自然語言處理核心技術與文字探勘
(Core Technologies of Natural Language Processing and Text Mining)

Min-Yuh Day
戴敏育
Associate Professor
副教授
Institute of Information Management, National Taipei University
國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday
2020-09-18
戴敏育博士
(Min-Yuh Day, Ph.D.)

國立台北大學 資訊管理研究所 副教授
中央研究院 資訊科學研究所 訪問學人

國立台灣大學 資訊管理 博士

Publications Co-Chairs, IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013-)

Program Co-Chair, IEEE International Workshop on Empirical Methods for Recognizing Inference in TExt (IEEE EM-RITE 2012-)

Publications Chair, The IEEE International Conference on Information Reuse and Integration (IEEE IRI)
Topics

1. 自然語言處理核心技術與文字探勘
 (Core Technologies of Natural Language Processing and Text Mining)

2. 人工智慧文本分析基礎與應用
 (Artificial Intelligence for Text Analytics: Foundations and Applications)

3. 文本表達特徵工程
 (Feature Engineering for Text Representation)

4. 語意分析和命名實體識別
 (Semantic Analysis and Named Entity Recognition; NER)

5. 深度學習和通用句子嵌入模型
 (Deep Learning and Universal Sentence-Embedding Models)

6. 問答系統與對話系統
 (Question Answering and Dialogue Systems)
Outline

• Text Analytics and Text Mining
• Natural Language Processing (NLP)
• Text Analytics with Python
Text Analytics (TA)
Text Mining (TM)
Natural Language Processing (NLP)
Artificial Intelligence
(AI)
Evolution of Computerized Decision Support to Analytics/Data Science

The timeline in Figure 1.8 shows the terminology used to describe analytics since the 1970s. During the 1970s, the primary focus of information systems support for decision making focused on providing structured, periodic reports that a manager could use for decision making (or ignore them). Businesses began to create routine reports to inform decision makers (managers) about what had happened in the previous period (e.g., day, week, month, quarter). Although it was useful to know what had happened in the past, managers needed more than this: They needed a variety of reports at different levels of granularity to better understand and address changing needs and challenges of the business. These were usually called management information systems (MIS). In the early 1970s, Scott-Morton first articulated the major concepts of DSS. He defined DSSs as "interactive computer-based systems, which help decision makers utilize data and models to solve unstructured problems" (Gorry and Scott-Morton, 1971). The following is another classic DSS definition, provided by Keen and Scott-Morton (1978):

Decision support systems couple the intellectual resources of individuals with the capabilities of the computer to improve the quality of decisions. It is a computer-based support system for management decision makers who deal with semistructured problems.

Note that the term decision support system, like management information system and several other terms in the field of IT, is a content-free expression (i.e., it means different things to different people). Therefore, there is no universally accepted definition of DSS.

During the early days of analytics, data was often obtained from the domain experts using manual processes (i.e., interviews and surveys) to build mathematical or knowledge-based models to solve constrained optimization problems. The idea was to do the best with limited resources. Such decision support models were typically called operations research (OR). The problems that were too complex to solve optimally (using linear or nonlinear mathematical programming techniques) were tackled using heuristic methods such as simulation models. (We will introduce these as prescriptive analytics later in this chapter and in a bit more detail in Chapter 6.)

In the late 1970s and early 1980s, in addition to the mature OR models that were being used in many industries and government systems, a new and exciting line of models had emerged: rule-based expert systems. These systems promised to capture experts' knowledge in a format that computers could process (via a collection of if–then–else rules or heuristics) so that these could be used for consultation much the same way that one...
Business Analytics

Descriptive
- Questions: What happened? What is happening?
- Enablers: Business reporting, Dashboards, Scorecards, Data warehousing
- Outcomes: Well-defined business problems and opportunities

Predictive
- Questions: What will happen? Why will it happen?
- Enablers: Data mining, Text mining, Web/media mining, Forecasting
- Outcomes: Accurate projections of future events and outcomes

Prescriptive
- Questions: What should I do? Why should I do it?
- Enablers: Optimization, Simulation, Decision modeling, Expert systems
- Outcomes: Best possible business decisions and actions

Business Intelligence
Advanced Analytics

Text Analytics and Text Mining
Dipanjan Sarkar (2019),

Text Analytics with Python:
A Practitioner’s Guide to Natural Language Processing,
Charu C. Aggarwal (2018),

Machine Learning for Text,
Springer

Gabe Ignatow and Rada F. Mihalcea (2017), An Introduction to Text Mining: Research Design, Data Collection, and Analysis, SAGE Publications.

Source: https://www.amazon.com/Introduction-Text-Mining-Research-Collection/dp/1506337007
Text Analytics

• **Text Analytics** = Information Retrieval + Information Extraction + Data Mining + Web Mining

• **Text Analytics** = Information Retrieval + Text Mining

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Text Mining

• Text Data Mining

• Knowledge Discovery in Textual Databases

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Text Mining Technologies

- Statistics
- Database Systems
- Natural Language Processing
- Information Retrieval
- Machine Learning
- Applications
- Pattern Recognition
- Visualization
- Algorithms
- High-performance Computing

Adapted from: Jiawei Han and Micheline Kamber (2011), Data Mining: Concepts and Techniques, Third Edition, Elsevier
Application Areas of Text Mining

- Information extraction
- Topic tracking
- Summarization
- Categorization
- Clustering
- Concept linking
- Question answering
Text-Based Deception-Detection Process

1. Statements Transcribed for Processing
2. Cues Extracted & Selected
3. Text Processing Software-Identified Cues in Statements
4. Text Processing Software-Generated Quantified Cues
5. Classification Models Trained and Tested on Quantified Cues
6. Statements Labeled as Truthful or Deceptive by Law Enforcement

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Multilevel Analysis of Text for Gene/Protein Interaction Identification

... expression of Bcl-2 is correlated with insufficient white blood cell death and activation of p53.
Context Diagram for the Text Mining Process

Unstructured data (text) → Extract knowledge from available data sources → Context-specific knowledge

Structured data (databases) → Extract knowledge from available data sources → Context-specific knowledge

Software/hardware limitations
Privacy issues
Linguistic limitations
Domain expertise
Tools and techniques

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
The Three-Step/Task Text Mining Process

Task 1: Establish the Corpus
Collect and organize the domain-specific unstructured data.

