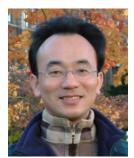
人工智慧

(Artificial Intelligence)

不確定知識和推理

(Uncertain Knowledge and Reasoning)

1092AI05 MBA, IM, NTPU (M5010) (Spring 2021) Wed 2, 3, 4 (9:10-12:00) (B8F40)



<u>Min-Yuh Day</u> 戴敏育

Associate Professor

副教授

Institute of Information Management, National Taipei University

國立臺北大學 資訊管理研究所

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 1 2021/02/24 人工智慧概論 (Introduction to Artificial Intelligence)
- 2 2021/03/03 人工智慧和智慧代理人 (Artificial Intelligence and Intelligent Agents)
- 3 2021/03/10 問題解決 (Problem Solving)
- 4 2021/03/17 知識推理和知識表達 (Knowledge, Reasoning and Knowledge Representation)
- 5 2021/03/24 不確定知識和推理 (Uncertain Knowledge and Reasoning)

6 2021/03/31 人工智慧個案研究 | (Case Study on Artificial Intelligence I)

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 7 2021/04/07 放假一天 (Day off)
- 8 2021/04/14 機器學習與監督式學習 (Machine Learning and Supervised Learning)
- 9 2021/04/21 期中報告 (Midterm Project Report)
- 10 2021/04/28 學習理論與綜合學習
 - (The Theory of Learning and Ensemble Learning)
- 11 2021/05/05 深度學習
 - (Deep Learning)
- 12 2021/05/12 人工智慧個案研究 II (Case Study on Artificial Intelligence II)

週次(Week) 日期(Date) 內容(Subject/Topics) 13 2021/05/19 強化學習 (Reinforcement Learning) 14 2021/05/26 深度學習自然語言處理 (Deep Learning for Natural Language Processing) 15 2021/06/02 機器人技術 (Robotics) 16 2021/06/09 人工智慧哲學與倫理,人工智慧的未來 (Philosophy and Ethics of AI, The Future of AI) 17 2021/06/16 期末報告 | (Final Project Report I) 18 2021/06/23 期末報告 || (Final Project Report II)

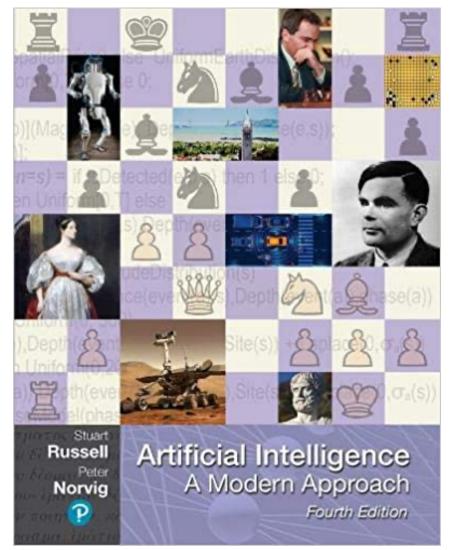
Uncertain Knowledge and Reasoning

Outline

- Quantifying Uncertainty
- Probabilistic Reasoning
- Probabilistic Reasoning over Time
- Probabilistic Programming
- Making Simple Decisions
- Making Complex Decisions

Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach,

4th Edition, Pearson



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

Artificial Intelligence: A Modern Approach

- 1. Artificial Intelligence
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- 5. Machine Learning
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of AI

Artificial Intelligence: Uncertain **Knowledge and** Reasoning

Artificial Intelligence: 4. Uncertain Knowledge and Reasoning

- Quantifying Uncertainty
- Probabilistic Reasoning
- Probabilistic Reasoning over Time
- Probabilistic Programming
- Making Simple Decisions
- Making Complex Decisions
- Multiagent Decision Making

Intelligent Agents

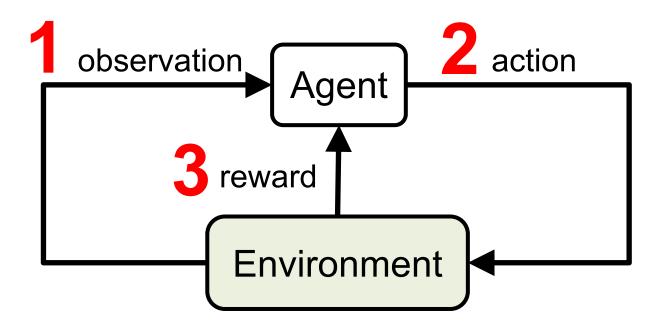
4 Approaches of Al

2.	3.
Thinking Humanly:	Thinking Rationally:
The Cognitive	The "Laws of Thought"
Modeling Approach	Approach
1.	4.
Acting Humanly:	Acting Rationally:
The Turing Test	The Rational Agent
Approach (1950)	Approach

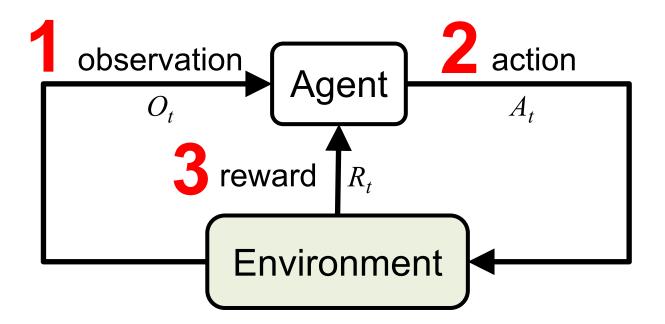
Reinforcement Learning (DL)

Environment

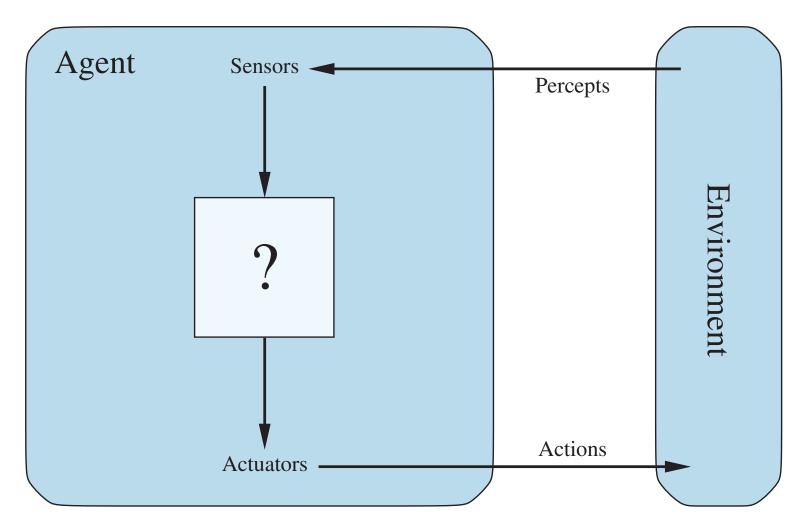
Reinforcement Learning (DL)



Reinforcement Learning (DL)



Agents interact with environments through sensors and actuators



Quantifying Uncertainty

DT-Agent A Decision-Theoretic Agent that Selects Rational Actions

update *belief_state* based on *action* and *percept* calculate outcome probabilities for actions,

given action descriptions and current *belief_state* select *action* with highest expected utility

given probabilities of outcomes and utility information **return** *action*

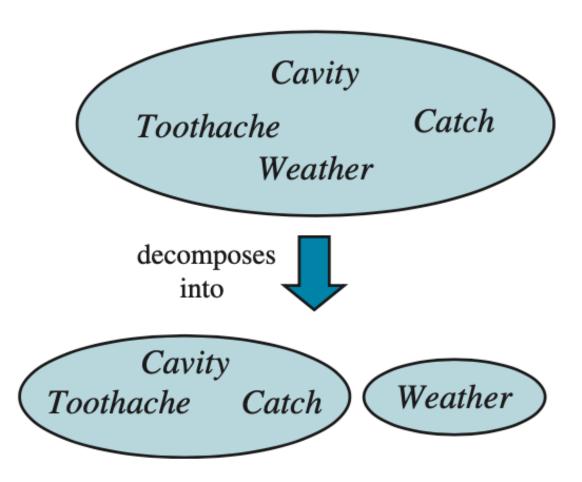
Agent 1 has inconsistent beliefs

Proposition	n Agent 1's belief	Agent 2 bets	Agent 1 bets	• • •		offs for each outconduct $\neg a, b \neg a, \neg b$		ome
a	0.4	\$4 on <i>a</i>	\$6 on $\neg a$	-\$6	,	\$4	\$4	
b	0.3	\$3 on <i>b</i>	\$7 on $\neg b$	-\$7	\$3	-\$7	\$3	
$a \lor b$	0.8	\$2 on $\neg(a \lor b)$	\$8 on $a \lor b$	\$2	\$2	\$2	-\$8	
				-\$11	-\$1	-\$1	-\$1	

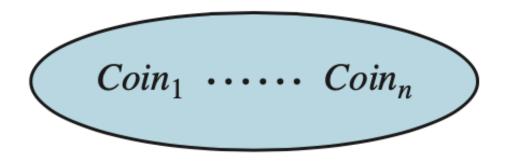
A full joint distribution for the Toothache, Cavity, Catch world

