人工智慧



## (Artificial Intelligence)

## 不確定知識和推理

### (Uncertain Knowledge and Reasoning)

1092AI05 MBA, IM, NTPU (M5010) (Spring 2021) Wed 2, 3, 4 (9:10-12:00) (B8F40)



<u>Min-Yuh Day</u> 戴敏育

**Associate Professor** 

副教授

Institute of Information Management, National Taipei University

國立臺北大學 資訊管理研究所







- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 1 2021/02/24 人工智慧概論 (Introduction to Artificial Intelligence)
- 2 2021/03/03 人工智慧和智慧代理人 (Artificial Intelligence and Intelligent Agents)
- 3 2021/03/10 問題解決 (Problem Solving)
- 4 2021/03/17 知識推理和知識表達 (Knowledge, Reasoning and Knowledge Representation)
- 5 2021/03/24 不確定知識和推理 (Uncertain Knowledge and Reasoning)

6 2021/03/31 人工智慧個案研究 | (Case Study on Artificial Intelligence I)





- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 7 2021/04/07 放假一天 (Day off)
- 8 2021/04/14 機器學習與監督式學習 (Machine Learning and Supervised Learning)
- 9 2021/04/21 期中報告 (Midterm Project Report)
- 10 2021/04/28 學習理論與綜合學習
  - (The Theory of Learning and Ensemble Learning)
- 11 2021/05/05 深度學習
  - (Deep Learning)
- 12 2021/05/12 人工智慧個案研究 II (Case Study on Artificial Intelligence II)





週次(Week) 日期(Date) 內容(Subject/Topics) 13 2021/05/19 強化學習 (Reinforcement Learning) 14 2021/05/26 深度學習自然語言處理 (Deep Learning for Natural Language Processing) 15 2021/06/02 機器人技術 (Robotics) 16 2021/06/09 人工智慧哲學與倫理,人工智慧的未來 (Philosophy and Ethics of AI, The Future of AI) 17 2021/06/16 期末報告 | (Final Project Report I) 18 2021/06/23 期末報告 || (Final Project Report II)

## Uncertain Knowledge and Reasoning

## Outline

- Quantifying Uncertainty
- Probabilistic Reasoning
- Probabilistic Reasoning over Time
- Probabilistic Programming
- Making Simple Decisions
- Making Complex Decisions

#### Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach,

4th Edition, Pearson



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

Artificial Intelligence: A Modern Approach

- 1. Artificial Intelligence
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- 5. Machine Learning
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of AI

# **Artificial Intelligence:** Uncertain **Knowledge and** Reasoning

Artificial Intelligence: 4. Uncertain Knowledge and Reasoning

- Quantifying Uncertainty
- Probabilistic Reasoning
- Probabilistic Reasoning over Time
- Probabilistic Programming
- Making Simple Decisions
- Making Complex Decisions
- Multiagent Decision Making

## Intelligent Agents

#### **4 Approaches of Al**

| 2.                | 3.                    |
|-------------------|-----------------------|
| Thinking Humanly: | Thinking Rationally:  |
| The Cognitive     | The "Laws of Thought" |
| Modeling Approach | Approach              |
| 1.                | 4.                    |
| Acting Humanly:   | Acting Rationally:    |
| The Turing Test   | The Rational Agent    |
| Approach (1950)   | Approach              |

### **Reinforcement Learning (DL)**



Environment

### **Reinforcement Learning (DL)**



### **Reinforcement Learning (DL)**



# Agents interact with environments through sensors and actuators



## Quantifying Uncertainty

## DT-Agent A Decision-Theoretic Agent that Selects Rational Actions

update *belief\_state* based on *action* and *percept* calculate outcome probabilities for actions,

given action descriptions and current *belief\_state* select *action* with highest expected utility

