
�"(���"��"����
�"&��%�����
�

(Testing: Functional testing, Test automation,
Test-driven development, and Code reviews)

1

Min-Yuh Day
��

Associate Professor
���

Institute of Information Management, National Taipei University
�� ��	 #!�����

https://web.ntpu.edu.tw/~myday
2020-12-21

$'��
(Software Engineering)

1091SE11
MBA, IM, NTPU (M5118) (Fall 2020)

Tue 2, 3, 4 (9:10-12:00) (B8F40)

https://web.ntpu.edu.tw/~myday/
https://web.ntpu.edu.tw/~myday/cindex.htm
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday

1� (Week) �� (Date) � (Subject/Topics)
1 2020/09/15 03�#�/ (Introduction to Software Engineering)
2 2020/09/22 03!	*��% 503!	% 4�
-,

(Software Products and Project Management:
Software product management and prototyping)

3 2020/09/29 ��03�#5�����Scrum��2#�-,
(Agile Software Engineering: Agile methods, Scrum,

and Extreme Programming)
4 2020/10/06 �)������ (Features, Scenarios, and Stories)
5 2020/10/13 03��5��-,�&'�+������

(Software Architecture: Architectural design,
System decomposition, and Distribution architecture)

6 2020/10/20 03�#��"$ I
(Case Study on Software Engineering I)

2

.#�((Syllabus)

(� (Week) �� (Date) �� (Subject/Topics)

7 2020/10/27 ��,�'-.%��	�
�'-���
(Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service)

8 2020/11/03 ,)!$,'-��
(Cloud Computing and Cloud Software Architecture)

9 2020/11/10 ���� (Midterm Project Report)

10 2020/11/17 �����.RESTful�����*#
(Microservices Architecture: RESTful services,

Service deployment)

11 2020/11/24 '-������
(Industry Practices of Software Engineering)

12 2020/12/01 ��	+� (Security and Privacy)

3

&�" (Syllabus)

'� (Week) �� (Date) �� (Subject/Topics)
13 2020/12/08 &+������ II

(Case Study on Software Engineering II)
14 2020/12/15 �)���#" (Reliable Programming)
15 2020/12/22 �$,� �$��$!���

�$*��(������
(Testing: Functional testing, Test automation,
Test-driven development, and Code reviews)

16 2020/12/29 DevOps	�����,
�����	DevOps!��
(DevOps and Code Management:
Code management and DevOps automation)

17 2021/01/05 ��
� I (Final Project Report I)
18 2021/01/12 ��
� II (Final Project Report I)

4

%��� (Syllabus)

Software Engineering and
Project Management

5

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation
and

unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Product management concerns

6Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

7Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

8

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

9

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

10Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
eq

ue
nc

y
of

 D
el

iv
er

y
Lo

w
Hi

gh

Low High

Predictive Life Cycle

11Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

12Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Analyze
Design

Build
Test Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

13Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

14Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

15

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

16Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

17Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

18Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

19Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

20Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

21Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability
1 2

3

4

5

6

7

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

Testing:
Functional testing,
Test automation,

Test-driven development,
and Code reviews

25

Outline
• Software testing
• Functional testing
• Test automation
• Test-driven development
• Code reviews

26

• Software testing is a process in which you execute your
program using data that simulates user inputs.

• You observe its behaviour to see whether or not your
program is doing what it is supposed to do.
– Tests pass if the behaviour is what you expect.

Tests fail if the behaviour differs from that expected.
– If your program does what you expect, this shows

that for the inputs used, the program behaves
correctly.

• If these inputs are representative of a larger set of
inputs, you can infer that the program will behave
correctly for all members of this larger input set.

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software testing

• If the behaviour of the program does not match the
behaviour that you expect, then this means that there
are bugs in your program that need to be fixed.

• There are two causes of program bugs:
– Programming errors
• You have accidentally included faults in your program code.

For example: ‘off-by-1’ error

– Understanding errors
• You have misunderstood or have been unaware of some of

the details of what the program is supposed to do.

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Program bugs

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of testing
Functional

testing

User testing

Performance
and

load testing

Security
testing

Test the functionality of the overall system.