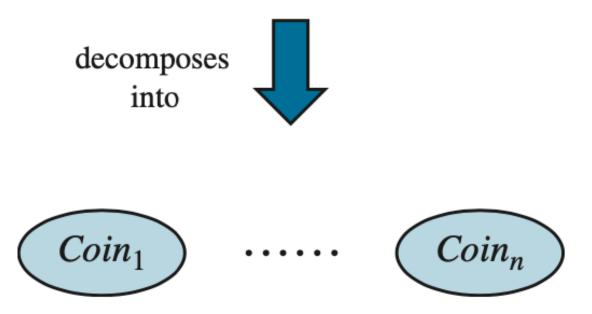
	toot	hache	$\neg toot$	hache
	$catch$ $\neg catch$			$\neg catch$
cavity $\neg cavity$	0.108 0.016	0.012 0.064	0.072 0.144	0.008 0.576

Weather and Dental problems are independent



Coin flips are independent

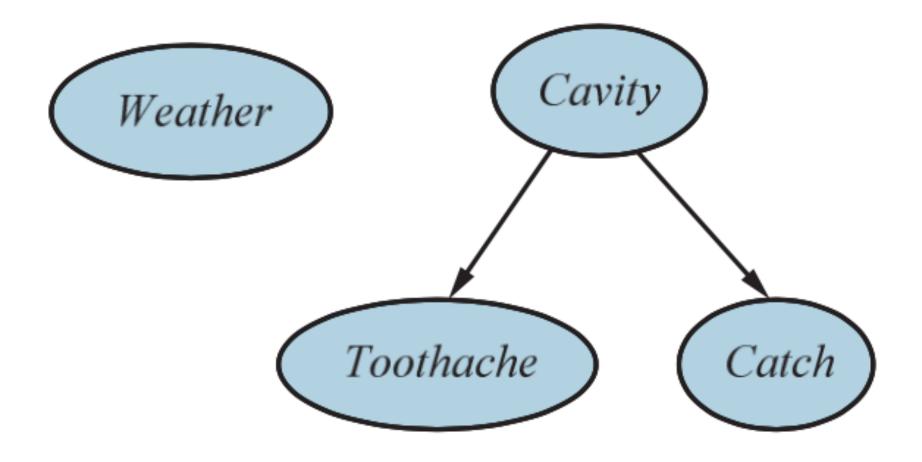




Probabilistic Reasoning

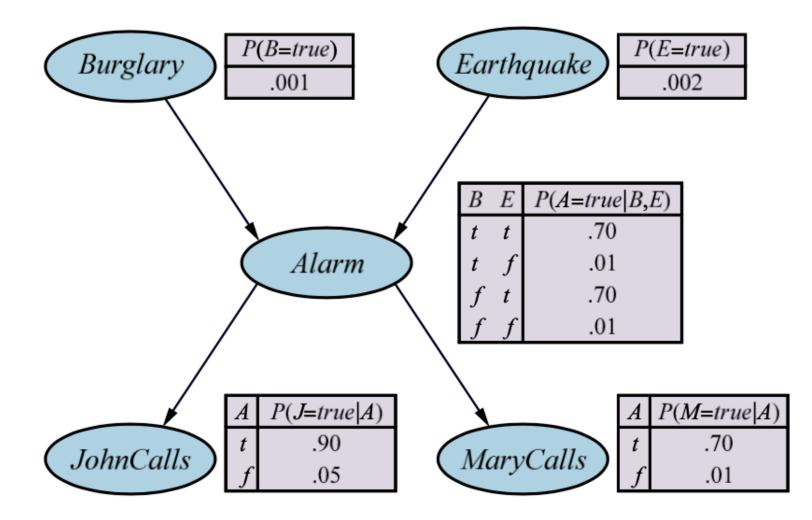
A Simple Bayesian Network

Weather is independent to the other three variables. Toothache and Catch are conditionally independent, given Cavity.



A Typical Bayesian Network

Topology and the Conditional Probability Tables (CPTs)

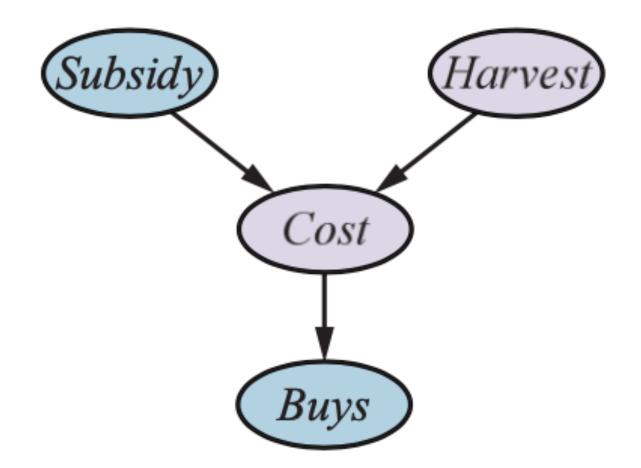


Conditional Probability Table for P(Fever | Cold, Flu, Malaria)

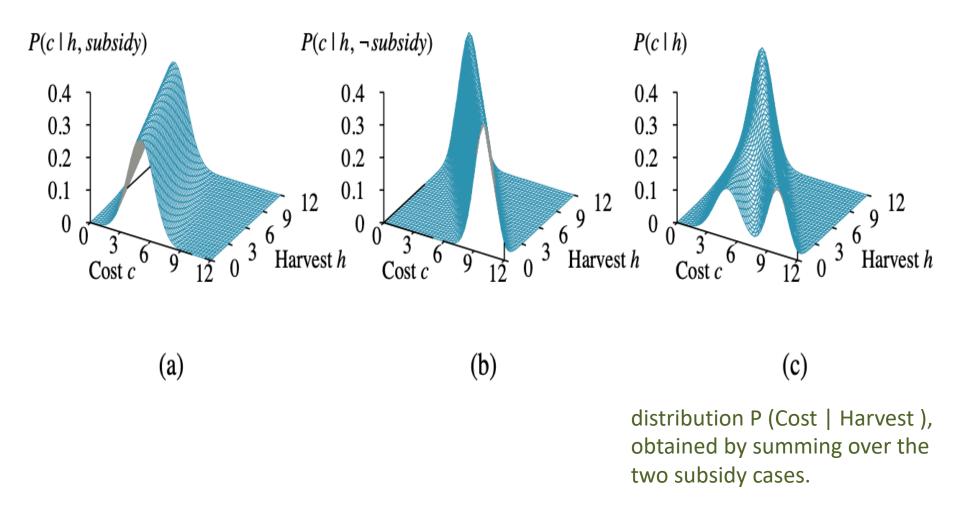
Cold	Flu	Malaria	$P(fever \cdot)$	$P(\neg fever \mid \cdot)$
f	f	f	0.0	1.0
f	f	t	0.9	0.1
f	t	f	0.8	0.2
f	t	t	0.98	$0.02 = 0.2 \times 0.1$
t	f	f	0.4	0.6
t	f	t	0.94	$0.06 = 0.6 \times 0.1$
t	t	f	0.88	$0.12 = 0.6 \times 0.2$
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

A Simple Network

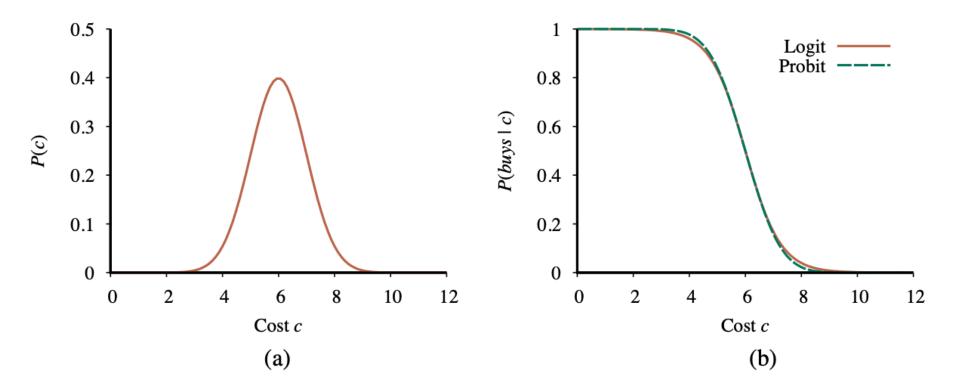
with discrete variables (Subsidy and Buys) and continuous variables (Harvest and Cost)