given probabilities of outcomes and utility information **return** *action* 

#### Agent 1 has inconsistent beliefs

| Proposition | n Agent 1's<br>belief | Agent 2<br>bets         | Agent 1<br>bets   | • • • |      | offs for each outconduct $\neg a, b \neg a, \neg b$ |      | ome |
|-------------|-----------------------|-------------------------|-------------------|-------|------|-----------------------------------------------------|------|-----|
| a           | 0.4                   | \$4 on <i>a</i>         | \$6 on $\neg a$   | -\$6  | ,    | \$4                                                 | \$4  |     |
| b           | 0.3                   | \$3 on <i>b</i>         | \$7 on $\neg b$   | -\$7  | \$3  | -\$7                                                | \$3  |     |
| $a \lor b$  | 0.8                   | \$2 on $\neg(a \lor b)$ | \$8 on $a \lor b$ | \$2   | \$2  | \$2                                                 | -\$8 |     |
|             |                       |                         |                   | -\$11 | -\$1 | -\$1                                                | -\$1 |     |

## A full joint distribution for the Toothache, Cavity, Catch world

|                         | toot                 | hache          | $\neg toot$    | hache          |
|-------------------------|----------------------|----------------|----------------|----------------|
|                         | $catch$ $\neg catch$ |                |                | $\neg catch$   |
| cavity<br>$\neg cavity$ | 0.108<br>0.016       | 0.012<br>0.064 | 0.072<br>0.144 | 0.008<br>0.576 |

## Weather and Dental problems are independent



#### **Coin flips are independent**





## Probabilistic Reasoning

### **A Simple Bayesian Network**

Weather is independent to the other three variables. Toothache and Catch are conditionally independent, given Cavity.



### **A Typical Bayesian Network**

Topology and the Conditional Probability Tables (CPTs)



#### **Conditional Probability Table** for P(Fever | Cold, Flu, Malaria)

| Cold | Flu | Malaria | $P(fever   \cdot)$ | $P(\neg fever \mid \cdot)$          |
|------|-----|---------|--------------------|-------------------------------------|
| f    | f   | f       | 0.0                | 1.0                                 |
| f    | f   | t       | 0.9                | 0.1                                 |
| f    | t   | f       | 0.8                | 0.2                                 |
| f    | t   | t       | 0.98               | $0.02 = 0.2 \times 0.1$             |
| t    | f   | f       | 0.4                | 0.6                                 |
| t    | f   | t       | 0.94               | $0.06 = 0.6 \times 0.1$             |
| t    | t   | f       | 0.88               | $0.12 = 0.6 \times 0.2$             |
| t    | t   | t       | 0.988              | $0.012 = 0.6 \times 0.2 \times 0.1$ |

#### **A Simple Network**

with discrete variables (Subsidy and Buys) and continuous variables (Harvest and Cost )



#### **Probability distribution** over Cost as a function of Harvest size



### A normal (Gaussian) distribution for the cost threshold



Expit and Probit models for the probability of buys given cost

#### **A Bayesian Network** for evaluating car insurance applications



#### The structure of the expression



## The Enumeration Algorithm for Exact Inference in Bayes Nets

function ENUMERATION-ASK $(X, \mathbf{e}, bn)$  returns a distribution over X

**inputs**: X, the query variable

e, observed values for variables E

bn, a Bayes net with variables vars

 $\mathbf{Q}(X) \leftarrow$  a distribution over X, initially empty for each value  $x_i$  of X do  $\mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(vars, \mathbf{e}_{x_i})$ where  $\mathbf{e}_{x_i}$  is  $\mathbf{e}$  extended with  $X = x_i$ return NORMALIZE( $\mathbf{Q}(X)$ )

function ENUMERATE-ALL(vars, e) returns a real number if EMPTY?(vars) then return 1.0

 $V \leftarrow \text{First}(vars)$ 

if V is an evidence variable with value v in e then return  $P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e)$ else return  $\sum_{v} P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e_{v})$ where  $e_{v}$  is e extended with V = v

