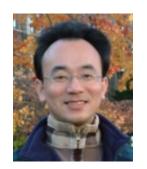
資料探勘 (Data Mining)

機器學習和深度學習 (Machine Learning and Deep Learning)

1092DM08 MBA, IM, NTPU (M5026) (Spring 2021) Tue 2, 3, 4 (9:10-12:00) (B8F40)



Min-Yuh Day <u>戴敏育</u> Associate Professor

副教授

Institute of Information Management, National Taipei University

國立臺北大學 資訊管理研究所

課程大綱 (Syllabus)

- 週次 (Week) 日期 (Date) 內容 (Subject/Topics)
- 1 2021/02/23 資料探勘介紹 (Introduction to data mining)
- 2 2021/03/02 ABC:人工智慧,大數據,雲端運算(ABC: AI, Big Data, Cloud Computing)
- 3 2021/03/09 Python資料探勘的基礎 (Foundations of Data Mining in Python)
- 4 2021/03/16 資料科學與資料探勘:發現,分析,可視化和呈現數據 (Data Science and Data Mining:
 Discovering, Analyzing, Visualizing and Presenting Data)
- 5 2021/03/23 非監督學習:關聯分析,購物籃分析 (Unsupervised Learning: Association Analysis, Market Basket Analysis)
- 6 2021/03/30 資料探勘個案研究 I (Case Study on Data Mining I)

課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)

- 7 2021/04/06 放假一天 (Day off)
- 8 2021/04/13 非監督學習:集群分析,行銷市場區隔 (Unsupervised Learning: Cluster Analysis, Market Segmentation)
- 9 2021/04/20 期中報告 (Midterm Project Report)
- 10 2021/04/27 監督學習:分類和預測 (Supervised Learning: Classification and Prediction)
- 11 2021/05/04 機器學習和深度學習 (Machine Learning and Deep Learning)
- 12 2021/05/11 卷積神經網絡 (Convolutional Neural Networks)

課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)

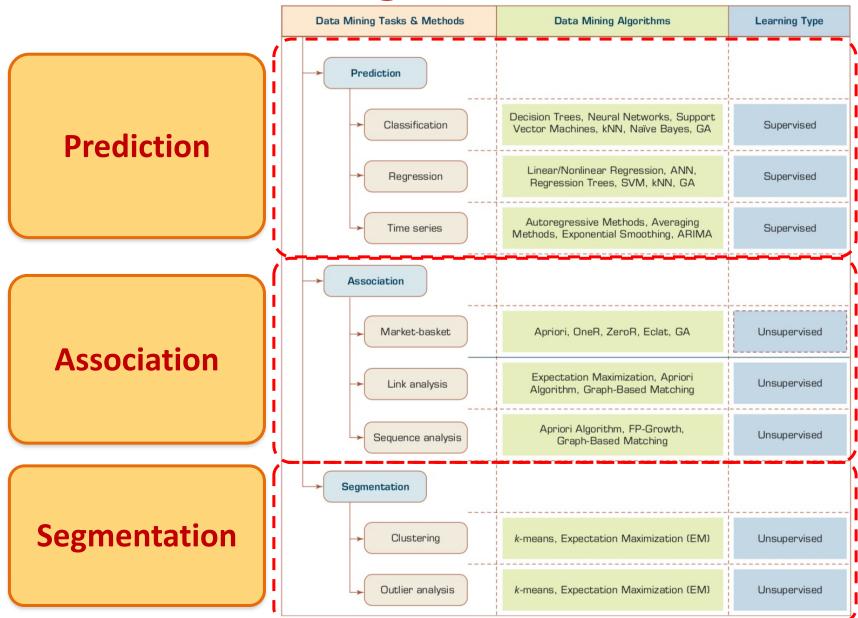
- 13 2021/05/18 資料探勘個案研究 II (Case Study on Data Mining II)
- 14 2021/05/25 遞歸神經網絡 (Recurrent Neural Networks)
- 15 2021/06/01 強化學習 (Reinforcement Learning)
- 16 2021/06/08 社交網絡分析 (Social Network Analysis)
- 17 2021/06/15 期末報告 I (Final Project Report I)
- 18 2021/06/22 期末報告 II (Final Project Report II)

Machine Learning and Deep Learning

Outline

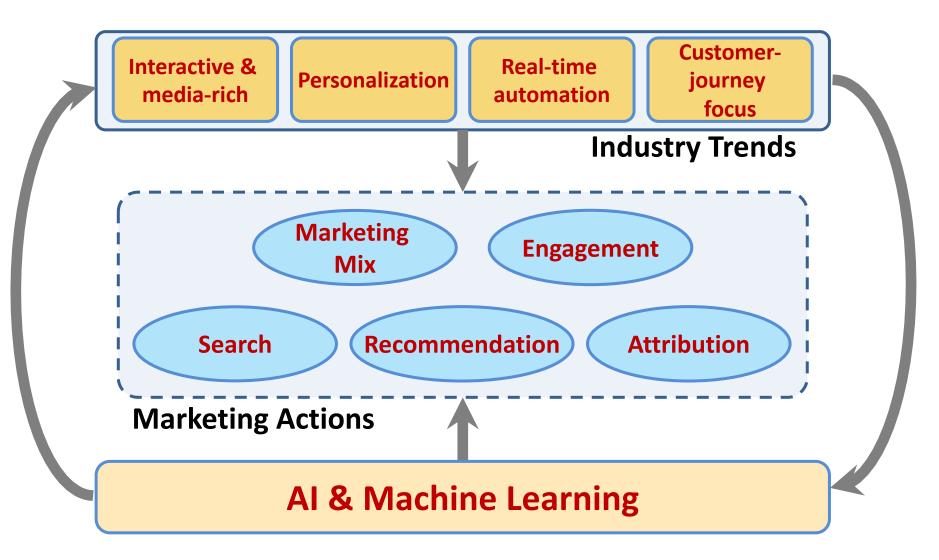
- Machine Learning
- Deep Learning

Data Mining Tasks & Methods



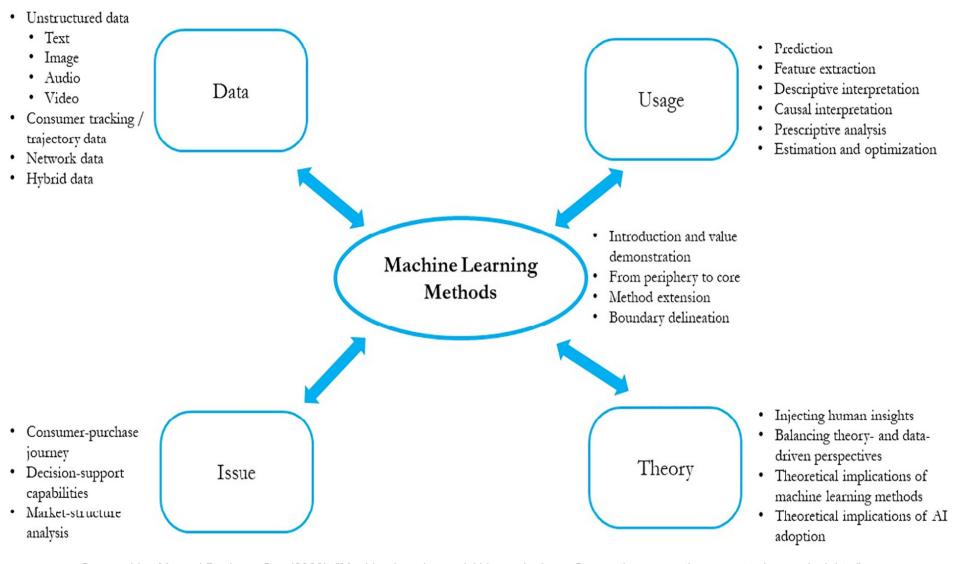
Al-driven Marketing

(Ma and Sun, 2020)



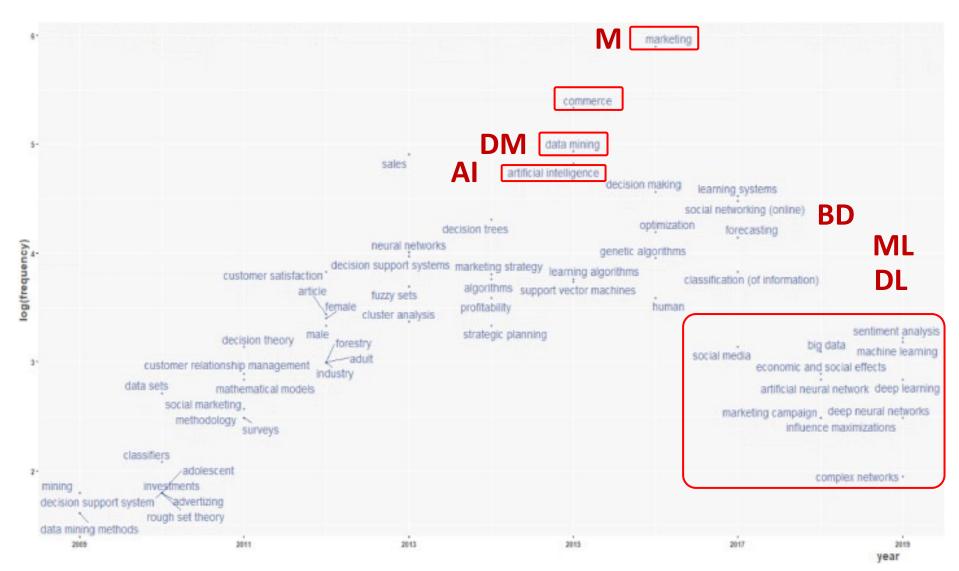
Machine Learning in Marketing Research

(Ma and Sun, 2020)

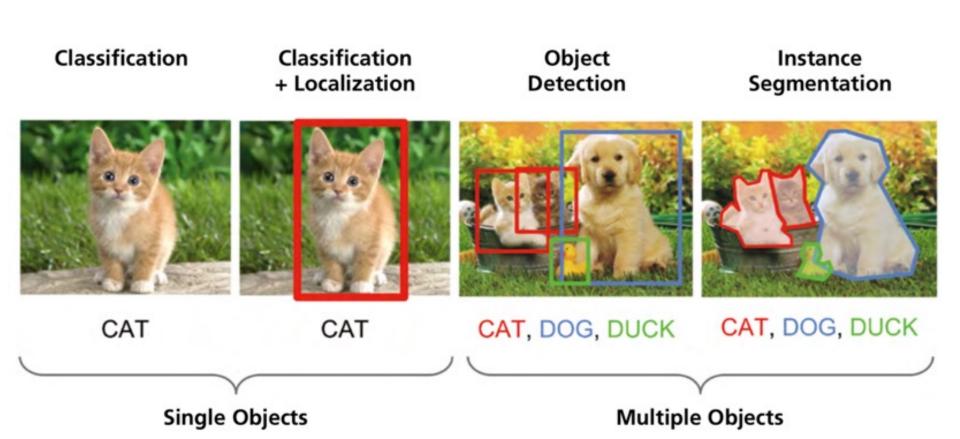


Artificial Intelligence in Marketing

(Verma et al., 2021)