- The inputs to the process include a variety of relevant unstructured (and semi-structured) data sources such as text, XML, HTML, etc.

Task 2: Create the Term-Document Matrix
Introduce structure to the corpus.

- The output of Task 1 is a collection of documents in some digitized format for computer processing.

Task 3: Extract Knowledge
Discover novel patterns from the T-D matrix.

- The output of Task 2 is a flat file called a term-document matrix where the cells are populated with the term frequencies.

- The output of Task 3 is a number of problem-specific classification, association, clustering models and visualizations.

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Term–Document Matrix

<table>
<thead>
<tr>
<th>Documents</th>
<th>Investment Risk</th>
<th>Project Management</th>
<th>Software Engineering</th>
<th>Development</th>
<th>SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document 1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Document 2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 3</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Document 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 5</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Document 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Emotions

Love

Joy

Surprise

Anger

Sadness

Fear

Example of Opinion: review segment on iPhone

“I bought an iPhone a few days ago. It was such a nice phone. The touch screen was really cool. The voice quality was clear too. However, my mother was mad with me as I did not tell her before I bought it. She also thought the phone was too expensive, and wanted me to return it to the shop. ... ”

Example of Opinion: review segment on iPhone

“(1) I bought an iPhone a few days ago.

(2) It was such a nice phone.

(3) The touch screen was really cool.

(4) The voice quality was clear too.

(5) However, my mother was mad with me as I did not tell her before I bought it.

(6) She also thought the phone was too expensive, and wanted me to return it to the shop. ...”
A Multistep Process to Sentiment Analysis

1. Calculate the O–S Polarity
2. Calculate the N–P Polarity of the sentiment
3. Identify the target for the sentiment
4. Record the Polarity, Strength, and the Target of the sentiment

Tabulate & aggregate the sentiment analysis results

Sentiment Analysis

Tasks

- Subjectivity Classification
- Sentiment Classification
- Review Usefulness Measurement
- Opinion Spam Detection
- Lexicon Creation
- Aspect Extraction
- Polarity Determination
- Vagueness resolution in opinionated text
- Multi- & Cross-Lingual SC
- Cross-domain SC

Approaches

- Machine Learning based
- Lexicon based
- Hybrid approaches
- Ontology based
- Non-Ontology based

Sentiment Classification Techniques

Sentiment Analysis

Machine Learning Approach

- Supervised Learning
 - Decision Tree Classifiers
 - Linear Classifiers
 - Rule-based Classifiers
 - Probabilistic Classifiers

- Unsupervised Learning
 - Support Vector Machine (SVM)
 - Neural Network (NN)
 - Deep Learning (DL)
 - Naïve Bayes (NB)
 - Bayesian Network (BN)
 - Maximum Entropy (ME)

Lexicon-based Approach

- Dictionary-based Approach
- Corpus-based Approach

Unsupervised Learning

- Statistical
- Semantic
P–N Polarity and S–O Polarity Relationship

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Taxonomy of Web Mining

Web Mining

Data Mining

Text Mining

Web Content Mining
Source: unstructured textual content of the Web pages (usually in HTML format)

Web Structure Mining
Source: the unified resource locator (URL) links contained in the Web pages

Web Usage Mining
Source: the detailed description of a Web site’s visits (sequence of clicks by sessions)

Search Engines
- Page Rank
- Search Engine Optimization
- Marketing Attribution

Sentiment Analysis
- Information Retrieval
- Social Network Analysis
- Customer Analytics

Semantic Webs
- Graph Mining
- Social Media Analytics
- 360 Customer View

Web Analytics
- Social Analytics
- Clickstream Analysis
- Weblog Analysis
- Voice of the Customer

Structure of a Typical Internet Search Engine

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Web Usage Mining (Web Analytics)

• Web usage mining (Web analytics) is the extraction of useful information from data generated through Web page visits and transactions.

• Clickstream Analysis
Extraction of Knowledge from Web Usage Data

User/Customer → Website → Weblogs → Preprocess Data
- Collecting
- Merging
- Cleaning
- Structuring
 - Identify users
 - Identify sessions
 - Identify page views
 - Identify visits

Extract Knowledge
- Usage patterns
- User profiles
- Page profiles
- Visit profiles
- Customer profiles

How to better the data
How to improve the Web site
How to increase the customer value

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Social Analytics

- Social analytics is defined as monitoring, analyzing, measuring and interpreting digital interactions and relationships of people, topics, ideas and content.

Branches of Social Analytics

Social Analytics

- Social Network Analysis (SNA)
- Social Media Analytics

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Text Mining Technologies
Text Mining (TM)

Natural Language Processing (NLP)
Text Mining Concepts

• 85-90 percent of all corporate data is in some kind of unstructured form (e.g., text)
• Unstructured corporate data is doubling in size every 18 months
• Tapping into these information sources is not an option, but a need to stay competitive
• Answer: text mining
 – A semi-automated process of extracting knowledge from unstructured data sources
 – a.k.a. text data mining or knowledge discovery in textual databases

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems
Text mining

Text Data Mining

Intelligent Text Analysis

Knowledge-Discovery in Text (KDT)

Text Mining
(text data mining)

the process of deriving high-quality information from text

http://en.wikipedia.org/wiki/Text_mining
Text Mining: the process of extracting interesting and non-trivial information and knowledge from unstructured text.

Text Mining: discovery by computer of new, previously unknown information, by automatically extracting information from different written resources.

An example of Text Mining

Analyze Text
- Information Extraction
- Classification
- Summarization
- Clustering

Retrieve and preprocess document

Document Collection

Management Information System

Knowledge

Overview of Information Extraction based Text Mining Framework

Natural Language Processing (NLP)

- Natural language processing (NLP) is an important component of text mining and is a subfield of artificial intelligence and computational linguistics.