## Pointwise Multiplication $f(X,Y) \times g(Y,Z) = h(X,Y,Z)$

| X | Y | $\mathbf{f}(X,Y)$ | Y | Z | $\mathbf{g}(Y,Z)$ | X | Y | Z | $\mathbf{h}(X,Y,Z)$  |
|---|---|-------------------|---|---|-------------------|---|---|---|----------------------|
| t | t | .3                | t | t | .2                | t | t | t | $.3 \times .2 = .06$ |
| t | f | .7                | t | f | .8                | t | t | f | $.3 \times .8 = .24$ |
| f | t | .9                | f | t | .6                | t | f | t | $.7 \times .6 = .42$ |
| f | f | .1                | f | f | .4                | t | f | f | $.7 \times .4 = .28$ |
|   |   |                   |   |   |                   | f | t | t | $.9 \times .2 = .18$ |
|   |   |                   |   |   |                   | f | t | f | $.9 \times .8 = .72$ |
|   |   |                   |   |   |                   | f | f | t | $.1 \times .6 = .06$ |
|   |   |                   |   |   |                   | f | f | f | $.1 \times .4 = .04$ |

## The Variable Elimination Algorithm for Exact Inference in Bayes Nets

function ELIMINATION-ASK $(X, \mathbf{e}, bn)$  returns a distribution over X inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network with variables vars

 $factors \leftarrow []$ for each V in ORDER(vars) do  $factors \leftarrow [MAKE-FACTOR(V, e)] + factors$ if V is a hidden variable then  $factors \leftarrow SUM-OUT(V, factors)$ return NORMALIZE(POINTWISE-PRODUCT(factors))

#### Bayes Net Encoding of the 3-CNF (Conjunctive Normal Form) Sentence (W VX VY) ∧ (¬W VY VZ) ∧ (X VY V¬Z)



## **Multiply Connected Network**

#### (b) A clustered equivalent



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

#### **A Sampling Algorithm** that generates events from a Bayesian network

function PRIOR-SAMPLE(*bn*) returns an event sampled from the prior specified by *bn* inputs: *bn*, a Bayesian network specifying joint distribution  $\mathbf{P}(X_1, \ldots, X_n)$ 

 $\mathbf{x} \leftarrow$  an event with *n* elements for each variable  $X_i$  in  $X_1, \ldots, X_n$  do  $\mathbf{x}[i] \leftarrow$  a random sample from  $\mathbf{P}(X_i \mid parents(X_i))$ return  $\mathbf{x}$ 

### **The Rejection-Sampling Algorithm**

for answering queries given evidence in a Bayesian network

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X | e)

**inputs**: *X*, the query variable

e, observed values for variables E

bn, a Bayesian network

N, the total number of samples to be generated

local variables: C, a vector of counts for each value of X, initially zero

for j = 1 to N do

 $\mathbf{x} \leftarrow \text{Prior-Sample}(bn)$ 

if x is consistent with e then

 $C[j] \leftarrow C[j]+1$  where  $x_j$  is the value of X in x return NORMALIZE(C)

## The Likelihood-Weighting Algorithm for inference in Bayesian networks

function LIKELIHOOD-WEIGHTING(X,  $\mathbf{e}$ , bn, N) returns an estimate of  $\mathbf{P}(X | \mathbf{e})$  inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network specifying joint distribution  $\mathbf{P}(X_1, \ldots, X_n)$ 

N, the total number of samples to be generated

local variables: W, a vector of weighted counts for each value of X, initially zero

for j = 1 to N do  $\mathbf{x}, w \leftarrow \text{WEIGHTED-SAMPLE}(bn, \mathbf{e})$   $\mathbf{W}[j] \leftarrow \mathbf{W}[j] + w$  where  $x_j$  is the value of X in  $\mathbf{x}$ return NORMALIZE( $\mathbf{W}$ )

