(Artificial Intelligence for Text Analytics: Foundations and Applications)

Min-Yuh Day
Associate Professor
Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday
2020-09-26
Min-Yuh Day, Ph.D.

Publications Co-Chairs, IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013-)

Program Co-Chair, IEEE International Workshop on Empirical Methods for Recognizing Inference in TExT (IEEE EM-RITE 2012-)

Publications Chair, The IEEE International Conference on Information Reuse and Integration (IEEE IRI)
1. Core Technologies of Natural Language Processing and Text Mining
2. Artificial Intelligence for Text Analytics: Foundations and Applications
3. Feature Engineering for Text Representation
4. Semantic Analysis and Named Entity Recognition; NER
5. Deep Learning and Universal Sentence-Embedding Models
6. Question Answering and Dialogue Systems
Outline

• AI for Text Analytics: Foundations
 – Processing and Understanding Text

• AI for Text Analytics: Application
 – Sentiment Analysis
 – Text classification
Text Analytics and Text Mining

Text Mining “Knowledge Discovery in Textual Data”

- Document Matching
- Link Analysis
- Search Engines
- Information Retrieval
- POS Tagging
- Lemmatization
- Word Disambiguation

Web Mining
- Web Content Mining
- Web Structure Mining
- Web Usage Mining

Data Mining
- Classification
- Clustering
- Association

Natural Language Processing

Statistics
- Management Science
- Machine Learning
- Artificial Intelligence
- Computer Science
- Other Disciplines

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
NLP

Classical NLP

Deep Learning-based NLP

Source: http://blog.aylien.com/leveraging-deep-learning-for-multilingual/
Modern NLP Pipeline

Pre-processing:
- Tokenize
- POS Tagging
- ...
- Token Filtering

Documents → Language Detection → Pre-processed Documents

En
CN

Build Vocabulary:
- Pre-processed Documents
- Bag-of-Words & Vectorization
- Word Embeddings
 - word2vec
 - doc2vec
 - GloVe

Machine Learning:
- (Deep) Neural Network

Task / Output:
- Classification
- Sentiment Analysis
- Entity Extraction
- Topic Modeling
- Similarity
Deep Learning NLP

Documents

Preprocessing → Dense Word Embeddings → Deep Neural Network

Pre-generated Lookup OR Generated in 1st level of NeuralNet

Task / Output

- Classification
- Sentiment Analysis
- Entity Extraction
- Topic Modeling
- Document Similarity

Source: http://mattfortier.me/2017/01/31/nlp-intro-pt-1-overview/
Papers with Code: NLP

Natural Language Processing

- 500 leaderboards • 249 tasks • 100 datasets • 5219 papers with code

Representation Learning

- Representation Learning
 - 7 leaderboards
 - 548 papers with code

- Word Embeddings
 - 454 papers with code

- Graph Embedding
 - 116 papers with code

- Network Embedding
 - 62 papers with code

- Sentence Embeddings
 - 3 leaderboards
 - 52 papers with code

See all 17 tasks

Machine Translation

- Machine Translation
 - 45 leaderboards
 - 612 papers with code

- Transliteration
 - 17 papers with code

- Unsupervised Machine Translation
 - 9 leaderboards
 - 12 papers with code

- Low-Resource Neural Machine Translation
 - 8 papers with code

- Multimodal Machine Translation
 - 7 papers with code

See all 6 tasks

Question Answering

https://paperswithcode.com/area/natural-language-processing
NLP Benchmark Datasets