Natural Language Processing (NLP) and Text Mining

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw text</td>
<td>Tokenization</td>
</tr>
<tr>
<td>Sentence Segmentation</td>
<td>Stop word removal</td>
</tr>
<tr>
<td>Tokenization</td>
<td>Stemming / Lemmatization</td>
</tr>
<tr>
<td>Part-of-Speech (POS)</td>
<td>Dependency Parser</td>
</tr>
<tr>
<td>Stop word removal</td>
<td>String Metrics & Matching</td>
</tr>
</tbody>
</table>

- **Word’s stem**: am → am
- **Word’s lemma**: am → be
- **Having**: having → hav
- **Have**: having → have

Source: Nitin Hardeniya (2015), NLTK Essentials, Packt Publishing; Florian Leitner (2015), Text mining - from Bayes rule to dependency parsing
Text Summarization

Dictionary / Thesaurus

Pre-processing

Text Structure Analysis

Word Segmentation

Occurrence Statistic

POS Tagging

Keyword Extraction

Weigh Words & Sentences

Sentences Selection

Rough Summary Generation

Smoothing

Summary Output

Topic Modeling

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—How many genes does an organism need to survive? Last week at the genome meeting here, two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today’s organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn’t be enough.

Although the numbers don’t match precisely, those predictions “are not all that far apart,” especially in comparison to the 75,000 genes in the human genome, notes Sviv Anderson, a genetics University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. “It may be a way of organizing any newly sequenced genome,” explains Arcady Mushegan, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an

Natural Language Processing (NLP)

• Part-of-speech tagging
• Text segmentation
• Word sense disambiguation
• Syntactic ambiguity
• Imperfect or irregular input
• Speech acts

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
NLP Tasks

- Question answering
- Automatic summarization
- Natural language generation
- Natural language understanding
- Machine translation
- Foreign language reading
- Foreign language writing.
- Speech recognition
- Text-to-speech
- Text proofing
- Optical character recognition
NLP

Classical NLP

Deep Learning-based NLP

Source: http://blog.aylien.com/leveraging-deep-learning-for-multilingual/
Modern NLP Pipeline

Documents → Language Detection → Pre-processing (EN, CN) → Tokenize → POS Tagging → ... → Token Filtering → Pre-processed Documents

Documents → Build Vocabulary → Bag-of-Words & Vectorization → Word Embeddings (word2vec, doc2vec, GloVe) → Machine Learning → (Deep) Neural Network → Task / Output (Classification, Sentiment Analysis, Entity Extraction, Topic Modeling, Similarity)

Modern NLP Pipeline

Source: http://mattfortier.me/2017/01/31/nlp-intro-pt-1-overview/
Deep Learning NLP
Text Classification

Source: https://developers.google.com/machine-learning/guides/text-classification/
Text Classification Workflow

• Step 1: Gather Data
• Step 2: Explore Your Data
• Step 2.5: Choose a Model*
• Step 3: Prepare Your Data
• Step 4: Build, Train, and Evaluate Your Model
• Step 5: Tune Hyperparameters
• Step 6: Deploy Your Model

Source: https://developers.google.com/machine-learning/charts/text-classification/
Text Classification Flowchart

Text Classification S/W <1500: N-gram

Text Classification S/W >=1500: Sequence

Select top_k features [freq]

normalization mode

samplewise

None

featurewise

Embeddings

Yes

S/W < 15K

Fine-tuned pre-trained embedding

Frozen pre-trained embedding

Embeddings learned from scratch

No

Build model

RNN

stacked RNN

CNN-RNN

sepCNN

CNN

Hyperparameter tuning

Step 2.5: Choose a Model

Samples/Words < 1500

150,000/100 = 1500

IMDb review dataset, the samples/words-per-sample ratio is ~ 144

Step 2.5: Choose a Model

Samples/Words < 15,000

1,500,000/100 = 15,000
Step 3: Prepare Your Data

Texts:
T1: 'The mouse ran up the clock'
T2: 'The mouse ran down'

Token Index:
{'the': 1, 'mouse': 2, 'ran': 3, 'up': 4, 'clock': 5, 'down': 6}.

NOTE: 'the' occurs most frequently, so the index value of 1 is assigned to it. Some libraries reserve index 0 for unknown tokens, as is the case here.

Sequence of token indexes:
T1: 'The mouse ran up the clock' = [1, 2, 3, 4, 1, 5]
T1: 'The mouse ran down' = [1, 2, 3, 6]
One-hot encoding

'The mouse ran up the clock' =

<table>
<thead>
<tr>
<th>Word</th>
<th>Index</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>The</td>
<td>1</td>
<td>[0, 1, 0, 0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>mouse</td>
<td>2</td>
<td>[0, 0, 1, 0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>ran</td>
<td>3</td>
<td>[0, 0, 0, 1, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>up</td>
<td>4</td>
<td>[0, 0, 0, 0, 1, 0, 0, 0]</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
<td>[0, 1, 0, 0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>clock</td>
<td>5</td>
<td>[0, 0, 0, 0, 0, 0, 1, 0]</td>
</tr>
</tbody>
</table>

[0, 1, 2, 3, 4, 5, 6]
Word embeddings

Male-Female

Verb Tense

Country-Capital

Source: https://developers.google.com/machine-learning/guides/text-classification/step-3
Word embeddings

The mouse ran up the clock

The mouse ran down

the 1
mouse 2
ran 3
up 4
clock 5
down 6

[1, 2, 3, 4, 1, 5]

Embedding layer (output dim = 4)

[[0.236, -0.141, 0.000, 0.045],
 [0.006, 0.652, 0.270, -0.556],
 [0.305, 0.569, -0.028, 0.496],
 [0.421, 0.195, -0.058, 0.477],
 [0.236, -0.141, 0.000, 0.045],
 [0.844, -0.001, 0.763, 0.201]]
Sequence to Sequence (Seq2Seq)
Transformer (Attention is All You Need) (Vaswani et al., 2017)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)

Overall pre-training and fine-tuning procedures for BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google AI Language
{jacobdevlin, mingweichang, kentonl, kristout}@google.com

BERT
Bidirectional Encoder Representations from Transformers

Pre-training model architectures

BERT uses a bidirectional Transformer.
OpenAI GPT uses a left-to-right Transformer.
ELMo uses the concatenation of independently trained left-to-right and right-to-left LSTM to generate features for downstream tasks.
Among three, only BERT representations are jointly conditioned on both left and right context in all layers.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)

BERT input representation

The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.