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

```
w \leftarrow 1; \mathbf{x} \leftarrow an event with n elements, with values fixed from \mathbf{e}
for i = 1 to n do
if X_i is an evidence variable with value x_{ij} in \mathbf{e}
then w \leftarrow w \times P(X_i = x_{ij} | parents(X_i))
else \mathbf{x}[i] \leftarrow a random sample from \mathbf{P}(X_i | parents(X_i))
return \mathbf{x}, w
```

# Performance of rejection sampling and likelihood weighting on the insurance network



### The Gibbs Sampling Algorithm for approximate inference in Bayes nets

function GIBBS-ASK $(X, \mathbf{e}, bn, N)$  returns an estimate of  $\mathbf{P}(X | \mathbf{e})$ local variables: C, a vector of counts for each value of X, initially zero Z, the nonevidence variables in bnx, the current state of the network, initialized from  $\mathbf{e}$ 

initialize **x** with random values for the variables in **Z** for k = 1 to N do

choose any variable  $Z_i$  from Z according to any distribution  $\rho(i)$ set the value of  $Z_i$  in x by sampling from  $\mathbf{P}(Z_i | mb(Z_i))$  $\mathbf{C}[j] \leftarrow \mathbf{C}[j] + 1$  where  $x_j$  is the value of X in x return NORMALIZE(C)

### The States and Transition Probabilities of the Markov Chain

for the query **P**(*Rain* | *Sprinkler* = *true*, *WetGrass* = *true*)



# Performance of Gibbs sampling compared to likelihood weighting on the car insurance network



for the standard query on PropertyCost

Error

for the case where the output variables are observed and Age is the query variable

#### **A Causal Bayesian Network**

representing cause-effect relations among five variables



#### The network after performing the action "turn Sprinkler on."

# Probabilistic Reasoning over Time

**Bayesian network structure** corresponding to a First-order Markov Process with state defined by the variables *Xt*.



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

**Bayesian Network Structure and Conditional Distributions** describing the umbrella world



# Smoothing computes $P(X_k | e_{1:t})$ ,

the posterior distribution of the state at some past time k given a complete sequence of observations from 1 to t.



# The Forward–Backward Algorithm for Smoothing

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions inputs: ev, a vector of evidence values for steps  $1, \ldots, t$ 

*prior*, the prior distribution on the initial state,  $P(X_0)$ local variables: fv, a vector of forward messages for steps  $0, \ldots, t$ 

b, a representation of the backward message, initially all 1s

sv, a vector of smoothed estimates for steps  $1, \ldots, t$ 

```
fv[0] \leftarrow prior
for i = 1 to t do
fv[i] \leftarrow FORWARD(fv[i - 1], ev[i])
for i = t down to 1 do
sv[i] \leftarrow NORMALIZE(fv[i] \times b)
b \leftarrow BACKWARD(b, ev[i])
return sy
```

### Possible state sequences for Rain t

can be viewed as paths through a graph of the possible states at each time step



#### **Operation of the Viterbi algorithm for the umbrella observation sequence** [*true*, *true*, *false*, *true*, *true*]

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

# Algorithm for Smoothing with a Fixed Time Lag of d Step

function FIXED-LAG-SMOOTHING( $e_t$ , hmm, d) returns a distribution over  $\mathbf{X}_{t-d}$  inputs:  $e_t$ , the current evidence for time step t

