

(Data Mining) 非監督學習: 關聯分析,購物籃分析

(Unsupervised Learning: Association Analysis, Market Basket Analysis)

1092DM05 MBA, IM, NTPU (M5026) (Spring 2021) Tue 2, 3, 4 (9:10-12:00) (B8F40)

<u>Min-Yuh Day</u> <u>戴敏育</u>

Associate Professor

副教授

Institute of Information Management, National Taipei University

國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday 2021-03-23

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 1 2021/02/23 資料探勘介紹 (Introduction to data mining)
- 2 2021/03/02 ABC:人工智慧,大數據,雲端運算 (ABC: AI, Big Data, Cloud Computing)
- 3 2021/03/09 Python資料探勘的基礎 (Foundations of Data Mining in Python)
- 4 2021/03/16 資料科學與資料探勘:發現,分析,可視化和呈現數據 (Data Science and Data Mining: Discovering, Analyzing, Visualizing and Presenting Data)
- 5 2021/03/23 非監督學習: 關聯分析,購物籃分析 (Unsupervised Learning: Association Analysis, Market Basket Analysis)
- 6 2021/03/30 資料探勘個案研究 I (Case Study on Data Mining I)

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 7 2021/04/06 非監督學習:集群分析,行銷市場區隔

(Unsupervised Learning: Cluster Analysis, Market Segmentation)

8 2021/04/13 監督學習:分類和預測

(Supervised Learning: Classification and Prediction)

- 9 2021/04/20 期中報告 (Midterm Project Report)
- 10 2021/04/27 監督學習:分類和預測 (Supervised Learning: Classification and Prediction)
- 11 2021/05/04 機器學習和深度學習

(Machine Learning and Deep Learning)

12 2021/05/11 卷積神經網絡 (Convolutional Neural Networks)

週次(Week) 日期(Date) 內容(Subject/Topics) 13 2021/05/18 資料探勘個案研究 II (Case Study on Data Mining II) 14 2021/05/25 遞歸神經網絡 (Recurrent Neural Networks) 15 2021/06/01 強化學習 (Reinforcement Learning) 16 2021/06/08 社交網絡分析 (Social Network Analysis) 17 2021/06/15 期末報告 I (Final Project Report I) 18 2021/06/22 期末報告 II (Final Project Report II)

Unsupervised Learning: **Association Analysis**, **Market Basket Analysis**

Outline

- Unsupervised Learning
- Association Analysis
- Market Basket Analysis
- Recommender System
- Apriori algorithm
 - Frequent Itemsets
 - Association Rules

Data Mining Tasks & Methods

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

Transaction Database

Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
T04	A, B, D
T05	A, B, C, E
T06	A, C
T07	B, C, D
T08	B, D
T09	A, C, E
T10	B, D

Association Analysis

Association Analysis: Mining Frequent Patterns, Association and Correlations

- Association Analysis
- Mining Frequent Patterns
- Association and Correlations
- Apriori Algorithm

Market Basket Analysis

• Apriori Algorithm

Raw Transaction Data One-item Itemsets			Two-item Itemsets		Three-item Itemsets				
Transaction No	SKUs (Item No)	ltemset (SKUs)	Support		ltemset (SKUs)	Support		ltemset (SKUs)	Support
1	1, 2, 3, 4	1	3		1, 2	3		1, 2, 4	3
1	2, 3, 4	2	6		1, 3	2		2, 3, 4	3
1	2, 3	3	4		1, 4	3			
1	1, 2, 4	4	5		2, 3	4			
1	1, 2, 3, 4		-	•	2, 4	5			
1	2, 4				3, 4	3			

- A very popular DM method in business
- Finds interesting relationships (affinities) between variables (items or events)
- Part of machine learning family
- Employs unsupervised learning
- There is no output variable
- Also known as market basket analysis
- Often used as an example to describe DM to ordinary people, such as the famous "relationship between diapers and beers!"

- Input: the simple point-of-sale transaction data
- Output: Most frequent affinities among items
- <u>Example:</u> according to the transaction data...

"Customer who bought a laptop computer and a virus protection software, also bought extended service plan 70 percent of the time."

