
DevOps��
����
�
����DevOps���

(DevOps and Code Management: 
Code management and DevOps automation)

1

Min-Yuh Day
���

Associate Professor
��

Institute of Information Management, National Taipei University
������ �������

https://web.ntpu.edu.tw/~myday
2020-12-29

��	�
(Software Engineering)

1091SE12
MBA, IM, NTPU (M5118) (Fall 2020)

Tue 2, 3, 4 (9:10-12:00) (B8F40)

https://web.ntpu.edu.tw/~myday/
https://web.ntpu.edu.tw/~myday/cindex.htm
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday


1� (Week)    �� (Date)    � (Subject/Topics)
1   2020/09/15   03�#�/ (Introduction to Software Engineering)
2   2020/09/22   03!	*��% 503!	% 4�
-,

(Software Products and Project Management: 
Software product management and prototyping)

3   2020/09/29   ��03�#5�����Scrum��2#�-,
(Agile Software Engineering:  Agile methods, Scrum, 

and Extreme Programming)
4   2020/10/06   �)������ (Features, Scenarios, and Stories)
5   2020/10/13   03��5��-,�&'�+������

(Software Architecture: Architectural design, 
System decomposition, and Distribution architecture)

6   2020/10/20   03�#��"$ I 
(Case Study on Software Engineering I)

2

.#�( (Syllabus)



(� (Week)    �� (Date)    �� (Subject/Topics)

7   2020/10/27   ��,�'-.%��	�
�'-���
(Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service)

8   2020/11/03   , )!$,'-��
(Cloud Computing and Cloud Software Architecture)

9   2020/11/10   ���� (Midterm Project Report)

10   2020/11/17   �����.RESTful�����*#
(Microservices Architecture: RESTful services, 

Service deployment)

11   2020/11/24   '-������
(Industry Practices of Software Engineering)

12   2020/12/01   ��	+� (Security and Privacy)
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13   2020/12/08   &+������ II 

(Case Study on Software Engineering II)
14   2020/12/15   �)���#" (Reliable Programming)
15   2020/12/22   �$,� �$��$!���

�$*��(������
(Testing: Functional testing, Test automation, 
Test-driven development, and Code reviews)

16   2020/12/29   DevOps	�����,
�����	DevOps!��
(DevOps and Code Management: 
Code management and DevOps automation)

17   2021/01/05   ��
� I (Final Project Report I)
18   2021/01/12   ��
� II (Final Project Report I)
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Software Engineering and 
Project Management
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Product management concerns

6Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Technical interactions of 
product managers

7Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software Development Life Cycle (SDLC)

The waterfall model
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Plan-based and Agile development
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The Continuum of Life Cycles

10Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Predictive Life Cycle

11Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iterative Life Cycle

12Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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A Life Cycle of 
Varying-Sized Increments

13Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iteration-Based and Flow-Based 
Agile Life Cycles

14Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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From personas to features
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Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Multi-tier client-server architecture

16Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Service-oriented Architecture

17Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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VM

18Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Everything as a service

19Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software as a service

20Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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21Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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22Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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23Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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24Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code 

‘smell’

Identify 
refactoring 

strategy

Make small 
improvement until 
strategy completed

Run automated 
code tests

1 2

34



25Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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26Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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DevOps and 
Code Management: 
Code management 

and 
DevOps automation
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Outline
• Source code management
• DevOps automation
• DevOps measurement
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• Traditionally, separate teams were responsible software 
development, software release and software support. 

• The development team passed over a ‘final’ version of 
the software to a release team. 
– Built a release version, tested this and prepared release 

documentation before releasing the software to customers. 

• A third team was responsible for providing customer 
support.
– The original development team were sometimes also 

responsible for implementing software changes. 
– Alternatively, the software may have been maintained by a 

separate ‘maintenance team’.

29Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Software support



30Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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• There are inevitable delays and overheads in the 
traditional support model. 