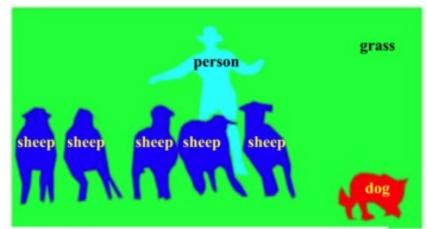


Computer Vision: Image Classification, Object Detection, Object Instance Segmentation

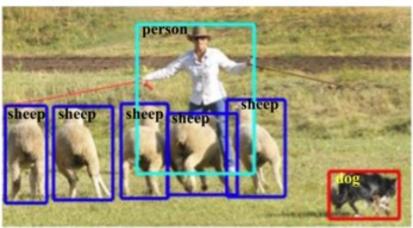


Computer Vision: Object Detection

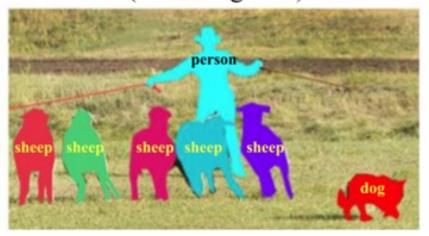
(a) Object Classification



(c) Semantic Segmentation



(b) Generic Object Detection (Bounding Box)

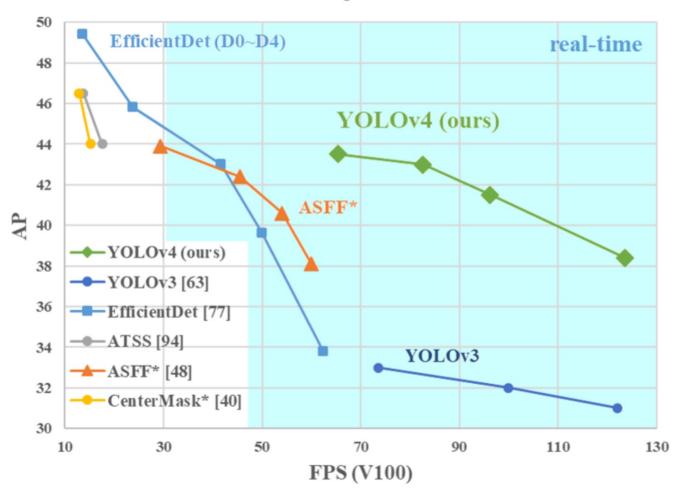


(d) Object Instance Segmetation

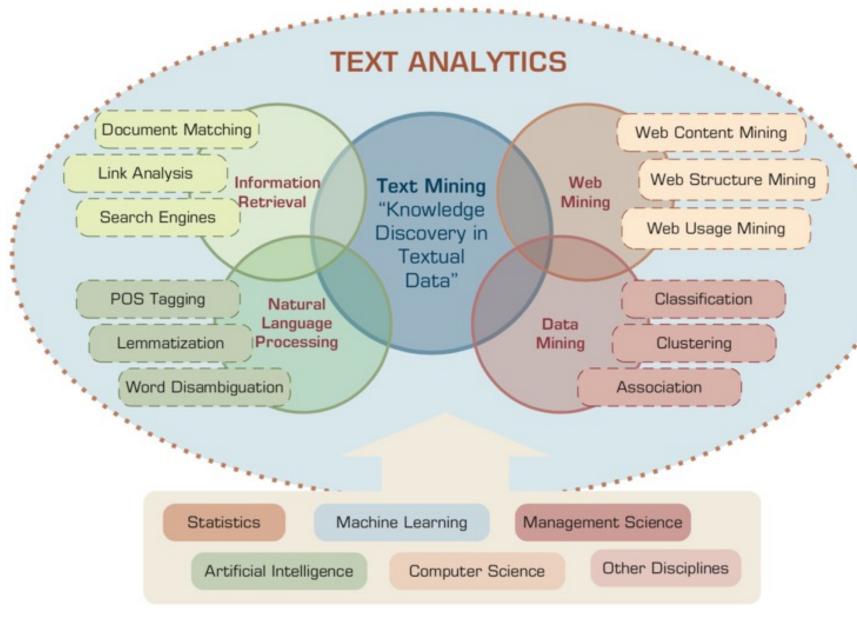
YOLOv4:

Optimal Speed and Accuracy of Object Detection

MS COCO Object Detection



Text Analytics and Text Mining



Applied Soft Computing (2020)

Source:

Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020).

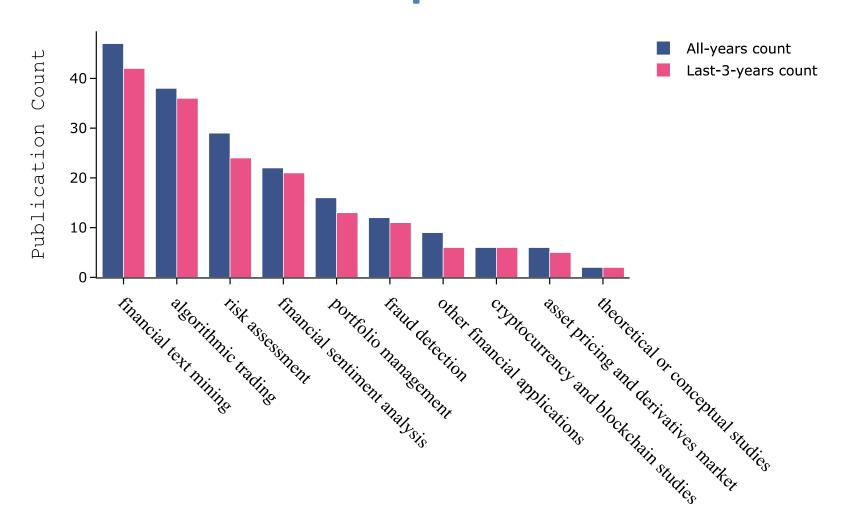
"Deep learning for financial applications: A survey."

Applied Soft Computing (2020): 106384.

Financial time series forecasting with deep learning: A systematic literature review: 2005-2019 **Applied Soft Computing (2020)**

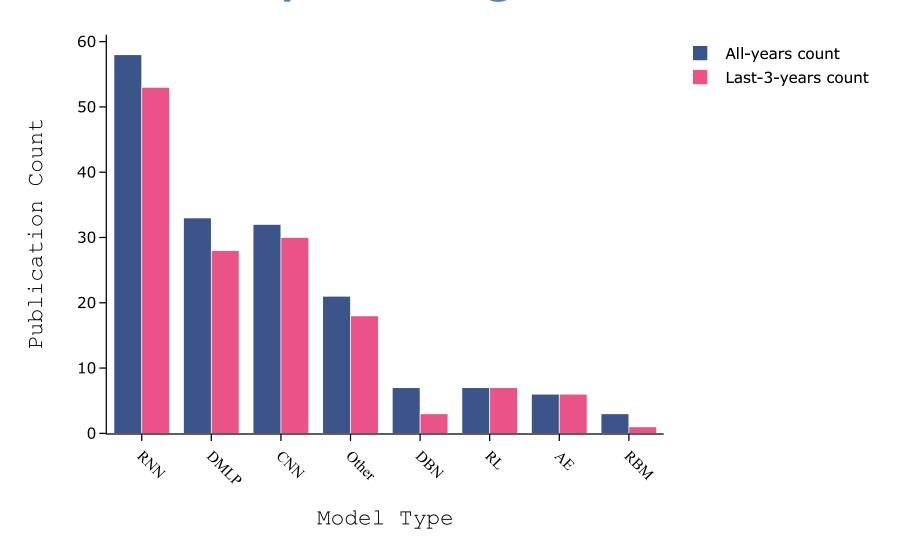
Source:

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

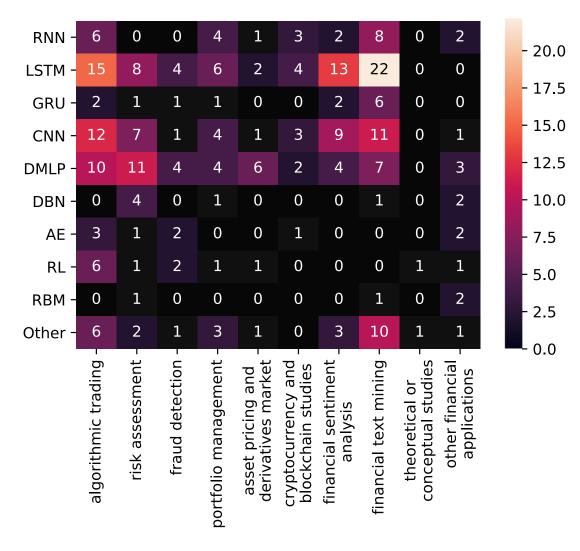


Topic Name

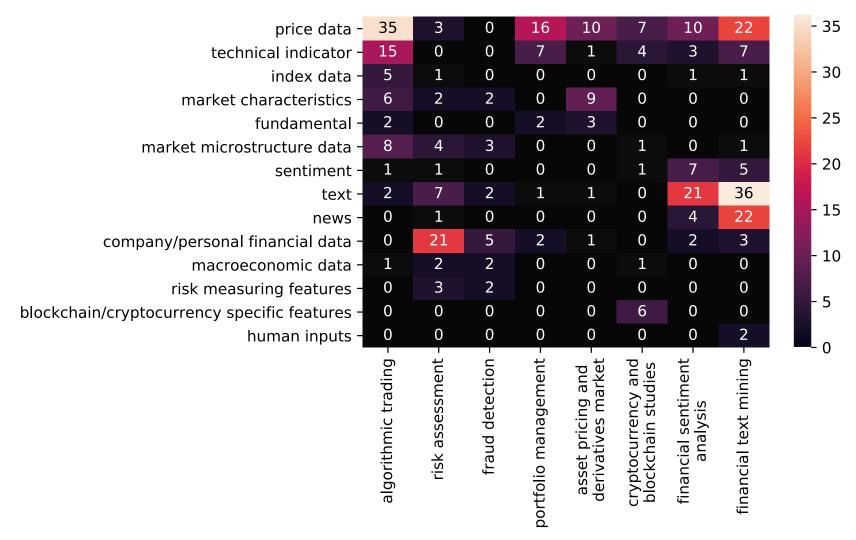
Deep learning for financial applications: Deep Learning Models