<table>
<thead>
<tr>
<th>Task</th>
<th>Dataset</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WMT 2014 EN-FR</td>
<td></td>
</tr>
<tr>
<td>Text Summarization</td>
<td>CNN/DM</td>
<td>https://cs.nyu.edu/~kcho/DMQA/</td>
</tr>
<tr>
<td></td>
<td>Newsroom</td>
<td>https://summari.es/</td>
</tr>
<tr>
<td></td>
<td>Gigaword</td>
<td>https://catalog.ldc.upenn.edu/LDC2012T21</td>
</tr>
<tr>
<td>Reading Comprehension</td>
<td>ARC</td>
<td>http://data.allenai.org/arc/</td>
</tr>
<tr>
<td></td>
<td>CNN/DM</td>
<td>https://cs.nyu.edu/~kcho/DMQA/</td>
</tr>
<tr>
<td></td>
<td>NewsQA</td>
<td>https://datasets.maluuba.com/NewsQA</td>
</tr>
<tr>
<td></td>
<td>SQuAD</td>
<td>https://rajpurkar.github.io/SQuAD-explorer/</td>
</tr>
<tr>
<td></td>
<td>NarrativeQA</td>
<td>https://github.com/deepmind/narrativeqa</td>
</tr>
<tr>
<td></td>
<td>Quasar</td>
<td>https://github.com/bdthingra/quasar</td>
</tr>
<tr>
<td></td>
<td>SearchQA</td>
<td>https://github.com/nyu-dl/SearchQA</td>
</tr>
<tr>
<td>Semantic Parsing</td>
<td>AMR parsing</td>
<td>https://amr.isi.edu/index.html</td>
</tr>
<tr>
<td></td>
<td>ATIS (SQL Parsing)</td>
<td>https://github.com/jkkummerfeld/text2sql-data/tree/master/data</td>
</tr>
<tr>
<td></td>
<td>WikiSQL (SQL Parsing)</td>
<td>https://github.com/salesforce/WikiSQL</td>
</tr>
<tr>
<td>Sentiment Analysis</td>
<td>IMDB Reviews</td>
<td>http://ai.stanford.edu/~amaas/data/sentiment/</td>
</tr>
<tr>
<td></td>
<td>SST</td>
<td>https://nlp.stanford.edu/sentiment/index.html</td>
</tr>
<tr>
<td></td>
<td>Yelp Reviews</td>
<td>https://www.yelp.com/dataset/challenge</td>
</tr>
<tr>
<td></td>
<td>DBpedia</td>
<td>https://wiki.dbpedia.org/Datasets</td>
</tr>
<tr>
<td></td>
<td>TREC</td>
<td>https://trec.nist.gov/data.html</td>
</tr>
<tr>
<td>Natural Language Inference</td>
<td>SNLI Corpus</td>
<td>https://nlp.stanford.edu/projects/snli/</td>
</tr>
<tr>
<td></td>
<td>MultiNLI</td>
<td>https://www.nyu.edu/projects/bowman/multinli/</td>
</tr>
<tr>
<td>Semantic Role Labeling</td>
<td>Proposition Bank</td>
<td>http://propbank.github.io/</td>
</tr>
<tr>
<td></td>
<td>OneNotes</td>
<td>https://catalog.ldc.upenn.edu/LDC2013T19</td>
</tr>
</tbody>
</table>

Processing and Understanding Text
Free eBooks - Project Gutenberg

Some of the Latest eBooks

Welcome

New website available for testing. Visit https://dev.gutenberg.org (or http://dev.gutenberg.org) to test the site (it may have occasional outages, as improvements are made). There is a new website page that lists some known issues, and part of the motivation for the change. If you visit the new website, please consider providing your input and suggestions via an anonymous online survey afterwards.

Project Gutenberg is a library of over 60,000 free eBooks. Choose among free epub and Kindle eBooks, download them or read them online. You will find the world's great literature here, with focus on older works for which U.S. copyright has expired. Thousands of volunteers digitized and diligently proofread the eBooks, for enjoyment and education.

No fee or registration! Everything from Project Gutenberg is gratis, libre, and completely without cost to readers. If you find Project Gutenberg useful, please consider a small donation, to help Project Gutenberg digitize more books, maintain our online presence, and improve Project Gutenberg programs and offerings. Other ways to help include digitizing, proofreading and formatting, recording audio books, or reporting errors.

https://www.gutenberg.org/
The Project Gutenberg Ebook of Alice’s Adventures in Wonderland, by Lewis Carroll

This ebook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org

Title: Alice’s Adventures in Wonderland
Author: Lewis Carroll
Release Date: June 25, 2008 [EBook #11]
Last Updated: February 22, 2020
Language: English
Character set encoding: UTF-8

