Henry A.
Sowizral and
Michael F.
Deering

Sun
Microsystems

12

Projects in VR

Editors: Lawrence Rosenblum and
Michael Macedonia

The Java 3D APl and Virtual Reality

Java 3D proves a natural choice for any Java pro-
grammer wanting to write an interactive 3D graphics
program. A programmer constructs a scene graph con-
taining graphic objects, lights, sounds, environmental
effects objects, and behavior objects that handle inter-
actions or modify other objects in the scene graph. The
programmer then hands that scene graph to Java 3D
for execution. Java 3D starts rendering objects and exe-
cuting behaviors in the scene graph. Virtual reality
applications go through an identical writing process.
However, before a user can use such an application,
Java 3D must additionally know about the user’s phys-
ical characteristics (height, eye separation, and so
forth) and physical environment (number of displays,
their location, trackers, and so on). Not surprisingly,
such information varies from installation to installa-
tion and from user to user. So Java 3D lets application
developers separate their application’s operation from
the vagaries of the user’s final display environment.
The Java 3D application programmer’s interface (API)
provides a very flexible platform for building a broad range
of graphics applications. Developers have already used
Java 3D to build applications in a variety of domains
including mechanical CAD, molecular visualization, sci-
entific visualization, animation previews, geographic
information systems, business graphics, 3D logos, and
educational offerings. Virtual reality applications have
included immersive workbench applications, head-
tracked shutter-glass-based desktop applications, and por-
tals (a cave-like room with multiple back-projected walls).

What makes Java 3D good for VR?

Writing a VR program requires a substantial pro-
gramming effort. A developer must either write code to
handle the various input and display devices that the
application might encounter or, alternatively, the devel-
oper will need to rely on a programming API designed
to support VR applications. A typical VR application
must track a user’s head position and orientation (so
that it can generate images of the virtual world as if the
user’s head were in that position and orientation).
Additionally, the application might need to track other
parts of the user’s body, such as an arm, a hand, or aleg,
so that it can make user interaction with that environ-
ment easier by including a virtual view of that body part.
The application must use these tracker inputs in plac-
ing objects within a view and in specifying the appro-
priate position and orientation in generating 3D images.

May/June 1999

An API that enables VR applications must support
generating 3D graphics, handling input trackers, and
continuously integrating that tracker information into
the rendering loop. The Java 3D API includes specific
features for automatically incorporating head tracker
inputs into the image generation process and for access-
ing other tracker information to control other features.
It does this through a new view model that separates
the user’s environment from the application code. The
API also explicitly defines the values returned by six-
degrees-of-freedom detectors as primitive Java 3D
objects, called Sensors. Together, the new view and
input models make it quite easy to turn interactive 3D
graphics applications into VR-enabled applications.

A detailed description of the API appears in the Java
3D specification.

A Java 3D program

Creating a Java 3D application or applet involves con-
structing a virtual universe and inserting one or more
scene graphs into that universe. A virtual universe con-
sists of superstructure objects including one Universe
object, one but possibly more Locale objects, and one or
more scene graphs containing node objects arranged in
tree structures. The scene graphs, called branch graphs
because their root node must always be a BranchGroup
node, contain the objects to render, the lights to apply,
the behaviors to execute, the sounds to play, and so on.
Branch graphs containing content nodes are called
content branches. Those that contain a ViewPlatform
object—the object that specifies the user’s position and
orientation—are called view branches.

Figure 1 shows a Java 3D universe with multiple
branch graphs. Note that branch graphs describe what
should be rendered, not the order in which to render
objects. Neither node order nor node placement within
a graph determines an order of execution or rendering.
The path between a graph’s root node and any leaf of
that root node uniquely determines how to draw (or
process) that path’s leaf node. The almost total lack of
implied order (the ordered group node provides the
only exception) means that Java 3D can execute behav-
iors and render objects in any order best suited to the sys-
tem’s underlying architecture, including parallel systems.

Branch graphs

Java 3D branch graphs are trees where each node in
the branch graph has only one parent. Though this may

0272-1716/99/$10.00 © 1999 IEEE

User
反白

User
反白

seem restrictive, Java 3D does support sharing common
scene graphs through an extra scene-graph mechanism.
Leaf nodes called Link nodes can link to (reference)
specially defined, shareable subgraphs.