hmm , a hidden Markov model with  $S \times \ S$  transition matrix  ${\bf T}$ 

d, the length of the lag for smoothing

persistent: t, the current time, initially 1

**f**, the forward message  $\mathbf{P}(X_t | e_{1:t})$ , initially *hmm*.PRIOR

**B**, the *d*-step backward transformation matrix, initially the identity matrix

 $e_{t-d:t}$ , double-ended list of evidence from t-d to t, initially empty

local variables:  $O_{t-d}$ ,  $O_t$ , diagonal matrices containing the sensor model information

```
add e_t to the end of e_{t-d:t}

\mathbf{O}_t \leftarrow \text{diagonal matrix containing } \mathbf{P}(e_t \mid X_t)

if t > d then

\mathbf{f} \leftarrow \text{FORWARD}(\mathbf{f}, e_{t-d})

remove e_{t-d-1} from the beginning of e_{t-d:t}

\mathbf{O}_{t-d} \leftarrow \text{diagonal matrix containing } \mathbf{P}(e_{t-d} \mid X_{t-d})

\mathbf{B} \leftarrow \mathbf{O}_{t-d}^{-1} \mathbf{T}^{-1} \mathbf{B} \mathbf{T} \mathbf{O}_t

else \mathbf{B} \leftarrow \mathbf{B} \mathbf{T} \mathbf{O}_t

t \leftarrow t+1

if t > d+1 then return NORMALIZE(\mathbf{f} \times \mathbf{B1}) else return null
```

# Specification of the prior, transition model, and sensor model for the umbrella DBN



### **A DBN fragment**

the sensor status variable required for modeling persistent failure of the battery sensor



# Unrolling a Dynamic Bayesian Network



### **The Particle Filtering Algorithm**

function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step inputs: e, the new incoming evidence

N, the number of samples to be maintained

dbn, a DBN defined by  $\mathbf{P}(\mathbf{X}_0)$ ,  $\mathbf{P}(\mathbf{X}_1 | \mathbf{X}_0)$ , and  $\mathbf{P}(\mathbf{E}_1 | \mathbf{X}_1)$ 

**persistent**: S, a vector of samples of size N, initially generated from  $\mathbf{P}(\mathbf{X}_0)$ local variables: W, a vector of weights of size N

for i = 1 to N do  $S[i] \leftarrow \text{sample from } \mathbf{P}(\mathbf{X}_1 | \mathbf{X}_0 = S[i]) / / \text{step } 1$   $W[i] \leftarrow \mathbf{P}(\mathbf{e} | \mathbf{X}_1 = S[i]) / / \text{step } 2$   $S \leftarrow \text{WEIGHTED-SAMPLE-WITH-REPLACEMENT}(N, S, W) / / \text{step } 3$ return S

## The Particle Filtering Update Cycle for the Umbrella DBN



### A Dynamic Bayes Net

for simultaneous localization and mapping in the stochastic-dirt vacuum world



# Probabilistic Programming

#### **Possible Worlds**

for a language with two constant symbols, R and J



## **Bayes Net for a Single customer C1**

recommending a single book B1. Honest(C1) is Boolean



#### Bayes net with two customers and two books

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

#### **Bayes Net**

#### for the book recommendation when Author(B2) is unknown



# One particular world for the book recommendation OUPM

| Variable                                                                                                                     | Value | Probability |
|------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| #Customer                                                                                                                    | 2     | 0.3333      |
| #Book                                                                                                                        | 3     | 0.3333      |
| $Honest_{\langle Customer, ,1 \rangle}$                                                                                      | true  | 0.99        |
| $Honest_{\langle Customer, , 2 \rangle}$                                                                                     | false | 0.01        |
| $Kindness_{\langle Customer, ,1 \rangle}$                                                                                    | 4     | 0.3         |
| $Kindness_{\langle Customer, ,2 \rangle}$                                                                                    | 1     | 0.1         |
| $Quality_{\langle Book,,1 angle}$                                                                                            | 1     | 0.05        |
| $Quality_{\langle Book, , 2 \rangle}$                                                                                        | 3     | 0.4         |
| $Quality_{\langle Book, , 3 \rangle}$                                                                                        | 5     | 0.15        |
| $\#LoginID_{\langle Owner, \langle Customer, ,1 \rangle \rangle}$                                                            | 1     | 1.0         |
| $\#LoginID_{\langle Owner, \langle Customer, ,2 \rangle \rangle}$                                                            | 2     | 0.25        |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,1 \rangle \rangle, 1 \rangle, \langle Book, ,1 \rangle}$ | 2     | 0.5         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,1 \rangle \rangle, 1 \rangle, \langle Book, ,2 \rangle}$ | 4     | 0.5         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,1 \rangle \rangle, 1 \rangle, \langle Book, ,3 \rangle}$ | 5     | 0.5         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 1 \rangle, \langle Book, ,1 \rangle}$ | 5     | 0.4         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 1 \rangle, \langle Book, ,2 \rangle}$ | 5     | 0.4         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 1 \rangle, \langle Book, ,3 \rangle}$ | 1     | 0.4         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 2 \rangle, \langle Book, ,1 \rangle}$ | 5     | 0.4         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 2 \rangle, \langle Book, ,2 \rangle}$ | 5     | 0.4         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 2 \rangle, \langle Book, ,3 \rangle}$ | 1     | 0.4         |