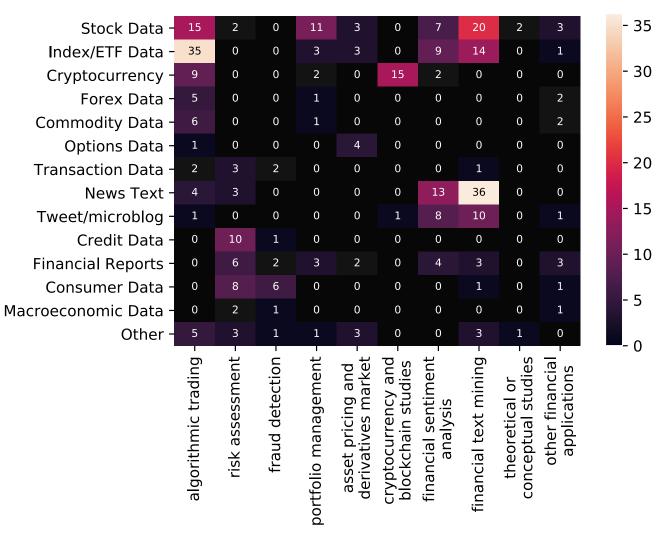
Deep learning for financial applications: Topic-Model Heatmap



Deep learning for financial applications: Topic-Feature Heatmap



Deep learning for financial and the properties of the second of the seco



Algo-trading applications embedded with time series forecasting models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[33]	GarantiBank in BIST, Turkey	2016	OCHLV, Spread, Volatility, Turnover, etc.	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, Correlation R-square	Spark
[34]	CSI300, Nifty50, HSI, Nikkei 225, S&P500, DJIA	2010–2016	OCHLV, Technical Indicators	WT, Stacked autoencoders, LSTM	MAPE, Correlation coefficient, THEIL-U	-
[35]	Chinese Stocks	2007–2017	OCHLV	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[36]	50 stocks from NYSE	2007–2016	Price data	SFM	MSE	_
[37]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[38]	300 stocks from SZSE, Commodity	2014–2015	Price data	FDDR, DMLP+RL	Profit, return, SR, profit-loss curves	Keras
[39]	S&P500 Index	1989–2005	Price data, Volume	LSTM	Return, STD, SR, Accuracy	Python, TensorFlow, Keras, R, H2O
[40]	Stock of National Bank of Greece (ETE).	2009–2014	FTSE100, DJIA, GDAX, NIKKEI225, EUR/USD, Gold	GASVR, LSTM	Return, volatility, SR, Accuracy	Tensorflow
[41]	Chinese stock-IF-IH-IC contract	2016–2017	Decisions for price change	MODRL+LSTM	Profit and loss, SR	-
[42]	Singapore Stock Market Index	2010–2017	OCHL of last 10 days of Index	DMLP	RMSE, MAPE, Profit, SR	-
[43]	GBP/USD	2017	Price data	Reinforcement Learning + LSTM + NES	SR, downside deviation ratio, total profit	Python, Keras, Tensorflow
[44]	Commodity, FX future, ETF	1991–2014	Price Data	DMLP	SR, capability ratio, return	C++, Python
[45]	USD/GBP, S&P500, FTSE100, oil, gold	2016	Price data	AE + CNN	SR, % volatility, avg return/trans, rate of return	H2O

Algo-trading applications embedded with time series forecasting models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
					race or recarn	
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX returns, Euribor interest rates, OCHLV	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[47]	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning, DMLP	Total profit, Correlation	-
[48]	Stocks in the S&P500	1990–2015	Price data	DMLP, GBT, RF	Mean return, MDD, Calmar ratio	H2O
[49]	Fundamental and Technical Data, Economic Data	-	Fundamental , technical and market information	CNN	-	-

Classification (buy-sell signal, or trend detection) based algo-trading models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[51]	Stocks in Dow30	1997–2017	RSI	DMLP with genetic algorithm	Annualized return	Spark MLlib, Java
[52]	SPY ETF, 10 stocks from S&P500	2014-2016	Price data	FFNN	Cumulative gain	MatConvNet, Matlab
[53]	Dow30 stocks	2012–2016	Close data and several technical indicators	LSTM	Accuracy	Python, Keras, Tensorflow, TALIB
[54]	High-frequency record of all orders	2014–2017	Price data, record of all orders, transactions	LSTM	Accuracy	-
[55]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price and volume data in LOB	LSTM	Precision, Recall, F1-score, Cohen's k	-
[56]	17 ETFs	2000-2016	Price data, technical indicators	CNN	Accuracy, MSE, Profit, AUROC	Keras, Tensorflow
[57]	Stocks in Dow30 and 9 Top Volume ETFs	1997–2017	Price data, technical indicators	CNN with feature imaging	Recall, precision, F1-score, annualized return	Python, Keras, Tensorflow, Java
[58]	FTSE100	2000–2017	Price data	CAE	TR, SR, MDD, mean return	-
[59]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price, Volume data, 10 orders of the LOB	CNN	Precision, Recall, F1-score, Cohen's k	Theano, Scikit learn, Python
[60]	Borsa Istanbul 100 Stocks	2011–2015	75 technical indicators and OCHLV	CNN	Accuracy	Keras
[61]	ETFs and Dow30	1997-2007	Price data	CNN with feature imaging	Annualized return	Keras, Tensorflow
[62]	8 experimental assets from bond/derivative market	-	Asset prices data	RL, DMLP, Genetic Algorithm	Learning and genetic algorithm error	-
[63]	10 stocks from S&P500	-	Stock Prices	TDNN, RNN, PNN	Missed opportunities, false alarms ratio	=
[64]	London Stock Exchange	2007–2008	Limit order book state, trades, buy/sell orders, order deletions	CNN	Accuracy, kappa	Caffe
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-

Deep learning for financial applications: Stand-alone and/or other algorithmic models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[66]	DAX, FTSE100, call/put options	1991–1998	Price data	Markov model, RNN	Ewa-measure, iv, daily profits' mean and std	-
[67]	Taiwan Stock Index Futures, Mini Index Futures	2012-2014	Price data to image	Visualization method + CNN	Accumulated profits,accuracy	-
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015–2016	Text and Price data	LSTM, RNN, GRU	Return, SR, precision, recall, accuracy	Python, Tweepy API
[69]	CME FIX message	2016	Limit order book, time-stamp, price data	RNN	Precision, recall, F1-measure	Python, TensorFlow, R
[70]	Taiwan stock index futures (TAIFEX)	2017	Price data	Agent based RL with CNN pre-trained	Accuracy	-
[71]	Stocks from S&P500	2010–2016	OCHLV	DCNL	PCC, DTW, VWL	Pytorch
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013–2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[73]	489 stocks from S&P500 and NASDAQ-100	2014–2015	Limit Order Book	Spatial neural network	Cross entropy error	NVIDIA's cuDNN
[74]	Experimental dataset	-	Price data	DRL with CNN, LSTM, GRU, DMLP	Mean profit	Python

Deep learning for financial applications: Credit scoring or classification studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[77]	The XR 14 CDS contracts	2016	Recovery rate, spreads, sector and region	DBN+RBM	AUROC, FN, FP, Accuracy	WEKA
[78]	German, Japanese credit datasets	-	Personal financial variables	SVM + DBN	Weighted- accuracy, TP, TN	-
[79]	Credit data from Kaggle	-	Personal financial variables	DMLP	Accuracy, TP, TN, G-mean	-
[80]	Australian, German credit data	-	Personal financial variables	GP + AE as Boosted DMLP	FP	Python, Scikit-learn
[81]	German, Australian credit dataset	-	Personal financial variables	DCNN, DMLP	Accuracy, False/Missed alarm	-
[82]	Consumer credit data from Chinese finance company	-	Relief algorithm chose the 50 most important features	CNN + Relief	AUROC, K-s statistic, Accuracy	Keras
[83]	Credit approval dataset by UCI Machine Learning repo	-	UCI credit approval dataset	Rectifier, Tanh, Maxout DL	-	AWS EC2, H2O, R

Financial distress, bankruptcy, bank risk, mortgage risk, crisis forecasting studies.

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[84]	966 french firms	-	Financial ratios	RBM+SVM	Precision, Recall	-
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, RF	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[86]	The event data set for large European banks, news articles from Reuters	2007–2014	Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	-
[87]	Event dataset on European banks, news from Reuters	2007-2014	Text, sentence	Sentence vector + DFFN	Usefulness, F1-score, AUROC	-
[88]	News from Reuters, fundamental data	2007-2014	Financial ratios and news text	doc2vec + NN	Relative usefulness	Doc2vec
[89]	Macro/Micro economic variables, Bank charac- teristics/performance variables from BHC	1976–2017	Macro economic variables and bank performances	CGAN, MVN, MV-t, LSTM, VAR, FE-QAR	RMSE, Log likelihood, Loan loss rate	-
[90]	Financial statements of French companies	2002–2006	Financial ratios	DBN	Recall, Precision, F1-score, FP, FN	-
[91]	Stock returns of American publicly-traded companies from CRSP	2001–2011	Price data	DBN	Accuracy	Python, Theano
[92]	Financial statements of several companies from Japanese stock market	2002–2016	Financial ratios	CNN	F1-score, AUROC	-
[93]	Mortgage dataset with local and national economic factors	1995–2014	Mortgage related features	DMLP	Negative average log-likelihood	AWS
[94]	Mortgage data from Norwegian financial service group, DNB	2012–2016	Personal financial variables	CNN	Accuracy, Sensitivity, Specificity, AUROC	-
[95]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	CNN, LSTM	F1-Score	Keras, Tensorflow
[96]	Several datasets combined to create a new one	1996–2017	Index data, 10-year Bond yield, exchange rates,	Logit, CART, RF, SVM, NN, XGBoost, DMLP	AUROC, KS, G-mean, likelihood ratio, DP, BA, WBA	R

Deep learning for financial applications: Fraud detection studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[114]	Debit card transactions by a local Indonesia bank	2016–2017	Financial transaction amount on several time periods	CNN, Stacked-LSTM, CNN-LSTM	AUROC	-
[115]	Credit card transactions from retail banking	2017	Transaction variables and several derived features	LSTM, GRU	Accuracy	Keras
[116]	Card purchases' transactions	2014–2015	Probability of fraud per currency/origin country, other fraud related features	DMLP	AUROC	-
[117]	Transactions made with credit cards by European cardholders	2013	Personal financial variables to PCA	DMLP, RF	Recall, Precision, Accuracy	-
[118]	Credit-card transactions	2015	Transaction and bank features	LSTM	AUROC	Keras, Scikit-learn
[119]	Databases of foreign trade of the Secretariat of Federal Revenue of Brazil	2014	8 Features: Foreign Trade, Tax, Transactions, Employees, Invoices, etc	AE	MSE	H2O, R
[120]	Chamber of Deputies open data, Companies data from Secretariat of Federal Revenue of Brazil	2009–2017	21 features: Brazilian State expense, party name, Type of expense, etc.	Deep Autoencoders	MSE, RMSE	H2O, R
[121]	Real-world data for automobile insurance company labeled as fradulent	-	Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	-
[122]	Transactions from a giant online payment platform	2006	Personal financial variables	GBDT+DMLP	AUROC	-
[123]	Financial transactions	-	Transaction data	LSTM	t-SNE	-
[124]	Empirical data from Greek firms	-	-	DQL	Revenue	Torch

