
DevOps��
����
�
����DevOps���

(DevOps and Code Management:
Code management and DevOps automation)

1

Min-Yuh Day
���

Associate Professor
��

Institute of Information Management, National Taipei University
������ �������

https://web.ntpu.edu.tw/~myday
2020-12-29

��	�
(Software Engineering)

1091SE12
MBA, IM, NTPU (M5118) (Fall 2020)

Tue 2, 3, 4 (9:10-12:00) (B8F40)

https://web.ntpu.edu.tw/~myday/
https://web.ntpu.edu.tw/~myday/cindex.htm
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday

1� (Week) �� (Date) � (Subject/Topics)
1 2020/09/15 03�#�/ (Introduction to Software Engineering)
2 2020/09/22 03!	*��% 503!	% 4�
-,

(Software Products and Project Management:
Software product management and prototyping)

3 2020/09/29 ��03�#5�����Scrum��2#�-,
(Agile Software Engineering: Agile methods, Scrum,

and Extreme Programming)
4 2020/10/06 �)������ (Features, Scenarios, and Stories)
5 2020/10/13 03��5��-,�&'�+������

(Software Architecture: Architectural design,
System decomposition, and Distribution architecture)

6 2020/10/20 03�#��"$ I
(Case Study on Software Engineering I)

2

.#�((Syllabus)

(� (Week) �� (Date) �� (Subject/Topics)

7 2020/10/27 ��,�'-.%��	�
�'-���
(Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service)

8 2020/11/03 ,)!$,'-��
(Cloud Computing and Cloud Software Architecture)

9 2020/11/10 ���� (Midterm Project Report)

10 2020/11/17 �����.RESTful�����*#
(Microservices Architecture: RESTful services,

Service deployment)

11 2020/11/24 '-������
(Industry Practices of Software Engineering)

12 2020/12/01 ��	+� (Security and Privacy)

3

&�" (Syllabus)

'� (Week) �� (Date) �� (Subject/Topics)
13 2020/12/08 &+������ II

(Case Study on Software Engineering II)
14 2020/12/15 �)���#" (Reliable Programming)
15 2020/12/22 �$,� �$��$!���

�$*��(������
(Testing: Functional testing, Test automation,
Test-driven development, and Code reviews)

16 2020/12/29 DevOps	�����,
�����	DevOps!��
(DevOps and Code Management:
Code management and DevOps automation)

17 2021/01/05 ��
� I (Final Project Report I)
18 2021/01/12 ��
� II (Final Project Report I)

4

%��� (Syllabus)

Software Engineering and
Project Management

5

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation
and

unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Product management concerns

6Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

7Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

8

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

9

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

10Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
eq

ue
nc

y
of

 D
el

iv
er

y
Lo

w
Hi

gh

Low High

Predictive Life Cycle

11Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

12Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Analyze
Design

Build
Test Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

13Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

14Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

15

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

16Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

17Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

18Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

19Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

20Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

21Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability
1 2

3

4

5

6

7

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing
Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

DevOps and
Code Management:
Code management

and
DevOps automation

27

Outline
• Source code management
• DevOps automation
• DevOps measurement

28

• Traditionally, separate teams were responsible software
development, software release and software support.

• The development team passed over a ‘final’ version of
the software to a release team.
– Built a release version, tested this and prepared release

documentation before releasing the software to customers.

• A third team was responsible for providing customer
support.
– The original development team were sometimes also

responsible for implementing software changes.
– Alternatively, the software may have been maintained by a

separate ‘maintenance team’.

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software support

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software Development,
release and support

Software
Development

Problem and bug
reports

Software
Release

Software
Support

Tested software
ready for release

Deployed software
ready for use

• There are inevitable delays and overheads in the
traditional support model.

• To speed up the release and support processes,
an alternative approach called DevOps
(Development+Operations) has been developed.

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

• Three factors led to the development and
widespread adoption of DevOps:
– Agile software engineering reduced the development time

for software, but the traditional release process introduced
a bottleneck between development and deployment.

– Amazon re-engineered their software around services and
introduced an approach in which a service was developed
and supported by the same team. Amazon’s claim that this
led to significant improvements in reliability was widely
publicized.