Probability distribution over Cost as a function of Harvest size

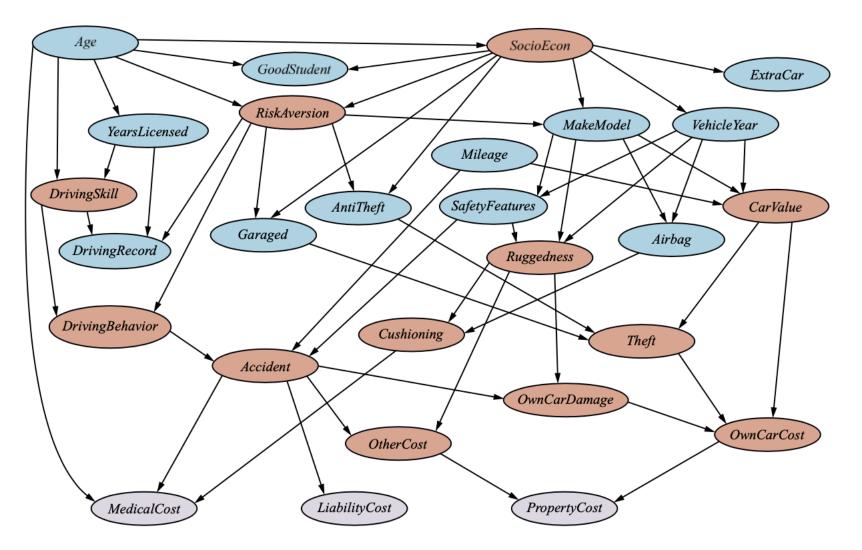


A normal (Gaussian) distribution for the cost threshold

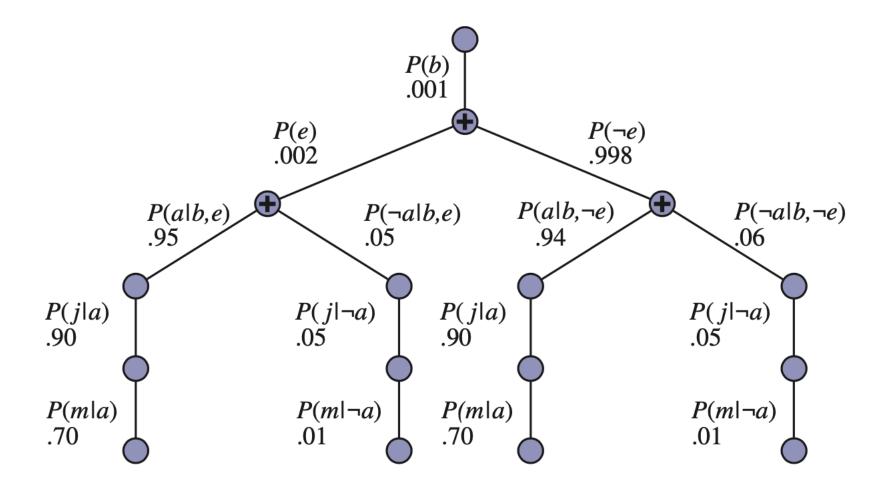


Expit and Probit models for the probability of buys given cost

A Bayesian Network for evaluating car insurance applications



The structure of the expression



The Enumeration Algorithm for Exact Inference in Bayes Nets

function ENUMERATION-ASK (X, \mathbf{e}, bn) returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayes net with variables vars

 $\mathbf{Q}(X) \leftarrow$ a distribution over X, initially empty for each value x_i of X do $\mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(vars, \mathbf{e}_{x_i})$ where \mathbf{e}_{x_i} is \mathbf{e} extended with $X = x_i$ return NORMALIZE($\mathbf{Q}(X)$)

function ENUMERATE-ALL(vars, e) returns a real number if EMPTY?(vars) then return 1.0

 $V \leftarrow \text{First}(vars)$

if V is an evidence variable with value v in e then return $P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e)$ else return $\sum_{v} P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e_{v})$ where e_{v} is e extended with V = v

Pointwise Multiplication $f(X,Y) \times g(Y,Z) = h(X,Y,Z)$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

The Variable Elimination Algorithm for Exact Inference in Bayes Nets

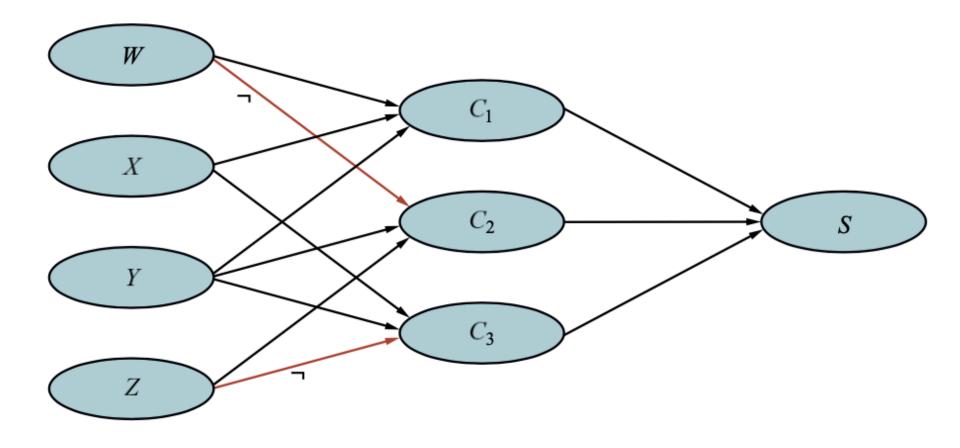
function ELIMINATION-ASK (X, \mathbf{e}, bn) returns a distribution over X inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network with variables vars

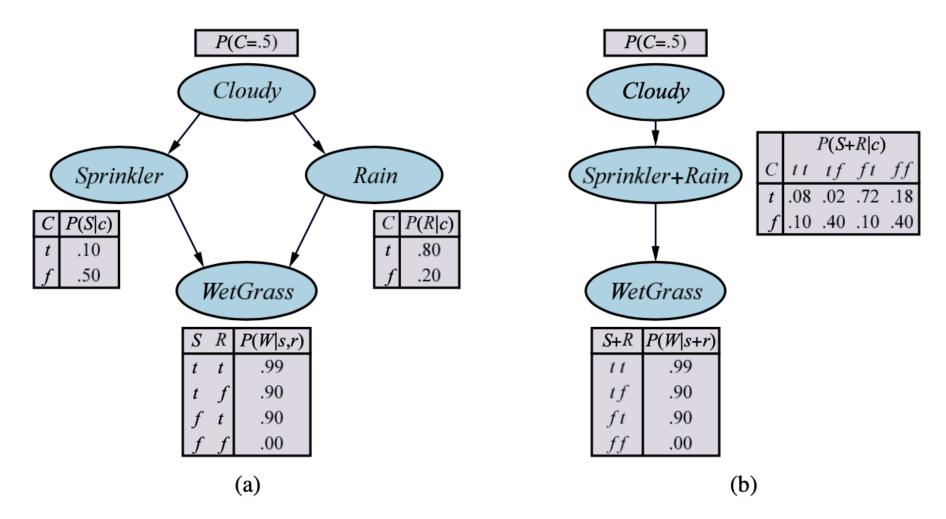
 $factors \leftarrow []$ for each V in ORDER(vars) do $factors \leftarrow [MAKE-FACTOR(V, e)] + factors$ if V is a hidden variable then $factors \leftarrow SUM-OUT(V, factors)$ return NORMALIZE(POINTWISE-PRODUCT(factors))

Bayes Net Encoding of the 3-CNF (Conjunctive Normal Form) Sentence (W VX VY) ∧ (¬W VY VZ) ∧ (X VY V¬Z)



Multiply Connected Network

(b) A clustered equivalent



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

A Sampling Algorithm that generates events from a Bayesian network

function PRIOR-SAMPLE(*bn*) returns an event sampled from the prior specified by *bn* inputs: *bn*, a Bayesian network specifying joint distribution $\mathbf{P}(X_1, \ldots, X_n)$

 $\mathbf{x} \leftarrow$ an event with *n* elements for each variable X_i in X_1, \ldots, X_n do $\mathbf{x}[i] \leftarrow$ a random sample from $\mathbf{P}(X_i \mid parents(X_i))$ return \mathbf{x}

The Rejection-Sampling Algorithm

for answering queries given evidence in a Bayesian network

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X | e)

inputs: *X*, the query variable

e, observed values for variables E

bn, a Bayesian network

N, the total number of samples to be generated

local variables: C, a vector of counts for each value of X, initially zero

for j = 1 to N do

 $\mathbf{x} \leftarrow \text{Prior-Sample}(bn)$

if x is consistent with e then

 $C[j] \leftarrow C[j]+1$ where x_j is the value of X in x return NORMALIZE(C)

The Likelihood-Weighting Algorithm for inference in Bayesian networks

function LIKELIHOOD-WEIGHTING(X, \mathbf{e} , bn, N) returns an estimate of $\mathbf{P}(X | \mathbf{e})$ inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network specifying joint distribution $\mathbf{P}(X_1, \ldots, X_n)$