*** START OF THIS PROJECT GUTENBERG EBOOK ALICE’S ADVENTURES IN WONDERLAND ***

Produced by Arthur DiBianca and David Widger

https://www.gutenberg.org/files/11/11-h/11-h.htm
Alice Top 50 Tokens

50 most common tokens (no stopwords or punctuation)

Counts

Samples

https://tinyurl.com/aintpuppython101
Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

nltk.download('gutenberg')

alice = Text(nltk.corpus.gutenberg.words('carroll-alice.txt'))

Text Processing and Understanding

- NLTK (Natural Language Processing with Python – Analyzing Text with the Natural Language Toolkit) Book: https://www.nltk.org/book/

```python
[ ] 1 !pip install nltk
  2 import nltk
  3 nltk.download('gutenberg')

Requirement already satisfied: nltk in /usr/local/lib/python3.6/dist-packages (3.2.5)
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from nltk) (1.12.0)
[nltk_data] Downloading package gutenberg to /root/nltk_data...
True

[ ] 1 from nltk.text import Text
  2 alice = Text(nltk.corpus.gutenberg.words('carroll-alice.txt'))
  3 alice

<Text: Alice 's Adventures in Wonderland by Lewis Carroll 1865>

[ ] 1 print(nltk.corpus.gutenberg.fileids())

['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt', 'blake-poems.txt', 'bryant-stories.txt', 'burgess-buster:
Displaying 25 of 398 matches:

] CHAPTER I . Down the Rabbit - Hole Alice was beginning to get very tired of what is the use of a book ,' thought Alice without pictures or conversation? so VERY remarkable in that; nor did Alice think it so VERY much out of the way looked at it, and then hurried on, Alice started to her feet, for it flashed hedge. In another moment down went Alice after it, never once considering ho ped suddenly down, so suddenly that Alice had not a moment to think about stop she fell past it. ' Well! ' thought Alice to herself, ' after such a fall as down, I think -- ' ( for, you see, Alice had learnt several things of this so tude or Longitude I ' ve got to? ' ( Alice had no idea what Latitude was, or L . There was nothing else to do, so Alice soon began talking again. ' Dinah ' cats eat bats, I wonder? ' And here Alice began to get rather sleepy, and wen dry leaves, and the fall was over. Alice was not a bit hurt, and she jumped not a moment to be lost: away went Alice like the wind, and was just in time but they were all locked; and when Alice had been all the way down one side a on it except a tiny golden key, and Alice ' s first thought was that it might and to her great delight it fitted! Alice opened the door and found that it le ead would go through,' thought poor Alice , ' it would be of very little use w ay things had happened lately, that Alice had begun to think that very few thi certainly was not here before,' said Alice,) and round the neck of the bottle ay ' Drink me,' but the wise little Alice was not going to do THAT in a hurry bottle was NOT marked ' poison,' so Alice ventured to taste it, and finding i * * ' What a curious feeling!' said Alice; ' I must be shutting up like a tel for it might end, you know,' said Alice to herself, ' in my going out altog garden at once; but, alas for poor Alice! when she got to the door, she fou

https://tinyurl.com/aintpupy101
alice.dispersion_plot(['Alice', 'Rabbit', 'Hatter', 'Queen'])

