)

• Position/orientation tracker (6 DoF)
 Polhemus Fastrak

• 3D mouse (6 DoF)
 Logitech Magellan

• Eye-movement tracker (2 DoF)
• Thermal feedback device (original)
• Remote MIDI file player

Data received from a device is reported to client

applications using a delegation-listener model which is
the standard programming style in the Java library. The
application must specify the listener method of events
that the application wants to receive in the model. A

listener interface for each data type is specified and an
I/O library class for clients usually implements the
multiple appropriate listener interfaces. Thus, a client
application can received all events through uniform
event-listener interfaces. For example, an application
can receive 2DoF events from a mouse and a joystick
using the same listener method.

Each device has its own properties and the
parameters of a device are usually stored in its properties.
The names of properties for common parameters are
organized and uniform among devices. Therefore, a
client application can set the common parameters of
similar devices in a uniform way.

5. Multimodal 3D widget library
The 3D widget library for multimodal interfacing

includes several useful 3D widgets, some of which
correspond to 2D GUI widgets. The 3D widgets can
handle the events related to hand interaction, and thus
support direct manipulation by hand in virtual 3D space.

The design of our multimodal 3D widget library is
based on a prototype-based object-oriented model9, or a
delegation model. A widget’s attributes are used to
customize it, and they can be shared using a delegation
mechanism. A prototype-based object-orientation model
is suitable for dynamic customization. The multimodal
3D widget library is thus easily customizable.

5.1. Prototype-based object-orientation
In the prototype-based object-oriented model, there

are no differences between instances and classes. All
objects are instances and can be prototypes of new
objects. A new object is created by cloning an existing
object or a prototype. Needless to say, in a class-based
object-oriented model, an instance is usually created
from a class.

An attribute in an object is found through delegation.
If an attribute is not found in an object, it is searched for
in the parent (prototype) object. Thus, cloned objects can
share attributes with their ancestors. The search for an
attribute is done at runtime. Although this may degrade
the responsiveness of an application, this has not been a
problem in our experience (discussed in Section 7).

The prototype-based model is suitable for dynamic
customization during runtime as stated. When an
attribute of a parent or a prototype is changed, the
attribute of its children may be affected by the change.
Figure 2 shows an example. The top left toggle switch is
a parent switch and the other switches are children
cloned from the parent. In this case, when the parent
switch is toggled, the children are also toggled. When a
child switch is toggled directly, it gets its own state and

152

 Osawa, Asai and Saito / An Interactive Toolkit Library for 3D Applications

© The Eurographics Association 2002.

the state can be changed independently of the parent-
switch state.

We can easily modify the natures of widgets, such as
their appearances, by using a prototype mechanism.
When the color attribute of a parent object is modified,
all children objects have the same color as the parent
object unless their color has been modified directly.

Sharing is done for each attribute. Even if a color of
a child is modified directly, its behavior is still shared
with its parent. Of course, when the state of the child’s
behavior is modified directly, the new behavior is not
shared with its parent.

Figure 2: Attribute sharing through delegation

5.2. Hierarchical attributes

In our prototype-based model, 3D components have
hierarchical attributes such as a hierarchical file system.
In a programming language, simplicity is important, so
the structure of attributes in an object is flat. However,
3D widgets generally need a number of attributes
because of their many parameters, and a flat attribute
structure complicates the management of attribute names.
This is the same problem encountered in flat and
monolithic file systems with a large number of files.

A hierarchical system is more suitable for non-trivial
scale attribute structures and can easily handle a group
of attributes in an orderly way.

An example of the attribute structure is shown in
Figure 3. Leaf nodes usually have attribute values.
Intermediate nodes usually work as directory nodes
although they can have their own attribute values. The
hierarchical components can also be accessed by a string
as they can in a typical hierarchical file system.

The access mechanism is implemented by using a
hash table internally. Although the hash table is a flat
mechanism, the intermediate nodes of standard attributes
are handled specially, which enables virtual hierarchical
handling.