N, the total number of samples to be generated

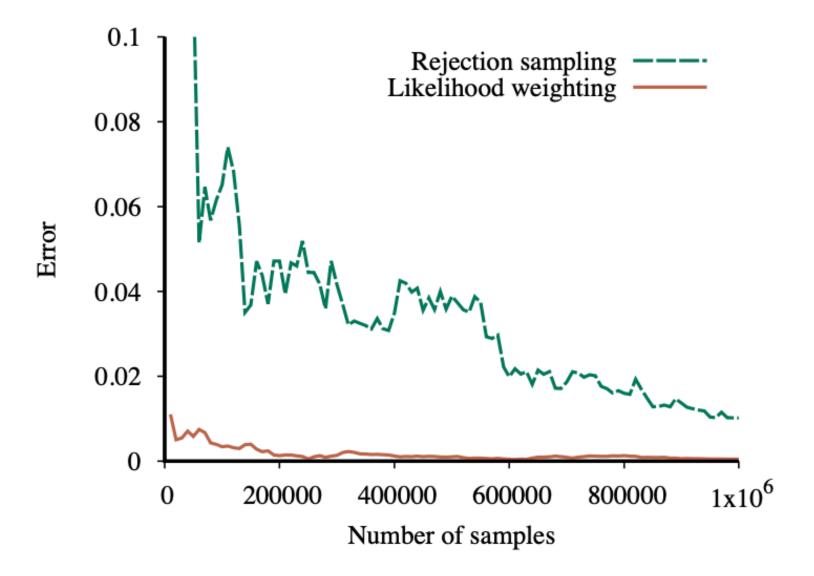
local variables: W, a vector of weighted counts for each value of X, initially zero

for j = 1 to N do $\mathbf{x}, w \leftarrow \text{WEIGHTED-SAMPLE}(bn, \mathbf{e})$ $\mathbf{W}[j] \leftarrow \mathbf{W}[j] + w$ where x_j is the value of X in \mathbf{x} return NORMALIZE(\mathbf{W})

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

```
w \leftarrow 1; \mathbf{x} \leftarrow an event with n elements, with values fixed from \mathbf{e}
for i = 1 to n do
if X_i is an evidence variable with value x_{ij} in \mathbf{e}
then w \leftarrow w \times P(X_i = x_{ij} | parents(X_i))
else \mathbf{x}[i] \leftarrow a random sample from \mathbf{P}(X_i | parents(X_i))
return \mathbf{x}, w
```

Performance of rejection sampling and likelihood weighting on the insurance network



The Gibbs Sampling Algorithm for approximate inference in Bayes nets

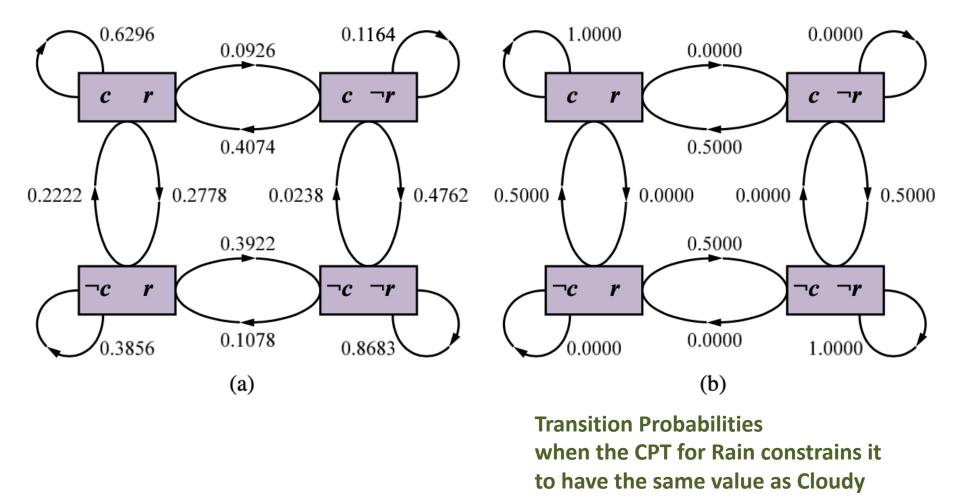
function GIBBS-ASK (X, \mathbf{e}, bn, N) returns an estimate of $\mathbf{P}(X | \mathbf{e})$ local variables: C, a vector of counts for each value of X, initially zero Z, the nonevidence variables in bnx, the current state of the network, initialized from \mathbf{e}

initialize **x** with random values for the variables in **Z** for k = 1 to N do

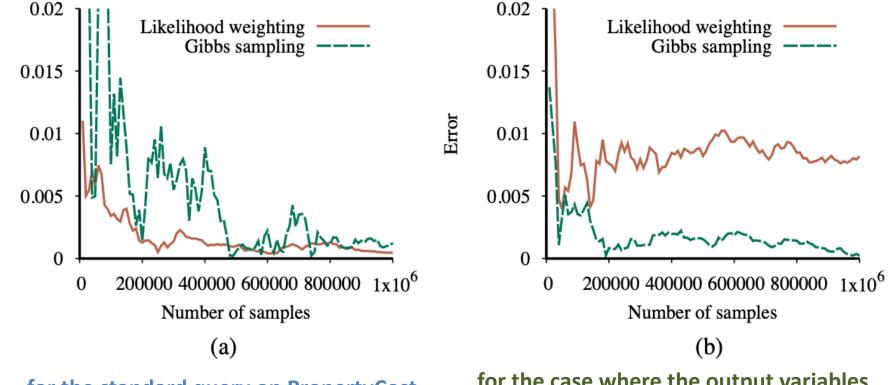
choose any variable Z_i from Z according to any distribution $\rho(i)$ set the value of Z_i in x by sampling from $\mathbf{P}(Z_i | mb(Z_i))$ $\mathbf{C}[j] \leftarrow \mathbf{C}[j] + 1$ where x_j is the value of X in x return NORMALIZE(C)

The States and Transition Probabilities of the Markov Chain

for the query **P**(*Rain* | *Sprinkler* = *true*, *WetGrass* = *true*)



Performance of Gibbs sampling compared to likelihood weighting on the car insurance network



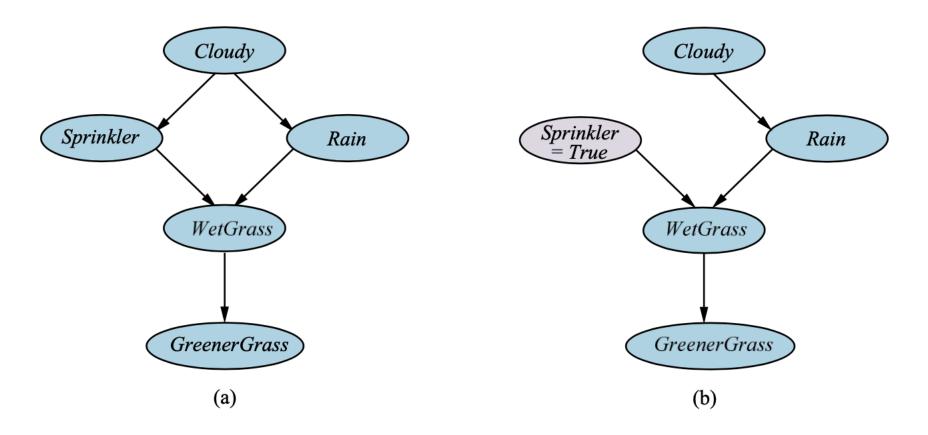
for the standard query on PropertyCost

Error

for the case where the output variables are observed and Age is the query variable

A Causal Bayesian Network

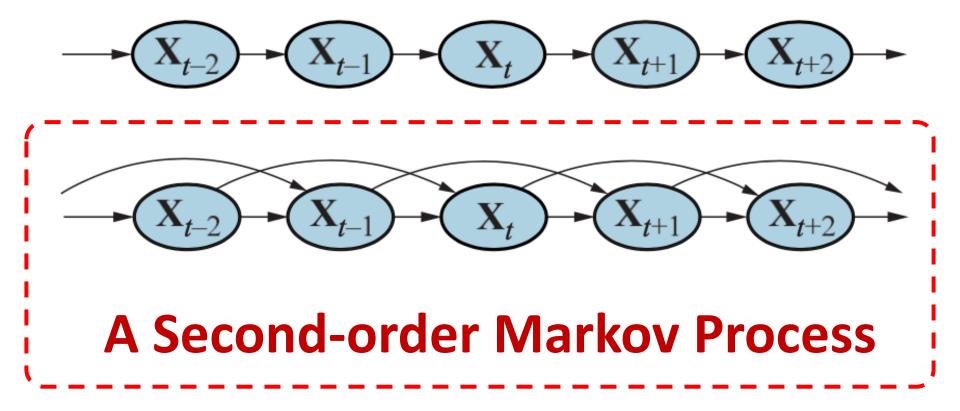
representing cause-effect relations among five variables



The network after performing the action "turn Sprinkler on."

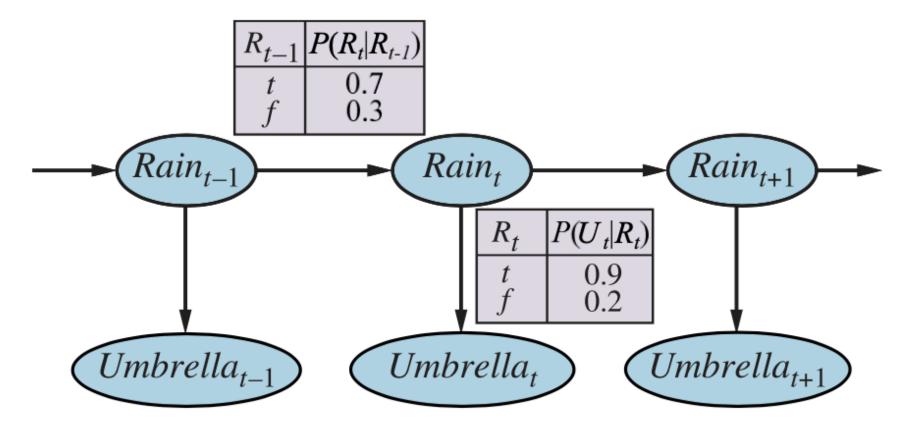
Probabilistic Reasoning over Time

Bayesian network structure corresponding to a First-order Markov Process with state defined by the variables *Xt*.