Fine-tuning BERT on NLP Tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

BERT Sequence-level tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT Token-level tasks

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

General Language Understanding Evaluation (GLUE) benchmark

GLUE Test results

<table>
<thead>
<tr>
<th>System</th>
<th>MNLI-(m/mm)</th>
<th>QQP</th>
<th>QNLI</th>
<th>SST-2</th>
<th>CoLA</th>
<th>STS-B</th>
<th>MRPC</th>
<th>RTE</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>392k</td>
<td>363k</td>
<td>108k</td>
<td>67k</td>
<td>8.5k</td>
<td>5.7k</td>
<td>3.5k</td>
<td>2.5k</td>
<td></td>
</tr>
<tr>
<td>Pre-OpenAI SOTA</td>
<td>80.6/80.1</td>
<td>66.1</td>
<td>82.3</td>
<td>93.2</td>
<td>35.0</td>
<td>81.0</td>
<td>86.0</td>
<td>61.7</td>
<td>74.0</td>
</tr>
<tr>
<td>BiLSTM+ELMo+Attn</td>
<td>76.4/76.1</td>
<td>64.8</td>
<td>79.9</td>
<td>90.4</td>
<td>36.0</td>
<td>73.3</td>
<td>84.9</td>
<td>56.8</td>
<td>71.0</td>
</tr>
<tr>
<td>OpenAI GPT</td>
<td>82.1/81.4</td>
<td>70.3</td>
<td>88.1</td>
<td>91.3</td>
<td>45.4</td>
<td>80.0</td>
<td>82.3</td>
<td>56.0</td>
<td>75.2</td>
</tr>
<tr>
<td>BERT$_{BASE}$</td>
<td>84.6/83.4</td>
<td>71.2</td>
<td>90.1</td>
<td>93.5</td>
<td>52.1</td>
<td>85.8</td>
<td>88.9</td>
<td>66.4</td>
<td>79.6</td>
</tr>
<tr>
<td>BERT$_{LARGE}$</td>
<td>86.7/85.9</td>
<td>72.1</td>
<td>91.1</td>
<td>94.9</td>
<td>60.5</td>
<td>86.5</td>
<td>89.3</td>
<td>70.1</td>
<td>81.9</td>
</tr>
</tbody>
</table>

- **MNLI**: Multi-Genre Natural Language Inference
- **QQP**: Quora Question Pairs
- **QNLI**: Question Natural Language Inference
- **SST-2**: The Stanford Sentiment Treebank
- **CoLA**: The Corpus of Linguistic Acceptability
- **STS-B**: The Semantic Textual Similarity Benchmark
- **MRPC**: Microsoft Research Paraphrase Corpus
- **RTE**: Recognizing Textual Entailment

Pre-trained Language Model (PLM)

Source: https://github.com/thunlp/PLMpapers
Transformers

State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch

• Transformers
 – pytorch-transformers
 – pytorch-pretrained-bert

• provides state-of-the-art general-purpose architectures
 – (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...)
 – for Natural Language Understanding (NLU) and Natural Language Generation (NLG)
 with over 32+ pretrained models in 100+ languages
 and deep interoperability between TensorFlow 2.0 and PyTorch.

Source: https://github.com/huggingface/transformers
Transfer Learning in Natural Language Processing

A High-Level Depiction of DeepQA Architecture

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
NLP Libraries and Tools
Natural Language Processing with Python
– Analyzing Text with the Natural Language Toolkit

Steven Bird, Ewan Klein, and Edward Loper

This version of the NLTK book is updated for Python 3 and NLTK 3. The first edition of the book, published by O'Reilly, is available at http://nltk.org/book_1ed/. (There are currently no plans for a second edition of the book.)

0. Preface
1. Language Processing and Python
2. Accessing Text Corpora and Lexical Resources
3. Processing Raw Text
4. Writing Structured Programs
5. Categorizing and Tagging Words (minor fixes still required)
6. Learning to Classify Text
7. Extracting Information from Text
8. Analyzing Sentence Structure
9. Building Feature Based Grammars
10. Analyzing the Meaning of Sentences (minor fixes still required)
11. Managing Linguistic Data (minor fixes still required)
12. Afterword: Facing the Language Challenge

Bibliography
Term Index

This book is made available under the terms of the Creative Commons Attribution Noncommercial No-Derivative-Works 3.0 US License. Please post any questions about the materials to the nltk-users mailing list. Please report any errors on the issue tracker.

http://www.nltk.org/book/
spaCy

Industrial-Strength Natural Language Processing in Python

Fastest in the world

spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. Independent research has confirmed that spaCy is the fastest in the world. If your application needs to process entire web dumps, spaCy is the library you want to be using.

Get things done

spaCy is designed to help you do real work — to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It's easy to install, and its API is simple and productive. I like to think of spaCy as the Ruby on Rails of Natural Language Processing.

Deep learning

spaCy is the best way to prepare text for deep learning. It interoperates seamlessly with TensorFlow, Keras, Scikit-Learn, Gensim and the rest of Python's awesome AI ecosystem. spaCy helps you connect the statistical models trained by these libraries to the rest of your application.

https://spacy.io/
gensim

gensim

topic modelling for humans

Gensim is a FREE Python library

- Scalable statistical semantics
- Analyze plain-text documents for semantic structure
- Retrieve semantically similar documents

https://radimrehurek.com/gensim/
TextBlob: Simplified Text Processing

Release v0.12.0. [Changelog](https://textblob.readthedocs.io)

TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.

```python
from textblob import TextBlob

text = '
The titular threat of The Blob has always struck me as the ultimate movie monster: an insatiably hungry, amoeba-like mass able to penetrate virtually any safeguard, capable of—as a doomed doctor chillingly describes it—“assimilating flesh on contact. Snide comparisons to gelatin be damned, it's a concept with the most devastating of potential consequences, not unlike the grey goo scenario proposed by technological theorists fearful of artificial intelligence run rampant.

...
```

```python
blob = TextBlob(text)
blob.tags
# [('The', 'DT'), ('titular', 'JJ'),
# ('threat', 'NN'), ('of', 'IN'), ...

blob.noun_phrases
# WordList(['titular threat', 'blob',
# 'ultimate movie monster',
# 'amoeba-like mass', ...])

for sentence in blob.sentences:
    print(sentence.sentiment.polarity)
# 0.060
```

https://textblob.readthedocs.io
Welcome to polyglot's documentation!

polyglot

Polyglot is a natural language pipeline that supports massive multilingual applications.

