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Uncertain Knowledge
and Reasoning



Outline

* Quantifying Uncertainty

* Probabilistic Reasoning

* Probabilistic Reasoning over Time
* Probabilistic Programming

* Making Simple Decisions

* Making Complex Decisions



Stuart Russell and Peter Norvig (2020),
Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

g Y
on Unit MR (Jelse

44 '\
.

russell SAtificial Intelligence
Norvig A Modern Approach

P Fourth Edition

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
https://www.amazon.com/Atrtificial-Intelligence-A-Modern-Approach/dp/0134610997/
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Artificial Intelligence:
A Modern Approach

. Artificial Intelligence

. Problem Solving

. Knowledge and Reasoning

. Uncertain Knowledge and Reasoning

. Machine Learning

. Communicating, Perceiving, and Acting
. Philosophy and Ethics of Al



Artificial Intelligence:
Uncertain

Knowledge and
Reasoning

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



4. Uncertain Knowledge and Reasoning

Artificial Intelligence:

Quantifying Uncertainty

Proba
Proba
Proba

o]
o]

o]

Istic Reasoning
Istic Reasoning over Time

Istic Programming

Making Simple Decisions

Making Complex Decisions

Multiagent Decision Making
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Intelligent Agents



4 Approaches of Al

3.
2. . .
Thinking Humanly: Thinking Rationally:
.. The “Laws of Thought”
The Cognitive Approach
Modeling Approach
1. 4.
Acting Humanly: Acting Rationally:
The Turing Test The Rational Agent

Approach s

Approach

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Reinforcement Learning (DL)

Agent

{ EnvironmentJ




Reinforcement Learning (DL)

1 observation 2 action
Agent

3 reward T

Environment
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Reinforcement Learning (DL)

1 observation 2 action
Agent
0, A,

3 reward TRt

Environment
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Agents interact with environments
through sensors and actuators

/Px gent Sensors s

' Percepts

?

' Actions

\ Actuators -

JUSWIUOITAUH




Quantifying
Uncertainty



DT-Agent
A Decision-Theoretic Agent that
Selects Rational Actions

function DT-AGENT( percept) returns an action
persistent: belief_state, probabilistic beliefs about the current state of the world
action, the agent’s action

update belief_state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belief_state
select action with highest expected utility

given probabilities of outcomes and utility information
return action

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Agent 1 has inconsistent beliefs

Proposition Agent1's ~ Agent2  Agent1  Agent | payoffs for each outcome

belief bets bets 4,0 a,7b -a,b -,

0 04  $4one  S6on-a -6 -S6 $4 W
b 03 $Boab STon-b 5T B T H
aVb 08  Son-(avh) Bonavd §2 K -8
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A full joint distribution for the
Toothache, Cavity, Catch world

toothache Stoothache

cateh Scateh cateh S catch

Caty 0.108 0.012 0072 0.008
ooty 0.016 0.064 (.144 0.376




Weather and Dental problems are
independent

Cavity
Toothache Catch
Weather

&

decomposes
into

Cavity
Toothache  Catch

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Coin flips are independent

Coiny ++---. Coin,

decomposes
into

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Probabilistic
Reasoning



A Simple Bayesian Network

Weather is independent to the other three variables.
Toothache and Catch are conditionally independent, given Cavity.

Weather

Toothache

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 24



A Typical Bayesian Network

Topology and the Conditional Probability Tables (CPTs)

Burglary

P(B=true)

.001

P(J=truelA)

t 90

.05

Earthquake

P(E=true)
002

P(A=true|B,E)

-~ = ~|®

.70
01
.70
01

A | P(M=true|A)

t 70
fl o
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Conditional Probability Table
for P(Fever | Cold, Flu, Malaria)

Cold  Flu Malaria P(fever|-) P(—fever|)

f f f 00 1.0

f f t 0.9 0.1

f t f 08 0.2

f t t 098 0.02=02x0.1

t f f 04 0.6

t f t 094 0.06 =0.6 x 0.1

t t f 088 0.12=10.6 x 0.2

t t t 0988 0.012=0.6x02x0.1

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A Simple Network

with discrete variables (Subsidy and Buys)
and continuous variables (Harvest and Cost )

Gubsidy Qarves)
(Cost 3

CBys

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Probability distribution

over Cost as a function of Harvest size

P(c | h, subsidy) P(c | h, - subsidy)

04 ; 04 -
03 - 03 1
02 - 02
01 1 p 0l

045 60 0

) 03 Harvest 1 Costc6

(a) (b) (c)

distribution P (Cost | Harvest ),
obtained by summing over the
two subsidy cases.

