

Al Task-Oriented Dialogue System for Conversational Commerce in FinTech

Host: Prof. Kuan-Yu Menphis Chen

Computer Science and Information Engineering, National Taiwan University of Science and Technology Time: 14:00-15:00, May 10, 2021 (Monday)

> Place: CSIE, NTUST Address: No.43, Keelung Rd., Sec.4, Da'an Dist., Taipei, Taiwan

<u>Min-Yuh Day</u> <u>戴敏育</u>

Associate Professor

副教授

Institute of Information Management, National Taipei University

國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday

2021-05-10

(Min-Yuh Day, Ph.D.)

國立台北大學資訊管理研究所副教授

中央研究院 資訊科學研究所 訪問學人

國立台灣大學 資訊管理博士

Publications Co-Chairs, IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013-)

Program Co-Chair, IEEE International Workshop on Empirical Methods for Recognizing Inference in TExt (IEEE EM-RITE 2012-) Publications Chair, The IEEE International Conference on Information Reuse and Integration (IEEE IRI)

Outline

- Artificial Intelligence
- FinTech
- Conversational Commerce
- Task Oriented Dialogue System

AIWISFIN

Al Conversational Robo-Advisor (人工智慧對話式理財機器人) First Place, InnoServe Awards 2018

https://www.youtube.com/watch?v=sEhmyoTXmGk

2018 The 23th International ICT Innovative Services Awards (InnoServe Awards 2018) InnoServe

- Annual ICT application competition held for university and college students
- The largest and the most significant contest in Taiwan.
- More than ten thousand teachers and students from over one hundred universities and colleges have participated in the Contest.

2018 International ICT Innovative Services Awards (InnoServe Awards 2018) (2018第23屆大專校院資訊應用服務創新競賽)

https://innoserve.tca.org.tw/award.aspx

The Rise of Al

Source: DHL (2018), Artificial Intelligence in Logistics, http://www.globalhha.com/doclib/data/upload/doc con/5e50c53c5bf67.pdf/

Definition of tificial Intelligence

Artificial Intelligence (A.I.)

Artificial Intelligence

"... the SCIENCE and engineering of making intelligent machines" (John McCarthy, 1955)

Artificial Intelligence

"... technology that thinks and acts like humans"

11

Artificial Intelligence

"... intelligence exhibited by machines or software"

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

4 Approaches of Al

4 Approaches of Al

2.	3.
Thinking Humanly:	Thinking Rationally:
The Cognitive	The "Laws of Thought"
Modeling Approach	Approach
1.	4.
Acting Humanly:	Acting Rationally:
The Turing Test	The Rational Agent
Approach (1950)	Approach

Al Acting Humanly: The Turing Test Approach (Alan Turing, 1950)

- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)

- Deep Learning (DL)

- Computer Vision (Image, Video)
- Natural Language Processing (NLP)
- Robotics

Tamkang University

IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-9 RITE

Department of Information Management Tamkang University, Taiwan

Min-Yuh Day Chun Tu myday@mail.tku.edu.tw

NTCIR-9 Workshop, December 6-9, 2011, Tokyo, Japan

Tamkang University

IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-10 RITE-2

Department of Information Management Tamkang University, Taiwan

Min-Yuh Day

Chun Tu

Hou-Cheng Vong

myday@mail.tku.edu.tw

Shih-Wei Wu

Shih-Jhen Huang

NTCIR-10 Conference, June 18-21, 2013, Tokyo, Japan

IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-11 RITE-VAL

Tamkang University

2014

Min-Yuh Day

Ya-Jung Wang

Che-Wei Hsu

En-Chun Tu

Huai-Wen Hsu

Yu-An Lin

Shang-Yu Wu

Yu-Hsuan Tai

Cheng-Chia Tsai

NTCIR-11 Conference, December 8-12, 2014, Tokyo, Japan

Tamkang University

2016 **IMTKU Question Answering System for** World History Exams at NTCIR-12 QA Lab2