Toggle switch Base (parent) Cloned Switch (color modified)

 /Appearance

/Appearance/Color

/Appearance/Geometry

/BoundingBox

AppearanceAttribute

ColorAttribute

GeometryAttribute

Dictionary

ColorAttribute/Appearance/Color

Dictionary

Delegation
Cloned Switch (Color shared
with base)

Dictionary

Figure 3: Hierarchical attributes and delegation

extrusion solid of revolution

button toggle button

slider toggle switch

dial label

list combo box

Figure 4: Examples 3D widgets

5.3. 3D widgets

We think a toolkit library should have various
components if it is to be useful. Without an adequate
number of functions, prototyping can be tedious and

153

 Osawa, Asai and Saito / An Interactive Toolkit Library for 3D Applications

 © The Eurographics Association 2002.

time-consuming. Therefore, we implemented various
high-level 3D widgets in it3d. Some are 3D widgets
corresponding to 2D GUI components and others are
3D-specific widgets. (Example 3D widgets are shown in
Figure 4.) As discussed above, the shape and appearance
of the widgets can be easily modified by changing the
appropriate attributes.

5.4. 3D layout
A 3D container can contain 3D components or

widgets. Moreover, it can have a 3D layout manager that
controls the layout of the 3D components in the
container. Although this layout approach is the same as
that used in AWT and Swing in 2D, a 3D layout is more
complicated than a typical 2D layout.

We have developed a line-up layout manager and a
force-directed layout manager. The line-up layout
manager is a 3D version of a flow layout manager and a
grid layout manager in 2D. The force-directed layout
manager places the 3D components in the 3D space on
the basis of kinematical constraints between them5,7,10.
When the constraints between the components are
appropriately specified, the force-directed layout
manager can automatically arrange the components in
the 3D space. Most other toolkit libraries do not have
this force-directed layout functionality. An example of
the automatic force-directed layout of a graph where
repulsive forces, elastic forces, and gravitational force
were exerted is shown in Figure 5.

Figure 5: Automatic layout of a tree by a force-

directed layout manager

6. Interaction-recognition library

The interaction-recognition library has functions for
recognizing basic interactions and gestures – such as
pointing, selecting, pinching, grasping, and moving – in
a 3D space. The library generates high-level events as
recognition output. This library relieves application
programmers of the need to make a recognition engine
for direct manipulation and gesture recognition of virtual
objects and 3D widgets. The library is flexible, and the

recognition conditions can be given as parameters. A
new recognition engine can be implemented by
combining the existing library functions with newly
developed functions.

In this paper, basic interactions are categorized into
direct manipulation and gestures. Direct manipulation is
an interaction between virtual objects and pointers such
as fingers. Gestures are interactions that do not relate
directly with virtual objects.

Direct-manipulation functions of the interaction-
recognition library allow one to manipulate virtual
objects or 3D components using interface devices such
as a sensor glove. In other words, get-and-put operations
in 3D, which corresponds to drag-and-drop operations in
a 2D GUI, can be easily used in the implementation of
3D applications. Since the model of events is similar to
that in a 2D GUI, a 2D GUI can also control 3D
components easily, although the degrees of freedom are
often insufficient using a 2D GUI device such as a
desktop mouse. To improve the accuracy of picking
(get) and releasing (put) operations by a hand, the angles
of the fingers used to pick up a virtual object can be used
as well as the collision between the fingers and the
virtual object.

The interaction-recognition library has a ring history
buffer function. Gesture-recognition engines can use the
ring history buffer to manage and retrieve past events
(Figure 6). With the ring history buffer, a recognition
engine does not need to receive all events; instead it
needs to receive only key events and retrieve past events
when necessary. This can reduce the event-management
overhead.

 Matching Process 1

Ring Buffer

Recognition Engine

Matching Process n

raiseEvent()

logEvent()

findEvent() find past events

High level event
(Gesture)

Low level event
(Distributed I/O Device)

Low level event
(Distributed I/O Device)

Figure 6: Gesture-recognition functions

154

 Osawa, Asai and Saito / An Interactive Toolkit Library for 3D Applications

© The Eurographics Association 2002.

 In addition to the gesture-recognition engine in the
library, we have developed a simple gesture-learning
tool. Figure 7 shows screenshots of the tool being used.
After the learning conditions are set up, a demonstrated
gesture is learnt. Figure 7 show how an OK sign made
with the right hand is learnt. After the gesture is learned,
the tool can recognize it (Figure 8).