- How do you use such a pattern/knowledge?
 - Put the items next to each other for ease of finding
 - Promote the items as a package (do not put one on sale if the other(s) are on sale)
 - Place items far apart from each other so that the customer has to walk the aisles to search for it, and by doing so potentially seeing and buying other items

- A representative applications of association rule mining include
 - In business: cross-marketing, cross-selling, store design, catalog design, e-commerce site design, optimization of online advertising, product pricing, and sales/promotion configuration
 - In medicine: relationships between symptoms and illnesses; diagnosis and patient characteristics and treatments (to be used in medical DSS); and genes and their functions (to be used in genomics projects)...

• Are all association rules interesting and useful?

A Generic Rule: $X \Rightarrow Y [S\%, C\%]$

- **X, Y**: products and/or services
- X: Left-hand-side (LHS)
- Y: Right-hand-side (RHS)
- S: Support: how often X and Y go together
- **C:** Confidence: how often **Y** go together with the **X**

Example: {Laptop Computer, Antivirus Software} ⇒ {Extended Service Plan} [30%, 70%]

- Algorithms are available for generating association rules
 - Apriori
 - Eclat
 - FP-Growth
 - + Derivatives and hybrids of the three
- The algorithms help identify the frequent item sets, which are, then converted to association rules

- Apriori Algorithm
 - Finds subsets that are common to at least a minimum number of the itemsets
 - uses a bottom-up approach
 - frequent subsets are extended one item at a time (the size of frequent subsets increases from one-item subsets to two-item subsets, then three-item subsets, and so on), and
 - groups of candidates at each level are tested against the data for minimum

Basic Concepts: Frequent Patterns and Association Rules

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

- Itemset X = $\{x_1, ..., x_k\}$
- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains $X \cup Y$
 - confidence, c, conditional probability that a transaction having X also contains Y

Let $sup_{min} = 50\%$, $conf_{min} = 50\%$ Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} Association rules:

> $A \rightarrow D$ (60%, 100%) $D \rightarrow A$ (60%, 75%)

 $A \rightarrow D$ (support = 3/5 = 60%, confidence = 3/3 = 100%) $D \rightarrow A$ (support = 3/5 = 60%, confidence = 3/4 = 75%)

Market basket analysis

- Example
 - Which groups or sets of items are customers likely to purchase on a given trip to the store?
- Association Rule
 - Computer antivirus_software [support = 2%; confidence = 60%]
 - A support of 2% means that 2% of all the transactions under analysis show that computer and antivirus software are purchased together.
 - A confidence of 60% means that 60% of the customers who purchased a computer also bought the software.

Association rules

- Association rules are considered interesting if they satisfy both
 - a minimum support threshold and
 - a minimum confidence threshold.

Frequent Itemsets, Closed Itemsets, and Association Rules

Let $I = \{I_1, I_2, ..., I_m\}$ be a set of items. Let D, the task-relevant data, be a set of database transactions where each transaction T is a set of items such that $T \subseteq I$. Each transaction is associated with an identifier, called TID. Let A be a set of items. A transaction T is said to contain A if and only if $A \subseteq T$. An association rule is an implication of the form $A \Rightarrow B$, where $A \subset I, B \subset I$, and $A \cap B = \phi$. The rule $A \Rightarrow B$ holds in the transaction set D with support s, where s is the percentage of transactions in D that contain $A \cup B$ (i.e., the *union* of sets A and B, or say, both A and B). This is taken to be the probability, $P(A \cup B)$.¹ The rule $A \Rightarrow B$ has confidence c in the transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, and $A \cup B$. The rule $A \Rightarrow B$ has confidence c in the transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D. That is,

Support (A
$$\rightarrow$$
 B) = P(A \cup B)
Confidence (A \rightarrow B) = P(B|A)

Support $(A \rightarrow B) = P(A \cup B)$ Confidence $(A \rightarrow B) = P(B|A)$

 The notation P(A ∪ B) indicates the probability that a transaction contains the union of set A and set B

- (i.e., it contains every item in A and in B).

• This should not be confused with P(A or B), which indicates the probability that a transaction contains either A or B.

Does diaper purchase predict beer purchase?