– It became possible to release software as a service, running
on a public or private cloud. Software products did not have
to be released to users on physical media or downloads.

32Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

33Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

• Everyone is responsible for everything
All team members have joint responsibility for developing,
delivering and supporting the software.

• Everything that can be automated should be automated
All activities involved in testing, deployment and support
should be automated if it is possible to do so. There should
be minimal manual involvement in deploying software.

• Measure first, change later
DevOps should be driven by a measurement program where
you collect data about the system and its operation. You
then use the collected data to inform decisions about
changing DevOps processes and tools.

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps principles

35Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of DevOps
Faster

deployment

Reduced
risk

Faster
repair
More

productive
teams

Software can be deployed to production more quickly
because communication delays between the people

involved in the process are dramatically reduced.

The increment of functionality in each release is small
so there is less chance of feature interactions and
other changes causing system failures and outages.

DevOps teams work together to get the
software up and running again as soon as possible.

DevOps teams are happier and more productive
than the teams involved in the separate activities.

• Code management is a set of software-supported
practices that is used to manage an evolving
codebase.

• During the development of a software product,
the development team will probably create tens
of thousands of lines of code and automated
tests.

• These will be organized into hundreds of files.
Dozens of libraries may be used, and several,
different programs may be involved in creating
and running the code.

36Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management

• You need code management to ensure that
changes made by different developers do not
interfere with each other, and to create different
product versions.

• Code management tools make it easy to create
an executable product from its source code files
and to run automated tests on that product.

37Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management

• Source code management, combined with
automated system building, is essential for
professional software engineering.

• In companies that use DevOps, a modern code
management system is a fundamental requirement
for ‘automating everything’.

• Not only does it store the project code that is
ultimately deployed, it also stores all other
information that is used in DevOps processes.

• DevOps automation and measurement tools all
interact with the code management system

38Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and Devops

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

• Code management systems provide a set of features
that support four general areas:

• Code transfer
– Developers take code into their personal file store to work on it then

return it to the shared code management system.

• Version storage and retrieval
– Files may be stored in several different versions and specific versions of

these files can be retrieved.

• Merging and branching
– Parallel development branches may be created for concurrent working.

Changes made by developers in different branches may be merged.

• Version information
– Information about the different versions maintained in the system may

be stored and retrieved
40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management fundamentals

• All source code management systems have the
general form with a shared repository and a set
of features to manage the files in that repository:
– All source code files and file versions are stored in the

repository, as are other artefacts such as
configuration files, build scripts, shared libraries and
versions of tools used.

– The repository includes a database of information
about the stored files such as version information,
information about who has changed the files, what
changes were made at what times, and so on.

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code repository

• Files can be transferred to and from the
repository and information about the different
versions of files and their relationships may be
updated.
– Specific versions of files and information about these

versions can always be retrieved from the repository.

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code repository

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Features of
code management systems

Version and release identification

Change history recording

Independent development

Project support

Storage management

• In 2005, Linus Torvalds, the developer of Linux,
revolutionized source code management by developing
a distributed version control system (DVCS) called Git to
manage the code of the Linux kernel.

• This was geared to supporting large-scale open source
development. It took advantage of the fact that storage
costs had fallen to such an extent that most users did
not have to be concerned with local storage
management.

• Instead of only keeping the copies of the files that users
are working on, Git maintains a clone of the repository
on every user’s computer

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Git

45Source: https://git-scm.com/

46Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of
distributed code management

Resilience

Speed

Flexibility

• Branching and merging are fundamental ideas that
are supported by all code management systems.

• A branch is an independent, stand-alone version that
is created when a developer wishes to change a file.

• The changes made by developers in their own
branches may be merged to create a new shared
branch.

• The repository ensures that branch files that have
been changed cannot overwrite repository files
without a merge operation.

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Branching and merging

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Branching and merging

Alice

Bob

Bug fix branch

Merge
Master branch

Feature experiment branch

• By using DevOps with automated support, you can
dramatically reduce the time and costs for integration,
deployment and delivery.