The nodes in a branch graph fall into one of two cat-
egories: group or leaf nodes. Group nodes act as the glue
that holds a branch graph together. Group nodes com-
bine other nodes (group and leaf nodes) into one com-
mon unit, they position and orient those nodes, and, in
a limited way, they control rendering order. Leaf nodes
represent items in a branch graph such as objects, lights,
and behaviors. Leaf nodes do not refer to nodes but only
other Java 3D objects like NodeComponent objects.
These objects hold Java-3D-specific information such
as shape geometry, shape appearance, textures, media
containers, and so on.

Group nodes include BranchGroup, Transform
Group, Switch, OrderedGroup, and SharedGroup
nodes. The BranchGroup node serves as the root of a
branch graph. The Trans formGroup serves to position
and orient its constituent subgraphs. The Switch node
selects among one or more subgraphs for rendering. The
orderedGroup node ensures that its children are ren-
dered in the specified order. Finally, a SharedGroup
node, just like a BranchGroup node, serves as the root
of a scene graph; however, they’re called shared graphs.
Shared graphs can never exist as part of a Java 3D scene
graph directly; however, Link nodes can refer to them
as if they were subroutines.

Leaf nodes do not have children. Instead they either
contain information or refer to objects, called node com-
ponent objects, that contain information Java 3D needs.
Example leaf nodes include Shape3D, ViewPlat form,
Sound, various types of light nodes, various predefined
behaviors, user defined behaviors, and others. The first
two leaf nodes, the Shape3D and ViewPlatform
nodes, specify two important elements in a graphics sys-
tem. The Shape3Dnode specifies a geometric object and
its appearance, while the ViewPlat form node speci-
fies the viewer’s current location and orientation (and
scale) within the virtual world. The other leaf nodes,
though important for specifying various elements of a
virtual world, have less importance in describing Java
3D’s view model and the input device model.

The viewPlat formnode serves tolocate and orient
aviewer or a user within a virtual world. An application
can manipulate a ViewPlatform just like any other object
in a branch graph. The application can translate the
ViewPlatform, rotate it, or even scale it. By manipulat-
ing the location and orientation of a ViewPlatform, the
application can move the ViewPlatform (and thus any
viewer associated with it) through the virtual world. The
ViewPlatform acts very much like a cart in an amuse-
ment park ride. The cart takes you along a predeter-
mined route through the world, but it doesn’t restrict you
from moving around or looking in different directions.

The Java 3D view model

The Java 3D view model consists of two intertwined
components: the virtual world, as represented by the
ViewPlatform object, and the physical world, as repre-
sented by the View object and its associated objects.

The View object and its associated objects describe the
user’s display environment in considerable detail. They
specify how many displays occupy that environment,
whether it consists of a desktop monitor, three back-
projected walls, or two displays in a head-mount. They
specify the availability (or not) of a head tracker and its
location relative to the display(s). They specify the user’s
height and interpupilary distance. They also specify vari-
ous policies that determine how to interpret various
changes in the many parameters.

The view model imposes a clean separation between
the virtual and the physical world. At the same time, it
builds a bridge between the two worlds by defining a
one-to-one-and-onto correspondence between the vir-
tual space surrounding the ViewPlatform and the phys-
ical space as specified by the View objects. A point in one
space has a corresponding point in the other space.

Why a new model?

A camera-based model provides applications with a
variety of controls over the camera’s parameters such as
its location and orientation, its aspect ratio and field-of-
view, and others. These controls work well in many set-
tings. Unfortunately, they fail to provide sufficient
flexibility in some cases, and in other cases they allow an
inappropriate level of control. For example, in a portal
(or cave-like) environment, where the user stands inside
a multiwalled environment with multiple display sur-
faces, the camera model proves insufficient, since it can
only provide control over one display surface at a time.

A different problem exists in an immersive environ-
ment, where users wear head-mounted displays. The
optical elements in the head-mount determine the appli-
cation’s permissible field-of-view. Any deviation from
that value will create a significant mismatch in perceived
movement versus the movement shown in the display.
Such a mismatch induces nausea rather quickly. This
example demonstrates a case where the application
should not control a particular parameter.