• Contingency tables

Source: Dickey (2012) http://www4.stat.ncsu.edu/~dickey/SAScode/Encore_2012.ppt

Support $(A \rightarrow B) = P(A \cup B)$

Confidence $(A \rightarrow B) = P(B|A)$ Conf $(A \rightarrow B) = Supp (A \cup B) / Supp (A)$

Lift $(A \rightarrow B) = Supp (A \cup B) / (Supp (A) x Supp (B))$ Lift (Correlation) Lift $(A \rightarrow B) = Confidence (A \rightarrow B) / Support(B)$

Source: Dickey (2012) http://www4.stat.ncsu.edu/~dickey/SAScode/Encore_2012.ppt

Lift = Confidence / Expected Confidence if Independent

Checking	No (1500)	Yes (8500)	(10000)
No	500	3500	4000
Yes	1000	5000	6000

SVG=>CHKG Expect 8500/10000 = 85% if independent Observed Confidence is 5000/6000 = 83%Lift = 83/85 < 1.

Savings account holders actually LESS likely than others to have checking account !!!

Support & Confidence

Rule	Support	Confidence
$A \Rightarrow D$	2/5	2/3
$C \Rightarrow A$	2/5	2/4
$A \Rightarrow C$	2/5	2/3
$B \And C \Rightarrow D$	1/5	1/3

Support & Confidence & Lift

Support(SVG \Rightarrow CK) = 50%=5,000/10,000 Confidence(SVG \Rightarrow CK) = 83%=5,000/6,000 Expected Confidence(SVG \Rightarrow CK) = 85%=8,500/10,000 Lift (SVG \rightarrow CK) = Confidence/Expected Confidence = 0.83/0.85 < 1 Support $(A \rightarrow B)$ Confidence $(A \rightarrow B)$ Expected Confidence $(A \rightarrow B)$ Lift $(A \rightarrow B)$

Support $(A \rightarrow B) = P(A \cup B)$ Count(A&B)/Count(Total) Confidence $(A \rightarrow B) = P(B|A)$ Conf $(A \rightarrow B) = Supp (A \cup B) / Supp (A)$ Count(A&B)/Count(A) Expected Confidence $(A \rightarrow B) = Support(B)$ Count(B)

 $Lift (A \rightarrow B) = Confidence (A \rightarrow B) / Expected Confidence (A \rightarrow B)$ $Lift (A \rightarrow B) = Supp (A \cup B) / (Supp (A) \times Supp (B))$ Lift (Correlation) $Lift (A \rightarrow B) = Confidence (A \rightarrow B) / Support(B)$

Lift (A→B)

- Lift $(A \rightarrow B)$
 - = Confidence ($A \rightarrow B$) / Expected Confidence ($A \rightarrow B$)
 - = Confidence $(A \rightarrow B)$ / Support(B)
 - = (Supp (A&B) / Supp (A)) / Supp(B)
 - = Supp (A&B) / Supp (A) x Supp (B)

Minimum Support and Minimum Confidence

- Rules that satisfy both a minimum support threshold (*min_sup*) and a minimum confidence threshold (*min_conf*) are called strong.
- By convention, we write support and confidence values so as to occur between 0% and 100%, rather than 0 to 1.0.

K-itemset

- itemset
 - A set of items is referred to as an itemset.
- K-itemset
 - An itemset that contains k items is a k-itemset.
- Example:
 - The set {computer, antivirus software} is a 2-itemset.

Absolute Support and Relative Support

- Absolute Support
 - The occurrence frequency of an itemset is the number of transactions that contain the itemset
 - frequency, support count, or count of the itemset
 - Ex: 3
- Relative support
 - Ex: 60%

Frequent Itemset

 If the relative support of an itemset *I satisfies* a prespecified minimum support threshold, then I is a frequent itemset.

– i.e., the absolute support of I satisfies the corresponding minimum support count threshold

 The set of frequent k-itemsets is commonly denoted by L_K

Confidence

 $confidence(A \Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)} = \frac{support_count(A \cup B)}{support_count(A)}$

- the confidence of rule $A \rightarrow B$ can be easily derived from the support counts of A and $A \cup B$.
- once the support counts of A, B, and A ∪ B are found, it is straightforward to derive the corresponding association rules A →B and B →A and check whether they are strong.
- Thus the problem of mining association rules can be reduced to that of mining frequent itemsets.