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 28



P(c)

A normal (Gaussian) distribution

0.5 ;

04 -

0.3 -

0.2 -

0.1 1

for the cost threshold

1
0.8 -
S 06
)
5
T 04 -
02 -
T 0 \
2 4 6 8 10 12 0 2 12
Cost ¢
(a)

Expit and Probit models for the
probability of buys given cost

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 29



A Bayesian Network
for evaluating car insurance applications

RiskAversion

YearsLicensed

Y

Age »(  SocioEcon
Comer>
> a ode ehicleYear
e l
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The structure of the expression

P(-alb,e) P(alb,—e)
.05 94

P(—alb,—e)

P(jla) P(jl-a) P(jla) P(jl-a)
90 .05 .90 .05

O O
P(mla) P(ml-a) P(mla) P(ml-a)

70 01 70 01
O O O

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



The Enumeration Algorithm
for Exact Inference in Bayes Nets

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayes net with variables vars

Q(X) < a distribution over X, initially empty
for each value z; of X do
Q(z;) + ENUMERATE-ALL(vars, €z,)
where e, is e extended with X = z;
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY ?(vars) then return 1.0
V < FIRST(vars)
if V is an evidence variable with value v in e
then return P(v | parents(V)) x ENUMERATE-ALL(REST(vars), )
elsereturn ) | P(v|parents(V)) x ENUMERATE-ALL(REST(vars),e,)
where e, is e extended with V = v

32



X

i
t
f
f

Pointwise Multiplication

I(X,Y) xg(Y,Z) = h(X,\.Z)

Y o f(X,Y)
t3
foooo
tY
f 1

Y

S~y T &+

Z

S o T o

g(Y,Z)
2

3
6
4

<

S T T Y o o o o

|-<

S T o o T Y o o+

(NN

h(X,Y,Z)

3% .2=.06
X .8=.24
TX .6=42
X .4=.28
9x.2=.18
9Ix .8=.72
1x.6=.06
Ix.4=.04

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The Variable Elimination Algorithm
for Exact Inference in Bayes Nets

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables vars

factors « ||
for each V in ORDER(vars) do

factors <~ [MAKE-FACTOR(V ,e)] + factors

if V is a hidden variable then factors < SUM-OUT(V, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 34



Bayes Net Encoding

of the 3-CNF (Conjunctive Normal Form) Sentence
(W VX VY) A (-W VY VZ) A (X VY V-2)

SSSSSS : Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 35



Multiply Connected Network

(b) A clustered equivalent

P(C=.5)

S R|P(W|s,r)
t t .99
t £l .90
ft 90
f £l .00

(a)

P(C=.5)

S+R |P(W|s+r)
11 .99
Lf 90
| 90
Jf 1 .00

P(S+R|c)
tf fr s

.08 .02 .72 .18
.10 .40 .10 .40

(b)
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A Sampling Algorithm

that generates events from a Bayesian network

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P(X7, ..., X;,)

X ¢ an event with n elements
for each variable X; in X1,..., X, do

X[i| ¢ a random sample from P(X; | parents(X;))
refurn x

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 37



The Rejection-Sampling Algorithm

for answering queries given evidence in a Bayesian network

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X | e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated
local variables: C, a vector of counts for each value of X, initially zero

forj=1to N do
X <— PRIOR-SAMPLE(bn)

if x is consistent with e then
C[j]1<« C[j]+1 where z; is the value of X in X
return NORMALIZE(C)
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The Likelihood-Weighting Algorithm

for inference in Bayesian networks

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X | e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network specifying joint distribution P( X7, ..., X},)
N, the total number of samples to be generated
local variables: W, a vector of weighted counts for each value of X, initially zero

forj=1to Ndo

X, W <— WEIGHTED-SAMPLE(bn, €)