Department of Information Management Tamkang University, Taiwan

Sagacity Technolog

Cheng-Hung Lee

Yu-Ming Guo

NTCIR

Yue-Da Lin

Wei-Ming Chen Yun-Da Tsai Cheng-Jhih Han

Yi-Jing Lin Yi-Heng Chiang Ching-Yuan Chien

myday@mail.tku.edu.tw

NTCIR-12 Conference, June 7-10, 2016, Tokyo, Japan

IMTKU Question Answering System for World History Exams at NTCIR-13 QALab-3

Department of Information Management

Tamkang University, Taiwan

Min-Yuh Day

Chao-Yu Chen

myday@mail.tku.edu.tw NTCIR-13 Conference, December 5-8, 2017, Tokyo, Japan

Yi-Jing Lin

Wanchu Huang

Shi-Ya Zheng

Min-Chun Kuo

2019

IMTKU Emotional Dialogue System for Short Text Conversation at NTCIR-14 STC-3 (CECG) Task

Department of Information Management Tamkang University, Taiwan

Min-Yuh Day

Chi-Sheng Hung

Yi-Jun Xie

Yu-Ling Kuo

Jian-Ting Lin

myday@mail.tku.edu.tw NTCIR-14 Conference, June 10-13, 2019, Tokyo, Japan

Tamkang University

IMTKU Multi-Turn Dialogue System Evaluation at the NTCIR-15 DialEval-1 Dialogue Quality and Nugget Detection

¹ Zeals Co., Ltd. Tokyo, Japan ² Information Management, Tamkang University, Taiwan ³ Information Management, National Taipei University, Taiwan

Mike Tian-Jian Jiang¹ Zhao-Xian Gu² ^{Cheng-Jhe Chiang² Yueh-Chia Wu² Yu-Chen Huang² Cheng-Han Chiu² Sheng-Ru Shaw² Min-Yuh Day³}

NTCIR-15 Conference, December 8-11, 2020, Tokyo, Japan

2020 NTCIR-15 Dialogue Evaluation (DialEval-1) Task Dialogue Quality (DQ) and Nugget Detection (ND) Chinese Dialogue Quality (S-score) Results (Zeng et al., 2020)

Run	Mean RSNOD	Run	Mean NMD
IMTKU-run2	0.1918	IMTKU-run2	0.1254
IMTKU-run1	0.1964	IMTKU-run0	0.1284
IMTKU-run0	0.1977	IMTKU-run1	0.1290
TUA1-run2	0.2024	TUA1-run2	0.1310
TUA1-run0	0.2053	TUA1-run0	0.1322
NKUST-run1	0.2057	NKUST-run1	0.1363
BL-lstm	0.2088	TUA1-run1	0.1397
WUST-run0	0.2131	BL-popularity	0.1442
RSLNV-run0	0.2141	BL-lstm	0.1455
BL-popularity	0.2288	RSLNV-run0	0.1483
TUA1-run1	0.2302	WUST-run0	0.1540
NKUST-run0	0.2653	NKUST-run0	0.2289
BL-uniform	0.2811	BL-uniform	0.2497

Source: Zeng, Zhaohao, Sosuke Kato, Tetsuya Sakai, and Inho Kang (2020), "Overview of the NTCIR-15 Dialogue Evaluation (DialEval-1) Task", Proceedings of NTCIR-15, 2020

Transformer-based **Fine-tuning Techniques Models Selection** FinNum-2 **DialEval-1** BERT **Discriminative** Transfer **Fine-tuning** Learning **RoBERTa One-cycle Policy Optimization XLM-RoBERTa Tokenization Tricks Pre-trained Models**

Source: Jiang, Mike Tian-Jian, Shih-Hung Wu, Yi-Kun Chen, Zhao-Xian Gu, Cheng-Jhe Chiang, Yueh-Chia Wu, Yu-Chen Huang, Cheng-Han Chiu, Sheng-Ru Shaw, and Min-Yuh Day (2020). "Fine-tuning techniques and data augmentation on transformer-based models for conversational texts and noisy user-generated content." In 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 919-925. IEEE, 2020.