Test that the software product is useful to
and usable by end-users.

Test that the software works quickly and
can handle the expected load placed

on the system by its users.

Test that the software maintains its integrity
and can protect user information

from theft and damage.

• Functional testing involves developing a large set
of program tests so that, ideally, all of a
program’s code is executed at least once.

• The number of tests needed obviously depends
on the size and the functionality of the
application.

• For a business-focused web application, you may
have to develop thousands of tests to convince
yourself that your product is ready for release to
customers.

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing

• Functional testing is a staged activity in which
you initially test individual units of code.
You integrate code units with other units to
create larger units then do more testing.

• The process continues until you have created a
complete system ready for release.

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing

32Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing
Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

33Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A name checking function
def namecheck(s):

Checks that a name only includes alphabetic characters, - or
a single quote. Names must be between 2 and 40 characters long
quoted strings and -- are disallowed

namex = r"^[a-zA-Z][a-zA-Z-']{1,39}$"
if re.match(namex, s):

if re.search("'.*'", s) or re.search("--", s):
return False

else:
return True

else:
return False

• Correct names 1
The inputs only includes alphabetic characters and are
between 2 and 40 characters long.

• Correct names 2
The inputs only includes alphabetic characters, hyphens or
apostrophes and are between 2 and 40 characters long.

• Incorrect names 1
The inputs are between 2 and 40 characters long but include
disallowed characters.

• Incorrect names 2
The inputs include allowed characters but are either a single
character or are more than 40 characters long.

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Equivalence partitions for the
name checking function

• Test edge cases
If your partition has upper and lower bounds (e.g. length of
strings, numbers, etc.) choose inputs at the edges of the
range.

• Force errors
Choose test inputs that force the system to generate all error
messages. Choose test inputs that should generate invalid
outputs.

• Fill buffers
Choose test inputs that cause all input buffers to overflow.

• Repeat yourself
Repeat the same test input or series of inputs several times.

35Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Unit testing guidelines (1)

• Overflow and underflow
If your program does numeric calculations, choose test inputs that
cause it to calculate very large or very small numbers.

• Don’t forget null and zero
If your program uses pointers or strings, always test with null
pointers and strings.

• Keep count
When dealing with lists and list transformation, keep count
of the number of elements in each list and check that these
are consistent after each transformation.

• One is different
If your program deals with sequences, always test with
sequences that have a single value.

36Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Unit testing guidelines (2)

• Features have to be tested to show that the
functionality is implemented as expected and
that the functionality meets the real needs of
users.
– For example, if your product has a feature that allows

users to login using their Google account, then you
have to check that this registers the user correctly
and informs them of what information will be shared
with Google.

– You may want to check that it gives users the option
to sign up for email information about your product.

37Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature testing

• Normally, a feature that does several things is
implemented by multiple, interacting, program
units.

• These units may be implemented by different
developers and all of these developers should be
involved in the feature testing process.

38Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature testing

• Interaction tests
– These test the interactions between the units that implement

the feature. The developers of the units that are combined to
make up the feature may have different understandings of
what is required of that feature.

– These misunderstandings will not show up in unit tests but
may only come to light when the units are integrated.

– The integration may also reveal bugs in program units, which
were not exposed by unit testing.

• Usefulness tests
– These test that the feature implements what users

are likely to want.

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of feature test

• User registration
As a user, I want to be able to login without creating a
new account so that I don’t have to remember another
login id and password.

• Information sharing
As a user, I want to know what information you will
share with other companies. I want to be able to cancel
my registration if I don’t want to share this information.

• Email choice
As a user, I want to be able to choose the types of email
that I’ll get from you when I register for an account.

40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories for the
sign-in with Google feature

• Initial login screen

Test that the screen displaying a request for Google

account credentials is correctly displayed when a user

clicks on the ‘Sign-in with Google’ link. Test that the

login is completed if the user is already logged in to

Google.

• Incorrect credentials

Test that the error message and retry screen is displayed

if the user inputs incorrect Google credentials.

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature tests for
sign-in with Google

• Shared information
Test that the information shared with Google is
displayed, along with a cancel or confirm option. Test
that the registration is cancelled if the cancel option is
chosen.

