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Product management concerns

6Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Technical interactions of 
product managers
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Software Development Life Cycle (SDLC)

The waterfall model
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Plan-based and Agile development
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The Continuum of Life Cycles

10Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Predictive Life Cycle

11Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iterative Life Cycle

12Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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A Life Cycle of 
Varying-Sized Increments

13Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iteration-Based and Flow-Based 
Agile Life Cycles

14Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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From personas to features
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Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4



Multi-tier client-server architecture

16Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Service-oriented Architecture

17Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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VM

18Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Everything as a service

19Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software as a service

20Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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21Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Testing: 
Functional testing, 
Test automation, 

Test-driven development, 
and Code reviews
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Outline
• Software testing
• Functional testing
• Test automation
• Test-driven development
• Code reviews
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• Software testing is a process in which you execute your 
program using data that simulates user inputs. 

• You observe its behaviour to see whether or not your 
program is doing what it is supposed to do. 
– Tests pass if the behaviour is what you expect. 

Tests fail if the behaviour differs from that expected.
– If your program does what you expect, this shows 

that for the inputs used, the program behaves 
correctly. 

• If these inputs are representative of a larger set of 
inputs, you can infer that the program will behave 
correctly for all members of this larger input set.

27Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Software testing



• If the behaviour of the program does not match the 
behaviour that you expect, then this means that there 
are bugs in your program that need to be fixed. 

• There are two causes of program bugs:
– Programming errors
• You have accidentally included faults in your program code. 

For example: ‘off-by-1’ error

– Understanding errors
• You have misunderstood or have been unaware of some of 

the details of what the program is supposed to do. 

28Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Program bugs



29Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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• Functional testing involves developing a large set 
of program tests so that, ideally, all of a 
program’s code is executed at least once. 

• The number of tests needed obviously depends 
on the size and the functionality of the 
application. 

• For a business-focused web application, you may 
have to develop thousands of tests to convince 
yourself that your product is ready for release to 
customers.

30Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Functional testing



• Functional testing is a staged activity in which 
you initially test individual units of code. 
You integrate code units with other units to 
create larger units then do more testing. 

• The process continues until you have created a 
complete system ready for release. 

31Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Functional testing
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33Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

A name checking function
def namecheck(s):

# Checks that a name only includes alphabetic characters, - or 
# a single quote. Names must be between 2 and 40 characters long
# quoted strings and -- are disallowed

namex = r"^[a-zA-Z][a-zA-Z-']{1,39}$"
if re.match(namex, s):

if re.search("'.*'", s) or re.search("--", s):
return False

else:
return True

else:
return False 



• Correct names 1
The inputs only includes alphabetic characters and are 
between 2 and 40 characters long.

• Correct names 2
The inputs only includes alphabetic characters, hyphens or 
apostrophes and are between 2 and 40 characters long.

• Incorrect names 1
The inputs are between 2 and 40 characters long but include 
disallowed characters.

• Incorrect names 2
The inputs include allowed characters but are either a single 
character or are more than 40 characters long.

34Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Equivalence partitions for the 
name checking function



• Test edge cases
If your partition has upper and lower bounds (e.g. length of 
strings, numbers, etc.) choose inputs at the edges of the 
range.

• Force errors
Choose test inputs that force the system to generate all error 
messages. Choose test inputs that should generate invalid 
outputs.

• Fill buffers
Choose test inputs that cause all input buffers to overflow.

• Repeat yourself
Repeat the same test input or series of inputs several times.

35Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Unit testing guidelines (1)



• Overflow and underflow
If your program does numeric calculations, choose test inputs that 
cause it to calculate very large or very small numbers.

• Don’t forget null and zero
If your program uses pointers or strings, always test with null 
pointers and strings. 

• Keep count
When dealing with lists and list transformation, keep count 
of the number of elements in each list and check that these 
are consistent after each transformation.

• One is different
If your program deals with sequences, always test with 
sequences that have a single value.

36Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Unit testing guidelines (2)



• Features have to be tested to show that the 
functionality is implemented as expected and 
that the functionality meets the real needs of 
users. 
– For example, if your product has a feature that allows 

users to login using their Google account, then you 
have to check that this registers the user correctly 
and informs them of what information will be shared 
with Google. 

– You may want to check that it gives users the option 
to sign up for email information about your product.

37Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Feature testing



• Normally, a feature that does several things is 
implemented by multiple, interacting, program 
units. 