• Everything that can be, should be automated is a
fundamental principle of DevOps.

• As well as reducing the costs and time required for
integration, deployment and delivery, process
automation also makes these processes more reliable
and reproducible.

• Automation information is encoded in scripts and
system models that can be checked, reviewed, versioned
and stored in the project repository.

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps automation

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Aspects of DevOps automation
Continuous
integration

Continuous
delivery

Continuous
deployment

Infrastructure
as code

Each time a developer commits a change to the
project’s master branch, an executable version

of the system is built and tested.

A simulation of the product’s operating environment
is created and the executable software version is tested.

A new release of the system is made available
to users every time a change is made to the

master branch of the software.

Machine-readable models of the infrastructure
(network, servers, routers, etc.)

on which the product executes are used by configuration
management tools to build the software’s execution platform.

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Characteristics of
infrastructure as code

Visibility

Reproducibility

Reliability

Recovery

• After you have adopted DevOps, you should try
to continuously improve your DevOps process to
achieve faster deployment of better-quality
software.

• There are four types of
software development measurement:
–Process measurement
– Service measurement
–Usage measurement
–Business success measurement

52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps measurement

• As far as possible, the DevOps principle of automating
everything should be applied to software measurement.

• You should instrument your software to collect data
about itself and you should use a monitoring system to
collect data about your software’s performance and
availability.

• Some process measurements can also be automated.
– However, there are problems in process

measurement because people are involved. They
work in different ways, may record information
differently and are affected by outside influences that
affect the way they work.

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Automating measurement

54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Metrics used in the
DevOps scorecard

DevOps
metrics

Deployment
frequency

Change
volume

Lead time from
development to

deployment

Percentage
increase in

customer numbers

Number of customer
complaints

Availability

Performance

Percentage of
failed deployment

Mean time
to recovery

Process metrics

Service metrics

• DevOps is the integration of software development and
the management of that software once it has been
deployed for use. The same team is responsible for
development, deployment and software support.

• The benefits of DevOps are faster deployment, reduced
risk, faster repair of buggy code and more productive
teams.

• Source code management is essential to avoid changes
made by different developers interfering with each
other.

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• All code management systems are based around a
shared code repository with a set of features that
support code transfer, version storage and retrieval,
branching and merging and maintaining version
information.

• Git is a distributed code management system that is the
most widely used system for software product
development. Each developer works with their own
copy of the repository which may be merged with the
shared project repository.

56Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• DevOps is the integration of software development and
the management of that software once it has been
deployed for use. The same team is responsible for
development, deployment and software support.

• The benefits of DevOps are faster deployment, reduced
risk, faster repair of buggy code and more productive
teams.

• Source code management is essential to avoid changes
made by different developers interfering with each
other.

57Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Continuous integration means that as soon as a change
is committed to a project repository, it is integrated
with existing code and a new version of the system is
created for testing.

• Automated system building tools reduce the time
needed to compile and integrate the system by only
recompiling those components and their dependents
that have changed.

• Continuous deployment means that as soon as a
change is made, the deployed version of the system is
automatically updated. This is only possible when the
software product is delivered as a cloud-based service.

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Infrastructure as code means that the infrastructure
(network, installed software, etc.) on which software
executes is defined as a machine-readable model.
Automated tools, such as Chef and Puppet, can
provision servers based on the infrastructure model.

• Measurement is a fundamental principle of DevOps.
You may make both process and product
measurements. Important process metrics are
deployment frequency, percentage of failed
deployments, and mean time to recovery from failure.

59Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

References
• Ian Sommerville (2019), Engineering Software Products: An

Introduction to Modern Software Engineering, Pearson.

• Ian Sommerville (2015), Software Engineering, 10th Edition,
Pearson.

• Titus Winters, Tom Manshreck, and Hyrum Wright (2020),
Software Engineering at Google: Lessons Learned from
Programming Over Time, O'Reilly Media.

• Project Management Institute (2017), A Guide to the Project
Management Body of Knowledge (PMBOK Guide), Sixth
Edition, Project Management Institute

• Project Management Institute (2017), Agile Practice Guide,
Project Management Institute

60