The conditions that can be specified in the current
gesture recognition engine are the period of a gesture,
the angles of the finger joints, the position and posture
of the hand, and the track of the hand movement. These
conditions can be learnt by using the gesture-learning
tool.

Figure 7: Screenshots of gesture learning

Figure 8: Screenshots of gesture recognition

7. Applications

We used developed it3d to develop interactive 3D
applications for an immersive virtual environment called
TEELeX1. These applications are working in the
distributed I/O system configuration illustrated in Figure
9.

PC Workstation

Switching Hub

PC

Compaq AP550
Dual 1GHz Pentium III

Elsa Synergy III
supporting dual displays

CyberGlove
Polhemus Fastrak

for right eyefor left eye

Projectors

100Base-TX Ethernet

Figure 9: System configuration

7.1. Immersive music editing and playing
prototype application: Reijin

To demonstrate the functionality and usefulness of
it3d, we have developed an immersive application for
editing and playing music that we call Reijin11. Figure
10 shows screenshots of Reijin.

The user can edit and play music using direct
manipulation by hand. For example, notes can be
manipulated with the hand. A note can be pinched by the
middle finger and thumb, and moved to the desired
position. When a note is pinched by the forefinger and
thumb, the note is copied.

Reijin uses a number of the 3D widgets in it3d. A
3D combo box is used to select a file from which to load
music data. Music playing is controlled with 3D buttons.
The timbre can be selected from a 3D scrollable list. A
3D dial can be used to scroll through a score.

We were able to develop this application in
considerably less time with the toolkit than would have
been possible without it, thereby demonstrating the
usefulness of the toolkit. The development also
demonstrated that the distribution of devices and an
application, customization using prototype-based object
orientation, and interaction recognition of physical
motions are useful for developing interactive AR
applications.

Figure 10: Screenshots of Reijin

7.2. Immersive programming system: Ougi
We have been developing an immersive

programming system, called Ougi12, which supports a
subset of the Java programming language. It utilizes
both textual and graphical 3D representation.

With Ougi, a user can write a program, control its
execution, and debug it within an immersive
environment. Implementation of Ougi showed that it3d
can be used for non-trivial AR application development.
Figure 11 shows a snapshot of Ougi being used in a
TEELeX environment. Figure 12 shows some
screenshots of Ougi.

155

 Osawa, Asai and Saito / An Interactive Toolkit Library for 3D Applications

 © The Eurographics Association 2002.

Figure 11: Snapshot of Ougi in the TEELeX
immersive virtual environment

Figure 12: Screenshots of Ougi

8. Future Work

We will extend the supporting devices and
implement more 3D widgets. We are developing
distributed I/O interfaces for speech-recognition and
speech-synthesis engines and for sampling sounds. We
plan to integrate immersive 3D environments with
portable devices such as PDAs. We also plan to develop
highly functional 3D components such as circle menus,
hierarchical displays (tree displays), 3D graph displays,
and tabular displays.

Although it3d speeds up prototype development, the
design and layout of the 3D widgets in the application
still require a lot of time and work. This is because the
design and layout have to be tuned with the
programming through a 2D GUI, whereas the operating
environment is three-dimensional. Hence, we plan to
develop an immersive attribute editor for 3D widgets.
The attribute editor will be used to customize 3D
widgets through direct manipulation and gestures in an

immersive 3D virtual space that is the same as the
operating environment of the application. The attribute
editor will make it easy to change the appearance and
layout of a 3D widget.

We think that 3D applications should be component-
based. Multiple functionalities or applications should
coexist in a virtual 3D space. However, current 3D
application frameworks do not support the coexistence
of applications or the communications with them. The
cooperation of 3D applications in a virtual 3D space
needs a 3D user-interface management system. We will
develop a system that will enable the coordination of
multiple 3D applications in a virtual 3D space and a
distributed 3D space. This 3D user-interface
management system will contribute to the development
of a standard user interface that is customizable for 3D
applications and coordination between distributed
cooperative applications.

9. Summary
The it3d interactive toolkit library for 3D

applications supports various I/O devices in distributed
environments and has a number of useful 3D widgets for
interactive interaction. It uses multicast peer-to-peer
communication and a prototype-based object-orientation
model for dynamic customization. It3d is implemented
using the Java language and the Java 3D class library, so
it will work on a number of hardware and software
platforms. It3d can shorten the development time of
interactive 3D applications that are portable and
adaptable.