W/[j| < W[j] + w where z; is the value of X in x
return NORMALIZE (W)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

w < 1; X + an event with n elements, with values fixed from e
fori:=1tondo
if X; is an evidence variable with value z;; in e
then w < w x P(X; = z;; | parents(X;))
else x[i| < a random sample from P(X; | parents(X;))
return x, w

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Performance of rejection sampling and
likelihood weighting on the insurance network

0.1 -

‘ Rejection sampling s s
I Likelihood weighting
0.08 - ‘
| A
ly /)
006 {1 IV |
S I
EE l‘ [ Iﬂ'l’\_\h
0.04 - !’I v v v\ II‘“V\AN
\'\/\ J \L\
0.02 - \'”‘v'“\_/'"\ .
B \d\\x.
" \w\#\-ﬁg%_,_—‘h,

0 200000 400000 600000 800000  1x10°
Number of samples

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 40



The Gibbs Sampling Algorithm

for approximate inference in Bayes nets

function GIBBS-ASK(X,e, bn, N) returns an estimate of P(X |e)
local variables: C, a vector of counts for each value of X, initially zero
Z., the nonevidence variables in bn
X, the current state of the network, 1nitialized from e

initialize x with random values for the variables in Z

fork=1to N do
choose any variable Z; from Z according to any distribution p(7)
set the value of Z; in x by sampling from P(Z; | mb(Z;))
C[j] < C[j] + 1 where z; is the value of X in x

return NORMALIZE(C)

41



The States and Transition Probabilities
of the Markov Chain

for the query P(Rain | Sprinkler = true, WetGrass = true)

0.6296 0.1164 1.0000 0.0000
O 0.0926 ) O 0.0000 f)
C r Q C °r C r O C °r

0.4074 /\ 0.5000 /\
0.2222 02778  0.0238 0.4762  0.5000 0.0000  0.0000 0.5000
/ 0.3922 / / 0.5000 /

r /-»\_‘C -r
N

-_C -C r O_‘C -r
60.3856 0.1078 0.8683Q Qo.oooo 0.0000 1.0000\)

(a) (b)

Transition Probabilities
when the CPT for Rain constrains it
to have the same value as Cloudy

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 42



Performance of Gibbs sampling
compared to likelihood weighting
on the car insurance network

002 1)+ 0.02 -
|= | Likelihood weighting —— Likelihood weighting ——
I | Gibbs sampling ———- Gibbs sampling ———-
0015 {11!, 0015 -
i I
i § \
0.01 [ g oo1{
ik '\| 5 \
|
0.005 - \ 0.005 -
|PA
0 , by : 0 ! \."'."j\',‘v.d u\/.‘\ i =W
0 200000 400000 600000 800000 1x10° 0 200000 400000 600000 800000 1x10°
Number of samples Number of samples
(a) (b)

are observed and Age is the query variable

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 43



A Causal Bayesian Network

representing cause-effect relations among five variables

GreenerGrass

GreenerGrass

(a) (b)

The network after performing the action
“turn Sprinkler on.”

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 44



Probabilistic
Reasoning
over Time



’________\

Bayesian network structure

corresponding to a First-order Markov Process
with state defined by the variables Xz.

_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_~

DR DRI D ECD

A Second-order Markov Process

NN I I I S I S S DS B B D B B S B B B D B D B B B B B B B e e e

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Bayesian Network Structure
and Conditional Distributions
describing the umbrella world

R, 1|P(RJR,)
t 0.7
f 0.3

Rt P (UtIRt)
t 0.9
f 0.2

@béll@ me'rella, @béll@

Source : Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 47




Smoothing computes P(X, | e;.,),

the posterior distribution of the state at some past time k given a
complete sequence of observations from 1 to t.