Association rule mining: Two-step process

- 1. Find all frequent itemsets
 - By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, *min_sup*.
- 2. Generate strong association rules from the frequent itemsets
 - By definition, these rules must satisfy minimum support and minimum confidence.

Efficient and Scalable Frequent Itemset Mining Methods

- The Apriori Algorithm
 - Finding Frequent Itemsets Using Candidate Generation

Apriori Algorithm

- Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining frequent itemsets for Boolean association rules.
- The name of the algorithm is based on the fact that the algorithm uses prior knowledge of frequent itemset properties, as we shall see following.

Apriori Algorithm

- Apriori employs an iterative approach known as a *level-wise search, where k-itemsets are used to explore (k+1)-itemsets.*
- First, the set of frequent 1-itemsets is found by scanning the database to accumulate the count for each item, and collecting those items that satisfy minimum support. The resulting set is denoted L₁.
- Next, L₁ is used to find L₂, the set of frequent 2-itemsets, which is used to find L₃, and so on, until no more frequent kitemsets can be found.
- The finding of each L_k requires one full scan of the database.

Apriori Algorithm

- To improve the efficiency of the level-wise generation of frequent itemsets, an important property called the Apriori property.
- Apriori property
 - All nonempty subsets of a frequent itemset must also be frequent.

Apriori algorithm (1) Frequent Itemsets (2) Association Rules

Transaction Database

Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
T04	A, B, D
T05	A, B, C, E
T06	A, C
T07	B, C, D
T08	B, D
Т09	A, C, E
T10	B, D

Table 1 shows a database with 10 transactions.

Let *minimum support* = 20% and *minimum confidence* = 80%. Please use **Apriori algorithm** for generating **association rules** from frequent itemsets.

Table 1: Transaction Database

Transaction	Items bought
ID	
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
T04	A, B, D
T05	A, B, C, E
Т06	A, C
T07	B, C, D
T08	B, D
Т09	A, C, E
T10	B, D

Transaction ID	Items bought
T01	A, B, D
Т02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
Т06	Α, C
Т07	B, C, D
Т08	B, D
Т09	A, C, E
T10	B, D

Ε

3

Apriori Algorithm $C_1 \rightarrow L_1$

C ₁			L ₁	
Itemset	Support Count	minimum support = 20%	Itemset	Support Count
А	6	= 2 / 10	А	6
В	7	Count = 2	В	7
С	6	\longrightarrow	С	6
D	7		D	7

Е

3

Transaction	Items
ID	bought
T01	A, B, D
T02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
Т06	А, С
T07	B, C, D
Т08	B, D
т09	A, C, E
T10	B, D

ltemset	Support Count
A	6
В	7
С	6
D	7

Е

3

L

 C_2

ltemset	Support Count
А, В	3
Α, C	4
A, D	3
Α, Ε	2
В, С	3
B, D	6
B, E	2
C, D	3
С, Е	3
D, E	1

minimum
support = 20%
= 2 / 10
Min. Support
Count = 2
\longrightarrow

Itemset	Support Count
А, В	3
A, C	4
A, D	3
Α, Ε	2
В, С	3
B, D	6
Β, Ε	2
C, D	3
С, Е	3

 L_2

Step **1-2**

Transaction	Items
ID	bought
T01	A, B, D
T02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
Т06	А, С
Т07	B, C, D
Т08	B, D
Т09	A, C, E
T10	B, D

L_2

Itemset	Support Count
А, В	3
A, C	4
A, D	3
Α, Ε	2
В, С	3
B, D	6
В, Е	2
C, D	3
С, Е	3

Apriori Algorithm $C_3 \rightarrow L_3$

C₃

ltemset	Support Count
А, В, С	1
A, B, D	2
A, B, E	1
A, C, D	1
A, C, E	2
B, C, D	2
В, С, Е	2

minimum support = 20% = 2 / 10 Min. Support Count = 2

$$\rightarrow$$

Itemset	Support Count
A, B, D	2
A, C, E	2
B, C, D	2
B, C, E	2

 L_3

Transaction	Items
ID	bought
T01	A, B, D
T02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	А, В, С, Е
Т06	A, C
Т07	B, C, D
Т08	B, D
Т09	A, C, E
T10	B, D

