
�������
(Reliable Programming)

1

Min-Yuh Day
	��

Associate Professor
��

Institute of Information Management, National Taipei University
������ ������

https://web.ntpu.edu.tw/~myday
2020-12-15

����
(Software Engineering)

1091SE10
MBA, IM, NTPU (M5118) (Fall 2020)

Tue 2, 3, 4 (9:10-12:00) (B8F40)

https://web.ntpu.edu.tw/~myday/
https://web.ntpu.edu.tw/~myday/cindex.htm
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday

1� (Week) �� (Date) � (Subject/Topics)
1 2020/09/15 03�#�/ (Introduction to Software Engineering)
2 2020/09/22 03!	*��% 503!	% 4�
-,

(Software Products and Project Management:
Software product management and prototyping)

3 2020/09/29 ��03�#5�����Scrum��2#�-,
(Agile Software Engineering: Agile methods, Scrum,

and Extreme Programming)
4 2020/10/06 �)������ (Features, Scenarios, and Stories)
5 2020/10/13 03��5��-,�&'�+������

(Software Architecture: Architectural design,
System decomposition, and Distribution architecture)

6 2020/10/20 03�#��"$ I
(Case Study on Software Engineering I)

2

.#�((Syllabus)

(� (Week) �� (Date) �� (Subject/Topics)

7 2020/10/27 ��,�'-.%��	�
�'-���
(Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service)

8 2020/11/03 ,)!$,'-��
(Cloud Computing and Cloud Software Architecture)

9 2020/11/10 ���� (Midterm Project Report)

10 2020/11/17 �����.RESTful�����*#
(Microservices Architecture: RESTful services,

Service deployment)

11 2020/11/24 '-������
(Industry Practices of Software Engineering)

12 2020/12/01 ��	+� (Security and Privacy)

3

&�" (Syllabus)

'� (Week) �� (Date) �� (Subject/Topics)
13 2020/12/08 &+������ II

(Case Study on Software Engineering II)
14 2020/12/15 �)���#" (Reliable Programming)
15 2020/12/22 �$,� �$��$!���

�$*��(������
(Testing: Functional testing, Test automation,
Test-driven development, and Code reviews)

16 2020/12/29 DevOps	�����,
�����	DevOps!��
(DevOps and Code Management:
Code management and DevOps automation)

17 2021/01/05 ��
� I (Final Project Report I)
18 2021/01/12 ��
� II (Final Project Report I)

4

%��� (Syllabus)

Software Engineering and
Project Management

5

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation
and

unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Product management concerns

6Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

7Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

8

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

9

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

10Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
eq

ue
nc

y
of

 D
el

iv
er

y
Lo

w
Hi

gh

Low High

Predictive Life Cycle

11Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

12Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Analyze
Design

Build
Test Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

13Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

14Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

15

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

16Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

17Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

18Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

19Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

20Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

21Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

Reliable
Programming

23

Outline
• Software quality
• Programming for reliability
• Design pattern
• Refactoring

24

• Creating a successful software product does not
simply mean providing useful features for users.

• You need to create a high-quality product that
people want to use.

• Customers have to be confident that your
product will not crash or lose information, and
users have to be able to learn to use the software
quickly and without mistakes.

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software quality

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability
1 2

3

4

5

6

7

• There are three simple techniques for
reliability improvement that can be applied in
any software company.
1. Fault avoidance: You should program in such a way

that you avoid introducing faults into your program.
2. Input validation: You should define the expected

format for user inputs and validate that all inputs
conform to that format.

3. Failure management: You should implement your
software so that program failures have minimal
impact on product users.

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Programming for reliability

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Underlying causes of program errors

Program

Programmers make mistakes
because they don’t properly
understand the problem or

the application domain

Problem Technology

Programmers make mistakes
because they use unsuitable

technology or they don’t properly
understand the technologies used

Programming language,
libraries, database, IDE,

etc.

Programmers make mistakes because they
make simple slips or they do not completely

understand how multiple program components
work together the program’s state.

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software complexity

The shaded node interacts, in some ways, with
the linked nodes shown by the dotted line

• Complexity is related to the
number of relationships between elements
in a program and the type and nature of these
relationships

• The number of relationships between entities is
called the coupling. The higher the coupling, the
more complex the system.
– The shaded node has a relatively high coupling

because it has relationships with six other nodes.