```python
1 import matplotlib.pyplot as plt
2 plt.figure(figsize=(10, 6))
3 alice.dispersion_plot(['Alice', 'Rabbit', 'Hatter', 'Queen'])
```

https://tinyurl.com/aintpupython101
```python
fdist = nltk.FreqDist(alice)
fdist.plot(50)
```

1 #import matplotlib.pyplot as plt
2 plt.figure(figsize=(10, 6))
3 fdist = nltk.FreqDist(alice)
4 fdist.plot(50)

https://tinyurl.com/aintpupython101
for word, freq in fdist.items()
if word.isalpha()

# import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
fdist_no_punc = nltk.FreqDist(dict((word, freq) for word, freq in fdist.items() if word.isalpha()))
fdist_no_punc.plot(50, cumulative=False, title="50 most common tokens (no punctuation)")
import nltk
nltk.download('stopwords')
stopwords = nltk.corpus.stopwords.words('english')

'same',
'so',
'than',
'too',
'very',
's',
't',
'can',
'will',
'just',
'don',
'don't',
'should',
'should've',
'now',

https://tinyurl.com/aintpupython101
for word, freq in fdist.items()
if word not in stopwords and word.isalpha()

# import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
fdist_no_punc_no_stopwords = nltk.FreqDist(dict((word, freq) for word, freq in fdist.items() if word not in stopwords and word.isalpha()))
fdist_no_punc_no_stopwords.plot(50, cumulative=False, title="50 most common tokens (no stopwords or punctuation)"

https://tinyurl.com/aintpuppython101
Alice Top 50 Tokens

50 most common tokens (no stopwords or punctuation)

Counts

Samples

https://tinyurl.com/aintpupython101
import requests
from bs4 import BeautifulSoup

url = 'https://www.gutenberg.org/files/11/11-h/11-h.htm'
reqs = requests.get(url)
html_doc = reqs.text

soup = BeautifulSoup(html_doc, 'html.parser')
text = soup.get_text()

https://tinyurl.com/aintpupython101
from tensorflow.keras.preprocessing.text import Tokenizer

sentences = ['i love my dog', 'I, love my cat', 'You love my dog!']

tokenizer = Tokenizer(num_words=100)
tokenizer.fit_on_texts(sentences)

word_index = tokenizer.word_index

print('sentences:', sentences)
print('word index:', word_index)
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

sentences = [
    'I love my dog',
    'I love my cat',
    'You love my dog!',
    'Do you think my dog is amazing?'
]

tokenizer = Tokenizer(num_words = 100, oov_token="<OOV>")
tokenizer.fit_on_texts(sentences)
word_index = tokenizer.word_index
sequences = tokenizer.texts_to_sequences(sentences)
padded = pad_sequences(sequences, maxlen=5)
print("sentences = ", sentences)
print("Word Index = ", word_index)
print("Sequences = ", sequences)
print("Padded Sequences:")
print(padded)
import pad_sequence
import tensorflow.keras.preprocessing.sequence

sentences = ['I love my dog', 'I love my cat', 'You love my dog!', 'Do you think my dog is amazing?']

Word Index = {'<OOV>': 1, 'my': 2, 'love': 3, 'dog': 4, 'i': 5, 'you': 6, 'cat': 7, 'do': 8, 'think': 9, 'is': 10, 'amazing': 11}

Sequences = [[5, 3, 2, 4], [5, 3, 2, 7], [6, 3, 2, 4], [8, 6, 9, 2, 4, 10, 11]]

Padded Sequences: [[0 5 3 2 4] [0 5 3 2 7] [0 6 3 2 4] [9 2 4 10 11]]
Python in Google Colab

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Keras preprocessing text

```python
keras.preprocessing.text Tokenizer
from keras.preprocessing.text import Tokenizer

docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']

create the tokenizer
t = Tokenizer()

fit the tokenizer on the documents
t.fit_on_texts(docs)

print('docs:', docs)
print('word_counts:', t.word_counts)
print('document_counts:', t.document_count)
print('word_index:', t.word_index)
print('word_docs:', t.word_docs)

integer encode documents
texts_to_matrix = t.texts_to_matrix(docs, mode='count')