• These units may be implemented by different 
developers and all of these developers should be 
involved in the feature testing process. 

38Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Feature testing



• Interaction tests
– These test the interactions between the units that implement 

the feature. The developers of the units that are combined to 
make up the feature may have different understandings of 
what is required of that feature. 

– These misunderstandings will not show up in unit tests but 
may only come to light when the units are integrated.

– The integration may also reveal bugs in program units, which 
were not exposed by unit testing.

• Usefulness tests
– These test that the feature implements what users 

are likely to want. 

39Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Types of feature test



• User registration
As a user, I want to be able to login without creating a 
new account so that I don’t have to remember another 
login id and password.

• Information sharing
As a user, I want to know what information you will 
share with other companies. I want to be able to cancel 
my registration if I don’t want to share this information.

• Email choice
As a user, I want to be able to choose the types of email 
that I’ll get from you when I register for an account.

40Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

User stories for the 
sign-in with Google feature



• Initial login screen

Test that the screen displaying a request for Google 

account credentials is correctly displayed when a user 

clicks on the ‘Sign-in with Google’ link. Test that the 

login is completed if the user is already logged in to 

Google.

• Incorrect credentials

Test that the error message and retry screen is displayed 

if the user inputs incorrect Google credentials.

41Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Feature tests for 
sign-in with Google



• Shared information
Test that the information shared with Google is 
displayed, along with a cancel or confirm option.  Test 
that the registration is cancelled if the cancel option is 
chosen.

• Email opt-in
Test that the user is offered a menu of options for email 
information and can choose multiple items to opt-in to 
emails. Test that the user is not registered for any emails 
if no options are selected.

42Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Feature tests for 
sign-in with Google



• System testing involves testing the system as a 
whole, rather than the individual system 
features. 

43Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

System and release testing



• System testing should focus on four things:
– Testing to discover if there are unexpected and 

unwanted interactions between the features in a 
system.

– Testing to discover if the system features work 
together effectively to support what users really want 
to do with the system.

– Testing the system to make sure it operates in the 
expected way in the different environments where it 
will be used. 

– Testing the responsiveness, throughput, security and 
other quality attributes of the system. 

44Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

System testing 



• The best way to systematically test a system is to 
start with a set of scenarios that describe 
possible uses of the system and then work 
through these scenarios each time a new version 
of the system is created. 

• Using the scenario, you identify a set of 
end-to-end pathways that users might follow 
when using the system. 

• An end-to-end pathway is a sequence of actions 
from starting to use the system for the task, 
through to completion of the task. 

45Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Scenario-based testing



1. User inputs departure airport and chooses to see only 

direct flights. User quits.

2. User inputs departure airport and chooses to see all flights. 

User quits.

3. User chooses destination country and chooses to see all 

flights. User quits.

4. User inputs departure airport and chooses to see direct 

flights. User sets filter specifying departure times and 

prices. User quits.

5. User inputs departure airport and chooses to see direct 

flights. User sets filter specifying departure times and prices. 

User selects a displayed flight and clicks through to airline 

website. User returns to holiday planner after booking flight.
46Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Choosing a holiday destination
End-to-end pathways



• Release testing is a type of system testing where 
a system that’s intended for release to customers
is tested. 

• Preparing a system for release involves packaging 
that system for deployment (e.g. in a container if 
it is a cloud service) and installing software and 
libraries that are used by your product. 

• You must define configuration parameters such 
as the name of a root directory, the database size 
limit per user and so on. 

47Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Release testing



• The fundamental differences between 
release testing and system testing are:
– Release testing tests the system in its real operational 

environment rather than in a test environment. 
Problems commonly arise with real user data, which 
is sometimes more complex and less reliable than 
test data.

– The aim of release testing is to decide if the system is 
good enough to release, not to detect bugs in the 
system. Therefore, some tests that ‘fail’ may be 
ignored if these have minimal consequences for most 
users.

48Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Release testing and System testing



• Automated testing is based on the idea that 
tests should be executable. 

• An executable test includes the input data to the 
unit that is being tested, the expected result and 
a check that the unit returns the expected result. 

• You run the test and the test passes if the 
unit returns the expected result. 

• Normally, you should develop hundreds or 
thousands of executable tests for a software 
product.

49Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Test automation



50Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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# TestInterestCalculator inherits attributes and methods from the class 
# TestCase in the testing framework unittest

class TestInterestCalculator(unittest.TestCase):
# Define a set of unit tests where each test tests one thing only
# Tests should start with test_ and the name should explain what is being tested
def test_zeroprincipal(self):

#Arrange - set up the test parameters
p = 0; r = 3; n = 31
result_should_be = 0
#Action - Call the method to be tested
interest = interest_calculator (p, r, n)
#Assert - test what should be true
self.assertEqual(result_should_be, interest)

def test_yearly_interest(self):
#Arrange - set up the test parameters
p = 17000; r = 3; n = 365
#Action - Call the method to be tested
result_should_be = 270.36
interest = interest_calculator(p, r, n)
#Assert - test what should be true
self.assertEqual(result_should_be, interest)

Test methods for an interest calculator



• It is good practice to 
structure automated tests into three parts:
1. Arrange 

• You set up the system to run the test. This involves defining the 
test parameters and, if necessary, mock objects that emulate the 
functionality of code that has not yet been developed.

2. Action 
• You call the unit that is being tested with the test parameters. 

3. Assert 
• You make an assertion about what should hold if the unit 

being tested has executed successfully. 
AssertEquals: checks if its parameters are equal.

52Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Automated tests
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import unittest
from RE_checker import namecheck

class TestNameCheck (unittest.TestCase):

def test_alphaname (self):
self.assertTrue (namecheck ('Sommerville'))

def test_doublequote (self):
self.assertFalse (namecheck ("Thisis'maliciouscode'"))

def test_namestartswithhyphen (self):
self.assertFalse (namecheck ('-Sommerville'))

def test_namestartswithquote (self):
self.assertFalse (namecheck ("'Reilly"))

def test_nametoolong (self):
self.assertFalse (namecheck ('Thisisalongstringwithmorethen40charactersfrombeginningtoend'))

def test_nametooshort (self):
self.assertFalse (namecheck ('S'))

Executable tests for the namecheck function (1)



54Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

def test_namewithdigit (self):
self.assertFalse (namecheck('C-3PO'))

def test_namewithdoublehyphen (self):
self.assertFalse (namecheck ('--badcode’))

def test_namewithhyphen (self):
self.assertTrue (namecheck ('Washington-Wilson'))    

def test_namewithinvalidchar (self):
self.assertFalse (namecheck('Sommer_ville'))

def test_namewithquote (self):
self.assertTrue (namecheck ("O'Reilly"))

def test_namewithspaces (self):
self.assertFalse (namecheck ('Washington Wilson'))

def test_shortname (self):
self.assertTrue ('Sx')

def test_thiswillfail (self)
self.assertTrue (namecheck ("O Reilly"))

Executable tests for the namecheck function (2)



55Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

import unittest

loader = unittest.TestLoader()

#Find the test files in the current directory

tests = loader.discover('.')

#Specify the level of information provided by 
the test runner

testRunner = unittest.runner.TextTestRunner(verbosity=2)

testRunner.run(tests)

Code to run unit tests from files



56Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

The test pyramid

System 
tests

Feature tests

Unit tests

Increased automation
Reduced costs



57Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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58Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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• Test-driven development (TDD) is an approach to program 
development that is based around the general idea that you 
should write an executable test or tests for code that you are 
writing before you write the code. 

• It was introduced by early users of the Extreme Programming 
agile method, but it can be used with any incremental 
development approach.

• Test-driven development works best for the development of 
individual program units and it is more difficult to apply to 
system testing. 

• Even the strongest advocates of TDD accept that it is 
challenging to use this approach when you are developing and 
testing systems with graphical user interfaces.

59Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)



60Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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1. Identify partial implementation
Break down the implementation of the functionality required 
into smaller mini-units. Choose one of these mini-units for 
implementation.

2. Write mini-unit tests
Write one or more automated tests for the mini-unit that you 
have chosen for implementation. The mini-unit should pass 
these tests if it is properly implemented.

3. Write a code stub that will fail test
Write incomplete code that will be called to implement the mini-
unit. You know this will fail.

4. Run all existing automated tests
All previous tests should pass. The test for the incomplete code 
should fail.

61Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Stages of test-driven development 



5. Implement code that should cause the failing test to pass
Write code to implement the mini-unit, which should cause it to 
operate correctly

6. Rerun all automated tests
If any tests fail, your code is probably incorrect. Keep working on 
it until all tests pass.