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Program complexity

• A static relationship is one that is stable and
does not depend on program execution.
– Whether or not one component is

part of another component is a static relationship.

• Dynamic relationships, which change over time,
are more complex than static relationships.
– An example of a dynamic relationship is

the ‘calls’ relationship between functions.

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software complexity

32Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of complexity

Reading
complexity

Structural
complexity

Data
complexity

Decision
complexity

This reflects how hard it is to
read and understand the program.

This reflects the number and types of
relationship between the structures

(classes, objects, methods or functions) in your program.

This reflects the representations of
data used and relationships between
the data elements in your program.

This reflects the complexity of
the decisions in your program

33Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Complexity reduction guidelines
Structural complexity

• Functions should do one thing and one thing only

• Functions should never have side-effects

• Every class should have a single responsibility

• Minimize the depth of inheritance hierarchies

• Avoid multiple inheritance

• Avoid threads (parallelism) unless absolutely necessary

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Complexity reduction guidelines
Data complexity

• Define interfaces for all abstractions

• Define abstract data types

• Avoid using floating-point numbers

• Never use data aliases

35Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Complexity reduction guidelines
Conditional complexity

• Avoid deeply nested conditional statements
• Avoid complex conditional expressions

• You should design classes so that there is only
a single reason to change a class.
– If you adopt this approach, your classes will be

smaller and more cohesive.
– They will therefore be less complex and easier to

understand and change.

• The single responsibility principle
– Gather together the things that change for the same

reasons.
– Separate those things that change for different

reasons
36Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Ensure that every class
has a single responsibility

37Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The DeviceInventory class
DeviceInventory

laptops
tablets
phones
device_assignment
addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

DeviceInventory
laptops
tablets
phones
device_assignment
addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment
printInventory

(a) (b)

• One way of making this change is to
add a printInventory method
– This change breaks the single responsibility principle

as it then adds an additional ‘reason to change’ the
class.

• Instead of adding a printInventory method
to DeviceInventory,
it is better to
add a new class to represent the printed report.

38Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Adding a printInventory method

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The DeviceInventory and InventoryReport classes

DeviceInventory
laptops
tablets
phones
device_assignment
addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

InventoryReport

report_data
report_format

updateData
updateFormat
print

• Deeply nested conditional (if) statements are used when you
need to identify which of a possible set of choices is to be
made.

• For example, the function ‘agecheck’ is a short Python
function that is used to calculate an age multiplier for
insurance premiums.
– The insurance company’s data suggests that the age and

experience of drivers affects the chances of them having an
accident, so premiums are adjusted to take this into account.

– It is good practice to name constants rather than using
absolute numbers, so Program names all constants that are
used.

40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Avoid deeply
nested conditional statements

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

YOUNG_DRIVER_AGE_LIMIT = 25
OLDER_DRIVER_AGE = 70
ELDERLY_DRIVER_AGE = 80
YOUNG_DRIVER_PREMIUM_MULTIPLIER = 2
OLDER_DRIVER_PREMIUM_MULTIPLIER = 1.5
ELDERLY_DRIVER_PREMIUM_MULTIPLIER = 2
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER = 2
NO_MULTIPLIER = 1
YOUNG_DRIVER_EXPERIENCE = 2
OLDER_DRIVER_EXPERIENCE = 5
def agecheck(age, experience):

Assigns a premium multiplier depending on the age and experience of the driver
multiplier = NO_MULTIPLIER

if age <= YOUNG_DRIVER_AGE_LIMIT:
if experience <= YOUNG_DRIVER_EXPERIENCE:

multiplier = YOUNG_DRIVER_PREMIUM_MULTIPLIER *
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

else:
multiplier = YOUNG_DRIVER_PREMIUM_MULTIPLIER

else:
if age > OLDER_DRIVER_AGE and age <= ELDERLY_DRIVER_AGE:

if experience <= OLDER_DRIVER_EXPERIENCE:
multiplier = OLDER_DRIVER_PREMIUM_MULTIPLIER

else:
multiplier = NO_MULTIPLIER

else:
if age > ELDERLY_DRIVER_AGE:

multiplier = ELDERLY_DRIVER_PREMIUM_MULTIPLIER
return multiplier

Deeply nested if-then-else
statements

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

def agecheck_with_guards(age, experience):

if age <= YOUNG_DRIVER_AGE_LIMIT and experience <=
YOUNG_DRIVER_EXPERIENCE:

return YOUNG_DRIVER_PREMIUM_MULTIPLIER *
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

if age <= YOUNG_DRIVER_AGE_LIMIT:
return YOUNG_DRIVER_PREMIUM_MULTIPLIER

if (age > OLDER_DRIVER_AGE and age <= ELDERLY_DRIVER_AGE) and experience
<= OLDER_DRIVER_EXPERIENCE:

return OLDER_DRIVER_PREMIUM_MULTIPLIER
if age > ELDERLY_DRIVER_AGE:

return ELDERLY_DRIVER_PREMIUM_MULTIPLIER
return NO_MULTIPLIER

Using guards to
make a selection

• Inheritance allows the attributes and methods of a class,
such as RoadVehicle, can be inherited by sub-classes,
such as Truck, Car and MotorBike.

• Inheritance appears to be an effective and efficient way of
reusing code and of making changes that affect all subclasses.

• However, inheritance increases the structural complexity of code
as it increases the coupling of subclasses.

• The problem with deep inheritance is that if you want to make
changes to a class, you have to look at all of its superclasses to see
where it is best to make the change.

• You also have to look at all of the related subclasses to check that
the change does not have unwanted consequences. It’s easy to
make mistakes when you are doing this analysis and introduce
faults into your program.

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Avoid deep inheritance hierarchies

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Part of the inheritance
hierarchy for hospital staff

Hospital staff

Technicians Paramedics Clinical staff Scientist Ancillary staff Admin staff

Doctor Nurse Physiotherapist

Midwife Ward nurse
Nurse

Manager

• Definition
–A general reusable solution to a

commonly-occurring problem
within a given context in software design.

45Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Design pattern definition

• Design patterns are object-oriented and describe
solutions in terms of objects and classes.

• They are not off-the-shelf solutions that can be
directly expressed as code in an object-oriented
language.

• They describe the structure of a problem solution
but have to be adapted to suit your application
and the programming language that you are
using.

46Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Design pattern

• Separation of concerns
– This means that each abstraction in the program

(class, method, etc.) should address a separate
concern and that all aspects of that concern should
be covered there.

• Separate the ‘what’ from the ‘how
– If a program component provides a particular service,

you should make available only the information that
is required to use that service (the ‘what’). The
implementation of the service (‘the how’) should be
of no interest to service users.

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Programming principles

• Creational patterns
– These are concerned with class and object creation. They define

ways of instantiating and initializing objects and classes that are
more abstract than the basic class and object creation mechanisms
defined in a programming language.

• Structural patterns
– These are concerned with class and object composition. Structural

design patterns are a description of how classes and objects may be
combined to create larger structures.

• Behavioural patterns
– These are concerned with class and object communication. They

show how objects interact by exchanging messages, the activities in
a process and how these are distributed amongst the participating
objects.

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Common types of design patterns

• Design patterns are usually documented in the
stylized way. This includes:
– a meaningful name for the pattern and a brief

description of what it does;
– a description of the problem it solves;
– a description of the solution and its

implementation;
– the consequences and trade-offs of using the

pattern and other issues that you should
consider.

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Pattern description

• Refactoring means changing a program to reduce
its complexity without changing the external
behaviour of that program.

• Refactoring makes a program more readable (so
reducing the ‘reading complexity’) and more
understandable.

• It also makes it easier to change, which means
that you reduce the chances of making mistakes
when you introduce new features.

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Refactoring

• The reality of programming is that as you make
changes and additions to existing code, you
inevitably increase its complexity.
– The code becomes harder to understand and change.
– The abstractions and operations that you started with

become more and more complex because you modify
them in ways that you did not originally anticipate.

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Refactoring

52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

• The starting point for refactoring should be to
identify code ‘smells’.

• Code smells are indicators in the code that there
might be a deeper problem.
– For example, very large classes may indicate that the

class is trying to do too much. This probably means
that its structural complexity is high.

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code smells

• Large classes
Large classes may mean that the single
responsibility principle is being violated. Break
down large classes into easier-to-understand,
smaller classes.