- Free software: GPLv3 license

Features

- Tokenization (165 Languages)
- Language detection (196 Languages)
- Named Entity Recognition (40 Languages)
- Part of Speech Tagging (16 Languages)
- Sentiment Analysis (136 Languages)
- Word Embeddings (137 Languages)
- Morphological analysis (135 Languages)
- Transliteration (69 Languages)

https://polyglot.readthedocs.io/
The Stanford NLP Group makes parts of our Natural Language Processing software available to everyone. These are statistical NLP toolkits for various major computational linguistics problems. They can be incorporated into applications with human language technology needs.

All the software we distribute here is written in Java. All recent distributions require Oracle Java 6+ or OpenJDK 7+. Distribution packages include components for command-line invocation, jar files, a Java API, and source code. A number of helpful people have extended our work with bindings or translations for other languages. As a result, much of this software can also easily be used from Python (or Jython), Ruby, Perl, Javascript, and F# or other .NET languages.

Supported software distributions
This code is being developed, and we try to answer questions and fix bugs on a best-effort basis.

All these software distributions are open source, licensed under the GNU General Public License (v2 or later). Note that this is the full GPL, which allows many free uses, but does not allow its incorporation into any type of distributed proprietary software, even in part or in translation. Commercial licensing is also available; please contact us if you are interested.

Stanford CoreNLP
An integrated suite of natural language processing tools for English and (mainland) Chinese in Java, including tokenization, part-of-speech tagging, named entity recognition, parsing, and coreference. See also: [Stanford Deterministic Coreference Resolution](http://nlp.stanford.edu/software/corenlp-deterministic-coref/) and the [online CoreNLP demo](http://nlp.stanford.edu/software/corenlp-traditional/), and the [CoreNLP FAQ](http://nlp.stanford.edu/software/corenlp-traditional/).

Stanford Parser
Implementations of probabilistic natural language parsers in Java: highly optimized PCFG and dependency parsers, a lexicalized PCFG parser, and a deep learning reranker. See also: [Online parser demo](http://nlp.stanford.edu/software/parser-traditional/), the [Stanford Dependencies page](http://nlp.stanford.edu/software/dependencies_manual/rule_based), and [Parser FAQ](http://nlp.stanford.edu/software/parser-traditional/).

Stanford POS Tagger
A maximum-entropy (CMM) part-of-speech (POS) tagger for English,
Stanford University is located in California. It is a great university.
Stanford University is located in California. It is a great university.
Stanford University is located in California. It is a great university.

Named Entity Recognition:

1. Stanford University is located in California.
2. It is a great university.
Stanford University is located in California. It is a great university.
Stanford University is located in California. It is a great university.
Stanford CoreNLP

http://nlp.stanford.edu:8080/corenlp/process

Collapsed dependencies:

1. Stanford University is located in California.
2. It is a great university.

Collapsed CC-processed dependencies:

Visualisation provided using the brat visualisation/annotation software.
Copyright © 2011, Stanford University, All Rights Reserved.
Stanford University is located in California. It is a great university.

<table>
<thead>
<tr>
<th>Id</th>
<th>Word</th>
<th>Lemma</th>
<th>Char begin</th>
<th>Char end</th>
<th>POS</th>
<th>NER</th>
<th>Normalized NER</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stanford</td>
<td>Stanford</td>
<td>0</td>
<td>8</td>
<td>NNP</td>
<td>ORGANIZATION</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>2</td>
<td>University</td>
<td>University</td>
<td>9</td>
<td>19</td>
<td>NNP</td>
<td>ORGANIZATION</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>3</td>
<td>is</td>
<td>be</td>
<td>20</td>
<td>22</td>
<td>VBZ</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>4</td>
<td>located</td>
<td>located</td>
<td>23</td>
<td>30</td>
<td>JJ</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>5</td>
<td>in</td>
<td>in</td>
<td>31</td>
<td>33</td>
<td>IN</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>6</td>
<td>California</td>
<td>California</td>
<td>34</td>
<td>44</td>
<td>NNP</td>
<td>LOCATION</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>7</td>
<td>.</td>
<td>.</td>
<td>44</td>
<td>45</td>
<td>O</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
</tbody>
</table>

Parse tree
(ROOT (S (NP (NNP Stanford) (NNP University)) (VP (VBZ is) (ADJP (JJ located) (PP (IN in) (NP (NNP California)))))) (. .))
Stanford University is located in California. It is a great university.
Stanford University is located in California. It is a great university.

<table>
<thead>
<tr>
<th>Id</th>
<th>Word</th>
<th>Lemma</th>
<th>Char begin</th>
<th>Char end</th>
<th>POS</th>
<th>NER</th>
<th>Normalized NER</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>It</td>
<td>it</td>
<td>46</td>
<td>48</td>
<td>PRP</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>2</td>
<td>is</td>
<td>be</td>
<td>49</td>
<td>51</td>
<td>VBZ</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>a</td>
<td>52</td>
<td>53</td>
<td>DT</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>4</td>
<td>great</td>
<td>great</td>
<td>54</td>
<td>59</td>
<td>JJ</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>5</td>
<td>university</td>
<td>university</td>
<td>60</td>
<td>70</td>
<td>NN</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>6</td>
<td>.</td>
<td>.</td>
<td>70</td>
<td>71</td>
<td>.</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
</tbody>
</table>

Parse tree
(ROOT (S (NP (PRP It)) (VP (VBZ is) (NP (DT a) (JJ great) (NN university))) (. .)))
Stanford University is located in California. It is a great university.
Stanford University is located in California. It is a great university.
Stanford University is located in California. It is a great university.
Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney)

For the first time in Microsoft’s history, founder Bill Gates is no longer its largest individual shareholder.
In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million.