NTCIR-14 Conference, June 10-13, 2019, Tokyo, Japan

Short Text Conversation Task (STC-3) Chinese Emotional Conversation Generation (CECG) Subtask

Source: http://coai.cs.tsinghua.edu.cn/hml/challenge.html

NTCIR Short Text Conversation STC-1, STC-2, STC-3

	Japanese	Chinese	English	
NTCIR-12 STC-1 22 active participants	Twitter, Retrieval	Weibo, Retrieval		Single-turn.
NTCIR-13 STC-2 27 active participants	Yahoo! News, Retrieval+ Generation	Weibo, Retrieval+ Generation		Non task-oriented
NTCIR-14 STC-3 Chinese Emotio Generation (onal Conversation CECG) subtask	Weibo, Generation for given emotion		
Dialogue Quality Detection ((DQ) and Nugget ND) subtasks	categories Weibo+English distribution e	n translations, stimation for	Multi-turn, task-oriented (helpdesk)
		subjective annotations		

Source: https://waseda.app.box.com/v/STC3atNTCIR-14

Al Humanoid Robo-Advisor

Al Humanoid Robo-Advisor for Multi-channel Conversational Commerce

System Architecture of Al Humanoid Robo-Advisor

Conversational Model (LINE, FB Messenger)

 ● 勝勝戦団 ★ < 878 	10:57 AM	23% • 67 ~	Aiwisfin	■ C & X
amore Hi the	ere! I want son stock	ne info about		hi how's going
AWARTIN Why ABOU	do you want INFO JT STOCK?	44.24	Hi there!	
www What	you said was too	t personal nmendations	I am doing are you ?	very well. How
0000	Price	2330 TSMC		i need your help
2330 市價: 買價: 」 「 」 「 」 同日	合積電合項貢訊如下: 233.0 233.0 233.5 量:30,664 收盤價:229.5 222.5	20R	Help is ass give you.	istance I can
问题: 最高: 買低:	232.5 234.0 230.5		输入訊息	
+ 🖻	An An	©		

Conversational Robo-Advisor Multichannel UI/UX Robots

ALPHA 2

THE RUMANOID BOBOT FOR THE WHOLE FAMILY

second on the

ZENBO

FinTech

Financial Technology FinTech

"providing financial services by making use of software and modern technology"

Financial

Services

Financial Services

Source: http://www.crackitt.com/7-reasons-why-your-fintech-startup-needs-visual-marketing/
FinTech: Financial Services Innovation

Source: http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf

FinTech:

Financial Services Innovation

1. Payments 2. Insurance 3. Deposits & Lending 4. Capital Raising **5. Investment Management** 6. Market Provisioning

Source: http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf

F FinTech: Investment Management

FinTech: Market Provisioning

Source: http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf

The New Alpha: 30+ Startups Providing Alternative Data For Sophisticated Investors

Alternative Data Sources

Source: https://www.cbinsights.com/blog/alternative-data-startups-market-map-company-list/

FinTech

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

Robo-Advisors

FinTech high-level classification

Source: Paolo Sironi (2016), "FinTech Innovation: From Robo-Advisors to Goal Based Investing and Gamification", Wiley. ⁴⁵

Wealthfront

Financial Planning & Robo-Investing for Millennials

Plan - Invest

Borrow E:

Expertise -

LOG IN

GET STARTED

WEALTHFRONT

1

Meet your financial copilot

We'll build a free financial plan for the life you want and automate your investments at a low cost.

Our all-in-one solution gives you the financial expertise you need, right in your pocket. No spreadsheets, no annoying sales calls, no judgment.

GET STARTED

https://www.wealthfront.com/

Betterment Online Financial Advisor

New investor

I'm new to investing, or am looking for some guidance.

Hands-off investor

I invest, but don't have the time or desire to do it myself.

https://www.betterment.com/

Hands-on investor

I'm a confident, hands-on investor looking for an optimal solution.