About the view model

The central concept in the view model is coexistence.
The viewer exists in the physical world as well as in the
virtual world. By allowing sufficient control over describ-
ing the user’s physical environment, Java 3D can map
movements of the ViewPlatform or the user’s head onto

IEEE Computer Graphics and Applications

1 AJava3D
universe.

13

Projects in VR

2 Three different display environments and the associated view objects that define those envi-
ronments. The top two images show a fish-tank VR system and its associated single-canvas
single-screen view branch (the same view branch structure that a single screen nonheadtracked
environment would use). The middle two images show a back projected three-walled immersive
room and its associated three-canvas three-screen view branch. The bottom two images show a
composite screen consisting of eight tessellated projectors providing an aggregate resolution of
4096 x 2560 and the associated eight-canvas eight-screen view branch.

14

the corresponding, appropriate, view computations.
The View object and its associated objects describe the
viewer’s initial position relative to display screens in the
display environment. To prevent confusion, we call the
individual display screens image plates. The viewer’s eye-
points and the environment’s image plates have well-
defined locations in the physical environment. Because
of Java 3D’s coexistence concept, the viewer’s eyepoints
and the image plates’ position and orientation have well-
defined locations in the virtual environment. Since we
know the location of the eyepoints and the image plates
in the virtual world, it’s relatively straightforward to con-
struct the appropriate view frustum for computing a pro-
jective 3D image on a per-image-plate basis. If head
tracking is available, we can straightforwardly translate
head movements into new eyepoints relative to the
image plates. If head tracking is not available, the frus-

May/June 1999

tums only need to be constructed once per image plate.

Coexistence is essentially a mapping from the physical
space containing the viewer and the image plates and
the virtual space surrounding the ViewPlatform and back
again. This mapping provides the means to translate
movement or selection within one space directly into a
similar movement or selection within the other space.

Think of the ViewPlatform as the cart in an amuse-
ment park ride. Wherever the ViewPlatform takes you
(the viewer), you go. However, just as you can turn your
head to look around while enjoying a ride, you can look
around as the ViewPlatform navigates around the virtu-
al environment. By tracking the viewer’s head position
and orientation, we can instantaneously convert that
head movement into the corresponding movement with-
in the ViewPlatform’s coordinate system. This virtual
head position and orientation give us sufficient infor-
mation to automatically generate the
corresponding view frustums. If a
head tracker is not available, then
the user experiences the applica-
tion’s navigation as if fixed rigidly in
a seat without the ability to move
head or limb.

If a developer doesn’t know the
exact structure of the user’s envi-
ronment, how can the developer
write an application that can adapt
to that environment? Java 3D pro-
vides a set of Universe utility classes
that construct a virtual universe and
all associated objects needed for a
fully functioning view branch. The
universe construction classes read
the local machine’s configuration
properties and the user’s configura-
tion properties and, using that infor-
mation, construct the appropriate
view-branch objects reflecting those
configuration values. The developer
only needs to maneuver the location
and orientation of the ViewPlatform
object to get the desired effect.

How the view model works

The view model operates as a
highly optimized constraint system.
It has two grounding policies. One
policy is used in environments where
the user’s eye can move relative to
the display surface. This policy sup-
ports non-head-tracked, flat-screen
display environments as well as all
environments where the user can
move relative to any display sur-
faces—environments such as
immersive workbenches, multi-
walled, back-projected rooms, or
even desktop, head-tracked environ-
ments (see Figure 2). The second
policy is used in environments where
the user’s eye does not move relative

to the display surface. This policy handles head-mount-
ed displays, augmented-reality environments, and
boom-mounted displays. The Java 3D API specification
describes both constraint systems in detail.

The view model assumes that a Java 3D application
will at times execute in an environment with a head
tracker. In such environments, the view-model’s con-
straint system automatically incorporates the head-
tracker’s latest position and orientation information
when computing view frustums. The head tracker infor-
mation comes via the input device interface.

Input devices in Java 3D

Supporting head tracking requires Java 3D to provide
access to six-degrees-of-freedom (6DOF) tracker infor-
mation. Different tracking devices work differently and
require that the computer interact with them in differ-
ent ways. A device driver that operates a Polhemus
device will definitely not operate an Ascension device.
A Magellan driver will not operate a Spaceball. As new
devices become available, they too will require custom
device drivers.

Rather than trying to support all possible 6DOF input
devices, Java 3D defines an InputDevice interface that
tracker vendors or developers can use to support a par-
ticular 6DOF device. The InputDevice interface requires
the implementer of a device driver to define nine meth-
ods. The nine methods provide device-specific semantics
for open, close, and read operations as well as a mini-
mal number of state-setting and state-query methods.