Deep learning for financial applications: Portfolio management studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-
[127]	Stocks from NYSE, AMEX, NASDAQ	1965–2009	Price data	Autoencoder + RBM	Accuracy, confusion matrix	-
[128]	20 stocks from S&P500	2012-2015	Technical indicators	DMLP	Accuracy	Python, Scikit Learn, Keras, Theano
[129]	Chinese stock data	2012–2013	Technical, fundamental data	Logistic Regression, RF, DMLP	AUC, accuracy, precision, recall, f1, tpr, fpr	Keras, Tensorflow, Python, Scikit Iearn
[130]	Top 5 companies in S&P500	-	Price data and Financial ratios	LSTM, Auto-encoding, Smart indexing	CAGR	-
[131]	IBB biotechnology index, stocks	2012–2016	Price data	Auto-encoding, Calibrating, Validating, Verifying	Returns	-
[132]	Taiwans stock market	-	Price data	Elman RNN	MSE, return	_
[133]	FOREX (EUR/USD, etc.), Gold	2013	Price data	Evolino RNN	Return	Python
[134]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	LSTM+DMLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[135]	S&P500	1985-2006	monthly and daily log-returns	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[136]	10 stocks in S&P500	1997–2016	OCHLV, Price data	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[137]	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[138]	Stocks from Chinese/American stock market	2015–2018	OCHLV, Fundamental data	DDPG, PPO	SR, MDD	-
[139]	Hedge fund monthly return data	1996–2015	Return, SR, STD, Skewness, Kurtosis, Omega ratio, Fund alpha	DMLP	Sharpe ratio, Annual return, Cum. return	-
[140]	12 most-volumed cryptocurrency	2015–2016	Price data	CNN + RL	SR, portfolio value, MDD	-

Deep learning for financial applications: Asset pricing and derivatives market studies

Art.	Der. type	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Asset pricing	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[142]	Options	Simulated a range of call option prices	-	Price data, option strike/maturity, dividend/risk free rates, volatility	DMLP	RMSE, the average percentage pricing error	Tensorflow
[143]	Futures, Options	TAIEX Options	2017	OCHLV, fundamental analysis, option price	DMLP, DMLP with Black scholes	RMSE, MAE, MAPE	-
[144]	Equity returns	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	Fama–French n-factor model DL	R ² ,RMSE	Tensorflow

Deep learning for financial applications: Cryptocurrency and blockchain studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX daily returns, Euribor interest rates, OCHLV of EURO/UK, EURO/USD, US/JPY	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN	Accumulative portfolio value, MDD, SR	-
[140]	12 most-volumed cryptocurrency	2015–2016	Price data	CNN + RL	SR, portfolio value, MDD	
[145]	Bitcoin data	2010–2017	Hash value, bitcoin address, public/private key, digital signature, etc.	Takagi–Sugeno Fuzzy cognitive maps	Analytical hierarchy process	-
[146]	Bitcoin data	2012, 2013, 2016	TransactionId, input/output Addresses, timestamp	Graph embedding using heuristic, laplacian eigen-map, deep AE	F1-score	-
[147]	Bitcoin, Litecoin, StockTwits	2015–2018	OCHLV, technical indicators, sentiment analysis	CNN, LSTM, State Frequency Model	MSE	Keras, Tensorflow
[148]	Bitcoin	2013–2016	Price data	Bayesian optimized RNN, LSTM	Sensitivity, specificity, precision, accuracy, RMSE	Keras, Python, Hyperas

Financial sentiment studies coupled with text mining for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[150]	Sina Weibo, Stock market records	2012–2015	Technical indicators, sentences	DRSE	F1-score, precision, recall, accuracy, AUROC	Python
[151]	News from Reuters and Bloomberg for S&P500 stocks	2006–2015	Financial news, price data	DeepClue	Accuracy	Dynet software
[152]	News from Reuters and Bloomberg, Historical stock security data	2006–2013	News, price data	DMLP	Accuracy	-
[153]	SCI prices	2008–2015	OCHL of change rate, price	Emotional Analysis + LSTM	MSE	-
[154]	SCI prices	2013–2016	Text data and Price data	LSTM	Accuracy, F1-Measure	Python, Keras
[155]	Stocks of Google, Microsoft and Apple	2016–2017	Twitter sentiment and stock prices	RNN	-	Spark, Flume,Twitter API,
[156]	30 DJIA stocks, S&P500, DJI, news from Reuters	2002–2016	Price data and features from news articles	LSTM, NN, CNN and word2vec	Accuracy	VADER
[157]	Stocks of CSI300 index, OCHLV of CSI300 index	2009–2014	Sentiment Posts, Price data	Naive Bayes + LSTM	Precision, Recall, F1-score, Accuracy	Python, Keras
[158]	S&P500, NYSE Composite, DJIA, NASDAQ Composite	2009–2011	Twitter moods, index data	DNN, CNN	Error rate	Keras, Theano

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015–2016	Text and Price data	RNN, KNN, SVR, LinR	Return, SR, precision, recall, accuracy	Python, Tweepy API
[165]	News from Reuters, Bloomberg	2006–2013	Financial news, price data	Bi-GRU	Accuracy	Python, Keras
[166]	News from Sina.com, ACE2005 Chinese corpus	2012–2016	A set of news text	Their unique algorithm	Precision, Recall, F1-score	-
[167]	CDAX stock market data	2010–2013	Financial news, stock market data	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Python, Scikit-Learn
[168]	Apple, Airbus, Amazon news from Reuters, Bloomberg, S&P500 stock prices	2006–2013	Price data, news, technical indicators	TGRU, stock2vec	Accuracy, precision, AUROC	Keras, Python
[169]	S&P500 Index, 15 stocks in S&P500	2006–2013	News from Reuters and Bloomberg	CNN	Accuracy, MCC	-
[170]	S&P500 index news from Reuters	2006-2013	Financial news titles, Technical indicators	SI-RCNN (LSTM + CNN)	Accuracy	-
[171]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	Paragraph Vector + LSTM	Profit	-
[172]	NIFTY50 Index, NIFTY Bank/Auto/IT/Energy Index, News	2013–2017	Index data, news	LSTM	MCC, Accuracy	-
[173]	Price data, index data, news, social media data	2015	Price data, news from articles and social media	Coupled matrix and tensor	Accuracy, MCC	Jieba
[174]	HS300	2015–2017	Social media news, price data	RNN-Boost with LDA	Accuracy, MAE, MAPE, RMSE	Python, Scikit-learn

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[175]	News and Chinese stock	2014–2017	Selected words in	HAN	Accuracy, Annual	-
	data		a news		return	
[176]	News, stock prices from Hong Kong Stock Exchange	2001	Price data and TF-IDF from news	ELM, DLR, PCA, BELM, KELM, NN	Accuracy	Matlab
[177]	TWSE index, 4 stocks in TWSE	2001–2017	Technical indicators, Price data, News	CNN + LSTM	RMSE, Profit	Keras, Python, TALIB
[178]	Stock of Tsugami Corporation	2013	Price data	LSTM	RMSE	Keras, Tensorflow
[179]	News, Nikkei Stock Average and 10-Nikkei companies	1999–2008	news, MACD	RNN, RBM+DBN	Accuracy, P-value	-
[180]	ISMIS 2017 Data Mining Competition dataset	-	Expert identifier, classes	LSTM + GRU + FFNN	Accuracy	-
[181]	Reuters, Bloomberg News, S&P500 price	2006–2013	News and sentences	LSTM	Accuracy	-
[182]	APPL from S&P500 and news from Reuters	2011–2017	Input news, OCHLV, Technical indicators	CNN + LSTM, CNN+SVM	Accuracy, F1-score	Tensorflow
[183]	Nikkei225, S&P500, news from Reuters and Bloomberg	2001–2013	Stock price data and news	DGM	Accuracy, MCC, %profit	-
[184]	Stocks from S&P500	2006–2013	Text (news) and Price data	LAR+News, RF+News	MAPE, RMSE	-

Financial sentiment studies coupled with text mining without forecasting

	-	_	=			
Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, Random Forest	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[185]	SemEval-2017 dataset, financial text, news, stock market data	2017	Sentiments in Tweets, News headlines	Ensemble SVR, CNN, LSTM, GRU	Cosine similarity score, agreement score, class score	Python, Keras, Scikit Learn
[186]	Financial news from Reuters	2006–2015	Word vector, Lexical and Contextual input	Targeted dependency tree LSTM	Cumulative abnormal return	-
[187]	Stock sentiment analysis from StockTwits	2015	StockTwits messages	LSTM, Doc2Vec, CNN	Accuracy, precision, recall, f-measure, AUC	-
[188]	Sina Weibo, Stock market records	2012–2015	Technical indicators, sentences	DRSE	F1-score, precision, recall, accuracy, AUROC	Python
[189]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013–2014	Text, Sentiment	LSTM, CNN	Return	Python, Tensorflow
[190]	StockTwits	2008–2016	Sentences, StockTwits messages	CNN, LSTM, GRU	MCC, WSURT	Keras, Tensorflow
[191]	Financial statements of Japan companies	-	Sentences, text	DMLP	Precision, recall, f-score	-
[192]	Twitter posts, news headlines	-	Sentences, text	Deep-FASP	Accuracy, MSE, R ²	-
[193]	Forums data	2004–2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	_
[194]	News from Financial Times related US stocks	-	Sentiment of news headlines	SVR, Bidirectional LSTM	Cosine similarity	Python, Scikit Learn, Keras, Tensorflow

Deep learning for financial applications: Other text mining studies

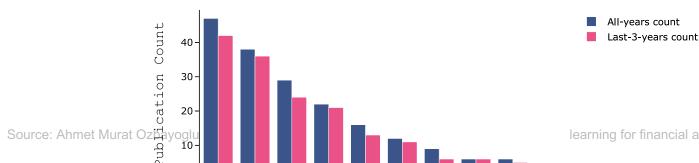
Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013–2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[86]	The event data set for large European banks, news articles from Reuters	2007–2014	Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	-
[87]	Event dataset on European banks, news from Reuters	2007–2014	Text, sentence	Sentence vector + DFFN	Usefulness, F1-score, AUROC	-
[88]	News from Reuters, fundamental data	2007–2014	Financial ratios and news text	doc2vec + NN	Relative usefulness	Doc2vec
[121]	Real-world data for automobile insurance company labeled as fradulent	-	Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	-
[123]	Financial transactions	_	Transaction data	LSTM	t-SNE	_
[195]	Taiwan's National Pension Insurance	2008–2014	Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
[196]	StockTwits	2015–2016	Sentences, StockTwits messages	Doc2vec, CNN	Accuracy, precision, recall, f-measure, AUC	Python, Tensorflow

Deep learning for financial applications: Other theoretical or conceptual studies