print('texts_to_matrix:')
print(texts_to_matrix)
```

Using TensorFlow backend.

docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']

word_counts: OrderedDict([('well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort', 1), ('nice', 1), ('excellent', 1), ('document_count': 5
word_index: {'work': 1, 'well': 2, 'done': 3, 'good': 4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8}
word_docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1, 'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1}
texts_to_matrix:

[[0.0 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]]

https://tinyurl.com/aintpuppython101
One-hot encoding

'The mouse ran up the clock' =

<table>
<thead>
<tr>
<th>Word</th>
<th>Index</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>The</td>
<td>1</td>
<td>[0, 1, 0, 0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>mouse</td>
<td>2</td>
<td>[0, 0, 1, 0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>ran</td>
<td>3</td>
<td>[0, 0, 0, 1, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>up</td>
<td>4</td>
<td>[0, 0, 0, 0, 1, 0, 0, 0]</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
<td>[0, 1, 0, 0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>clock</td>
<td>5</td>
<td>[0, 0, 0, 0, 0, 0, 1, 0]</td>
</tr>
</tbody>
</table>

[0, 1, 2, 3, 4, 5, 6]
Word embeddings

Male-Female

Verb Tense

Country-Capital

Source: https://developers.google.com/machine-learning/guides/text-classification/step-3
Word embeddings

The mouse ran up the clock

<table>
<thead>
<tr>
<th>Word</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>mouse</td>
<td>2</td>
</tr>
<tr>
<td>ran</td>
<td>3</td>
</tr>
<tr>
<td>up</td>
<td>4</td>
</tr>
<tr>
<td>clock</td>
<td>5</td>
</tr>
</tbody>
</table>

The mouse ran down

<table>
<thead>
<tr>
<th>Word</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>mouse</td>
<td>2</td>
</tr>
<tr>
<td>ran</td>
<td>3</td>
</tr>
<tr>
<td>down</td>
<td>6</td>
</tr>
</tbody>
</table>

[1, 2, 3, 4, 1, 5] → Embedding layer (output dim = 4) → [[0.236, -0.141, 0.000, 0.045], [0.006, 0.652, 0.270, -0.556], [0.305, 0.569, -0.028, 0.496], [0.421, 0.195, -0.058, 0.477], [0.236, -0.141, 0.000, 0.045], [0.844, -0.001, 0.763, 0.201]]
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
sortedset = sorted(set(terms))
print('terms =', terms)
print('sortedset =', sortedset)

terms = ['the', 'mouse', 'ran', 'up', 'the', 'clock', 'the', 'mouse', 'ran', 'down']
sortedset = ['clock', 'down', 'mouse', 'ran', 'the', 'up']

https://tinyurl.com/aintpupython101
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
print(terms)

tfdict = {}
for term in terms:
    if term not in tfdict:
        tfdict[term] = 1
    else:
        tfdict[term] += 1

a = []
for k,v in tfdict.items():
    a.append('{}: {}'.format(k,v))
print(a)

['the', 'mouse', 'ran', 'up', 'the', 'clock', 'the', 'mouse', 'ran', 'down']
['the', 3', 'mouse', 2', 'ran', 2', 'up', 1', 'clock', 1', 'down', 1']
https://tinyurl.com/aintpuppython101
sorted_by_value_reverse = sorted(tfdict.items(), key=lambda kv: kv[1], reverse=True)

sorted_by_value_reverse_dict = dict(sorted_by_value_reverse)

id2word = {id: word for id, word in enumerate(sorted_by_value_reverse_dict)}

word2id = dict([(v, k) for (k, v) in id2word.items()])

https://tinyurl.com/aintpuppython101
sorted_by_value = sorted(tfdict.items(), key=lambda kv: kv[1])
print('sorted_by_value: ', sorted_by_value)

sorted_by_value2 = sorted(tfdict, key=tfdict.get, reverse=True)
print('sorted_by_value2: ', sorted_by_value2)

sorted_by_value_reverse = sorted(tfdict.items(), key=lambda kv: kv[1], reverse=True)
print('sorted_by_value_reverse: ', sorted_by_value_reverse)

sorted_by_value_reverse_dict = dict(sorted_by_value_reverse)
print('sorted_by_value_reverse_dict: ', sorted_by_value_reverse_dict)

id2word = {id: word for id, word in enumerate(sorted_by_value_reverse_dict)}
print('id2word', id2word)

word2id = dict([(v, k) for (k, v) in id2word.items()])
print('word2id', word2id)

print('len_words:', len(word2id))

sorted_by_key = sorted(tfdict.items(), key=lambda kv: kv[0])
print('sorted_by_key: ', sorted_by_key)

tfstring = '
'.join(a)
print(tfstring)

tf = tfdict.get('mouse')
print(tf)
from keras.preprocessing.text import Tokenizer

define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
# create the tokenizer
t = Tokenizer()
# fit the tokenizer on the documents
t.fit_on_texts(docs)
print('docs:', docs)

print('word_counts:', t.word_counts)
print('document_count:', t.document_count)