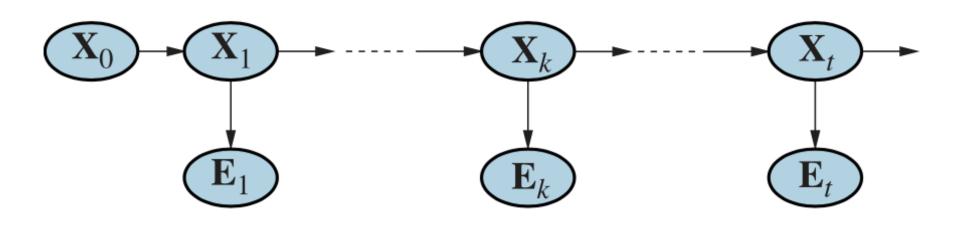
Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Bayesian Network Structure and Conditional Distributions describing the umbrella world



Smoothing computes $P(X_k | e_{1:t})$,

the posterior distribution of the state at some past time k given a complete sequence of observations from 1 to t.



The Forward–Backward Algorithm for Smoothing

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions inputs: ev, a vector of evidence values for steps $1, \ldots, t$

prior, the prior distribution on the initial state, $P(X_0)$ local variables: fv, a vector of forward messages for steps $0, \ldots, t$

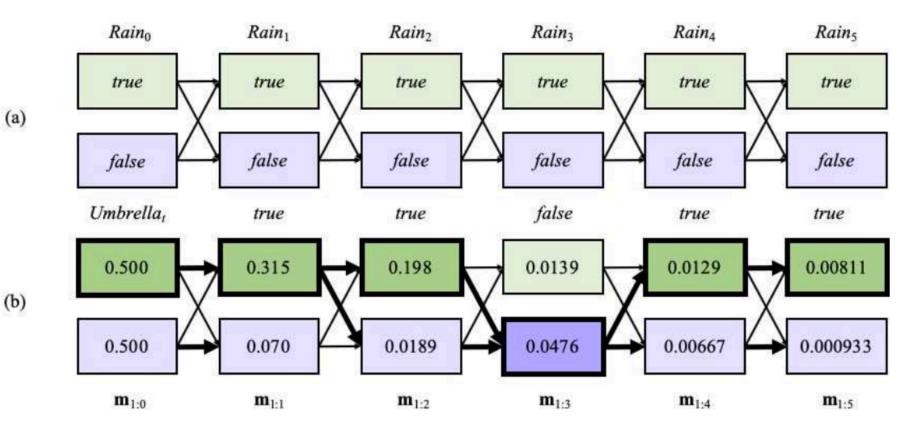
b, a representation of the backward message, initially all 1s

sv, a vector of smoothed estimates for steps $1, \ldots, t$

```
fv[0] \leftarrow prior
for i = 1 to t do
fv[i] \leftarrow FORWARD(fv[i - 1], ev[i])
for i = t down to 1 do
sv[i] \leftarrow NORMALIZE(fv[i] \times b)
b \leftarrow BACKWARD(b, ev[i])
return sy
```

Possible state sequences for Rain t

can be viewed as paths through a graph of the possible states at each time step



Operation of the Viterbi algorithm for the umbrella observation sequence [*true*, *true*, *false*, *true*, *true*]

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Algorithm for Smoothing with a Fixed Time Lag of d Step

function FIXED-LAG-SMOOTHING(e_t , hmm, d) returns a distribution over \mathbf{X}_{t-d} inputs: e_t , the current evidence for time step t

hmm , a hidden Markov model with $S \times \ S$ transition matrix ${\bf T}$

d, the length of the lag for smoothing

persistent: t, the current time, initially 1

f, the forward message $\mathbf{P}(X_t | e_{1:t})$, initially *hmm*.PRIOR

B, the *d*-step backward transformation matrix, initially the identity matrix

 $e_{t-d:t}$, double-ended list of evidence from t-d to t, initially empty

local variables: O_{t-d} , O_t , diagonal matrices containing the sensor model information

```
add e_t to the end of e_{t-d:t}

\mathbf{O}_t \leftarrow \text{diagonal matrix containing } \mathbf{P}(e_t \mid X_t)

if t > d then

\mathbf{f} \leftarrow \text{FORWARD}(\mathbf{f}, e_{t-d})

remove e_{t-d-1} from the beginning of e_{t-d:t}

\mathbf{O}_{t-d} \leftarrow \text{diagonal matrix containing } \mathbf{P}(e_{t-d} \mid X_{t-d})

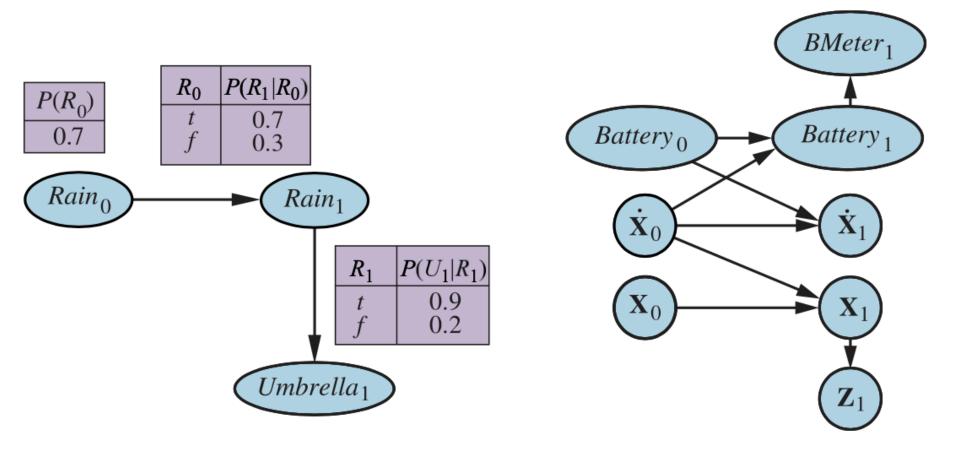
\mathbf{B} \leftarrow \mathbf{O}_{t-d}^{-1} \mathbf{T}^{-1} \mathbf{B} \mathbf{T} \mathbf{O}_t

else \mathbf{B} \leftarrow \mathbf{B} \mathbf{T} \mathbf{O}_t

t \leftarrow t+1

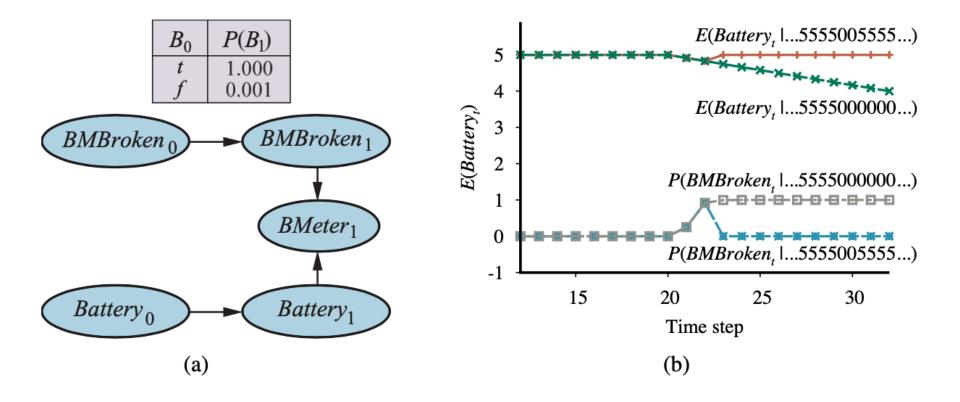
if t > d+1 then return NORMALIZE(\mathbf{f} \times \mathbf{B1}) else return null
```

Specification of the prior, transition model, and sensor model for the umbrella DBN

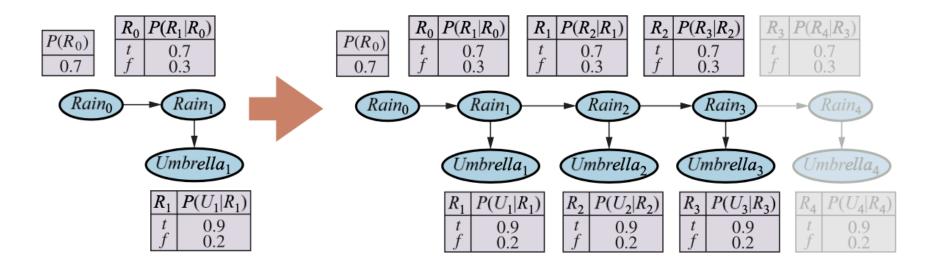


A DBN fragment

the sensor status variable required for modeling persistent failure of the battery sensor