• To speed up the release and support processes, 
an alternative approach called DevOps
(Development+Operations) has been developed.

31Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

DevOps



• Three factors led to the development and 
widespread adoption of DevOps:
– Agile software engineering reduced the development time 

for software, but the traditional release process introduced 
a bottleneck between development and deployment.  

– Amazon re-engineered their software around services and 
introduced an approach in which a service was developed 
and supported by the same team. Amazon’s claim that this 
led to significant improvements in reliability was widely 
publicized.

– It became possible to release software as a service, running 
on a public or private cloud. Software products did not have 
to be released to users on physical media or downloads.

32Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

DevOps



33Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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• Everyone is responsible for everything
All team members have joint responsibility for developing, 
delivering and supporting the software.

• Everything that can be automated should be automated
All activities involved in testing, deployment and support 
should be automated if it is possible to do so. There should 
be minimal manual involvement in deploying software.

• Measure first, change later
DevOps should be driven by a measurement program where 
you collect data about the system and its operation. You 
then use the collected data to inform decisions about 
changing DevOps processes and tools.

34Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

DevOps principles



35Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Benefits of DevOps
Faster 
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risk

Faster 
repair
More 

productive 
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Software can be deployed to production more quickly 
because communication delays between the people 

involved in the process are dramatically reduced.

The increment of functionality in each release is small 
so there is less chance of feature interactions and 
other changes causing system failures and outages.

DevOps teams work together to get the 
software up and running again as soon as possible. 

DevOps teams are happier and more productive 
than the teams involved in the separate activities. 



• Code management is a set of software-supported 
practices that is used to manage an evolving 
codebase. 

• During the development of a software product, 
the development team will probably create tens 
of thousands of lines of code and automated 
tests. 

• These will be organized into hundreds of files. 
Dozens of libraries may be used, and several, 
different programs may be involved in creating 
and running the code. 

36Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Code management



• You need code management to ensure that 
changes made by different developers do not 
interfere with each other, and to create different 
product versions. 

• Code management tools make it easy to create 
an executable product from its source code files 
and to run automated tests on that product.

37Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Code management



• Source code management, combined with 
automated system building, is essential for 
professional software engineering. 

• In companies that use DevOps, a modern code 
management system is a fundamental requirement 
for ‘automating everything’. 

• Not only does it store the project code that is 
ultimately deployed, it also stores all other 
information that is used in DevOps processes. 

• DevOps automation and measurement tools all 
interact with the code management system

38Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps



39Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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• Code management systems provide a set of features 
that support four general areas:

• Code transfer
– Developers take code into their personal file store to work on it then 

return it to the shared code management system.

• Version storage and retrieval
– Files may be stored in several different versions and specific versions of 

these files can be retrieved.

• Merging and branching
– Parallel development branches may be created for concurrent working. 

Changes made by developers in different branches may be merged.

• Version information
– Information about the different versions maintained in the system may 

be stored and retrieved
40Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Code management fundamentals



• All source code management systems have the 
general form with a shared repository and a set 
of features to manage the files in that repository:
– All source code files and file versions are stored in the 

repository, as are other artefacts such as 
configuration files, build scripts, shared libraries and 
versions of tools used. 

– The repository includes a database of information
about the stored files such as version information, 
information about who has changed the files, what 
changes were made at what times, and so on.

41Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Code repository



• Files can be transferred to and from the 
repository and information about the different 
versions of files and their relationships may be 
updated. 
– Specific versions of files and information about these 

versions can always be retrieved from the repository.

42Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Code repository



43Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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• In 2005, Linus Torvalds, the developer of Linux, 
revolutionized source code management by developing 
a distributed version control system (DVCS) called Git to 
manage the code of the Linux kernel. 

• This was geared to supporting large-scale open source 
development. It took advantage of the fact that storage 
costs had fallen to such an extent that most users did 
not have to be concerned with local storage 
management. 