print('word_index:', t.word_index)
print('word_docs:', t.word_docs)

# integer encode documents
texts_to_matrix = t.texts_to_matrix(docs, mode='count')
print('texts_to_matrix:')
print(texts_to_matrix)

channel: https://machinelearningmastery.com/prepare-text-data-deep-learning-keras/
from keras.preprocessing.text import Tokenizer
# define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
# create the tokenizer
t = Tokenizer()
# fit the tokenizer on the documents
t.fit_on_texts(docs)
print('docs:', docs)
print('word_counts:', t.word_counts)
print('document_count:', t.document_count)
print('word_index:', t.word_index)
print('word_docs:', t.word_docs)
# integer encode documents
texts_to_matrix = t.texts_to_matrix(docs, mode='count')
print('texts_to_matrix:')
print(texts_to_matrix)
texts_to_matrix = t.texts_to_matrix(docs, mode='count')

docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
word_counts: OrderedDict([( 'well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort', 1), ('nice', 1), ('excellent', 1)])
document_count: 5
word_index: { 'work': 1, 'well': 2, 'done': 3, 'good': 4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8} 
word_docs: { 'done': 1, 'well': 1, 'work': 2, 'good': 1, 'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1} 
texts_to_matrix:
[[0. 0. 1. 1. 0. 0. 0. 0. 0. ]
 [0. 1. 0. 0. 1. 0. 0. 0. 0. ]
 [0. 0. 0. 0. 0. 1. 1. 0. 0. ]
 [0. 1. 0. 0. 0. 0. 0. 1. 0. ]
 [0. 0. 0. 0. 0. 0. 0. 0. 1. ]]}
Source: https://machinelearningmastery.com/prepare-text-data-deep-learning-keras/
from keras.preprocessing.text import Tokenizer

# define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']

# create the tokenizer

t = Tokenizer()

# fit the tokenizer on the documents
t.fit_on_texts(docs)

print('docs:', docs)
print('word_counts:', t.word_counts)
print('document_count:', t.document_count)
print('word_index:', t.word_index)
print('word_docs:', t.word_docs)

# integer encode documents

texts_to_matrix = t.texts_to_matrix(docs, mode='tfidf')

print('texts_to_matrix:')
print(texts_to_matrix)

texts_to_matrix:
[[0. 0. 1.25276297 1.25276297 0. 0. 0. 0. 0. 0.]
 [0. 0.98082925 0. 0. 1.25276297 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1.25276297 1.25276297 0. 0. 0.]
 [0. 0.98082925 0. 0. 0. 0. 0. 1.25276297 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1.25276297]]
BERT Sequence-level tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT Token-level tasks

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Sentiment Analysis:
Single Sentence Classification

(b) Single Sentence Classification Tasks: SST-2, CoLA

A Visual Guide to Using BERT for the First Time
(Jay Alammar, 2019)

“a visually stunning rumination on love”
Reviewer #1

That’s a positive thing to say

“reassembled from the cutting room floor of any given daytime soap”
Reviewer #2

That’s negative

<table>
<thead>
<tr>
<th>sentence</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>a stirring, funny and finally transporting reimagining of beauty and the beast and 1930s horror films</td>
<td>1</td>
</tr>
<tr>
<td>apparently reassembled from the cutting room floor of any given daytime soap</td>
<td>0</td>
</tr>
<tr>
<td>they presume their audience won't sit still for a sociology lesson</td>
<td>0</td>
</tr>
<tr>
<td>this is a visually stunning rumination on love, memory, history and the war between art and commerce</td>
<td>1</td>
</tr>
<tr>
<td>jonathan parker 's bartleby should have been the be all end all of the modern office anomie films</td>
<td>1</td>
</tr>
</tbody>
</table>

Movie Review Sentiment Classifier

“a visually stunning rumination on love”

Movie Review Sentiment Classifier

positive

Movie Review Sentiment Classifier

"a visually stunning rumination on love"

Movie Review Sentiment Classifier
Model Training

Movie Review Sentiment Classifier

DistilBERT
Already (pre-)trained

Logistic Regression
We will train in this tutorial

Step # 1 Use distilBERT to Generate Sentence Embeddings

Step #1: Use DistilBERT to embed all the sentences

Step #2: Test/Train Split for Model #2, Logistic Regression

Step #3: Train the logistic regression model using the training set

<table>
<thead>
<tr>
<th>Sentence Embeddings</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.215</td>
</tr>
<tr>
<td>1</td>
<td>-0.1402</td>
</tr>
<tr>
<td>...</td>
<td>0.201</td>
</tr>
<tr>
<td>767</td>
<td></td>
</tr>
</tbody>
</table>

**Tokenization**

[CLS] a visually stunning rum # # # # ination on love [SEP]

a visually stunning rumination on love

---