Unrolling a Dynamic Bayesian Network



The Particle Filtering Algorithm

function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step inputs: e, the new incoming evidence

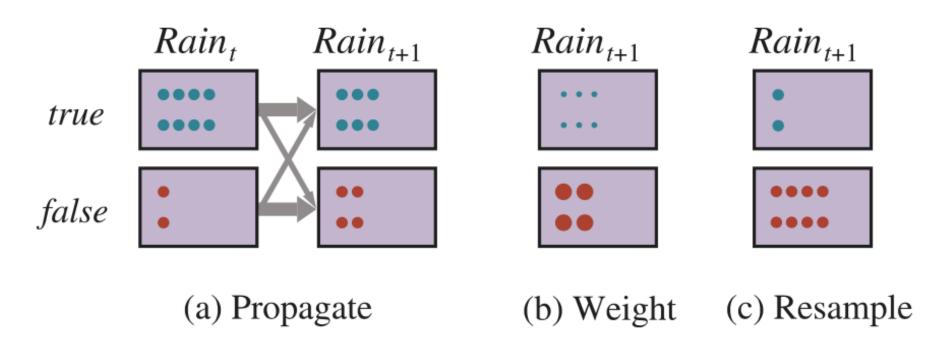
N, the number of samples to be maintained

dbn, a DBN defined by $\mathbf{P}(\mathbf{X}_0)$, $\mathbf{P}(\mathbf{X}_1 | \mathbf{X}_0)$, and $\mathbf{P}(\mathbf{E}_1 | \mathbf{X}_1)$

persistent: S, a vector of samples of size N, initially generated from $\mathbf{P}(\mathbf{X}_0)$ local variables: W, a vector of weights of size N

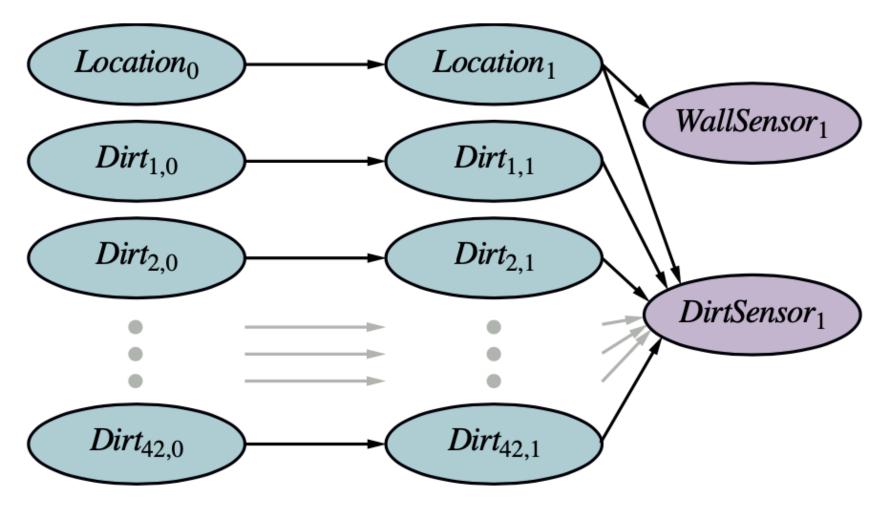
for i = 1 to N do $S[i] \leftarrow \text{sample from } \mathbf{P}(\mathbf{X}_1 | \mathbf{X}_0 = S[i]) / / \text{step } 1$ $W[i] \leftarrow \mathbf{P}(\mathbf{e} | \mathbf{X}_1 = S[i]) / / \text{step } 2$ $S \leftarrow \text{WEIGHTED-SAMPLE-WITH-REPLACEMENT}(N, S, W) / / \text{step } 3$ return S

The Particle Filtering Update Cycle for the Umbrella DBN



A Dynamic Bayes Net

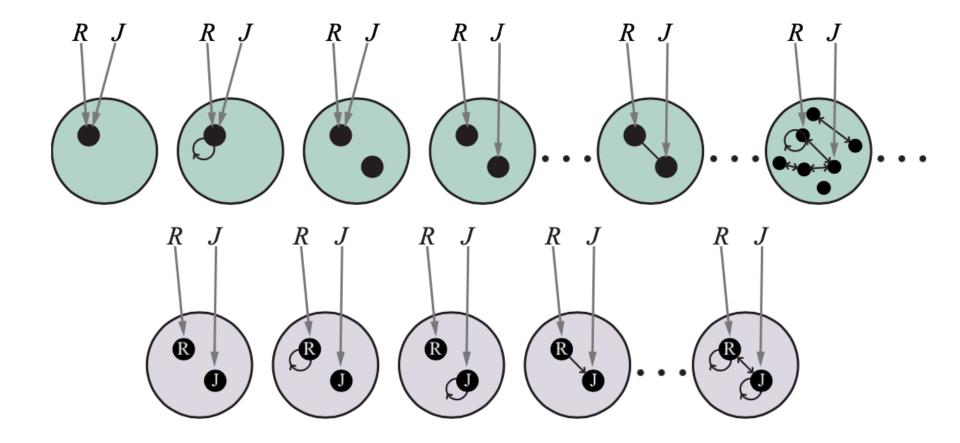
for simultaneous localization and mapping in the stochastic-dirt vacuum world



Probabilistic Programming

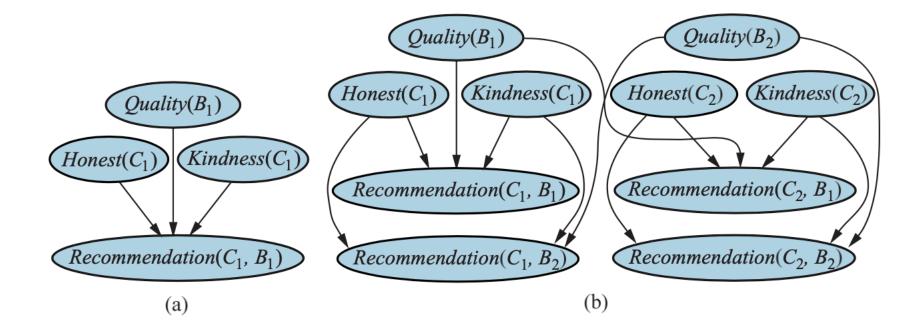
Possible Worlds

for a language with two constant symbols, R and J



Bayes Net for a Single customer C1

recommending a single book B1. Honest(C1) is Boolean

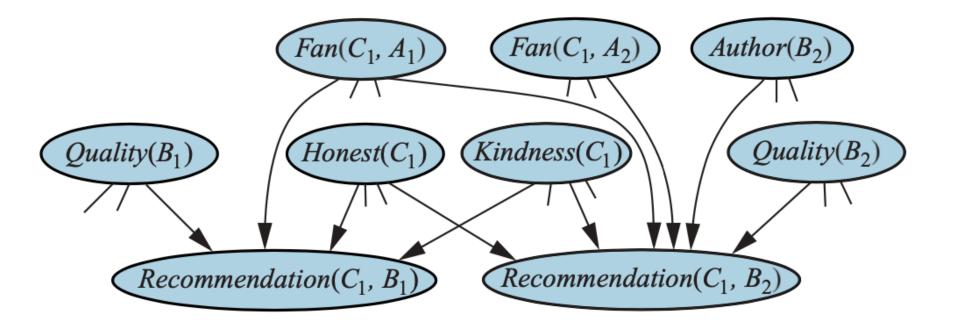


Bayes net with two customers and two books

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Bayes Net

for the book recommendation when Author(B2) is unknown



One particular world for the book recommendation OUPM

Variable	Value	Probability
#Customer	2	0.3333
#Book	3	0.3333
$Honest_{\langle Customer, ,1 \rangle}$	true	0.99
$Honest_{\langle Customer, , 2 \rangle}$	false	0.01
$Kindness_{\langle Customer, ,1 \rangle}$	4	0.3
$Kindness_{\langle Customer, ,2 \rangle}$	1	0.1
$Quality_{\langle Book,,1 angle}$	1	0.05
$Quality_{\langle Book, , 2 \rangle}$	3	0.4
$Quality_{\langle Book, , 3 \rangle}$	5	0.15
$\#LoginID_{\langle Owner, \langle Customer, ,1 \rangle \rangle}$	1	1.0
$\#LoginID_{\langle Owner, \langle Customer, ,2 \rangle \rangle}$	2	0.25
$Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,1 \rangle \rangle, 1 \rangle, \langle Book, ,1 \rangle}$	2	0.5
$Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,1 \rangle \rangle, 1 \rangle, \langle Book, ,2 \rangle}$	4	0.5
$Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,1 \rangle \rangle, 1 \rangle, \langle Book, ,3 \rangle}$	5	0.5
$Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 1 \rangle, \langle Book, ,1 \rangle}$	5	0.4
$Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 1 \rangle, \langle Book, ,2 \rangle}$	5	0.4
$Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 1 \rangle, \langle Book, ,3 \rangle}$	1	0.4
$Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 2 \rangle, \langle Book, ,1 \rangle}$	5	0.4
$Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 2 \rangle, \langle Book, ,2 \rangle}$	5	0.4
$Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 2 \rangle, \langle Book, ,3 \rangle}$	1	0.4