• Long methods/functions
Long methods or functions may indicate that the
function is doing more than one thing. Split into
smaller, more specific functions or methods.

54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of code smells

• Duplicated code
Duplicated code may mean that when changes are
needed, these have to be made everywhere the code is
duplicated. Rewrite to create a single instance of the
duplicated code that is used as required

• Meaningless names
Meaningless names are a sign of programmer haste.
They make the code harder to understand. Replace with
meaningful names and check for other shortcuts that
the programmer may have taken.

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of code smells

• Unused code
This simply increases the reading complexity of
the code. Delete it even if it has been
commented out. If you find you need it later, you
should be able to retrieve it from the code
management system.

56Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of code smells

• Reading complexity
You can rename variable, function and class
names throughout your program to make their
purpose more obvious.

• Structural complexity
You can break long classes or functions into
shorter units that are likely to be more cohesive
than the original large class.

57Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of refactoring for
complexity reduction

• Data complexity
You can simplify data by changing your database
schema or reducing its complexity. For example,
you can merge related tables in your database to
remove duplicated data held in these tables.

• Decision complexity
You can replace a series of deeply nested if-then-
else statements with guard clauses.

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of refactoring for
complexity reduction

• Exceptions are events that disrupt the normal
flow of processing in a program.

• When an exception occurs, control is
automatically transferred to exception
management code.

• Most modern programming languages include a
mechanism for exception handling.

• In Python, you use **try-except** keywords to
indicate exception handling code;
in Java, the equivalent keywords are **try-catch.**

59Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Exception handling

60Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Exception handling

Executing code

Exception-handling
block

Exception raised

Normal processing

Normal processing

Exit

Exception re-raised or
abnormal exit

Exception-handling code

61

try:
f = open(”file1.txt")
f.write(”Hello World")

except:
print(”writing file error!")

finally:
f.close()

Python
try: except: finally:

Source: Python Try Except: https://www.w3schools.com/python/python_try_except.asp

62Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Auto-save and activity logging

Auto-save Command
logger

Crash
recovery

Last
saved state

Command
executed

Restored
state

• The most important quality attributes for most
software products are reliability, security, availability,
usability, responsiveness and maintainability.

• To avoid introducing faults into your program, you
should use programming practices that reduce the
probability that you will make mistakes.

• You should always aim to minimize complexity in your
programs. Complexity makes programs harder to
understand. It increases the chances of programmer
errors and makes the program more difficult to change.

63Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Design patterns are tried and tested solutions to
commonly occurring problems. Using patterns is an
effective way of reducing program complexity.

• Refactoring is the process of reducing the complexity of
an existing program without changing its functionality. It
is good practice to refactor your program regularly to
make it easier to read and understand.

• Input validation involves checking all user inputs to
ensure that they are in the format that is expected by
your program. Input validation helps avoid the
introduction of malicious code into your system and
traps user errors that can pollute your database.

64Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Regular expressions are a way of defining patterns that

can match a range of possible input strings. Regular

expression matching is a compact and fast way of

checking that an input string conforms to the rules you

have defined.

• You should check that numbers have sensible values

depending on the type of input expected. You should

also check number sequences for feasibility.

• You should assume that your program may fail and to

manage these failures so that they have minimal

impact on the user.

65Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Exception management is supported in most modern
programming languages. Control is transferred to your
own exception handler to deal with the failure when a
program exception is detected.

• You should log user updates and maintain user data
snapshots as your program executes. In the event of a
failure, you can use these to recover the work that the
user has done. You should also include ways of
recognizing and recovering from external service
failures.

66Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

References
• Ian Sommerville (2019), Engineering Software Products: An

Introduction to Modern Software Engineering, Pearson.

• Ian Sommerville (2015), Software Engineering, 10th Edition,
Pearson.

• Titus Winters, Tom Manshreck, and Hyrum Wright (2020),
Software Engineering at Google: Lessons Learned from
Programming Over Time, O'Reilly Media.

• Project Management Institute (2017), A Guide to the Project
Management Body of Knowledge (PMBOK Guide), Sixth
Edition, Project Management Institute

• Project Management Institute (2017), Agile Practice Guide,
Project Management Institute

67