• Email opt-in
Test that the user is offered a menu of options for email
information and can choose multiple items to opt-in to
emails. Test that the user is not registered for any emails
if no options are selected.

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature tests for
sign-in with Google

• System testing involves testing the system as a
whole, rather than the individual system
features.

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

System and release testing

• System testing should focus on four things:
– Testing to discover if there are unexpected and

unwanted interactions between the features in a
system.

– Testing to discover if the system features work
together effectively to support what users really want
to do with the system.

– Testing the system to make sure it operates in the
expected way in the different environments where it
will be used.

– Testing the responsiveness, throughput, security and
other quality attributes of the system.

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

System testing

• The best way to systematically test a system is to
start with a set of scenarios that describe
possible uses of the system and then work
through these scenarios each time a new version
of the system is created.

• Using the scenario, you identify a set of
end-to-end pathways that users might follow
when using the system.

• An end-to-end pathway is a sequence of actions
from starting to use the system for the task,
through to completion of the task.

45Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scenario-based testing

1. User inputs departure airport and chooses to see only

direct flights. User quits.

2. User inputs departure airport and chooses to see all flights.

User quits.

3. User chooses destination country and chooses to see all

flights. User quits.

4. User inputs departure airport and chooses to see direct

flights. User sets filter specifying departure times and

prices. User quits.

5. User inputs departure airport and chooses to see direct

flights. User sets filter specifying departure times and prices.

User selects a displayed flight and clicks through to airline

website. User returns to holiday planner after booking flight.
46Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Choosing a holiday destination
End-to-end pathways

• Release testing is a type of system testing where
a system that’s intended for release to customers
is tested.

• Preparing a system for release involves packaging
that system for deployment (e.g. in a container if
it is a cloud service) and installing software and
libraries that are used by your product.

• You must define configuration parameters such
as the name of a root directory, the database size
limit per user and so on.

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Release testing

• The fundamental differences between
release testing and system testing are:
– Release testing tests the system in its real operational

environment rather than in a test environment.
Problems commonly arise with real user data, which
is sometimes more complex and less reliable than
test data.

– The aim of release testing is to decide if the system is
good enough to release, not to detect bugs in the
system. Therefore, some tests that ‘fail’ may be
ignored if these have minimal consequences for most
users.

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Release testing and System testing

• Automated testing is based on the idea that
tests should be executable.

• An executable test includes the input data to the
unit that is being tested, the expected result and
a check that the unit returns the expected result.

• You run the test and the test passes if the
unit returns the expected result.

• Normally, you should develop hundreds or
thousands of executable tests for a software
product.

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test automation

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Automated testing

Test
runner

Testing
framework

Code
being tested

Test
Report

Files of executable tests

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

TestInterestCalculator inherits attributes and methods from the class
TestCase in the testing framework unittest

class TestInterestCalculator(unittest.TestCase):
Define a set of unit tests where each test tests one thing only
Tests should start with test_ and the name should explain what is being tested
def test_zeroprincipal(self):

#Arrange - set up the test parameters
p = 0; r = 3; n = 31
result_should_be = 0
#Action - Call the method to be tested
interest = interest_calculator (p, r, n)
#Assert - test what should be true
self.assertEqual(result_should_be, interest)

def test_yearly_interest(self):
#Arrange - set up the test parameters
p = 17000; r = 3; n = 365
#Action - Call the method to be tested
result_should_be = 270.36
interest = interest_calculator(p, r, n)
#Assert - test what should be true
self.assertEqual(result_should_be, interest)

Test methods for an interest calculator

• It is good practice to
structure automated tests into three parts:
1. Arrange

• You set up the system to run the test. This involves defining the
test parameters and, if necessary, mock objects that emulate the
functionality of code that has not yet been developed.

2. Action
• You call the unit that is being tested with the test parameters.

3. Assert
• You make an assertion about what should hold if the unit

being tested has executed successfully.
AssertEquals: checks if its parameters are equal.