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The Forward—-Backward Algorithm
for Smoothing

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions

inputs: ev, a vector of evidence values for steps 1,...,¢
prior, the prior distribution on the initial state, P(Xo)
local variables: fv, a vector of forward messages for steps O, . . ., ¢
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1,...,¢

fv[0] < prior
fori= 1totdo
fv[i| < FORWARD (fv[i — 1], ev][i])
for := t down to 1 do
sv[i] < NORMALIZE(fv[i] X b)
b <~ BACKWARD (b, ev/[i])
return sv

49



Possible state sequences for Rain

can be viewed as paths through a graph of the possible states

at each time step

Rains

Rainy Rain, Rain, Rain; Rainy
true true true true true
(a)
false false false false false
Umbrella, true true false true

Operation of the Viterbi algorithm
for the umbrella observation sequence [true, true, false, true, true]




Algorithm for Smoothing
with a Fixed Time Lag of d Step

function FIXED-LAG-SMOOTHING(e;, hmm, d) returns a distribution over X;_4
inputs: e;, the current evidence for time step ¢
hmm, a hidden Markov model with S x S transition matrix T
d, the length of the lag for smoothing
persistent: ¢, the current time, initially 1
f, the forward message P(X; | e1.¢), initially ~Amnm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
et—4.t, double-ended list of evidence from ¢ — d to ¢, initially empty
local variables: O;_,, O;, diagonal matrices containing the sensor model information

add e; tothe end of e;_4.¢
O, < diagonal matrix containing P(e; | X;)
if ¢ > d then
f < FORWARD(f, e;_q)
remove e;_4_1 from the beginning of e;_4.¢
O;_, < diagonal matrix containing P(e;_4 | X;_4)
B+ O, ', T 'BTO;
else B < BTO;
t—t+1
if £ > d + 1 then return NORMALIZE(f x B1) else return null

51



Specification of the prior, transition model,
and sensor model for the umbrella DBN

P(R RO P(RIIRO)
0) t 0.7
0.7 f |l 03

Ry |P(Uj|Ry)

t 0.9

| 02

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 52



A DBN fragment

the sensor status variable required for
modeling persistent failure of the battery sensor

'—I—'—'—.—I—I—W;H—H—H

%*****

E(Battery,)
_ O = N W A W

7 REI—E-E-E—EI—E-E-E—EI—EI
[ = =3 Y 3 0

15 20 25 30
Time step

(b)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

B, | P(B) E(Battery, |...5555005555...

t | 1.000
f | 0.001

E(Battery, |...5555000000...
P(BMBroken, |...5555000000...

P(BMBroken, 1...5555005555...
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Dynamic Bayesian Network

P(Ry)

0.7

Ry |P(R;|Ry)
t | 07
fl 03

Y

( gmbrellai )

>

R, |P(Uy|Ry)
tl 09
fl 02

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Unrolling a

= Ry |[P(RyRy)| |R|P(RyR))| |R,|P(R3|Ry)

Ro)l 7T 07 it 07 | [t 07
0.7 f 0.3 f 0.3 f 0.3
@ Rain, Rain, Rains

\

\

Y

R, [P(U,R)| |R,|P(U,R,)| [Rs|P(Us|R,)
| 09 t| 09 tl 09
fl 02 fl 02 fl 02
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The Particle Filtering Algorithm

function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence
N, the number of samples to be maintained
dbn, a DBN defined by P(X()), P(Xl | XO), and P(El | Xl)
persistent: S, a vector of samples of size N, initially generated from P(Xg)
local variables: W, a vector of weights of size N

fori=1to N do

S[7] < sample from P(X; | Xg = S[i]) // step 1
Wil P(e| Xy = S[i]) // step 2
S < WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) // step 3

return S
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The Particle Filtering Update Cycle
for the Umbrella DBN