A Java 3D environment can have any number of
InputDevices. Moreover, InputDevices need not be real
physical devices. They can be virtual devices. It’s perfectly
reasonable to write a software-input device that trans-
lates the manipulation of a virtual trackball via mouse
movements into 6DOF values. Or, alternatively, to devel-
op an InputDevice driver that reads time-stamped 6DOF
values from a file or a network connection and then regen-
erates that data as if it arrived from a real tracker.

Each input device has associated with it a fixed num-
ber of Sensor objects. A Sensor object represents one
source of 6DOF data associated with that device.
Whenever an input device driver generates new data, it
does so for all of its Sensor objects. A Sensor object con-
tains a fixed number of SensorRead objects arranged as
a circular buffer. This circular buffer contains the “n”
most recent SensorRead values for that Sensor. Having
multiple SensorRead values makes it possible to per-
form data averaging and prediction on a particular
stream of input values.

SensorRead objects contain a time stamp, a 6DOF
value, and an integer array of button values. The time
stamp provides essential information for averaging or
predicting 6DOF values. The button values let a device
driver encode not only simple button-up and button-
down states, but also a trigger, or a knob. Sensors can
also be used to support fewer degree-of-freedom
devices, such as conventional joysticks.

Using abstract sensors
Application developers do not use input devices
directly. Java 3D abstracts away input devices by pro-

Resources

The Java 3D specification includes details of the API:
H.A. Sowizral, K.C. Rushforth, and M.F. Deering, The Java 3D API
Specification, Addison Wesley, Reading, Mass., 1998.

To explore sensors, see
H.A. Sowizral, “Virtual Sensors: Handling Real and Computationally
Derived Information Consistently,” Proc. SPIE Stereoscopic Displays and
Virtual Reality Systems Il, Vol. 2409, S. Fisher, J. Merritt, and M. Bolas,
eds., SPIE, Bellingham, Wash., 1995, pp. 246-254.
K. Zikan et al., “Fusion of Absolute and Incremental Position and
Orientation Sensors,” Proc. SPIE Telemanipulator and Telepresence
Technologies, Vol. 2351, H. Das, ed., SPIE, Bellingham, Wash., 1994,
pp. 316-327.

For more on head tracking and orientation,
K. Zikan et al., “A Note on Dynamics of Human Head Motions and on
Predictive Filtering of Head-Set Orientations,” Proc. SPIE
Telemanipulator and Telepresence Technologies, Vol. 2351, H. Das, ed.,
SPIE, Bellingham, Wash., 1994, pp. 328-336.

See the Sun Microsystems Web sites on Java 3D:
http://www.sun.com/desktop/java3d
http://java.sun.com/products/java-media/3D

viding an array of available Sensors. This array of Sensor
objects belongs under the PhysicalEnvironment object
(one of the objects associated with the View object). The
array consists of pointers to the objects associated with
InputDevices.

This array of Sensors lets an application developer
require some number of 6DOF inputs and then have
users provide the device drivers available on their sys-
tems. Typically, a Universe construction utility enumer-
ates InputDevices and the Sensors associated with each
device, then assigns each Sensor it finds to a slot in the
array of Sensors. Since application code never refer-
ences devices, only Sensors, the Universe utility can
rearrange sensors at will as long as the appropriate sen-
sors are associated with the corresponding appropriate
Sensor index used by the application.

The Universe construction utility reads a device and
application configuration profile and, using that infor-
mation, assigns a particular Sensor on a particular
device to a particular Sensor index. In essence, this facil-
ity provides an input device/sensor patch panel.

Finally, as a last resort, if an application requires 6DOF
inputs and the user does not have tracking hardware, the
Universe construction utility can construct virtual sensors.

Summary

Java programmers can quickly and easily define
graphics programs using Java 3D’s scene graph classes.
An expanded view model lets applications seamlessly
operate in a variety of single- and multiple-display, non-
head-tracked and head-tracked, display environments.
This view model relies on the flexible InputDevice inter-
face that Java 3D provides to remove most of the
vagaries of hardware trackers. [

Readers may contact Sowizgral at Sun Microsystems, 901
San Antonio Rd., MS UMPK27-101, Palo Alto, CA 94303-
4900, e-mail henry.sowizral@eng.sun.com.

IEEE Computer Graphics and Applications

15