Financial Advisor FinTech Solutions

Financial Advisor FinTech Solutions Map

Source: https://www.kitces.com/fintechmap

From Algorithmic Trading to Personal Finance Bots: **41 Startups Bringing** Al to Fintech

From Algorithmic Trading To Personal Finance Bots: 41 Startups Bringing AI To Fintech Al in Fintech

41 Startups Bringing Artificial Intelligence To Fintech

Artificial Intelligence (AI) in Fintech

Artificial Intelligence (AI) in Fintech

Conversational Commerce

Chatbot **Dialogue System** Intelligent Agent

Chatbots: Evolution of UI/UX

From **E-Commerce** to **Conversational Commerce:** Chatbots and **Virtual Assistants**

Source: http://www.guided-selling.org/from-e-commerce-to-conversational-commerce/

Conversational Commerce: eBay AI Chatbots

•••• A	T&T 穼 1:31 PM 🕑 🕇	O 76% 💼 🕨
< Hor	eBay ShopBot > Typically replies instantly	Manage
	I'm looking for adidas star in white	smith
ebay	Which gender are you looking for?	
		Vomen
ebay	Sure, I've got a few options for those.	
	Best Value 🍓 16 sold \$63.71 was \$74 - ADIDAS WOMEN'S	Trend \$99.99
	STAN SMITH OG WHITE GREEN B24105 shopbot.ebay.com	shopb
	View item	
+		

Hotel Chatbot

Intent Detection

Slot Filling

H&M's Chatbot on Kik

Uber's Chatbot on Facebook's Messenger

Uber's chatbot on Facebook's messenger - one main benefit: it loads much faster than the Uber app

Source: http://www.guided-selling.org/from-e-commerce-to-conversational-commerce/

Chatbot

Dialogue System

Source: Serban, I. V., Lowe, R., Charlin, L., & Pineau, J. (2015). A survey of available corpora for building data-driven dialogue systems. *arXiv* preprint arXiv:1512.05742.

Source: Borah, Bhriguraj, Dhrubajyoti Pathak, Priyankoo Sarmah, Bidisha Som, and Sukumar Nandi. "Survey of Textbased Chatbot in Perspective of Recent Technologies." In International Conference on Computational Intelligence, Communications, and Business Analytics, pp. 84-96. Springer, Singapore, 2018.

machines

think?

(Alan Turing ,1950)

Source: Cahn, Jack. "CHATBOT: Architecture, Design, & Development." PhD diss., University of Pennsylvania, 2017.

Chatbot **"online human-computer** dialog system with natural language."

Source: Cahn, Jack. "CHATBOT: Architecture, Design, & Development." PhD diss., University of Pennsylvania, 2017.

Chatbot Conversation Framework

66

Chatbots

Bot Maturity Model

Customers want to have simpler means to interact with businesses and

get faster response to a question or complaint.

Integration

Source: https://www.capgemini.com/2017/04/how-can-chatbots-meet-expectations-introducing-the-bot-maturity/

Task-Oriented Dialogue System

Dialogue Subtasks

Browse SoTA > Natural Language Processing > Dialogue

Dialogue subtasks

Source: https://paperswithcode.com/area/natural-language-processing/dialogue

Task-Oriented Dialogue System (Deriu et al., 2021)

Source: Deriu, Jan, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, and Mark Cieliebak (2021). "Survey on evaluation methods for dialogue systems." Artificial Intelligence Review 54, no. 1 (2021): 755-810.

Task-Oriented Dialogue Systems

(Zhang et al., 2020)

Source: Zhang, Zheng, Ryuichi Takanobu, Qi Zhu, Minlie Huang, and Xiaoyan Zhu (2020).

"Recent advances and challenges in task-oriented dialog systems." Science China Technological Sciences (2020): 1-17.

Dialog State Tracker (DST)

Dialog state tracker inputs

Dialog state tracker outputs

Source: Deriu, Jan, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, and Mark Cieliebak (2021). "Survey on evaluation methods for dialogue systems." Artificial Intelligence Review 54, no. 1 (2021): 755-810.
Dialogue Acts

(Young et al., 2010)