Rain, Rain, Rain, Rain,

(a) Propagate (b) Weight  (c) Resample

lrue

false

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 56



A Dynamic Bayes Net

for simultaneous localization and mapping
in the stochastic-dirt vacuum world

@catioD

i

<pml,(>

WallSensE
<Dzrt 1,1

o>

<Di"t2,1
DirtSensE

o>

><Diﬂ42,1
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Probabilistic
Programming



Possible Worlds

for a language with two constant symbols, R and J

R J R J RJ& R
R J R J R J R J

= @

;
o

Y
o

@

Y

3\‘

J R J

I\

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 59



Bayes Net for a Single customer C1

recommending a single book B1. Honest(C1) is Boolean

(a) (b)

Bayes net with two customers and two books

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 60



Bayes Net

for the book recommendation when Author(B2) is unknown
Author(B,)

CQuality(3)> ﬁ\ %

Recommendatzon(Cl B;) Recommendatzon(Cl B,)
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One particular world for the
book recommendation OUPM

Variable
# Customer
# Book

HO’neSt( Customer, ,1)

Honest(customer, ,2)
Kindness customer, ,1)

Kindness customer, ,2)

Quality(Book, ,1)

Quality(Book:, ,2)

Quality pook, 3)

#LoginID(Owner,(customer, 1))

#LoginID oyner,(Customer, ,2))
Recommenda,tion<LongD,(Owne’r,( Customer, ,1)),1),(Book, ,1)
Recommendati0n<LoginID, (Owner,(Customer, ,1)),1),(Book, ,2)
Recommendation (roginID,(Owner,(Customer, ,1)),1),(Book, ,3)
Recommendation (LoginID,(Owner,( Customer, ,2)),1),(Book, ,1)
Recommendati0n<LoginID, (Owner,(Customer, ,2)),1),(Book, ,2)
Recommendation(LoginID,(Owne'r,(C’ustomer, ,2)),1),(Book, ,3)
RecommendatiOn(LoginID,(Owner,(C’ustomer, ,2)),2),(Book, ,1)
Recommenda,tion<LongD,(Owne’r,( Customer, ,2)),2),(Book, ,2)
Recommendatiom LoginID,(Owner,(Customer, ,2)),2),(Book, ,3)

Value
2
3

true

false

S

[

Probability
0.3333
0.3333
0.99
0.01
0.3

0.1
0.05
0.4
0.15
1.0
0.25
0.5

0.5

0.5

0.4

0.4

0.4

0.4

0.4

0.4

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 62



An OUPM for
Citation Information Extraction

type Researcher, Paper, Citation
random String Name(Researcher)
random String Title(Paper)

random Paper PubCited(Citation)
random String Text(Citation)

random Boolean Professor(Researcher)
origin Researcher Author(Paper)

# Researcher ~ OM(3,1)

Name(r) ~ NamePrior()

Professor(r) ~ Boolean(0.2)

# Paper(Author = r) ~ if Professor(r) then OM (1.5,0.5) else OM (1,0.5)
Title(p) ~ PaperTitlePrior()

CitedPaper(c) ~ UniformChoice({Paper p})

Text(c) ~ HMMGrammar(Name(Author(CitedPaper(c))), Title( CitedPaper(c)))
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Making
Simple
Decisions




Nontransitive preferencesA>B > C> A
can result in irrational behavior:
a cycle of exchanges each costing one cent

(A\
B C
“—_

1¢

(a)

Source: Stuart Russell and Peter Norvig (2020), Artificia

(1I-p)

(1-9) C
is equivalent to
p

(1-p)gq B

(1-p)(1—¢q) €

(b)

The decomposability axiom

| Intelligence: A Modern Approach, 4th Edition, Pearson 65



The Utility of Money

U U
A |
P ——o
| '//( | _ $ _ $
—150,000 800,000

(a) (b)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 66



Unjustified optimism
caused by choosing the best of k options
09 -

i =30 /\
0.8 k=30,

L)

A

0.7 -
0.6 -
0.5 -
04 -
0.3 -
0.2 -
0.1 -

S5 4 3 -2 -1 0 1 2 3 4 5

Error in utility estimate

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 67



Strict dominance
(a) Deterministic (b) Uncertain

X2 X2
A I This region ) !
| dominates A !
: N
|
C° i B o -: _______ C_ B
Y A
> e
= X 1 - X 1
(a) (b)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 68