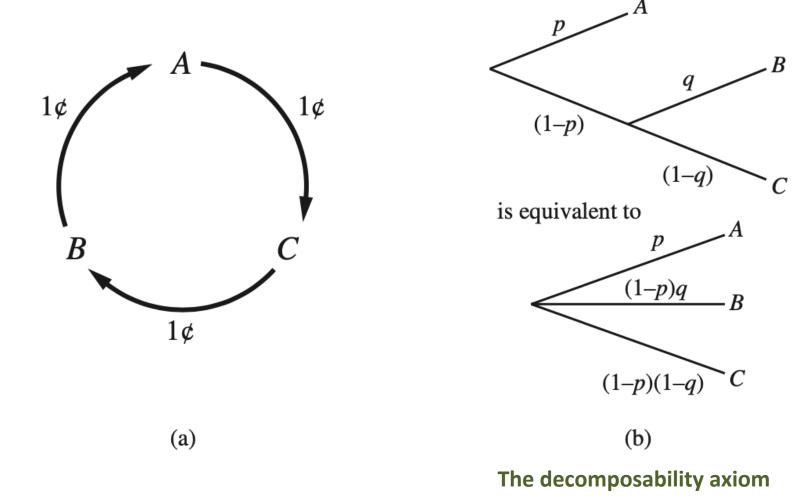
An OUPM for Citation Information Extraction

```
type Researcher, Paper, Citation
random String Name(Researcher)
random String Title(Paper)
random Paper PubCited(Citation)
random String Text(Citation)
random Boolean Professor(Researcher)
origin Researcher Author(Paper)
```

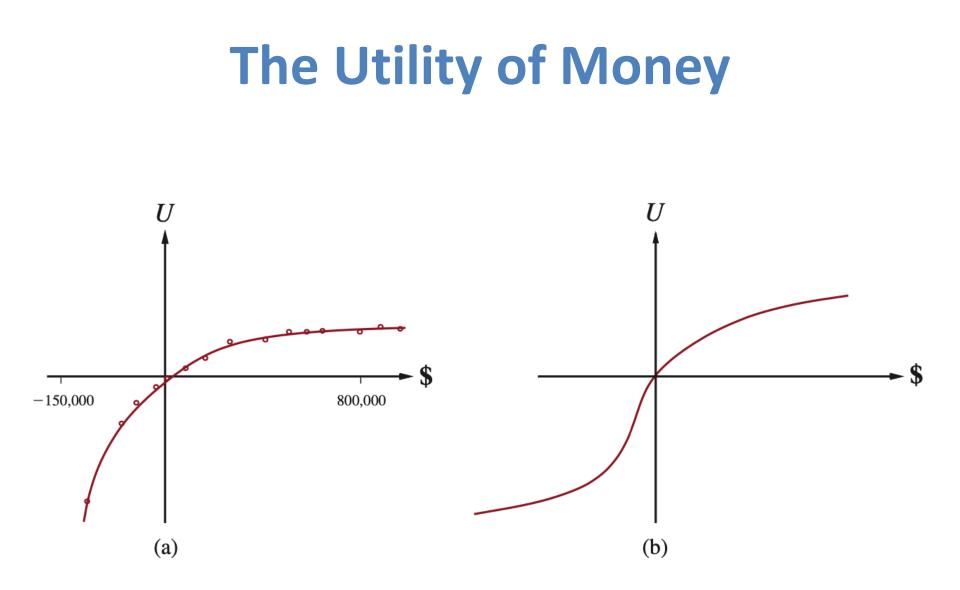
```
\begin{aligned} &\# Researcher \sim OM(3,1) \\ &Name(r) \sim NamePrior() \\ &Professor(r) \sim Boolean(0.2) \\ &\# Paper(Author = r) \sim \text{if } Professor(r) \text{ then } OM(1.5,0.5) \text{ else } OM(1,0.5) \\ &Title(p) \sim PaperTitlePrior() \\ &CitedPaper(c) \sim UniformChoice(\{Paper \ p\}) \\ &Text(c) \sim HMMGrammar(Name(Author(CitedPaper(c))), Title(CitedPaper(c))) \end{aligned}
```

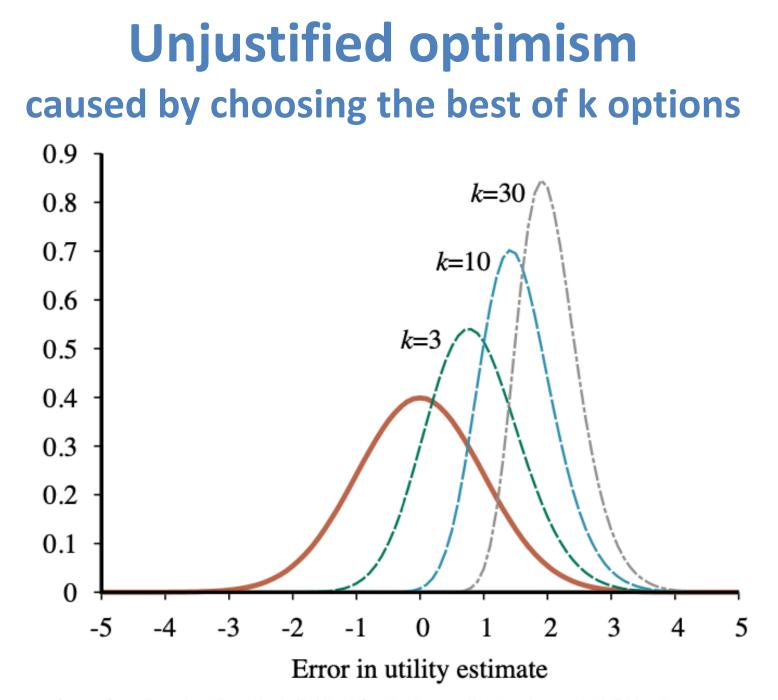
Making Simple Decisions

Nontransitive preferences A > B > C > Acan result in irrational behavior: a cycle of exchanges each costing one cent



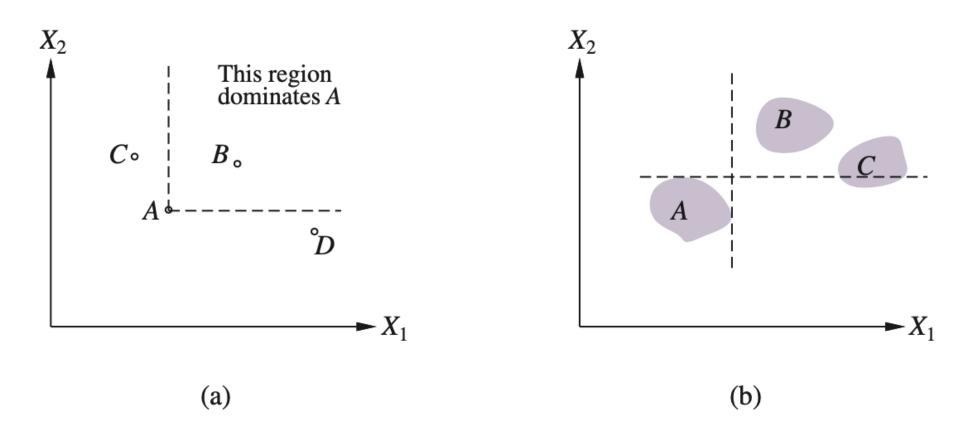
Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



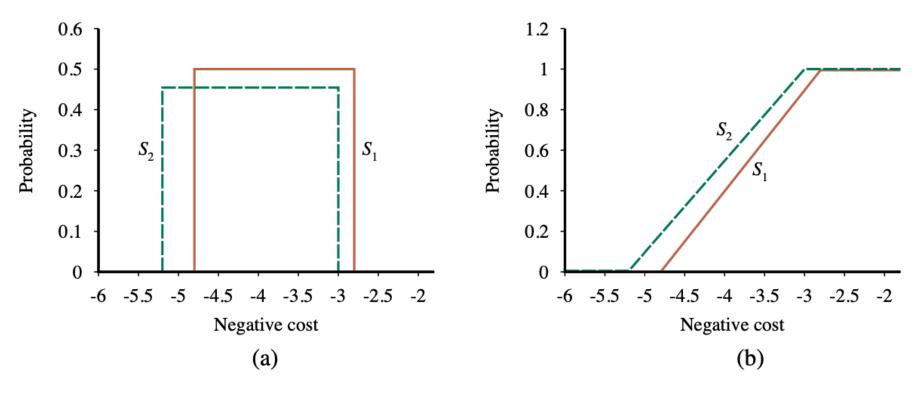


Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

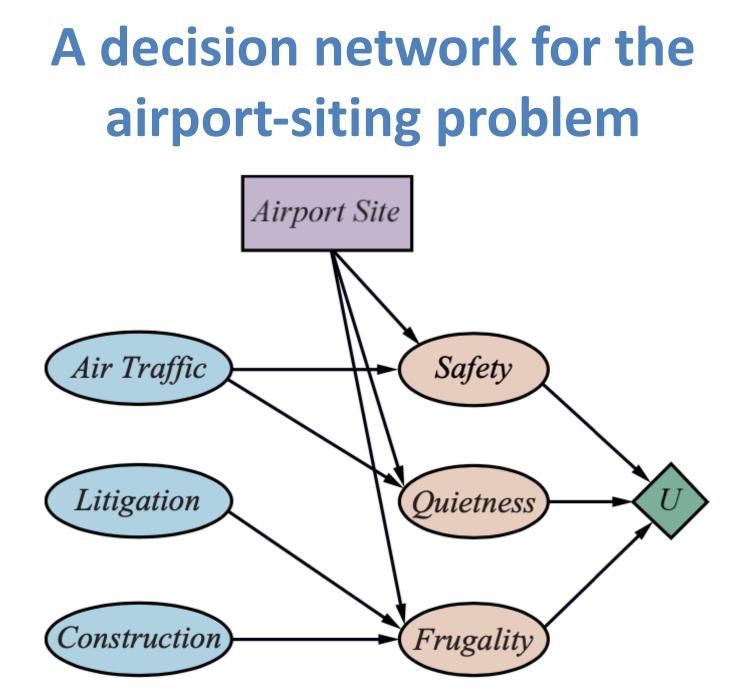
Strict dominance (a) Deterministic (b) Uncertain