Dialogue act	Description				
hello(a = x, b = y,)	Open a dialogue and give info $a = x, b = y,$				
inform(a = x, b = y,)	Give information $a = x, b = y,$				
request(a, b = x,)	Request value for a given $b = x,$				
require $(a = x,)$	Request alternative with $a = x,$				
$\operatorname{confirm}(a = x, b = y, \ldots)$	Explicitly confirm $a = x, b = y,$				
confreq(a = x,, d)	Implicitly confirm $a = x,$ and request value of d				
select(a = x, a = y)	Select either $a = x$ or $a = y$				
$\operatorname{affirm}(a = x, b = y)$	Affirm and give further info $a = x, b = y,$				
negate(a = x)	Negate and give corrected value $a = x$				
deny(a = x)	Deny that $a = x$				
bye()	Close a dialogue				

Sample Dialogue Acts

Utterance	Dialogue Act			
U: Hi, I am looking for somewhere to eat	hello(task = find,type=restaurant)			
S: You are looking for a restaurant. What type of food?	confreq(type = restaurant,food)			
U: I'd like an Italian somewhere near the museum.	inform(food = Italian,near=museum)			
S: Roma is a nice Italian restaurant near the museum.	inform(name = "Roma", type = restaurant, food = Italian, near = museum)			
U: Is it reasonably priced?	confirm(pricerange = moderate)			
S: Yes, Roma is in the moderate price range.	affirm(name = "Roma", pricerange = moderate)			
U: What is the phone number?	request(phone)			
S: The number of Roma is 385456.	inform(name = "Roma", phone = "385456")			
U: Ok, thank you goodbye.	bye()			

Transformer (Attention is All You Need)

(Vaswani et al., 2017)

Source: Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." In *Advances in neural information processing systems*, pp. 5998-6008. 2017. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) Overall pre-training and fine-tuning procedures for BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)

BERT input representation

BERT, OpenAl GPT, ELMo

Fine-tuning BERT on Different Tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

0

T_N

B-PER

Τ.,

0

Τ,

С

(c) Question Answering Tasks: SQuAD v1.1

BERT E_[CLS] E₁ E₂ ···· E_N CLS] Tok 1 Tok 2 ···· Tok N Single Sentence

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Fine-tuning BERT on Question Answering (QA)

Start/End Span

(c) Question Answering Tasks: SQuAD v1.1

Fine-tuning BERT on Dialogue Intent Detection (ID; Classification)

(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-tuning BERT on Dialogue Slot Filling (SF)

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Pre-trained Language Model (PLM)

Source: https://github.com/thunlp/PLMpapers

Transformers Transformers

State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch

- Transformers
 - pytorch-transformers
 - pytorch-pretrained-bert
- provides state-of-the-art general-purpose architectures
 - (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...)
 - for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.

Dialogue on **Airline Travel Information System** (ATIS)

The ATIS (Airline Travel Information System) Dataset

https://www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk

Sentence	what	flights	leave	from	phoenix	
Slots	0	0	0	0	B-fromloc	
Intent		atis_flight				

Training samples: 4978 Testing samples: 893 Vocab size: 943 Slot count: 129 Intent count: 26

Source: Haihong, E., Peiqing Niu, Zhongfu Chen, and Meina Song. "A novel bi-directional interrelated model for joint intent detection and slot filling." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5467-5471. 2019.

SF-ID Network (E et al., 2019) Slot Filling (SF) Intent Detection (ID)

A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling

Source: Haihong, E., Peiqing Niu, Zhongfu Chen, and Meina Song. "A novel bi-directional interrelated model for joint intent detection and slot filling." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5467-5471. 2019.

PARAdigm for Dialog System Evaluation PARADISE Framework (Walker et al. 1997)

Interaction Quality procedure

(Schmitt and Ultes, 2015)

Datasets for task-oriented dialogue systems

Name Topics		# dialogues	Reference		
DSTC1	Bus schedules	15,000	(Williams et al. 2013)		
DSTC2	Restaurants	3000	(Henderson et al. 2014)		
DSTC3	Tourist information	2265	(Henderson et al. 2013a)		
DSTC4 & DSTC5	Tourist information	35	(Kim et al. 2016)		
DSTC6	Restaurant reservation	_	(Perez et al. 2017)		
DSTC7 (Flex Data)	Student guiding	500	(Gunasekara et al. 2019)		
DSTC8 (MetaLWOz)	47 domains	37,884	(Lee et al. 2019)		
DSTC8 (Schema-Guided)	20 domains	22,825	(Rastogi et al. 2019)		
MultiWOZ	Tourist information	10,438	(Budzianowski et al. 2018)		
Taskmaster-1	6 domains	13,215	(Byrne et al. 2019)		
MultiDoGo	6 domains	86,698	(Peskov et al. 2019)		