That puts him behind Microsoft’s former CEO Steve Ballmer who owns 333 million shares.
Related: Gates reclaims title of world's richest billionaire
Ballmer, who was Microsoft’s CEO until earlier this year, was one of Gates' first hires.
It's a passing of the torch for Gates who has always been the largest single owner of his company’s stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation.
The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.
Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNBCMoney) For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates Foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.
Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney)—For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft, bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer, who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.
Stanford Named Entity Tagger (NER)

http://nlp.stanford.edu:8080/ner/process

Stanford Named Entity Tagger

Classifier: english.muc.7class.distsim.crf.ser.gz
Output Format: xml
Preserve Spacing: yes

Please enter your text here:

Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

Submit Clear
Stanford Named Entity Tagger (NER)

http://nlp.stanford.edu:8080/ner/process

Stanford Named Entity Tagger

Classifier: english.muc.7class.distsim.crf.ser.gz

Output Format: slashTags

Preserve Spacing: yes

Please enter your text here:

Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney) -

Submit Clear

Copyright © 2011, Stanford University, All Rights Reserved.
Stanford Named Entity Tagger (NER)

http://nlp.stanford.edu:8080/ner/process

Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney) For the first time in Microsoft's history, founder Bill Gates no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer, who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates, who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.

Potential tags:
LOCATION
ORGANIZATION
PERSON
MISC

Copyright © 2011, Stanford University, All Rights Reserved.
Stanford Named Entity Tagger (NER)

http://nlp.stanford.edu:8080/ner/process

Bill Gates no longer Microsoft’s biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney) For the first time in Microsoft’s history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft’s former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world’s richest billionaire Ballmer, who was Microsoft’s CEO until earlier this year, was one of Gates’ first hires. It’s a passing of the torch for Gates who has always been the largest single owner of his company’s stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.

Potential tags:
LOCATION
ORGANIZATION
PERSON
Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNET May 2, 2014 5:46 PM ET Bill Gates sold nearly 8 million shares of Microsoft over the past two days. NEW YORK (CNNMoney) For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.

Potential tags:
LOCATION
TIME
PERSON
ORGANIZATION
MONEY
PERCENT
DATE
Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET Bill Gates sold nearly 8 million shares of Microsoft over the past two days. NEW YORK (CNNMoney) For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (<ORGANIZATION>MSFT</ORGANIZATION>, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.
歐巴馬是美國的一位總統
Vector Representations of Words

Word Embeddings

Word2Vec

GloVe
Modern NLP Pipeline

1. Language Detection
2. Tokenize
3. POS Tagging
4. Filtering
5. Pre-processed Documents

Pre-processing:

- EN
- CN

Documents

Pre-processed Documents

Build Vocabulary

Bag-of-Words & Vectorization

- word2vec
- doc2vec
- GloVe

Machine Learning

(Deep) Neural Network

Task / Output

- Classification
- Sentiment Analysis
- Entity Extraction
- Topic Modeling
- Similarity

Facebook Research FastText

Pre-trained word vectors
Word2Vec
wiki.zh.vec (861MB)
332647 word
300 vec

Pre-trained word vectors for 90 languages, trained on Wikipedia using fastText.

These vectors in dimension 300 were obtained using the skip-gram model with default parameters.

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
Facebook Research FastText

Word2Vec: wiki.zh.vec

(861MB) (332647 word 300 vec)

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
Word Embeddings in LSTM RNN

Time Expanded LSTM Network

LSTM Internal States

Word Embeddings

Input Question

Is this person dancing?

Fixed length question vector encoded by the LSTM

Source: https://avisingh599.github.io/deeplearning/visual-qa/
NLP Tools: spaCy vs. NLTK

<table>
<thead>
<tr>
<th>Feature</th>
<th>spaCy</th>
<th>SyntaxNet</th>
<th>NLTK</th>
<th>CoreNLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy installation</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Python API</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Multi-language support</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tokenization</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Part-of-speech tagging</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sentence segmentation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dependency parsing</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Entity Recognition</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Integrated word vectors</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sentiment analysis</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Coreference resolution</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Source: https://spacy.io/docs/api/
Natural Language Processing (NLP)
spaCy

1. Tokenization
2. Part-of-speech tagging
3. Sentence segmentation
4. Dependency parsing
5. Entity Recognition
6. Integrated word vectors
7. Sentiment analysis
8. Coreference resolution

Source: https://spacy.io/docs/api/
spaCy:

Fastest Syntactic Parser

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>LANGUAGE</th>
<th>ACCURACY</th>
<th>SPEED (WPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>spaCy</td>
<td>Cython</td>
<td>91.8</td>
<td>13,963</td>
</tr>
<tr>
<td>ClearNLP</td>
<td>Java</td>
<td>91.7</td>
<td>10,271</td>
</tr>
<tr>
<td>CoreNLP</td>
<td>Java</td>
<td>89.6</td>
<td>8,602</td>
</tr>
<tr>
<td>MATE</td>
<td>Java</td>
<td>92.5</td>
<td>550</td>
</tr>
<tr>
<td>Turbo</td>
<td>C++</td>
<td>92.4</td>
<td>349</td>
</tr>
</tbody>
</table>

Source: https://spacy.io/docs/api/
Processing Speed of NLP libraries

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>ABSOLUTE (MS PER DOC)</th>
<th>RELATIVE (TO SPACY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOkenize</td>
<td>Tag</td>
</tr>
<tr>
<td>spaCy</td>
<td>0.2ms</td>
<td>1ms</td>
</tr>
<tr>
<td>CoreNLP</td>
<td>2ms</td>
<td>10ms</td>
</tr>
<tr>
<td>ZPar</td>
<td>1ms</td>
<td>8ms</td>
</tr>
<tr>
<td>NLTK</td>
<td>4ms</td>
<td>443ms</td>
</tr>
</tbody>
</table>

Source: https://spacy.io/docs/api/
Google SyntaxNet (2016): Best Syntactic Dependency Parsing Accuracy