```python
tokenizer.encode("a visually stunning rumination on love", add_special_tokens=True)
```

Tokenization for BERT Model

Source: Jay Alammar (2019), A Visual Guide to Using BERT for the First Time,
http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
Flowing Through DistilBERT (768 features)

Model #1 Output Class vector as Model #2 Input

Fine-tuning BERT on Single Sentence Classification Tasks

Model #1 Output Class vector as Model #2 Input

Logistic Regression Model to classify Class vector

“a visually stunning rumination on love”

```python
df = pd.read_csv('https://github.com/clairett/pytorch-sentiment-classification/raw/master/data/SST2/train.tsv',
delimiter='\t', header=None)
df.head()
```

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a stirring , funny and finally transporting re...</td>
</tr>
<tr>
<td>1</td>
<td>apparently reassembled from the cutting room f...</td>
</tr>
<tr>
<td>2</td>
<td>they presume their audience wo n't sit still f...</td>
</tr>
<tr>
<td>3</td>
<td>this is a visually stunning rumination on love...</td>
</tr>
<tr>
<td>4</td>
<td>jonathan parker 's bartleby should have been t...</td>
</tr>
</tbody>
</table>
Tokenization

tokenized = df[0].apply((lambda x: tokenizer.encode(x, add_special_tokens=True)))
# BERT Input Tensor

<table>
<thead>
<tr>
<th>Input sequences (reviews)</th>
<th>Tokens in each sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>101 1037 ... 0</td>
</tr>
<tr>
<td>1</td>
<td>101 2027 ... 0</td>
</tr>
<tr>
<td>...</td>
<td>... ... ...</td>
</tr>
<tr>
<td>1,999</td>
<td>101 1996 ... 0</td>
</tr>
</tbody>
</table>

Processing with DistilBERT

```python
input_ids = torch.tensor(np.array(padded))
last_hidden_states = model(input_ids)
```
Unpacking the BERT output tensor

`last_hidden_states[0]`

BERT Output Tensor/predictions

66 Tokens in each sequence

2,000 Output rows (one per sequence)

768 Number of hidden units

Sentence to last_hidden_state[0]

```
input_ids

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>...</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>101</td>
<td>1037</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,999</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
last_hidden_states[0]
```

Batch
Tokenize all 2,000 sentences
Put each sentence in its own row

```
101 1837 17453 14726 19379 12758 2006 2291 102 ... 0
```

```
[CLS] a visually stunning run #ination on love [SEP] ...