# An OUPM for Citation Information Extraction

```
type Researcher, Paper, Citation
random String Name(Researcher)
random String Title(Paper)
random Paper PubCited(Citation)
random String Text(Citation)
random Boolean Professor(Researcher)
origin Researcher Author(Paper)
```

```
\begin{aligned} &\# Researcher \sim OM(3,1) \\ &Name(r) \sim NamePrior() \\ &Professor(r) \sim Boolean(0.2) \\ &\# Paper(Author = r) \sim \text{if } Professor(r) \text{ then } OM(1.5,0.5) \text{ else } OM(1,0.5) \\ &Title(p) \sim PaperTitlePrior() \\ &CitedPaper(c) \sim UniformChoice(\{Paper \ p\}) \\ &Text(c) \sim HMMGrammar(Name(Author(CitedPaper(c))), Title(CitedPaper(c))) \end{aligned}
```

# Making Simple Decisions

Nontransitive preferences A > B > C > Acan result in irrational behavior: a cycle of exchanges each costing one cent



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson





Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

# Strict dominance (a) Deterministic (b) Uncertain



#### **Stochastic dominance**



Cumulative distributions for the frugality of S1 and S2.



## A simplified representation of the airport-siting problem



# Making Complex Decisions

### A dynamic decision network

for a mobile robot with state variables for battery level, charging status, location, and velocity, and action variables for the left and right wheel motors and for charging.



# The game of Tetris The DDN for the Tetris MDP



# The Value Iteration Algorithm for calculating utilities of states

function VALUE-ITERATION( $mdp, \epsilon$ ) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a), rewards R(s, a, s'), discount  $\gamma$   $\epsilon$ , the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero  $\delta$ , the maximum relative change in the utility of any state

repeat

 $\begin{array}{l} U \leftarrow U'; \delta \leftarrow 0 \\ \text{for each state } s \text{ in } S \text{ do} \\ U'[s] \leftarrow \max_{a \in A(s)} \mathbb{Q}\text{-VALUE}(mdp, s, a, U) \\ \text{if } |U'[s] - U[s]| > \delta \text{ then } \delta \leftarrow |U'[s] - U[s]| \\ \text{until } \delta \leq \epsilon(1 - \gamma)/\gamma \\ \text{return } U \end{array}$ 

### **AIMA Python**

- Artificial Intelligence: A Modern Approach (AIMA)
  - <u>http://aima.cs.berkeley.edu/</u>
- AIMA Python
  - <u>http://aima.cs.berkeley.edu/python/readme.html</u>
  - <u>https://github.com/aimacode/aima-python</u>
- Probability Models (DTAgent)
  - http://aima.cs.berkeley.edu/python/probability.html
- Markov Decision Processes (MDP)
  - <u>http://aima.cs.berkeley.edu/python/mdp.html</u>

#### Python in Google Colab (Python101)

#### https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



https://tinyurl.com/aintpupython101

# Summary

- Quantifying Uncertainty
- Probabilistic Reasoning
- Probabilistic Reasoning over Time
- Probabilistic Programming
- Making Simple Decisions
- Making Complex Decisions

### References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.