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>NEWS</th>
<th>WEB</th>
<th>QUESTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>spaCy</td>
<td>92.8</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Parsey McParseface</td>
<td>94.15</td>
<td>89.08</td>
<td>94.77</td>
</tr>
<tr>
<td>Martins et al. (2013)</td>
<td>93.10</td>
<td>88.23</td>
<td>94.21</td>
</tr>
<tr>
<td>Zhang and McDonald (2014)</td>
<td>93.32</td>
<td>88.65</td>
<td>93.37</td>
</tr>
<tr>
<td>Weiss et al. (2015)</td>
<td>93.91</td>
<td>89.29</td>
<td>94.17</td>
</tr>
<tr>
<td>Andor et al. (2016)</td>
<td>94.44</td>
<td>90.17</td>
<td>95.40</td>
</tr>
</tbody>
</table>

Source: https://spacy.io/docs/api/
Named Entity Recognition (NER)

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>PRECISION</th>
<th>RECALL</th>
<th>F-MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>spaCy</td>
<td>0.7240</td>
<td>0.6514</td>
<td>0.6858</td>
</tr>
<tr>
<td>CoreNLP</td>
<td>0.7914</td>
<td>0.7327</td>
<td>0.7609</td>
</tr>
<tr>
<td>NLTK</td>
<td>0.5136</td>
<td>0.6532</td>
<td>0.5750</td>
</tr>
<tr>
<td>LingPipe</td>
<td>0.5412</td>
<td>0.5357</td>
<td>0.5384</td>
</tr>
</tbody>
</table>
Text Analytics with Python
spacy:
Natural Language Processing

Get things done
spacy is designed to help you do real work — to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It's easy to install, and its API is simple and productive. We like to think of spacy as the Ruby on Rails of Natural Language Processing.

Blazing fast
spacy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. Independent research in 2015 found spacy to be the fastest in the world. If your application needs to process entire web dumps, spacy is the library you want to be using.

Deep learning
spacy is the best way to prepare text for deep learning. It interoperates seamlessly with TensorFlow, PyTorch, scikit-learn, Gensim and the rest of Python's awesome AI ecosystem. With spacy, you can easily construct linguistically sophisticated statistical models for a variety of NLP problems.

https://spacy.io/
Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101
Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Text Analytics and Natural Language Processing (NLP)

Python for Natural Language Processing

spaCy Chinese Model
Open Chinese Convert (OpenCC, 開放中文轉換)
Jieba 結巴中文分詞
Natural Language Toolkit (NLTK)
Stanza: A Python NLP Library for Many Human Languages

Text Processing and Understanding

NLTK (Natural Language Processing with Python – Analyzing Text with the Natural Language Toolkit)
NLP Zero to Hero
Natural Language Processing - Tokenization (NLP Zero to Hero, part 1)
Natural Language Processing - Sequencing - Turning sentence into data (NLP Zero to Hero, part 2)
Natural Language Processing - Training a model to recognize sentiment in text (NLP Zero to Hero part 3)

Python for Natural Language Processing

spaCy

- spaCy: Industrial-Strength Natural Language Processing in Python
- Source: https://spacy.io/usage/spacy-101

```
[1] 1 !python -m spacy download en_core_web_sm

[3] 1 import spacy
  2 nlp = spacy.load("en_core_web_sm")
  3 doc = nlp("Apple is looking at buying U.K. startup for $1 billion")
  4 for token in doc:
  5     print(token.text, token.pos_, token.dep_)
```

https://tinyurl.com/aintpupython101
Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

```python
import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("Apple is looking at buying U.K. startup for $1 billion")
import pandas as pd
cols = ("text", "lemma", "POS", "explain", "stopword")
rows = []
for t in doc:
    row = [t.text, t.lemma_, t.pos_, spacy.explain(t.pos_), t.is_stop]
    rows.append(row)
df = pd.DataFrame(rows, columns=cols)
df
```

https://tinyurl.com/aintpupython101
Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101
Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

```
1 import spacy
2 nlp = spacy.load("en_core_web_sm")
3 text = "Stanford University is located in California. It is a great university."
4 doc = nlp(text)
5 for ent in doc.ents:
6    print(ent.text, ent.label_)
```

Stanford University ORG
California GPE

```
1 from spacy import displacy
2 text = "Stanford University is located in California. It is a great university."
3 doc = nlp(text)
4 displacy.render(doc, style="ent", jupyter=True)
```

Stanford University ORG is located in California GPE. It is a great university.

https://tinyurl.com/aintpuppython101
```python
from spacy import displacy

text = "Stanford University is located in California. It is a great university."

doc = nlp(text)
displacy.render(doc, style="ent", jupyter=True)
displacy.render(doc, style="dep", jupyter=True)
```

Stanford University **ORG** is located in **California** **GPE**. It is a great university.

https://tinyurl.com/aintpupython101
Python for Natural Language Processing

- spaCy Chinese Model
- Open Chinese Convert (OpenCC, 開放中文轉換)
- Jieba 結巴中文分詞
- Natural Language Toolkit (NLTK)
- Stanza: A Python NLP Library for Many Human Languages
- Text Processing and Understanding
 - NLTK (Natural Language Processing with Python – Analyzing Text with the Natural Language Toolkit)
 - NLP Zero to Hero
 - Natural Language Processing - Tokenization (NLP Zero to Hero, part 1)
 - Natural Language Processing - Sequencing - Turning sentence into data (NLP Zero to Hero, part 2)
 - Natural Language Processing - Training a model to recognize sentiment in text (NLP Zero to Hero, part 3)
- Keras preprocessing text
- JSON File

https://tinyurl.com/aintpupython101
MONPA 囧拍：
正體中文斷詞、詞性標註以及命名實體辨識的多任務模型

```python
# MONPA 囧拍: 正體中文斷詞、詞性標註以及命名實體辨識的多任務模型
# Source: https://github.com/monpa-team/monpa
!pip install monpa

import monpa
sentence = "銀行產業正在改變，金融機構欲挖角科技人才"
words = monpa.cut(sentence)
print(sentence)
print(" ".join(words))
result_pseg = monpa.pseg(sentence)
for item in result_pseg:
    print(item)
```