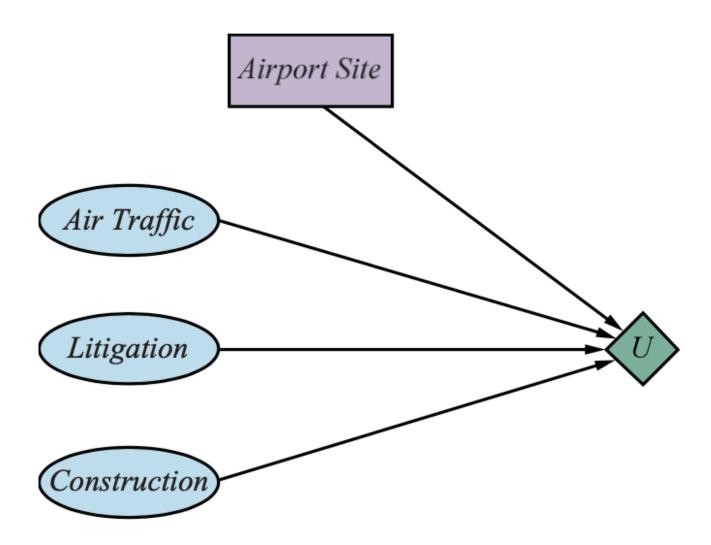
Stochastic dominance



Cumulative distributions for the frugality of S1 and S2.



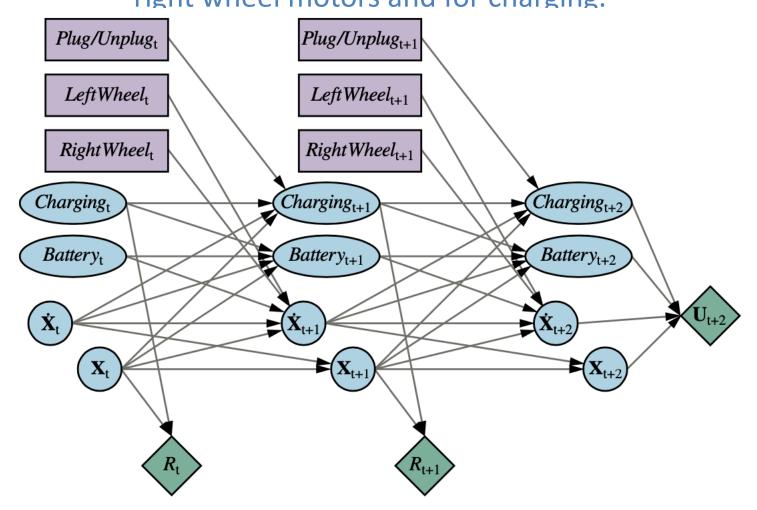
A simplified representation of the airport-siting problem



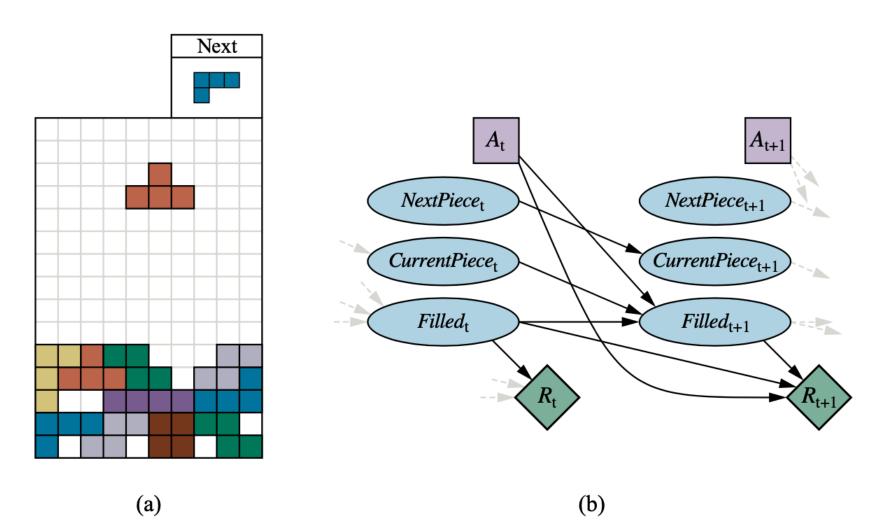
Making Complex Decisions

A dynamic decision network

for a mobile robot with state variables for battery level, charging status, location, and velocity, and action variables for the left and right wheel motors and for charging.



The game of Tetris The DDN for the Tetris MDP



The Value Iteration Algorithm for calculating utilities of states

function VALUE-ITERATION(mdp, ϵ) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a), rewards R(s, a, s'), discount γ ϵ , the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero δ , the maximum relative change in the utility of any state

repeat

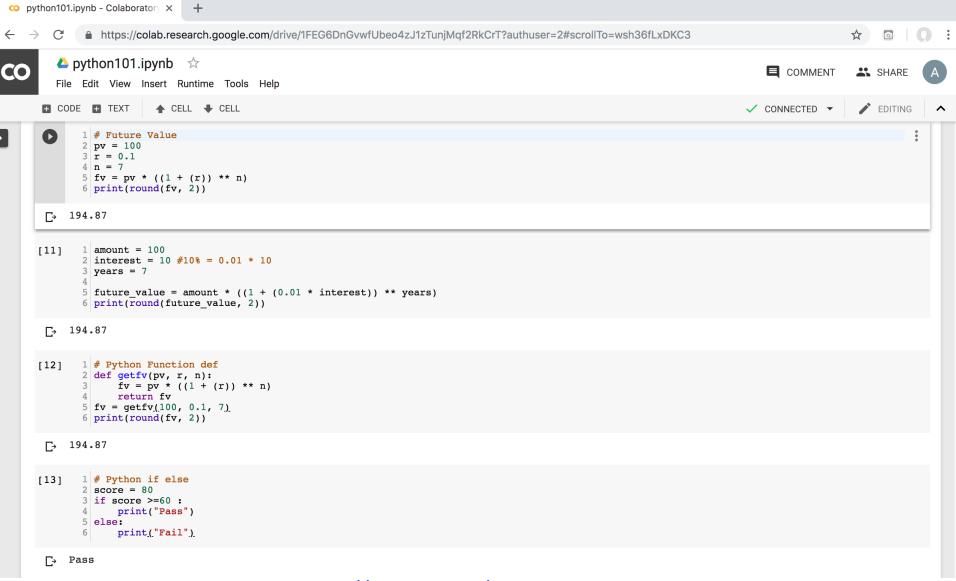
 $\begin{array}{l} U \leftarrow U'; \delta \leftarrow 0 \\ \text{for each state } s \text{ in } S \text{ do} \\ U'[s] \leftarrow \max_{a \in A(s)} \mathbb{Q}\text{-VALUE}(mdp, s, a, U) \\ \text{if } |U'[s] - U[s]| > \delta \text{ then } \delta \leftarrow |U'[s] - U[s]| \\ \text{until } \delta \leq \epsilon(1 - \gamma)/\gamma \\ \text{return } U \end{array}$

AIMA Python

- Artificial Intelligence: A Modern Approach (AIMA)
 - <u>http://aima.cs.berkeley.edu/</u>
- AIMA Python
 - <u>http://aima.cs.berkeley.edu/python/readme.html</u>
 - <u>https://github.com/aimacode/aima-python</u>
- Probability Models (DTAgent)
 - http://aima.cs.berkeley.edu/python/probability.html
- Markov Decision Processes (MDP)
 - <u>http://aima.cs.berkeley.edu/python/mdp.html</u>

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



https://tinyurl.com/aintpupython101

Summary

- Quantifying Uncertainty
- Probabilistic Reasoning
- Probabilistic Reasoning over Time
- Probabilistic Programming
- Making Simple Decisions
- Making Complex Decisions

References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.