Restaurants Dialogue Datasets

- MIT Restaurant Corpus
 - <u>https://groups.csail.mit.edu/sls/downloads/restaurant/</u>
- CamRest676 (Cambridge restaurant dialogue domain dataset)
 - <u>https://www.repository.cam.ac.uk/handle/1810/260970</u>
- DSTC2 (Dialog State Tracking Challenge 2 & 3)

<u>http://camdial.org/~mh521/dstc/</u>

CrossWOZ:

A Large-Scale Chinese Cross-Domain Task-Oriented Dialogue Dataset

MultiWOZ	CrossWOZ
usr: I'm looking for a college type attraction.	usr: 你好, 可以帮我推荐一个评分是4.5分以上的景点吗?
 usr: I would like to visit in town centre please	Hello, could you recommend an attraction with a rating of 4.5 or higher? svs: 天安门城楼 算街小吃和北京欢乐谷都是很不错的地方呢。
	Tiananmen, Gui Street, and Beijing Happy Valley are very nice places.
usr: Can you find an Indian restaurant for me	usr: 我喜欢 <u>北京欢乐谷</u> , 你知道这个景点周边的酒店都是什么吗?
that is also in the town centre?	I like Beijing Happy Valley. What hotels are around this attraction?
Schema	sys: 那可多了,有A酒店, B酒店, C酒店。
usr: I want a hotel in San Diego and I want to	There are many, such as hotel A, hotel B, and hotel C.
check out on Thursday next week.	usr: 太好了, 我正打算在 景点附近 找个酒店住宿呢, 知道哪家评分
	是4分以上,提供叫醒服务的不?
usr: I need a one way flight to go there.	Great! I am planning to find a hotel to stay near the attraction. Which
	one has a rating of 4 or higher and offers wake-up call service?

CrossWOZ:

A Large-Scale Chinese Cross-Domain Task-Oriented Dialogue Dataset

Туре	Single-domain goal					Multi-domain goal		
Dataset	DSTC2	WOZ 2.0	Frames	KVRET	M2M	MultiWOZ	Schema	CrossWOZ
Language	EN	EN	EN	EN	EN	EN	EN	CN
Speakers	H2M	H2H	H2H	H2H	M2M	H2H	M2M	H2H
# Domains	1	1	1	3	2	7	16	5
# Dialogues	1,612	600	1,369	2,425	1,500	8,438	16,142	5,012
# Turns	23,354	4,472	19,986	12,732	14,796	115,424	329,964	84,692
Avg. domains	1	1	1	1	1	1.80	1.84	3.24
Avg. turns	14.5	7.5	14.6	5.3	9.9	13.7	20.4	16.9
# Slots	8	4	61	13	14	25	214	72
# Values	212	99	3,871	1363	138	4,510	14,139	7,871

Source: Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale chinese cross-domain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).

Task-Oriented Dialogue

Source: Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale chinese cross-domain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).

The Evaluation of Chinese Human-Computer Dialogue Technology, SMP2019-ECDT

• 自然語言理解

Natural Language Understanding (NLU)

- 對話管理 Dialog Management (DM)
- 自然語言生成
 Natural Language Generation (NLG)