銀行產業正在改變，金融機構欲挖角科技人才
銀行 產業 正在 改變 ， 金融 機構 欲 挖角 科技 人才
('銀行', 'ORG')
('產業', 'Na')
('正在', 'D')
('改變', 'VC')
('，', 'COMMACATEGORY')
('金融', 'Na')
('機構', 'Nc')
('欲', 'VK')
('挖角', 'VA')
('科技', 'Na')
('人才', 'Na')

https://tinyurl.com/aintpupython101
```python
1 import jieba
2 import jieba.posseg as pseg
3 sentence = "銀行產業正在改變，金融機構欲挖角科技人才"
4 words = jieba.cut(sentence)
5 print(sentence)
6 print(" ".join(words))
7 wordspos = pseg.cut(sentence)
8 result = ''
9 for word, pos in wordspos:
10       print(word + ' (' + pos + '))'
11       result = result + ' ' + word + ' (' + pos + '))'
12 print(result.strip())
```

銀行產業正在改變，金融機構欲挖角科技人才
銀行 產業 正在 改變 ， 金融 機構 欲 挖角 科技人才
銀行 (n)
產業 (n)
正在 (t)
改變 (v)
， (x)
金融 (n)
機構 (n)
欲 (d)
挖角 (n)
科技人才 (n)
銀行 (n) 產業 (n) 正在 (t) 改變 (v) ， (x) 金融 (n) 機構 (n) 欲 (d) 挖角 (n) 科技人才 (n)

https://tinyurl.com/aintpuppython101
NLP Benchmark Datasets

<table>
<thead>
<tr>
<th>Task</th>
<th>Dataset</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WMT 2014 EN-FR</td>
<td></td>
</tr>
<tr>
<td>Text Summarization</td>
<td>CNN/DM</td>
<td>https://cs.nyu.edu/~kcho/DMQA/</td>
</tr>
<tr>
<td></td>
<td>Newsroom</td>
<td>https://summari.es/</td>
</tr>
<tr>
<td></td>
<td>Gigaword</td>
<td>https://catalog.ldc.upenn.edu/LDC2012T21</td>
</tr>
<tr>
<td>Reading Comprehension</td>
<td>ARC</td>
<td>http://data.allenai.org/arc/</td>
</tr>
<tr>
<td>Question Answering</td>
<td>CliCR</td>
<td>http://aclweb.org/anthology/N18-1140</td>
</tr>
<tr>
<td>Question Generation</td>
<td>CNN/DM</td>
<td>https://cs.nyu.edu/~kcho/DMQA/</td>
</tr>
<tr>
<td></td>
<td>NewsQA</td>
<td>https://datasets.maluuba.com/NewsQA</td>
</tr>
<tr>
<td></td>
<td>RACE</td>
<td>http://www.qizhexie.com/data/RACE_leaderboard</td>
</tr>
<tr>
<td></td>
<td>SQuAD</td>
<td>https://rajpurkar.github.io/SQuAD_leaderboard/</td>
</tr>
<tr>
<td></td>
<td>NarrativeQA</td>
<td>https://github.com/deepmind/narrativeqa</td>
</tr>
<tr>
<td></td>
<td>Quasar</td>
<td>https://github.com/bdhering/quasar</td>
</tr>
<tr>
<td></td>
<td>SearchQA</td>
<td>https://github.com/nuol/SearchQA</td>
</tr>
<tr>
<td>Semantic Parsing</td>
<td>AMR parsing</td>
<td>https://amr.isi.edu/index.html</td>
</tr>
<tr>
<td></td>
<td>ATIS (SQL Parsing)</td>
<td>https://github.com/jkkummerfeld/text2sql-data/tree/master/data</td>
</tr>
<tr>
<td></td>
<td>WikiSQL (SQL Parsing)</td>
<td>https://github.com/salesforce/WikiSQL</td>
</tr>
<tr>
<td>Sentiment Analysis</td>
<td>IMDB Reviews</td>
<td>http://ai.stanford.edu/~amaas/data/sentiment/</td>
</tr>
<tr>
<td></td>
<td>SST</td>
<td>https://nlp.stanford.edu/sentiment/index.html</td>
</tr>
<tr>
<td></td>
<td>Yelp Reviews</td>
<td>https://www.yelp.com/dataset/challenge</td>
</tr>
<tr>
<td></td>
<td>Subjectivity Dataset</td>
<td>http://www.cs.cornell.edu/people/pabo/movie-review-data/</td>
</tr>
<tr>
<td></td>
<td>DBpedia</td>
<td>https://wiki.dbpedia.org/Datasets</td>
</tr>
<tr>
<td></td>
<td>TREC</td>
<td>https://trec.nist.gov/data.html</td>
</tr>
<tr>
<td></td>
<td>20 NewsGroup</td>
<td>http://qwone.com/~jason/20Newsgroups/</td>
</tr>
<tr>
<td>Natural Language Inference</td>
<td>SNLI Corpus</td>
<td>https://nlp.stanford.edu/projects/sentence/</td>
</tr>
<tr>
<td></td>
<td>MultiNLI</td>
<td>https://www.nyu.edu/projects/bowman/multinli/</td>
</tr>
<tr>
<td></td>
<td>SciTail</td>
<td>http://data.allenai.org/sciTails/</td>
</tr>
<tr>
<td>Semantic Role Labeling</td>
<td>Proposition Bank</td>
<td>http://propbank.github.io/</td>
</tr>
<tr>
<td></td>
<td>OneNotes</td>
<td>https://catalog.ldc.upenn.edu/LDC2013T19</td>
</tr>
</tbody>
</table>

Summary

• Text Analytics and Text Mining
• Natural Language Processing (NLP)
• Text Analytics with Python
References

• Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.
• Charu C. Aggarwal (2018), Machine Learning for Text, Springer.
• Gabe Ignatow and Rada F. Mihalcea (2017), An Introduction to Text Mining: Research Design, Data Collection, and Analysis, SAGE Publications.
• Rajesh Arumugam (2018), Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications, Packt.
• Christopher D. Manning and Hinrich Schütze (1999), Foundations of Statistical Natural Language Processing, The MIT Press.
• Bing Liu (2009), Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer.
• The Super Duper NLP Repo, https://notebooks.quantumstat.com/
自然語言處理核心技術
與文字探勘
(Core Technologies of Natural Language Processing and Text Mining)

Min-Yuh Day
戴敏育
Associate Professor
副教授
Institute of Information Management, National Taipei University
國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday
2020-09-18