“a visually stunning rumination on love”
```

BERT’s output for the [CLS] tokens

# Slice the output for the first position for all the sequences, take all hidden unit outputs
features = last_hidden_states[0][:, 0, :].numpy()
The tensor sliced from BERT's output

Sentence Embeddings

Dataset for Logistic Regression (768 Features)

The features are the output vectors of BERT for the [CLS] token (position #0)

<table>
<thead>
<tr>
<th>features</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 ... 767</td>
<td>1 0 1</td>
</tr>
</tbody>
</table>

labels = df[1]

train_features, test_features, train_labels, test_labels = train_test_split(features, labels)

---

### Step #2: Test/Train Split for model #2, logistic regression

<table>
<thead>
<tr>
<th>Sentence Embeddings</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-0.215</td>
<td>0.201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sentence Embeddings</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-0.1402</td>
<td>0.201</td>
</tr>
</tbody>
</table>

**Training set**
- 75% of examples

**Testing set**
- 25% of examples

---

Score Benchmarks
Logistic Regression Model on SST-2 Dataset

# Training
lr_clf = LogisticRegression()
lr_clf.fit(train_features, train_labels)

# Testing
lr_clf.score(test_features, test_labels)

# Accuracy: 81%
# Highest accuracy: 96.8%
# Fine-tuned DistilBERT: 90.7%
# Full size BERT model: 94.9%

<table>
<thead>
<tr>
<th>sentence</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>a stirring, funny and finally transporting reimagining of beauty and the beast and 1930s horror films</td>
<td>1</td>
</tr>
<tr>
<td>apparently reassembled from the cutting room floor of any given daytime soap</td>
<td>0</td>
</tr>
<tr>
<td>they presume their audience won't sit still for a sociology lesson</td>
<td>0</td>
</tr>
<tr>
<td>this is a visually stunning rumination on love, memory, history and the war between art and commerce</td>
<td>1</td>
</tr>
<tr>
<td>jonathan parker 's bartleby should have been the be all end all of the modern office anomie films</td>
<td>1</td>
</tr>
</tbody>
</table>

A Visual Notebook to Using BERT for the First Time

“a visually stunning rumination on love”
Reviewer #1

That’s a positive thing to say

“reassembled from the cutting room floor of any given daytime soap”
Reviewer #2

That’s negative

Text classification with preprocessed text: Movie reviews

This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—classification, an important and widely applicable kind of machine learning problem.

We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The training and testing sets are balanced, meaning they contain an equal number of positive and negative reviews.

This notebook uses tf.keras, a high-level API to build and train models in TensorFlow. For a more advanced text classification tutorial using tf.keras, see the MLCC Text Classification Guide.

https://www.tensorflow.org/tutorials/keras/text_classification
Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Text Classification

- François Chollet (2017), Text classification with preprocessed text: Movie reviews, [https://www.tensorflow.org/tutorials/keras/text_classification](https://www.tensorflow.org/tutorials/keras/text_classification)

Text Classification: IMDB Movie Reviews

Source: François Chollet (2017), Text classification with preprocessed text: Movie reviews, [https://www.tensorflow.org/tutorials/keras/text_classification](https://www.tensorflow.org/tutorials/keras/text_classification)

```python
1!pip install tf-nightly
2 import tensorflow as tf
3 print(tf.__version__)
```

Collecting tf-nightly
Collecting tf-estimator-nightly

Requirement already satisfied: google-pasta>=0.1.8 in /usr/local/lib/python3.6/dist-packages (from tf-nightly)
Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Sentiment Analysis


Sentiment Analysis - Unsupervised Lexical

2 2 #!wget 'http://mail.tku.edu.tw/myday/data/example/movie_reviews.csv'
3 3 !ls

[3] 1 import numpy as np
2 import pandas as pd
3 import tensorflow as tf
4 import tensorflow_hub as hub
5 6 df = pd.read_csv('http://mail.tku.edu.tw/myday/data/example/movie_reviews.csv')
7 df.info()

https://tinyurl.com/aintpupython101
Summary

• AI for Text Analytics: Foundations
  – Processing and Understanding Text

• AI for Text Analytics: Application
  – Sentiment Analysis
  – Text classification
References

- Gabe Ignatow and Rada F. Mihalcea (2017), An Introduction to Text Mining: Research Design, Data Collection, and Analysis, SAGE Publications.
- Rajesh Arumugam (2018), Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications, Packt.
- François Chollet (2017), Text classification with preprocessed text: Movie reviews, https://www.tensorflow.org/tutorials/keras/text_classification
Q & A

人工智慧文本分析基礎與應用
(Artificial Intelligence for Text Analytics: Foundations and Applications)

Min-Yuh Day
戴敏育
Associate Professor
副教授

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2020-09-26