Generating Association Rules

minimum confidence = 80%

		L ₂				
L_1		Itemset	Support Count			
Itemset	Support	А, В	3			
Α	Count	A, C	4			
B	7	A, D	3			
С	6	Α, Ε	2			
D	7	В, С	3			
E	3	B, D	6			
		B, E	2			
		C, D	3			
		С, Е	3			

Association Rules Generated from L_2

A→B: 3/6	B→A: 3/7
A→C: 4/6	C→A: 4/6
A→D: 3/6	D→A: 3/7
A→E: 2/6	E→A: 2/3
B→C: 3/7	C→B: 3/6
B→D: 6/7=85.7% *	D→B: 6/7=85.7% *
B→E: 2/7	E→B: 2/3
C→D: 3/6	D→C: 2/7
C→E: 3/6	E→C: 3/3=100% *

Step 2-1

Transaction	Items
ID	bought
T01	A, B, D
T02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
Т06	Α, C
Т07	B, C, D
Т08	B, D
Т09	A, C, E
T10	B, D

Generating Association Rules

minimum confidence = 80%

Association Rules Generated from L₃

		A→BD: 2/6	B→CD: 2/7
		B→AD: 2/7	C→BD: 2/6
		D→AB: 2/7	D→BC: 2/7
		AB→D: 2/3	BC→D: 2/3
Support		AD→B: 2/3	BD→C: 2/6
Count		BD→A: 2/6	CD→B: 2/3
2		A→CE: 2/6	B→CE: 2/7
2		C→AE: 2/6	C→BE: 2/6
2	4	E→AC: 2/3	E→BC: 2/3
2		AC→E: 2/4	BC→E: 2/3
		AE→C: 2/2=100%*	BE→C: 2/2=100%*
		CE→A: 2/3	CE→B: 2/3

L_1		L_2		l
Itemset	Support Count	Itemset	Support Count	lte
А	6	А, В	3	
В	7	A, C	4	Α,
С	6	A, D	3	A
D	7	Α, Ε	2	B
E	3	В, С	3	
		B, D	6	B,
		В, Е	2	
		C, D	3	
		С, Е	3	

Support Count
2
2
2
2

Step **2-2**

Transaction ID	Items bought	Frequent I	tem	sets	5 8	and	Ass	ociatio	on Rul	es
T01 T02	А, Б, D А, C, D	-	L			L_2		La		
T03 T04	в, с, D, E А, В, D		•		1	2			1	1
Т05 Т06	A, B, C, E A, C		Itemset	Support Count		Itemset	Support Count	Itemset	Support	
Т07	B, C, D		А	6		А, В	3		Count	
T08	B, D		В	7		А, С	4	ABD	2	
T109	А, С, Е В, D		С	6	1	A, D	3	A, D, D	2	4
	,		D	7		Α, Ε	2	A, C, E	2	
			F	3	1	вс	3			1

B, C, D

B, C, E

6

2

3

3

B, D

B, E

C, D

С, Е

2

2

minimum support = 20% minimum confidence = 80%

Association Rules:

B→D (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) D→B (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) E→C (30%, 100%) (Sup.: 3/10, Conf.: 3/3) AE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2) BE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2) Table 1 shows a database with 10 transactions.

Let *minimum support* = 20% and *minimum confidence* = 80%.

Please use Apriori algorithm for generating association rules from frequent itemsets.

Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
T04	A, B, D
T05	A, B, C, E
T06	Α, C
T07	B, C, D
T08	B, D
Т09	Α, Ϲ, Ε
T10	B, D

Association Rules:

B→D (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) D→B (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) E→C (30%, 100%) (Sup.: 3/10, Conf.: 3/3) AE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2) BE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2)

Python mlxtend Association Rules

!pip install mlxtend

import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent patterns import association rules

```
dataset = [['A', 'B', 'D'],
 ['A', 'C', 'D'],
 ['B', 'C', 'D', 'E'],
 ['A', 'B', 'D'],
 ['A', 'B', 'C', 'E'],
 ['A', 'C'],
 ['B', 'C', 'D'],
 ['B', 'D'],
 ['A', 'C', 'E'],
 ['B', 'D']]
```

```
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)
frequent_itemsets = apriori(df, min_support=0.2, use_colnames=True)
association_rules(frequent_itemsets, metric="confidence", min_threshold=0.8)
```