Acknowledgements
We thank Mr. Norio Takase and Mr. Takashi

Tohyama for working with us to develop it3d.

The it3d toolkit library was developed with funding
by the Support Program for Young Software
Researchers in 2000, which was implemented by the
Research Institute of Software Engineering (RISE)
commissioned by the Information-technology Promotion
Agency (IPA) in Japan.

References
1. Kikuo Asai, Noritaka Osawa, and Yuji Y.

Sugimoto, “Virtual Environment System on
Distance Education,” Proc. of EUROMEDIA '99,
pp. 242-246, 1999.

2. Allen Bierbaum, Christopher Just, Patrick
Hartling, Kevin Meinert, Albert Baker, and
Carolina Cruz-Neira, "VR Juggler: A Virtual
Platform for Virtual Reality Application
Development", IEEE VR 2001, pp. 89-96, 2001.

156

 Osawa, Asai and Saito / An Interactive Toolkit Library for 3D Applications

© The Eurographics Association 2002.

3. Stuart K. Card, Jock D. MacKinlay, and Ben
Shneiderman, Readings in Information
Visualization - Using Vision to Think, Morgan
Kaufmann Publ., 1999.

4. C. Cruz-Neira, Virtual Reality Based on Multiple
Projection Screens: The CAVE and its
Applications to Computational Science and
Engineering, doctoral dissertation, University of
Illinois at Chicago, 1995.

5. P. Eades, "A Heuristic for Graph Drawing,"
Congressus Numerantium, Vol.42, pp. 149-160,
1984.

6. James Gosling, Bill Joy and Guy Steele, The
JavaTM Language Specification, Addison-Wesley,
1996.

7. Kamada, T., and S. Kawai, "Algorithms for
drawing general undirected graphs," Information
Processing Letters, Vol. 31, No. 1, pp. 7-15, 1989.

8. Microsoft Corporation, Direct X,
<http://www.microsoft.com/directx/>.

9. James Noble, Antero Taivalsaari, and Ivan Moore,
Prototype-Based Programming: Concepts,
Languages and Applications, Springer-Verlag,
1999.

10. Noritaka Osawa, Kikuo Asai, and Yuji Y.
Sugimoto, "Immersive Graph Navigation Using
Direct Manipulation and Gestures," Symposium on
Virtual Reality Software & Technology 2000
(VRST2000), pp.147-152, 2000.

11. Noritaka Osawa, Kikuo Asai, Norio Takase and
Fumihiko Saito, "An Immersive System for
Editing and Playing Music on Network-connected
Computers," 5th International Conference on
Information Visualisation (IV2001), pp.630-635,
2001.

12. Noritaka Osawa, Kikuo Asai, Yuji Y. Sugimoto,
and Fumihiko Saito, "A Dancing Programmer in
an Immersive Virtual Environment," Symp. on
Human-Centric Computing Languages and
Environments (HCC2001), pp.348-349, 2001

13. Sense8, WorldToolkit,
<http://www.sense8.com/products/index.html>.

14. Chris Shaw, Mark Green, Jiandong Liang and
Yunqi Sun, “Decoupled Simulation in Virtual
Reality with the MR Toolkit,” ACM Trans. on
Information Systems, 11(3),

15. Silicon Graphics, Inc., OpenGL Performer,
<http://www.sgi.com/software/performer/>

16. Silicon Graphics, Inc., Open Inventor,
<http://oss.sgi.com/projects/inventor/>.

17. Dave Shreiner (Editor), OpenGL Reference
Manual: The Official Reference Document to
OpenGL, Version 1.2, Addison-Wesley, 1999

18. Henry Sowizral, Kevin Rushforth and Michael
Deering, The Java 3D API Specification, Addson-
Wesley, 1998.

19. Henrik Tramberend, “Avocado: A Distributed
Virtual Reality Framework,” IEEE Virtual
Reality ’99, pp.14-21, 1999.

20. Object Management Group, Java Language
Mapping to OMG IDL Specification,
<http://www.omg.org/technology/documents/form
al/java_language_mapping_to_omg_idl.htm>

21. Object Management Group, The Common Object
Request Broker: Architecture and Specification,
John Wiley & Sons, (1992)

157