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Table of contents	×	+ Code + Text	RAM Editing
Semantic Analysis Named Entity Recognition (NER)		Question Answering and Dialo	gue Systems
NER with CRF			
NER with CRF RandomizedSearchCV		Question Answering (QA)	Question Answering and
Sentiment Analysis			Dielegue Sveteme
Sentiment Analysis - Unsupervised Lexical	•	BERT for Question Answering	Dialogue Systems
Sentiment Analysis - Supervised Machine Learning		Source: Apoorv Nandan (2020), BERT (from Hugg https://keras.io/examples/nlp/text_extraction_wi	ingFace Transformers) for Text Extraction, th <u>_bert/</u>
Sentiment Analysis - Supervised Deep Learning Models		Description: Fine tune pretrained BERT from Hug	gingFace Transformers on SQuAD.
Sentiment Analysis - Advanced De	ер	Introduction	
Deep Learning and Universal Sentence Embedding Models	h	This demonstration uses SQuAD (Stanford Quest context. The goal is to find the span of text in the	ion-Answering Dataset). In SQuAD, an input consists of a question, and a paragraph for paragraph that answers the question. We evaluate our performance on this data with the
Universal Sentence Encoder (USE)		"Exact Match" metric, which measures the percer	tage of predictions that exactly match any one of the ground-truth answers.
Universal Sentence Encoder Multilingual (USEM)		We fine-tune a BERT model to perform this task a	s follows:
Question Answering and Dialogue		1. Feed the context and the question as inputs	s to BERT.
Question Answering (OA)		3. Compute the probability of each token bein	g the start and end of the answer span. The probability of a token being the start of the answer
BERT for Question Answering		is given by a dot product between S and the	representatio of the token in the last layer of BERT, followed by a softmax over all tokens. The
Dialoque Systems		probability of a token being the end of the a	nswer is compute similarly with the vector T.
Joint Intent Classification and Slot Filling with Transformers		4. Fine-tune BERT and learn S and T along the	way.
Data Visualization			
Section		• BERI	

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Table of contents ×	- Code + Text			V RAM Disk	🖍 Editi	ing
RandomizedSearchCV	Downloading: 100%	433/433 [00:29<00:00,	14.5B/s]			
Sentiment Analysis	Downloading: 100%	536M/536M [00:29<00:	00 18.3MB/sl			
Sentiment Analysis - Unsupervised Lexical	Model: "model"		oo, ro.omb.oj			
Sentiment Analysis - Supervised Machine Learning	Layer (type)	Output Shape	Param #	Connected to		
Sentiment Analysis - Supervised Deep Learning Models	input_1 (InputLayer)	[(None, 384)]	0			
Sentiment Analysis - Advanced Deep	<pre>input_3 (InputLayer)</pre>	[(None, 384)]	0			
Learning	input_2 (InputLayer)	[(None, 384)]	0			
Deep Learning and Universal Sentence- Embedding Models	tf_bert_model (TFBertModel)) ((None, 384, 768), (109482240	input_1[0][0]		
Universal Sentence Encoder (USE)	start_logit (Dense)	(None, 384, 1)	768	tf_bert_model[0][0]		
Universal Sentence Encoder Multilingual (USEM)	end_logit (Dense)	(None, 384, 1)	768	tf_bert_model[0][0]		
Question Answering and Dialogue	flatten (Flatten)	(None, 384)	0	<pre>start_logit[0][0]</pre>		
Systems	flatten_1 (Flatten)	(None, 384)	0	end_logit[0][0]	H	
Question Answering (QA)	activation_7 (Activation)	(None, 384)	0	flatten[0][0]		
BERT for Question Answering	activation 8 (Activation)	(None, 384)	0	flatten 1[0][0]		
Dialogue Systems	=======================================			===============================		-===
Joint Intent Classification and Slot Filling with Transformers	Total params: 109,483,776 Trainable params: 109,483,7	776				
Data Visualization						
	CPU times: user 20.8 s, sys	s: 7.75 s, total: 28.5 s				

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

Summary

- Artificial Intelligence
- FinTech
- Conversational Commerce
- Task Oriented Dialogue System