Python mlxtend Association Rules

```
1 # !pip install mlxtend
 2 import pandas as pd
 3 from mlxtend.preprocessing import TransactionEncoder
 4 from mlxtend.frequent patterns import apriori
 5 from mlxtend.frequent patterns import association rules
 6 dataset = [['A', 'B', 'D'],
             ['A', 'C', 'D'],
 7
             ['B', 'C', 'D', 'E'],
 8
             ['A', 'B', 'D'],
 9
             ['A', 'B', 'C', 'E'],
10
             ['A', 'C'],
11
             ['B', 'C', 'D'],
12
             ['B', 'D'],
13
14
             ['A', 'C', 'E'],
             ['B', 'D']]
15
16 te = TransactionEncoder()
17 te ary = te.fit(dataset).transform(dataset)
18 df = pd.DataFrame(te ary, columns=te.columns )
19 frequent itemsets = apriori(df, min support=0.2, use colnames=True)
20 rules = association rules(frequent itemsets, metric="confidence", min threshold=0.8)
21 rules
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(B)	(D)	0.7	0.7	0.6	0.857143	1.224490	0.11	2.1
1	(D)	(B)	0.7	0.7	0.6	0.857143	1.224490	0.11	2.1
2	(E)	(C)	0.3	0.6	0.3	1.000000	1.666667	0.12	inf
3	(E, A)	(C)	0.2	0.6	0.2	1.000000	1.666667	0.08	inf
4	(E, B)	(C)	0.2	0.6	0.2	1.000000	1.666667	0.08	inf

https://tinyurl.com/aintpupython101

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

! pip install mlxtend

from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

```
frequent_itemsets = apriori(df, min_support=0.6,
use_colnames=True)
```

```
1 # ! pip install mlxtend
 2 import pandas as pd
 3 from mlxtend.preprocessing import TransactionEncoder
 4 from mlxtend.frequent patterns import apriori
 5 from mlxtend.frequent patterns import association rules
 6
 7 dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
           ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
8
9
              ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
              ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
10
              ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]
11
12
13 te = TransactionEncoder()
14 te ary = te.fit(dataset).transform(dataset)
15 df = pd.DataFrame(te ary, columns=te.columns)
16 frequent itemsets = apriori(df, min support=0.6, use colnames=True)
17
18 frequent itemsets
```

! pip install **mlxtend**

import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
 ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
 ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
 ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
 ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]

```
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)
frequent_itemsets = apriori(df, min_support=0.6,
use_colnames=True)
```

frequent_itemsets

frequent_itemsets = apriori(df, min_support=0.6, use colnames=True)

	support	itemsets
0	0.8	(Eggs)
1	1.0	(Kidney Beans)
2	0.6	(Milk)
3	0.6	(Onion)
4	0.6	(Yogurt)
5	0.8	(Eggs, Kidney Beans)
6	0.6	(Onion, Eggs)
7	0.6	(Milk, Kidney Beans)
8	0.6	(Onion, Kidney Beans)
9	0.6	(Yogurt, Kidney Beans)
10	0.6	(Onion, Eggs, Kidney Beans)

association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

	association_rules(fr	requent_itemsets, met	cric="confidence", min	_threshold=0.7 <u>)</u>					
]÷	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Eggs)	(Kidney Beans)	0.8	1.0	0.8	1.00	1.00	0.00	inf
1	(Kidney Beans)	(Eggs)	1.0	0.8	0.8	0.80	1.00	0.00	1.000000
2	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
3	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000
4	(Milk)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
5	(Onion)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
6	(Yogurt)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
7	(Onion, Eggs)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
8	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
9	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000
10	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf
11	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000

rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.2) rules

D	<pre>1 rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.2) 2 rules</pre>										
C→		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	
	0	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf	
	1	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	
	2	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf	
	3	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	
	4	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf	
	5	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	

rules["antecedent_len"] = rules["antecedents"].apply(lambda x: len(x)) rules

0

C→

```
1 rules["antecedent_len"] = rules["antecedents"].apply(lambda x: len(x))
2 rules
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	antecedent_len
0	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf	1
1	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	1
2	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf	2
3	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	2
4	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf	1
5	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	1

rules[(rules['antecedent_len'] >= 2) & (rules['confidence'] > 0.75) & (rules['lift'] > 1.2)]