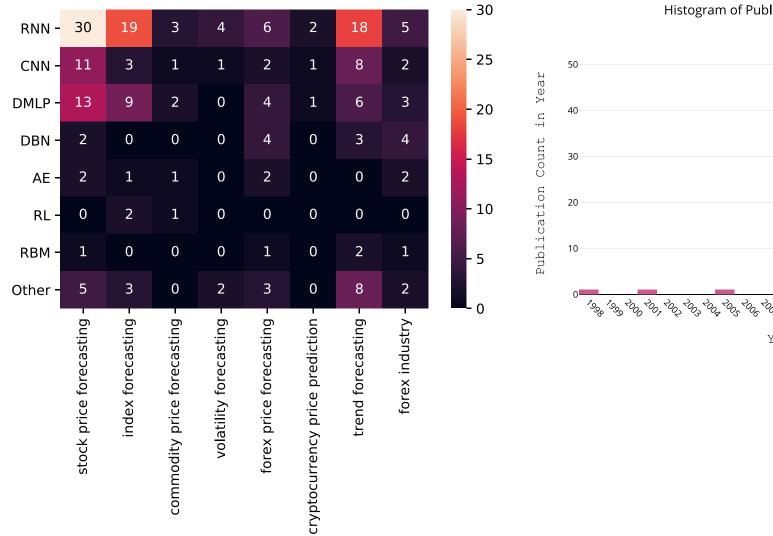
Art.	SubTopic	IsTimeSeries?	Data set	Period	Feature set	Method
[197]	Analysis of AE, SVD	Yes	Selected stocks from the IBB index and stock of Amgen Inc.	2012–2014	Price data	AE, SVD
[198]	Fraud Detection in Banking	No	Risk Management / Fraud Detection	-	-	DRL

Deep learning for financial applications: Other financial applications

	* *						
Art.	Subtopic	Data set	Period	Feature set	Method	Performance criteria	Env.
[47]	Improving trading decisions	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning and DMLP	Total profit, Correlation	-
[193]	Identifying Top Sellers In Underground Economy	Forums data	2004–2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
[195]	Predicting Social Ins. Payment Behavior	Taiwan's National Pension Insurance	2008–2014	Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
[199]	Speedup	45 CME listed commodity and FX futures	1991–2014	Price data	DNN	-	-
[200]	Forecasting Fundamentals	Stocks in NYSE, NASDAQ or AMEX exchanges	1970–2017	16 fundamental features from balance sheet	DMLP, LFM	MSE, Compound annual return, SR	-
[201]	Predicting Bank Telemarketing	Phone calls of bank marketing data	2008–2010	16 finance-related attributes	CNN	Accuracy	-
[202]	Corporate Performance Prediction	22 pharmaceutical companies data in US stock market	2000-2015	11 financial and 4 patent indicator	RBM, DBN	RMSE, profit	-



Financial time series forecasting with deep learning: Topic-model heatmap



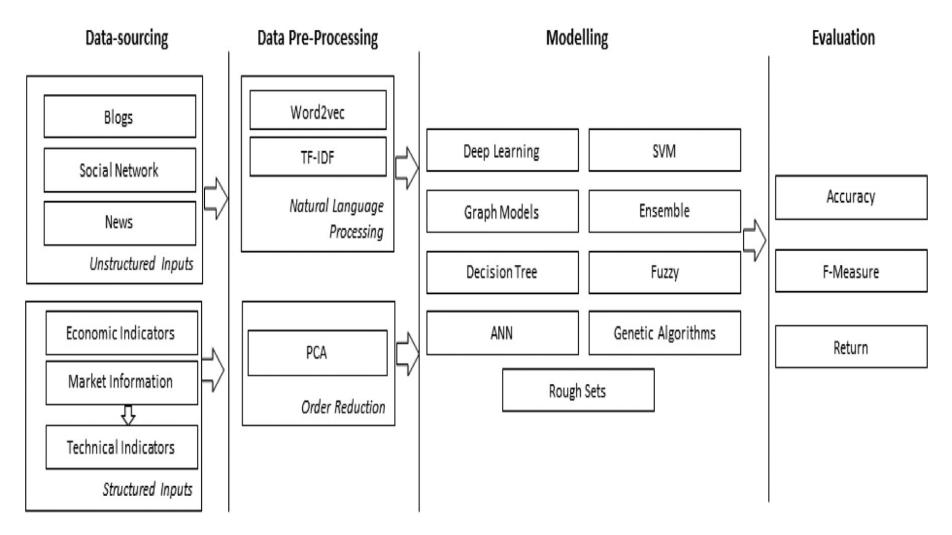
Stock price forecasting using only raw time series data

Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[80]	38 stocks in KOSPI	2010-2014	Lagged stock returns	50 min	5 min	DNN	NMSE, RMSE, MAE, MI	-
[81]	China stock market, 3049 Stocks	1990–2015	OCHLV	30 d	3 d	LSTM	Accuracy	Theano, Keras
[82]	Daily returns of 'BRD' stock in Romanian Market	2001–2016	OCHLV	_	1 d	LSTM	RMSE, MAE	Python, Theano
[83]	297 listed companies of CSE	2012–2013	OCHLV	2 d	1 d	LSTM, SRNN, GRU	MAD, MAPE	Keras
[84]	5 stock in NSE	1997–2016	OCHLV, Price data, turnover and number of trades.	200 d	110 d	LSTM, RNN, CNN, MLP	MAPE	-
[85]	Stocks of Infosys, TCS and CIPLA from NSE	2014	Price data	_	-	RNN, LSTM and CNN	Accuracy	-
[86]	10 stocks in S&P500	1997–2016	OCHLV, Price data	36 m	1 m	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[87]	Stocks data from S&P500	2011–2016	OCHLV	1 d	1 d	DBN	MSE, norm-RMSE, MAE	-
[88]	High-frequency transaction data of the CSI300 futures	2017	Price data	-	1 min	DNN, ELM, RBF	RMSE, MAPE, Accuracy	Matlab
[89]	Stocks in the S&P500	1990–2015	Price data	240 d	1 d	DNN, GBT, RF	Mean return, MDD, Calmar ratio	H20
[90]	ACI Worldwide, Staples, and Seagate in NASDAO	2006–2010	Daily closing prices	17 d	1 d	RNN, ANN	RMSE	-
[91]	Chinese Stocks	2007–2017	OCHLV	30 d	15 d	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[92]	20 stocks in S&P500	2010–2015	Price data	-	-	AE + LSTM	Weekly Returns	-
[93]	S&P500	1985–2006	Monthly and daily log-returns	*	1 d	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[94]	12 stocks from SSE Composite Index	2000–2017	OCHLV	60 d	17 d	DWNN	MSE	Tensorflow
[95]	50 stocks from NYSE	2007–2016	Price data	-	1d, 3 d, 5 d	SFM	MSE	_

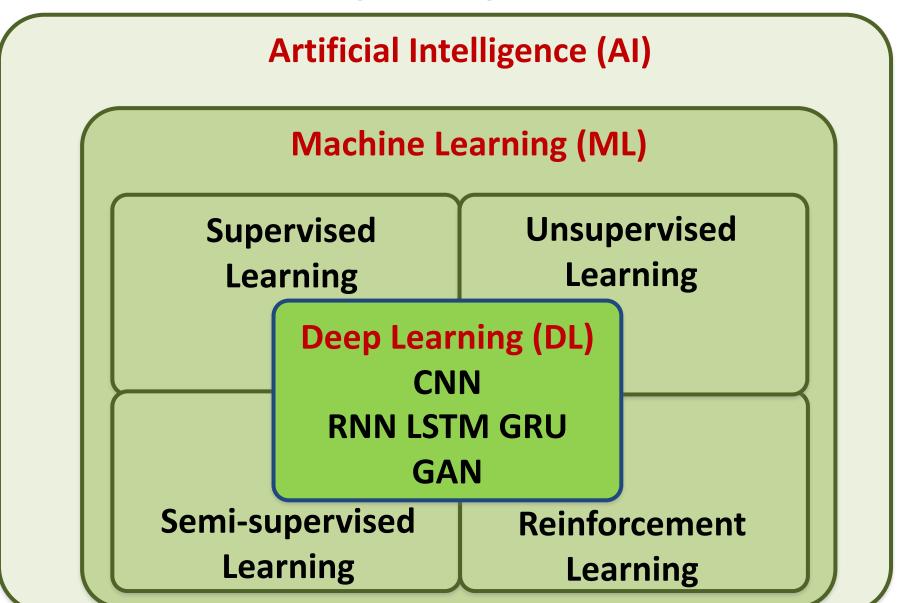
Stock price forecasting using various data

Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[96]	Japan Index constituents from WorldScope	1990–2016	25 Fundamental Features	10 d	1 d	DNN	Correlation, Accuracy, MSE	Tensorflow
[97]	Return of S&P500	1926-2016	Fundamental Features:	-	1 s	DNN	MSPE	Tensorflow
[98]	U.S. low-level disaggregated macroeconomic time series	1959–2008	GDP, Unemployment rate, Inventories, etc.	-	-	DNN	R^2	-
[99]	CDAX stock market data	2010–2013	Financial news, stock market data	20 d	1 d	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Python Scikit-Learn
[100]	Stock of Tsugami Corporation	2013	Price data	-	-	LSTM	RMSE	Keras, Tensorflow
[101]	Stocks in China's A-share	2006–2007	11 technical indicators	-	1 d	LSTM	AR, IR, IC	-
[102]	SCI prices	2008–2015	OCHL of change rate, price	7 d	-	EmotionalAnalysis + LSTM	MSE	-
[103]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	10 d	-	Paragraph Vector + LSTM	Profit	-
[104]	TKC stock in NYSE and QQQQ ETF	1999–2006	Technical indicators, Price	50 d	1 d	RNN (Jordan-Elman)	Profit, MSE	Java
[105]	10 Stocks in NYSE	-	Price data, Technical indicators	20 min	1 min	LSTM, MLP	RMSE	-
[106]	42 stocks in China's SSE	2016	OCHLV, Technical Indicators	242 min	1 min	GAN (LSTM, CNN)	RMSRE, DPA, GAN-F, GAN-D	-
[107]	Google's daily stock data	2004–2015	OCHLV, Technical indicators	20 d	1 d	$(2D)^2$ PCA + DNN	SMAPE, PCD, MAPE, RMSE, HR, TR, R ²	R, Matlab
[108]	GarantiBank in BIST, Turkey	2016	OCHLV, Volatility, etc.	-	-	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, R ²	Spark
[109]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	80 d	1 d	LSTM+MLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[110]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	_	-	CNN, LSTM	F1-Score	Keras, Tensorflow
[111]	Fundamental and Technical Data, Economic Data	-	Fundamental , technical and market information	-	-	CNN	-	-
[112]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	-	*	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[113]	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	*	-	Fama–French n-factor model DL	R ² , RMSE	Tensorflow