Probability

0.6 1
0.5 -
04 -
0.3 -
0.2 -
0.1 -

0

Stochastic dominance

1.2
1 4
N i
| =
< .
SZI : S, _§ 0.6
I | S 04 -
| |
I I 0.2 1
| |
—_ 0 A A
-6 -55 -5 45 -4 -35 -3 -25 -2 -6 -55 -5 45 -4 -35 -3 -25 -2
Negative cost Negative cost
(a) (b)

Cumulative distributions for the
frugality of S1 and S2.

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 69



A decision network for the
airport-siting problem

Airport Site

Air Traffic @

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A simplified representation of the
airport-siting problem

Airport Site

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Making Complex
Decisions



A dynamic decision network

for a mobile robot with state variables for battery level, charging

status, location, and velocity, and action variables for the left and
richt wheel motors and for charging.

Plug/Unplug, Plug/Unplug,,,

LeftWheel, LeftWheel,,.,

RightWheel, RightWheel,

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The game of Tetris
The DDN for the Tetris MDP

Next

F

aEw

A

NextPiece,

CurrentPiece;

Filled,

(2)

Source: Stuart Russell

(b)

At+1

CurrentPiece

Filled,

and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The Value Iteration Algorithm for
calculating utilities of states

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states .S, actions A(s), transition model P(s’ | s, a),
rewards R(s, a, '), discount
€, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in 9, initially zero
J, the maximum relative change in the utility of any state

repeat
U+U";0+0
for each state s in S do
U'[s] < max, ¢ a(s) Q-VALUE(mdp,s,a, U)
if |U'[s] — Ul[s]| > dthend <« |U'[s] — Uls]|
until 6 < €(1—7)/y
return U

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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AIMA Python

Artificial Intelligence: A Modern Approach (AIMA)

— http://aima.cs.berkeley.edu/
AIMA Python

— http://aima.cs.berkeley.edu/python/readme.html

— https://github.com/aimacode/aima-python

Probability Models (DTAgent)
— http://aima.cs.berkeley.edu/pyt

non/probability.html

Markov Decision Processes (M
— http://aima.cs.berkeley.edu/pyt

DP)

hon/mdp.html
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http://aima.cs.berkeley.edu/python/readme.html
https://github.com/aimacode/aima-python
http://aima.cs.berkeley.edu/python/probability.html
http://aima.cs.berkeley.edu/python/logic.html

&

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeod4zJ1zTuniMqf2RkCrT

o python101.ipynb - Colaborator X +

c

& https://colab.research.google.com/drive/IFEG6DnGvwfUbeo4zJ1zTunjMgf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3 pA¢ &)

& python101.ipynb ¢

File Edit View Insert Runtime Tools Help

£ CODE

[

Bl COMMENT 2% SHARE o

TEXT 4 CELL ¥ CELL +/ CONNECTED ~ /‘ EDITING A

# Future Value H
pv = 100

0.1

7

r
n
fv = pv * ((1 + (r)) ** n)
print(round(fv, 2))

.87

[11]

[

[12]

[13]

[

194.

AU WN =

194.

AN WN -

amount = 100
interest = 10 #10% = 0.01 * 10
years = 7

future_value = amount * ((1 + (0.0l * interest)) ** years)
print(round(future_value, 2))

87

# Python Function def
def getfv(pv, r, n):
fv = pv * ((1 + (r)) ** n)
return fv
fv = getfv(100, 0.1, 7).
print(round(fv, 2))

87

# Python if else

score = 80

if score >=60 :
print("Pass")

else:
print("Fail").

Pass

https://tinyurl.com/aintpupython101 77
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Summary

* Quantifying Uncertainty

* Probabilistic Reasoning

* Probabilistic Reasoning over Time
* Probabilistic Programming

* Making Simple Decisions

* Making Complex Decisions
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