• Instead of only keeping the copies of the files that users 
are working on, Git maintains a clone of the repository 
on every user’s computer 

44Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Git



45Source: https://git-scm.com/



46Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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• Branching and merging are fundamental ideas that 
are supported by all code management systems. 

• A branch is an independent, stand-alone version that 
is created when a developer wishes to change a file. 

• The changes made by developers in their own 
branches may be merged to create a new shared 
branch. 

• The repository ensures that branch files that have 
been changed cannot overwrite repository files 
without a merge operation.

47Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Branching and merging



48Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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• By using DevOps with automated support, you can 
dramatically reduce the time and costs for integration, 
deployment and delivery.

• Everything that can be, should be automated is a 
fundamental principle of DevOps. 

• As well as reducing the costs and time required for 
integration, deployment and delivery, process 
automation also makes these processes more reliable 
and reproducible. 

• Automation information is encoded in scripts and 
system models that can be checked, reviewed, versioned 
and stored in the project repository.

49Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

DevOps automation



50Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Aspects of DevOps automation
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as code

Each time a developer commits a change to the 
project’s master branch, an  executable version 

of the system is built and tested.

A simulation of the product’s operating environment
is created and the executable software version is tested.

A new release of the system is made available 
to users every time a change is made to the 

master branch of the software.

Machine-readable models of the infrastructure 
(network, servers, routers, etc.) 

on which the product executes are used by configuration 
management tools to build the software’s execution platform.  



51Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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• After you have adopted DevOps, you should try 
to continuously improve your DevOps process to 
achieve faster deployment of better-quality 
software.

• There are four types of 
software development measurement:
–Process measurement
– Service measurement
–Usage measurement
–Business success measurement

52Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

DevOps measurement



• As far as possible, the DevOps principle of automating 
everything should be applied to software measurement. 

• You should instrument your software to collect data 
about itself and you should use a monitoring system to 
collect data about your software’s performance and 
availability. 

• Some process measurements can also be automated. 
– However, there are problems in process 

measurement because people are involved. They 
work in different ways, may record information 
differently and are affected by outside influences that 
affect the way they work.

53Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Automating measurement



54Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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• DevOps is the integration of software development and 
the management of that software once it has been 
deployed for use. The same team is responsible for 
development, deployment and software support.

• The benefits of DevOps are faster deployment, reduced 
risk, faster repair of buggy code and more productive 
teams.

• Source code management is essential to avoid changes 
made by different developers interfering with each 
other.

55Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Summary



• All code management systems are based around a 
shared code repository with a set of features that 
support code transfer, version storage and retrieval, 
branching and merging and maintaining version 
information.

• Git is a distributed code management system that is the 
most widely used system for software product 
development. Each developer works with their own 
copy of the repository which may be merged with the 
shared project repository.

56Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Summary



• DevOps is the integration of software development and 
the management of that software once it has been 
deployed for use. The same team is responsible for 
development, deployment and software support.

• The benefits of DevOps are faster deployment, reduced 
risk, faster repair of buggy code and more productive 
teams.

• Source code management is essential to avoid changes 
made by different developers interfering with each 
other.

57Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Summary



• Continuous integration means that as soon as a change 
is committed to a project repository, it is integrated 
with existing code and a new version of the system is 
created for testing.

• Automated system building tools reduce the time 
needed to compile and integrate the system by only 
recompiling those components and their dependents 
that have changed.

• Continuous deployment means that as soon as a 
change is made, the deployed version of the system is 
automatically updated. This is only possible when the 
software product is delivered as a cloud-based service.

58Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Summary



• Infrastructure as code means that the infrastructure 
(network, installed software, etc.) on which software 
executes is defined as a machine-readable model. 
Automated tools, such as Chef and Puppet, can 
provision servers based on the infrastructure model.

• Measurement is a fundamental principle of DevOps. 
You may make both process and product 
measurements. Important process metrics are 
deployment frequency, percentage of failed 
deployments, and mean time to recovery from failure.

59Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Summary
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