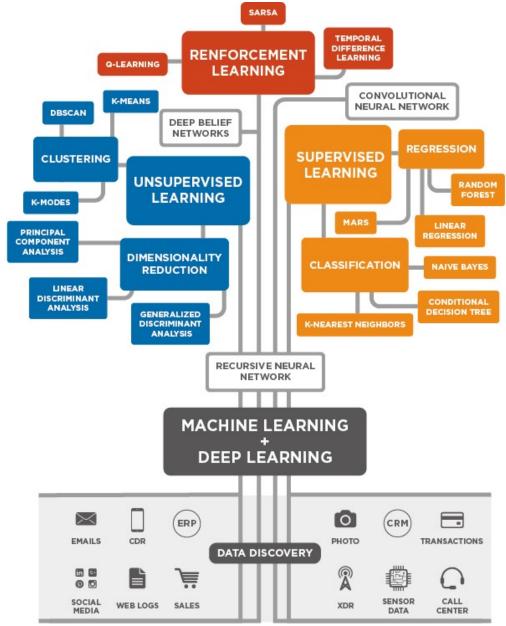
Stock Market Movement Forecast: Phases of the stock market modeling



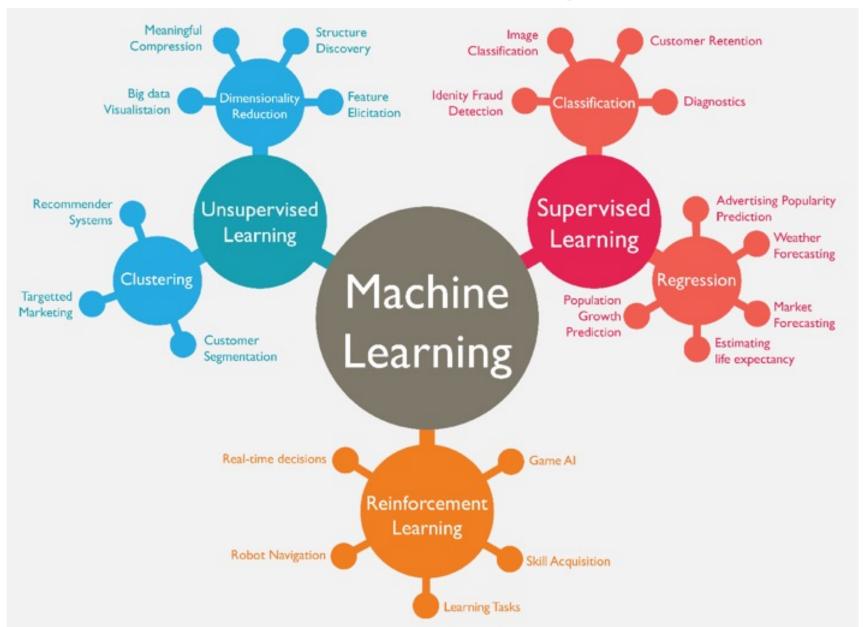
AI, ML, DL



3 Machine Learning Algorithms



Machine Learning (ML)



Machine Learning Models

Deep Learning

Kernel

Association rules

Ensemble

Decision tree

Dimensionality reduction

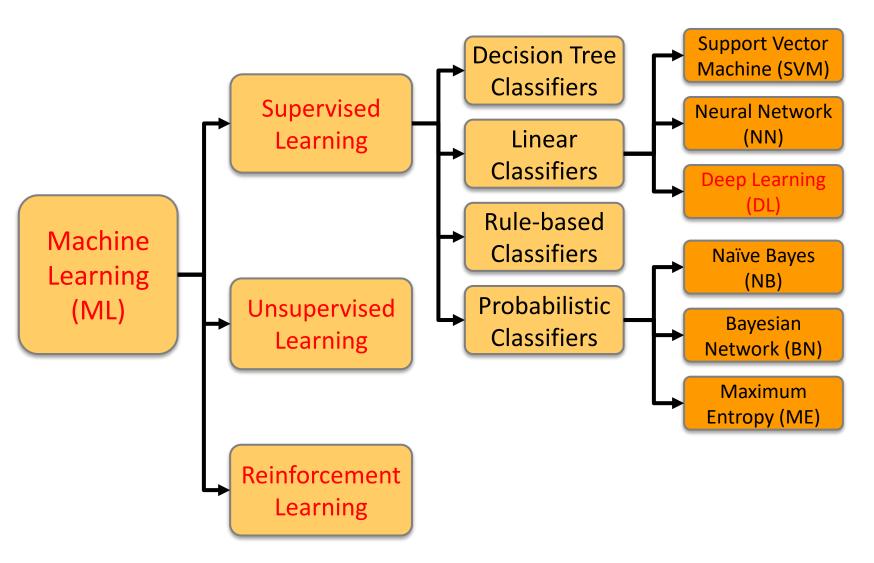
Clustering

Regression Analysis

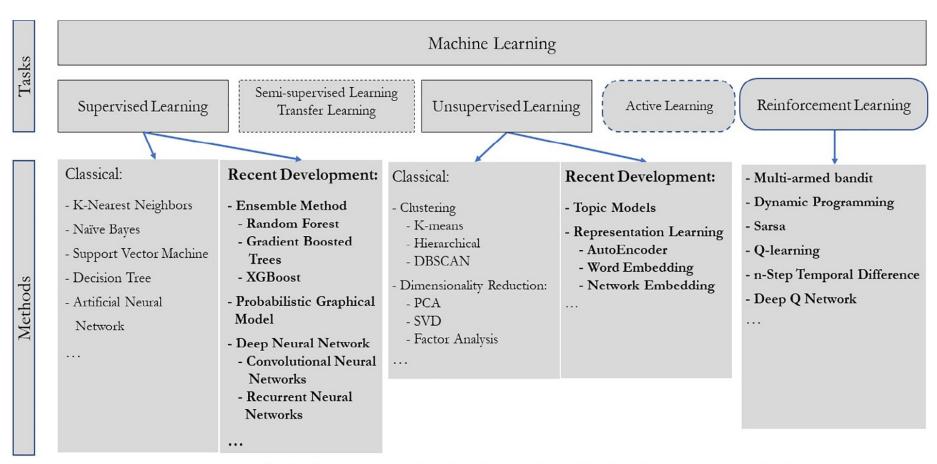
Bayesian

Instance based

Machine Learning (ML) / Deep Learning (DL)



Machine Learning Tasks and Methods

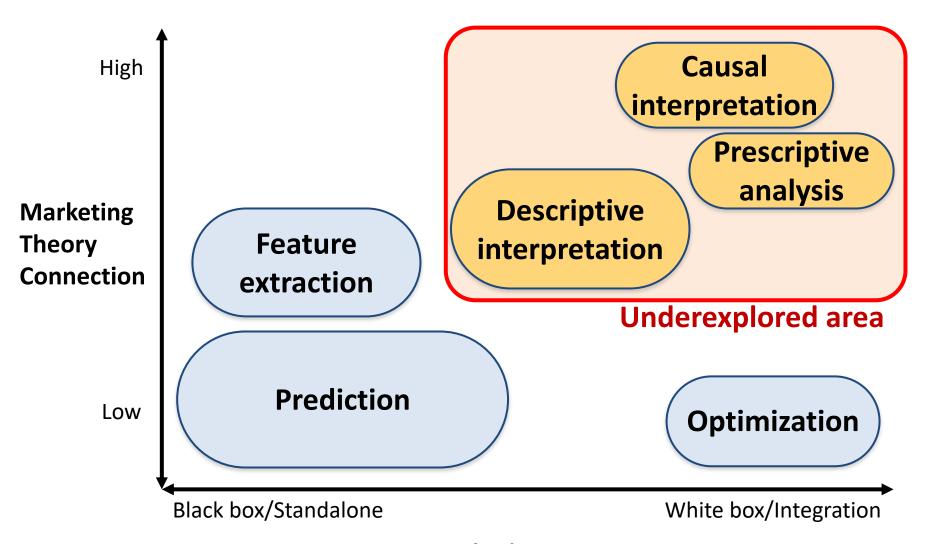


Note: Several entries in the diagram, e.g. word embedding or multi-armed bandit, refer to specific problem formulations for which a collection of methods exist.

: Tasks that take input data as given : Tasks that involve interactive data acquisition Dashed border: methods not elaborated in paper text

Bold type: highlights recent developments

Machine Learning Methods in Marketing



Method Transparency

Machine Learning

Scikit-Learn

Machine Learning in Python

Scikit-Learn

Install User Guide API Examples More -

Go

scikit-learn

Machine Learning in Python

Getting Started

Release Highlights for 0.24

GitHub

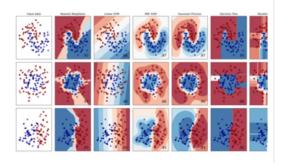
- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition.

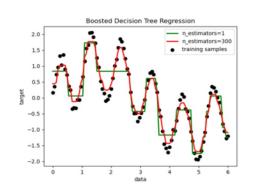
Algorithms: SVM, nearest neighbors, random forest, and more...



Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms:** SVR, nearest neighbors, random forest, and more...



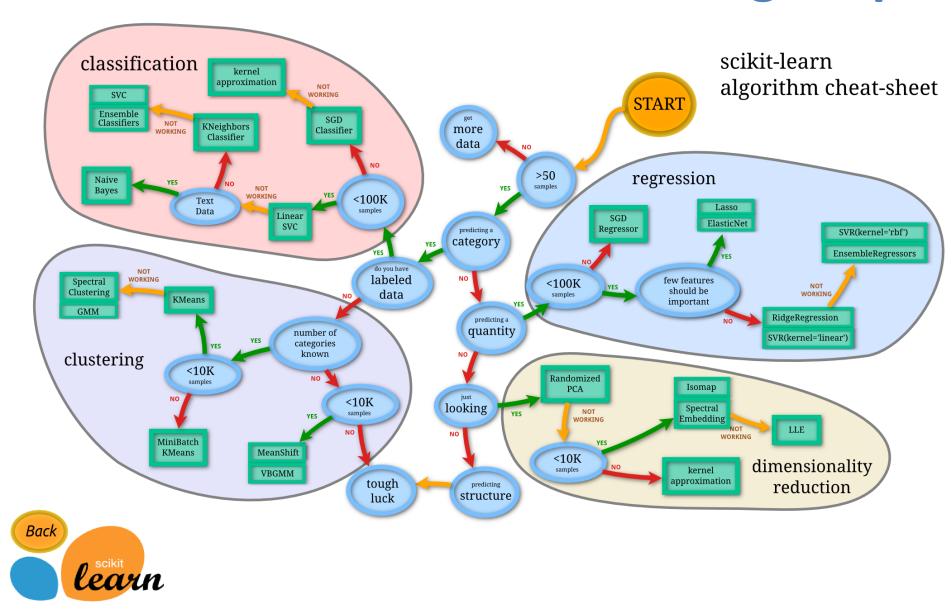
Clustering

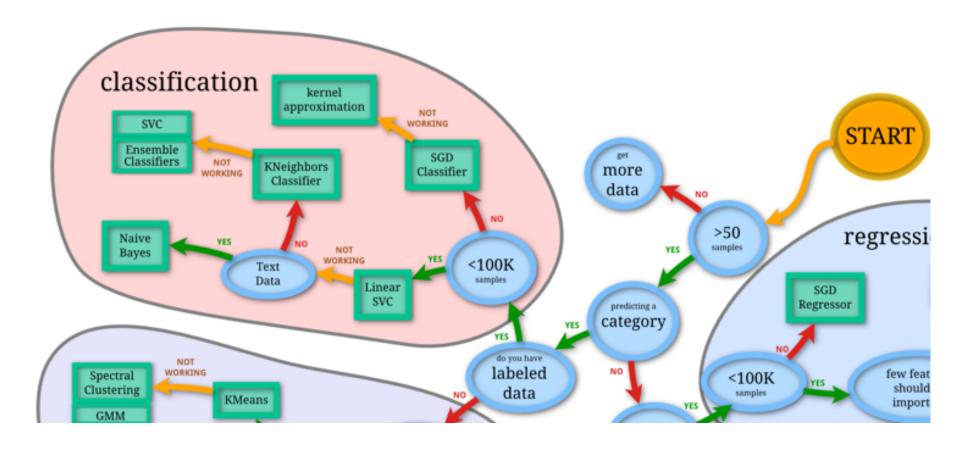
Automatic grouping of similar objects into sets.