7. Refactor code if necessary
If all tests pass, you can move on to implementing  the next mini-
unit. If you see ways of improving your code, you should do this 
before the next stage of implementation.

62Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Stages of test-driven development 



• It is a systematic approach to testing in which tests are clearly 
linked to sections of the program code. 
– This means you can be confident that your tests cover all of 

the code that has been developed and that there are no 
untested code sections in the delivered code.

• The tests act as a written specification for the program code. In 
principle at least, it should be possible to understand what the 
program does by reading the tests.

• Debugging is simplified because, when a program failure is 
observed, you can immediately link this to the last increment of 
code that you added to the system.

• TDD leads to simpler code as programmers only write code that’s 
necessary to pass tests. They don’t over-engineer their code with 
complex features that aren’t needed.
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Benefits of test-driven development



• TDD discourages radical program change
• I focused on the tests rather than the problem I 

was trying to solve
• I spent too much time thinking about 

implementation details rather than the 
programming problem

• It is hard to write ‘bad data’ tests
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Reasons for not using TDD



• Security testing aims to find vulnerabilities that may be 
exploited by an attacker and to provide convincing 
evidence that the system is sufficiently secure. 

• The tests should demonstrate that the system can resist 
attacks on its availability, attacks that try to inject 
malware and attacks that try to corrupt or steal users’ 
data and identity.

• Comprehensive security testing requires specialist 
knowledge of software vulnerabilities and approaches to 
testing that can find these vulnerabilities. 
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Security testing



• A risk-based approach to security testing involves 
identifying common risks and developing tests to 
demonstrate that the system protects itself from these 
risks. 

• You may also use automated tools that scan your system 
to check for known vulnerabilities, such as unused HTTP 
ports being left open.

• Based on the risks that have been identified, you then 
design tests and checks to see if the system is vulnerable. 

• It may be possible to construct automated tests for some 
of these checks, but others inevitably involve manual 
checking of the system’s behaviour and its files.
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Risk-based security testing



• Once you have identified security risks, you then 
analyze them to assess how they might arise. 
– The user has set weak passwords that can be guessed 

by an attacker.
– The system’s password file has been stolen and 

passwords discovered by attacker.

• Develop tests to check some of these 
possibilities. 
– For example, you might run a test to check that the 

code that allows users to set their passwords always 
checks the strength of passwords. 
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Risk analysis



• Code reviews involve one or more people examining the 
code to check for errors and anomalies and discussing
issues with the developer. 

• If problems are identified, it is the developer’s 
responsibility to change the code to fix the problems. 

• Code reviews complement testing. They are effective in 
finding bugs that arise through misunderstandings and 
bugs that may only arise when unusual sequences of code 
are executed.

• Many software companies insist that all code has to go 
through a process of code review before it is integrated 
into the product codebase.
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Code reviews
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• The aim of program testing is to find bugs and to show 
that a program does what its developers expect it to 
do. 

• Four types of testing that are relevant to 
software products are 
functional testing, user testing, 
load and performance testing and security testing.

• Unit testing involves testing program units such as 
functions or class methods that have a single 
responsibility. 

• Feature testing focuses on testing individual system 
features. 
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Summary



• System testing tests the system as a whole to check 
for unwanted interactions between features and 
between the system and its environment.

• Identifying equivalence partitions, in which all 
inputs have the same characteristics, and choosing 
test inputs at the boundaries of these partitions, is 
an effective way of finding bugs in a program.

• User stories may be used as a basis for deriving 
feature tests.
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Summary



• Test automation is based on the idea that tests 
should be executable. You develop a set of 
executable tests and run these each time you 
make a change to a system.

• The structure of an automated unit test should 
be arrange-action-assert. You set up the test 
parameters, call the function or method being 
tested, and make an assertion of what should be 
true after the action has been completed.

72Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Summary



• Test-driven development is an approach to 
development where executable tests are written 
before the code. Code is then developed to pass 
the tests.

• A disadvantage of test-driven development is 
that programmers focus on the detail of passing 
tests rather than considering the broader 
structure of their code and algorithms used.
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Summary



• Security testing may be risk driven where a list 
of security risks is used to identify tests that may 
identify system vulnerabilities.

• Code reviews are an effective supplement to 
testing. They involve people checking the code 
to comment on the code quality and to look for 
bugs.
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Summary
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