References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
- Deriu, Jan, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, and Mark Cieliebak (2021). "Survey on evaluation methods for dialogue systems." Artificial Intelligence Review 54, no. 1 (2021): 755-810.
- Zhang, Zheng, Ryuichi Takanobu, Qi Zhu, Minlie Huang, and Xiaoyan Zhu (2020). "Recent advances and challenges in task-oriented dialog systems." Science China Technological Sciences (2020): 1-17.
- Jiang, Mike Tian-Jian, Shih-Hung Wu, Yi-Kun Chen, Zhao-Xian Gu, Cheng-Jhe Chiang, Yueh-Chia Wu, Yu-Chen Huang, Cheng-Han Chiu, Sheng-Ru Shaw, and Min-Yuh Day (2020). "Fine-tuning techniques and data augmentation on transformer-based models for conversational texts and noisy user-generated content." In 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 919-925. IEEE, 2020.
- Jiang, Mike Tian-Jian, Zhao-Xian Gu, Cheng-Jhe Chiang, Yueh-Chia Wu, Yu-Chen Huang, Cheng-Han Chiu, Sheng-Ru Shaw, and Min-Yuh Day (2020), "IMTKU Multi-Turn Dialogue System Evaluation at the NTCIR-15 DialEval-1 Dialogue Quality and Nugget Detection", in Proceedings of the 15th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-15), Tokyo Japan, December 8-11, 2020, pp. 68-74.
- Day, Min-Yuh and Chi-Sheng Hung, "AI Affective Conversational Robot with Hybrid Generative-based and Retrieval-based Dialogue Models", in Proceedings of The 20th IEEE International Conference on Information Reuse and Integration for Data Science (IEEE IRI 2019), Los Angeles, CA, USA, July 30 August 1, 2019.
- Day, Min-Yuh, Chi-Sheng Hung, Yi-Jun Xie, Jhih-Yi Chen, Yu-Ling Kuo and Jian-Ting Lin (2019), "IMTKU Emotional Dialogue System for Short Text Conversation at NTCIR-14 STC-3 (CECG) Task", The 14th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-14), Tokyo, Japan, June 10-13, 2019.
- Zhou, Hao, Minlie Huang, Tianyang Zhang, Xiaoyan Zhu, and Bing Liu. "Emotional chatting machine: emotional conversation generation with internal and external memory." arXiv preprint arXiv:1704.01074 (2017).
- Yu, Kai, Zijian Zhao, Xueyang Wu, Hongtao Lin, and Xuan Liu. "Rich Short Text Conversation Using Semantic Key Controlled Sequence Generation." IEEE/ACM Transactions on Audio, Speech, and Language Processing (2018).
- Borah, Bhriguraj, Dhrubajyoti Pathak, Priyankoo Sarmah, Bidisha Som, and Sukumar Nandi. "Survey of Textbased Chatbot in Perspective of Recent Technologies." In International Conference on Computational Intelligence, Communications, and Business Analytics, pp. 84-96. Springer, Singapore, 2018.
- Haihong, E., Peiqing Niu, Zhongfu Chen, and Meina Song. "A novel bi-directional interrelated model for joint intent detection and slot filling." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5467-5471. 2019.
- Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale chinese cross-domain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).
- Zeng, Zhaohao, Sosuke Kato, Tetsuya Sakai, and Inho Kang (2020), "Overview of the NTCIR-15 Dialogue Evaluation (DialEval-1) Task", Proceedings of NTCIR-15, 2020.
- Apoorv Nandan (2020), BERT (from HuggingFace Transformers) for Text Extraction, https://keras.io/examples/nlp/text_extraction_with_bert/
- Olivier Grisel (2020), Transformers (BERT fine-tuning): Joint Intent Classification and Slot Filling, https://m2dsupsdlclass.github.io/lectures-labs/
- HuggingFace (2020), Transformers Notebook, <u>https://huggingface.co/transformers/notebooks.html</u>
- The Super Duper NLP Repo, <u>https://notebooks.quantumstat.com/</u>
- Min-Yuh Day (2021), Python 101, https://tinyurl.com/aintpupython101

AI Task-Oriented Dialogue System for Conversational Commerce in FinTech

Host: Prof. Kuan-Yu Menphis Chen

Computer Science and Information Engineering, National Taiwan University of Science and Technology Time: 14:00-15:00, May 10, 2021 (Monday)

> Place: CSIE, NTUST Address: No.43, Keelung Rd., Sec.4, Da'an Dist., Taipei, Taiwan

<u>Min-Yuh Day</u> <u>戴敏育</u>

Associate Professor

副教授

Institute of Information Management, National Taipei University

國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday

2021-05-10