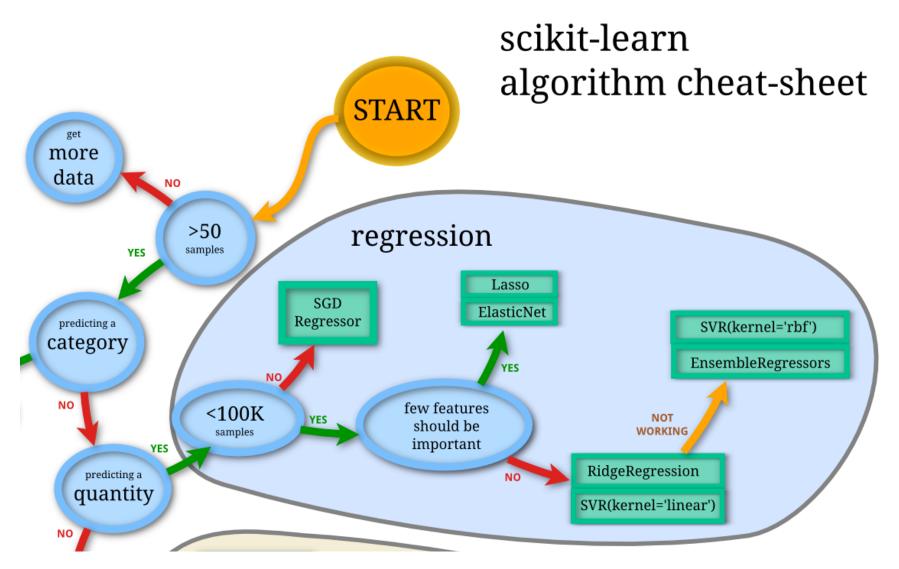
Applications: Customer segmentation, Grouping experiment outcomes

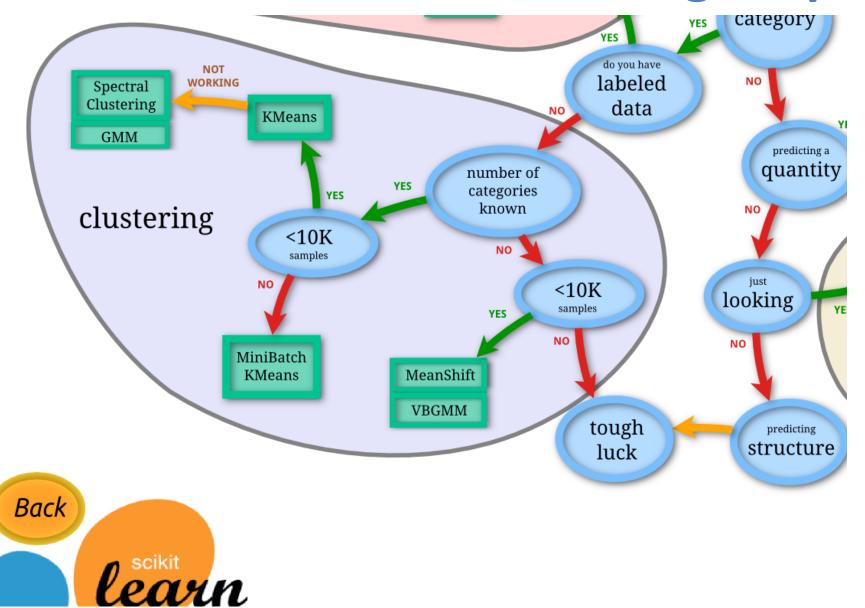
Algorithms: k-Means, spectral clustering, mean-shift, and more...

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

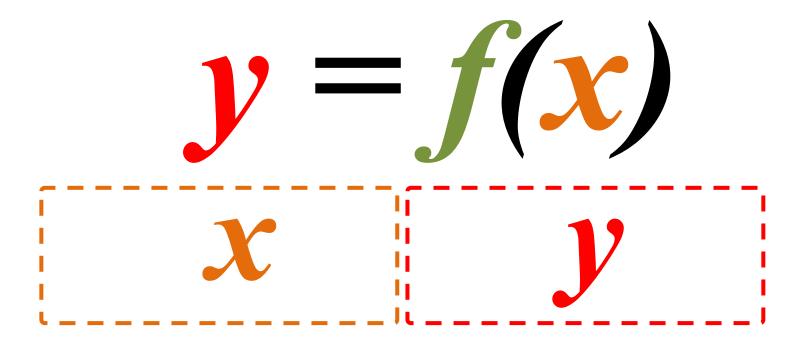








Machine Learning Supervised Learning (Classification) Learning from Examples



Machine Learning Supervised Learning (Classification) Learning from Examples

y = f(x)

```
5.1,3.5,1.4,0.2 Iris-setosa
4.9,3.0,1.4,0.2, Iris-setosa
4.7,3.2,1.3,0.2, Iris-setosa
7.0,3.2,4.7,1.4, Iris-versicolor
6.4,3.2,4.5,1.5, Iris-versicolor
6.9,3.1,4.9,1.5, Iris-versicolor
6.3,3.3,6.0,2.5, Iris-virginica
5.8,2.7,5.1,1.9, Iris-virginica
7.1,3.0,5.9,2.1, Iris-virginica
```

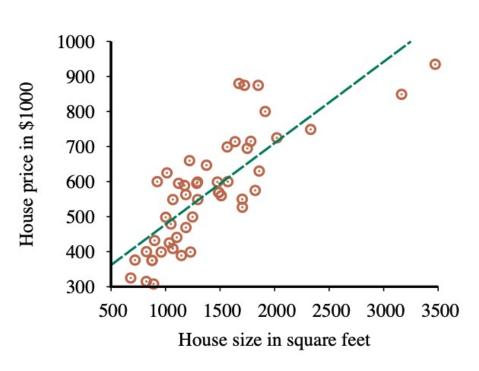
Linear function

$$y = f(x)$$

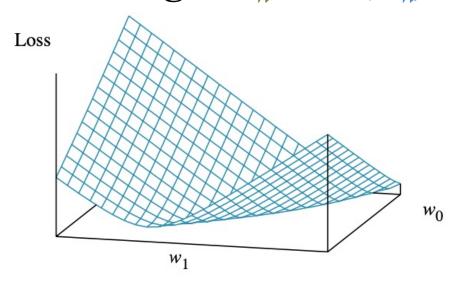
$$y = w_1 x + w_0$$

$$h_w(x) = w_1 x + w_0$$

Linear Regression Weight Space



 $w^* = \operatorname{argmin}_{w} Loss(h_{w})$



y = 0.232 x + 246

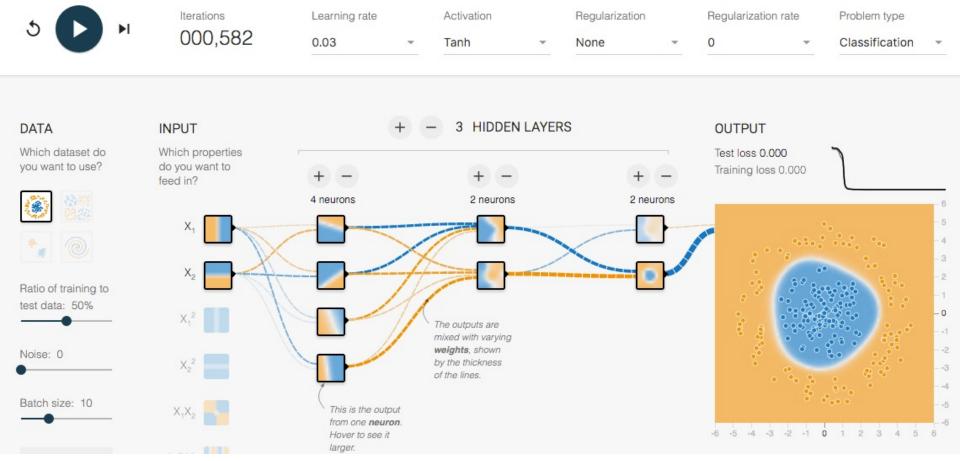
Loss function for Weights (w_1, w_0)

Deep Learning

Deep Learning and Neural Networks

TensorFlow Playground

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.