0	1 2 3	rules <u>[</u> (rules (rules (rules	['antecedent_1 ['confidence'] ['lift'] > 1.2	Len'] >= 2) & > 0.75) & 2)]								•
C→		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	antecedent_le	n
	2	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.0	1.25	0.12	inf		2

rules[rules['antecedents'] == {'Eggs', 'Kidney Beans'}]

O	1	rules[rules['	antecedents']	== {'Eggs', '	Kidney Beans'	}]					
C→		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	antecedent_len
	3	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.6	2

Wes McKinney (2017), "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython", 2nd Edition, O'Reilly Media.

Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media

52 commits	₽ 2 branches	\bigcirc 0 releases	4 6 contributors
Branch: 2nd-edition - New	v pull request		Find file Clone or download -
betatim committed with v	vesm Add requirements (#71)	O'REILLY'	Hate
datasets	Add Kaggle titanic dataset		allian
examples	Remove sex column from tips dataset		
.gitignore	Add gitignore	Duth	on for
	Use MIT license for code examples	ryun	101 101
README.md	Add launch in Azure Notebooks button (#70)	Data	Analysis
appa.ipynb	Make more cells markdown instead of raw		
Ch02.ipynb	Make more cells markdown instead of raw	NUMPY, AND IPYTHON	IN PANDAS,
Ch03.ipynb	Make more cells markdown instead of raw	00	
Ch04.ipynb	Convert all notebooks to v4 format		
Ch05.ipynb	Make more cells markdown instead of raw		10 -21
Ch06.ipynb	Make more cells markdown instead of raw	12	1- 11
Ch07.ipynb	Convert all notebooks to v4 format		Masser alles SP
Ch08.ipynb	Make more cells markdown instead of raw	powered by	EN LINDON IN CONSIDERATION OF THE STATE OF T
Ch09.ipynb	Make more cells markdown instead of raw	Jupyter	Wes McKinney
ch10.ipynb	Make more cells markdown instead of raw		

https://github.com/wesm/pydata-book

Aurélien Géron (2019),

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition O'Reilly Media, 2019

https://github.com/ageron/handson-ml2

Hands-On Machine Learning with

Scikit-Learn, Keras, and TensorFlow

Notebooks

- 1. The Machine Learning landscape
- 2. End-to-end Machine Learning project
- 3. Classification
- 4. Training Models
- 5. Support Vector Machines
- 6. Decision Trees
- 7. Ensemble Learning and Random Forests
- 8. Dimensionality Reduction
- 9. Unsupervised Learning Techniques
- 10. Artificial Neural Nets with Keras
- 11. Training Deep Neural Networks
- 12. Custom Models and Training with TensorFlow
- 13. Loading and Preprocessing Data
- 14. Deep Computer Vision Using Convolutional Neural Networks
- 15. Processing Sequences Using RNNs and CNNs
- 16. Natural Language Processing with RNNs and Attention
- 17. Representation Learning Using Autoencoders
- 18. Reinforcement Learning
- 19. Training and Deploying TensorFlow Models at Scale

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

Summary

- Unsupervised Learning
- Association Analysis
- Market Basket Analysis
- Recommender System
- Apriori algorithm
 - Frequent Itemsets
 - Association Rules

References

- Jiawei Han and Micheline Kamber (2006), Data Mining: Concepts and Techniques, Second Edition, Elsevier, 2006.
- Jiawei Han, Micheline Kamber and Jian Pei (2011), Data Mining: Concepts and Techniques, Third Edition, Morgan Kaufmann 2011.
- Efraim Turban, Ramesh Sharda, Dursun Delen (2011), Decision Support and Business Intelligence Systems, Ninth Edition, Pearson.
- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.
- Jake VanderPlas (2016), Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media.
- Robert Layton (2017), Learning Data Mining with Python Second Edition, Packt Publishing.
- Wes McKinney (2017), "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython", 2nd Edition, O'Reilly Media.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.

https://github.com/wesm/pydata-book

• Min-Yuh Day (2021), Python 101, https://tinyurl.com/aintpupython101