52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Automated tests

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

import unittest
from RE_checker import namecheck

class TestNameCheck (unittest.TestCase):

def test_alphaname (self):
self.assertTrue (namecheck ('Sommerville'))

def test_doublequote (self):
self.assertFalse (namecheck ("Thisis'maliciouscode'"))

def test_namestartswithhyphen (self):
self.assertFalse (namecheck ('-Sommerville'))

def test_namestartswithquote (self):
self.assertFalse (namecheck ("'Reilly"))

def test_nametoolong (self):
self.assertFalse (namecheck ('Thisisalongstringwithmorethen40charactersfrombeginningtoend'))

def test_nametooshort (self):
self.assertFalse (namecheck ('S'))

Executable tests for the namecheck function (1)

54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

def test_namewithdigit (self):
self.assertFalse (namecheck('C-3PO'))

def test_namewithdoublehyphen (self):
self.assertFalse (namecheck ('--badcode’))

def test_namewithhyphen (self):
self.assertTrue (namecheck ('Washington-Wilson'))

def test_namewithinvalidchar (self):
self.assertFalse (namecheck('Sommer_ville'))

def test_namewithquote (self):
self.assertTrue (namecheck ("O'Reilly"))

def test_namewithspaces (self):
self.assertFalse (namecheck ('Washington Wilson'))

def test_shortname (self):
self.assertTrue ('Sx')

def test_thiswillfail (self)
self.assertTrue (namecheck ("O Reilly"))

Executable tests for the namecheck function (2)

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

import unittest

loader = unittest.TestLoader()

#Find the test files in the current directory

tests = loader.discover('.')

#Specify the level of information provided by
the test runner

testRunner = unittest.runner.TextTestRunner(verbosity=2)

testRunner.run(tests)

Code to run unit tests from files

56Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The test pyramid

System
tests

Feature tests

Unit tests

Increased automation
Reduced costs

57Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature editing through an API

APIFeature
tests

Browser or
mobile app interface

Feature 1

Feature 3

Feature 2

Feature 4

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Interaction recording and playback

Interaction
session records

User action
recording

Browser or
mobile app interface

System API

User action
playback

System being tested

• Test-driven development (TDD) is an approach to program
development that is based around the general idea that you
should write an executable test or tests for code that you are
writing before you write the code.

• It was introduced by early users of the Extreme Programming
agile method, but it can be used with any incremental
development approach.

• Test-driven development works best for the development of
individual program units and it is more difficult to apply to
system testing.

• Even the strongest advocates of TDD accept that it is
challenging to use this approach when you are developing and
testing systems with graphical user interfaces.

59Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)

60Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

1. Identify partial implementation
Break down the implementation of the functionality required
into smaller mini-units. Choose one of these mini-units for
implementation.

2. Write mini-unit tests
Write one or more automated tests for the mini-unit that you
have chosen for implementation. The mini-unit should pass
these tests if it is properly implemented.

3. Write a code stub that will fail test
Write incomplete code that will be called to implement the mini-
unit. You know this will fail.

4. Run all existing automated tests
All previous tests should pass. The test for the incomplete code
should fail.

61Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Stages of test-driven development

5. Implement code that should cause the failing test to pass
Write code to implement the mini-unit, which should cause it to
operate correctly

6. Rerun all automated tests
If any tests fail, your code is probably incorrect. Keep working on
it until all tests pass.

7. Refactor code if necessary
If all tests pass, you can move on to implementing the next mini-
unit. If you see ways of improving your code, you should do this
before the next stage of implementation.

62Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Stages of test-driven development

• It is a systematic approach to testing in which tests are clearly
linked to sections of the program code.
– This means you can be confident that your tests cover all of

the code that has been developed and that there are no
untested code sections in the delivered code.

• The tests act as a written specification for the program code. In
principle at least, it should be possible to understand what the
program does by reading the tests.

• Debugging is simplified because, when a program failure is
observed, you can immediately link this to the last increment of
code that you added to the system.

• TDD leads to simpler code as programmers only write code that’s
necessary to pass tests. They don’t over-engineer their code with
complex features that aren’t needed.

63Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of test-driven development

• TDD discourages radical program change
• I focused on the tests rather than the problem I

was trying to solve
• I spent too much time thinking about

implementation details rather than the
programming problem

• It is hard to write ‘bad data’ tests

64Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Reasons for not using TDD

• Security testing aims to find vulnerabilities that may be
exploited by an attacker and to provide convincing
evidence that the system is sufficiently secure.

• The tests should demonstrate that the system can resist
attacks on its availability, attacks that try to inject
malware and attacks that try to corrupt or steal users’
data and identity.

• Comprehensive security testing requires specialist
knowledge of software vulnerabilities and approaches to
testing that can find these vulnerabilities.

65Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Security testing

• A risk-based approach to security testing involves
identifying common risks and developing tests to
demonstrate that the system protects itself from these
risks.

• You may also use automated tools that scan your system
to check for known vulnerabilities, such as unused HTTP
ports being left open.

• Based on the risks that have been identified, you then
design tests and checks to see if the system is vulnerable.

• It may be possible to construct automated tests for some
of these checks, but others inevitably involve manual
checking of the system’s behaviour and its files.

66Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Risk-based security testing

• Once you have identified security risks, you then
analyze them to assess how they might arise.
– The user has set weak passwords that can be guessed

by an attacker.
– The system’s password file has been stolen and

passwords discovered by attacker.

• Develop tests to check some of these
possibilities.
– For example, you might run a test to check that the

code that allows users to set their passwords always
checks the strength of passwords.

67Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Risk analysis

• Code reviews involve one or more people examining the
code to check for errors and anomalies and discussing
issues with the developer.

• If problems are identified, it is the developer’s
responsibility to change the code to fix the problems.

• Code reviews complement testing. They are effective in
finding bugs that arise through misunderstandings and
bugs that may only arise when unusual sequences of code
are executed.

• Many software companies insist that all code has to go
through a process of code review before it is integrated
into the product codebase.

68Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code reviews

69Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code reviews

Discussion

Setup
review

Prepare
code

Distribute
code/tests

Make code
Changes

Check
code

Write review
report

Prepare
to-do list

Review
preparation

Code
checking Review Follow-up

Reviewer

ReviewerProgrammer Programmer

• The aim of program testing is to find bugs and to show
that a program does what its developers expect it to
do.

• Four types of testing that are relevant to
software products are
functional testing, user testing,
load and performance testing and security testing.

• Unit testing involves testing program units such as
functions or class methods that have a single
responsibility.

• Feature testing focuses on testing individual system
features.

70Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• System testing tests the system as a whole to check
for unwanted interactions between features and
between the system and its environment.

• Identifying equivalence partitions, in which all
inputs have the same characteristics, and choosing
test inputs at the boundaries of these partitions, is
an effective way of finding bugs in a program.

• User stories may be used as a basis for deriving
feature tests.

71Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Test automation is based on the idea that tests
should be executable. You develop a set of
executable tests and run these each time you
make a change to a system.

• The structure of an automated unit test should
be arrange-action-assert. You set up the test
parameters, call the function or method being
tested, and make an assertion of what should be
true after the action has been completed.

72Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Test-driven development is an approach to
development where executable tests are written
before the code. Code is then developed to pass
the tests.

• A disadvantage of test-driven development is
that programmers focus on the detail of passing
tests rather than considering the broader
structure of their code and algorithms used.

73Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Security testing may be risk driven where a list
of security risks is used to identify tests that may
identify system vulnerabilities.

• Code reviews are an effective supplement to
testing. They involve people checking the code
to comment on the code quality and to look for
bugs.

74Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

References
• Ian Sommerville (2019), Engineering Software Products: An

Introduction to Modern Software Engineering, Pearson.

• Ian Sommerville (2015), Software Engineering, 10th Edition,
Pearson.

• Titus Winters, Tom Manshreck, and Hyrum Wright (2020),
Software Engineering at Google: Lessons Learned from
Programming Over Time, O'Reilly Media.

• Project Management Institute (2017), A Guide to the Project
Management Body of Knowledge (PMBOK Guide), Sixth
Edition, Project Management Institute

• Project Management Institute (2017), Agile Practice Guide,
Project Management Institute

75