Tensor

- 3
 - # a rank 0 tensor; this is a scalar with shape []
- [1.,2.,3.]
 - # a rank 1 tensor; this is a vector with shape [3]
- [[1., 2., 3.], [4., 5., 6.]]
 - # a rank 2 tensor; a matrix with shape [2, 3]
- [[[1., 2., 3.]], [[7., 8., 9.]]]
 - # a rank 3 tensor with shape [2, 1, 3]

Scalar

80

Vector

[50 60 70]

Matrix

 50
 60
 70

 55
 65
 75

Tensor

 [50 60 70]
 [70 80 90]

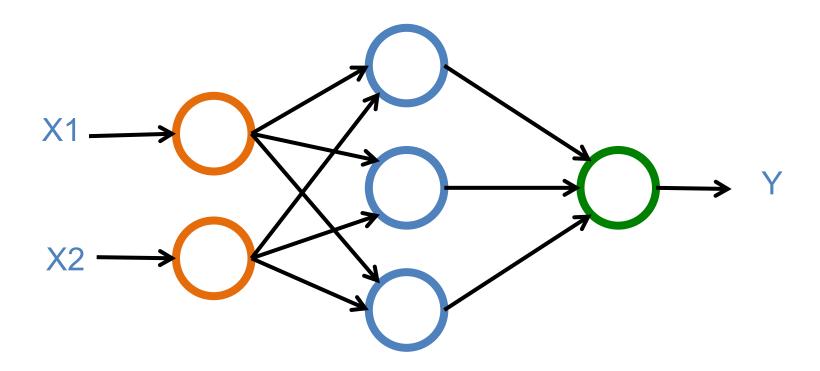
 [55 65 75]
 [75 85 95]

Deep Learning and Neural Networks

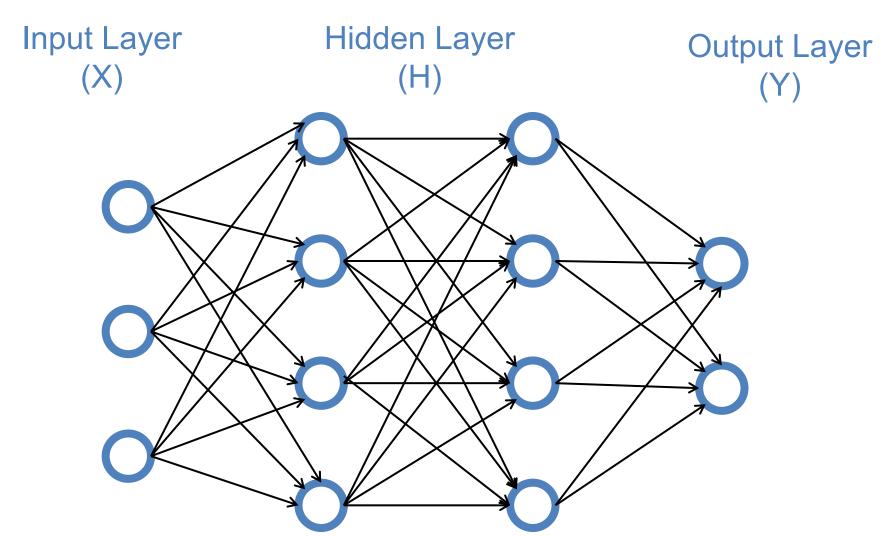
Deep Learning Foundations: Neural Networks

Deep Learning and Neural Networks

Input Layer Hidden Layer Output Layer (X) (H) (Y)



Deep Learning and Neural Networks



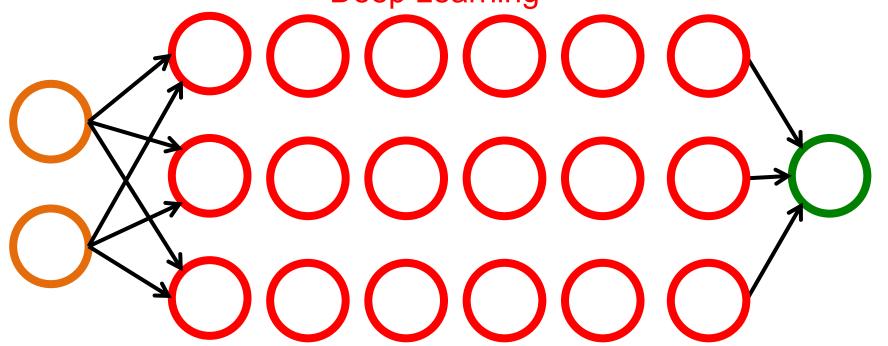
Deep Learning and Neural Networks

Input Layer (X)

Hidden Layers (H)

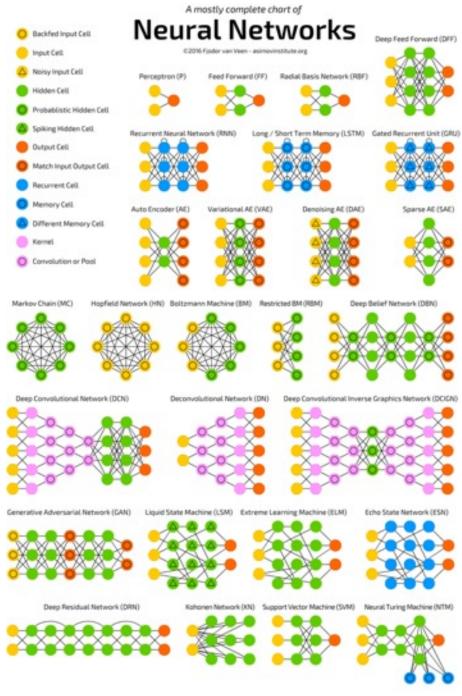
Output Layer (Y)

Deep Neural Networks
Deep Learning



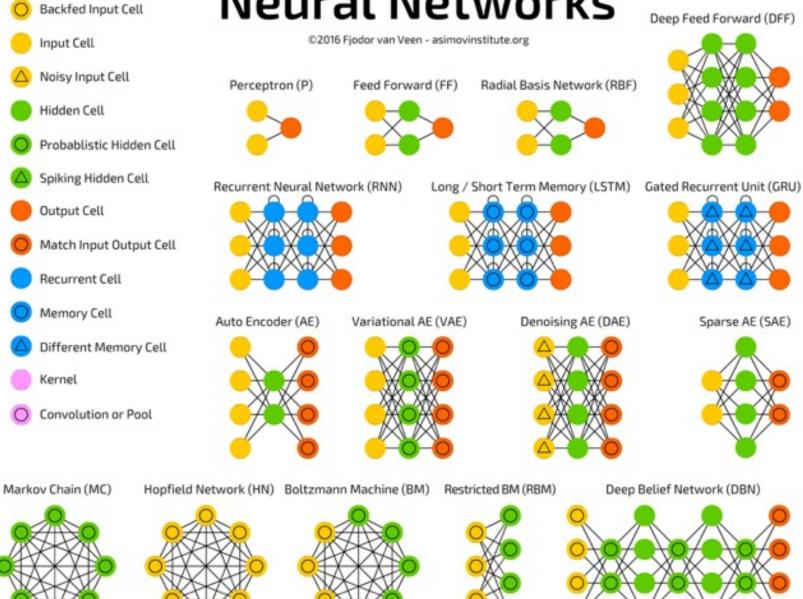
Deep Learning and Deep Neural Networks

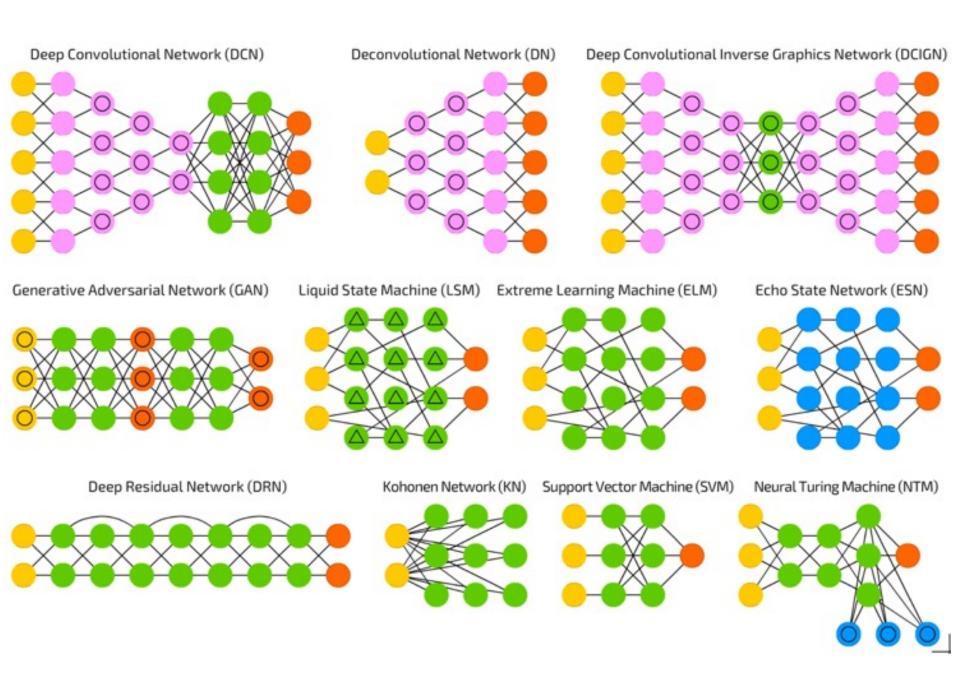
Neural Networks (NN)



A mostly complete chart of

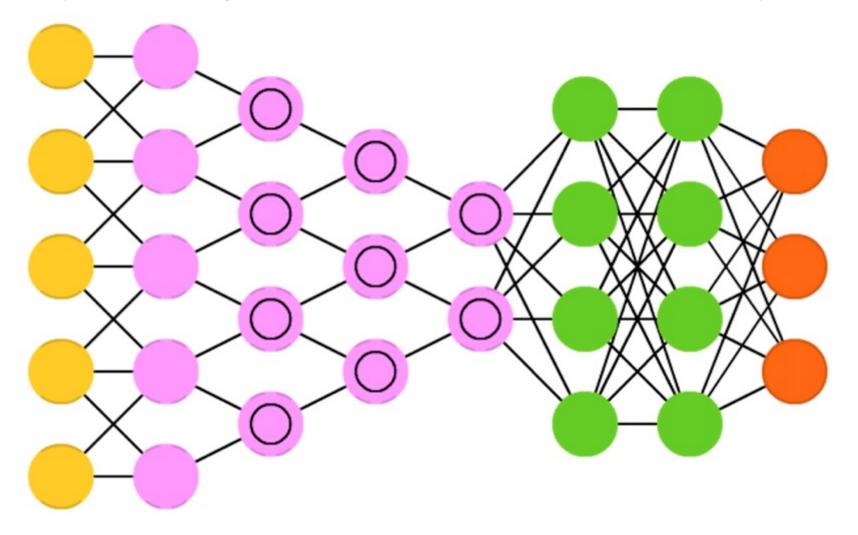
Neural Networks



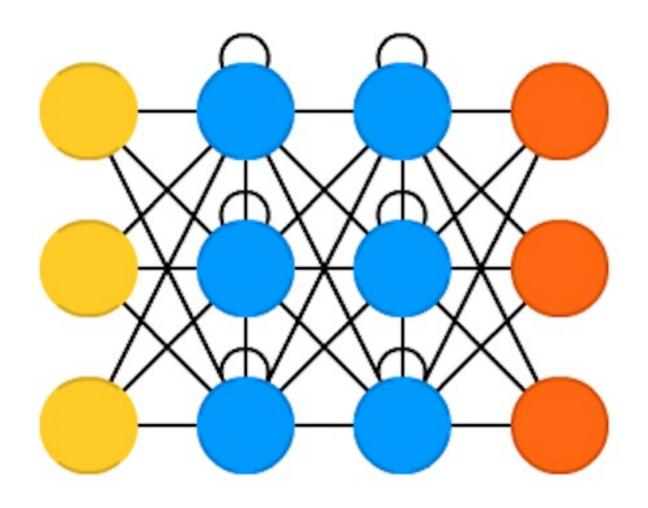


Convolutional Neural Networks

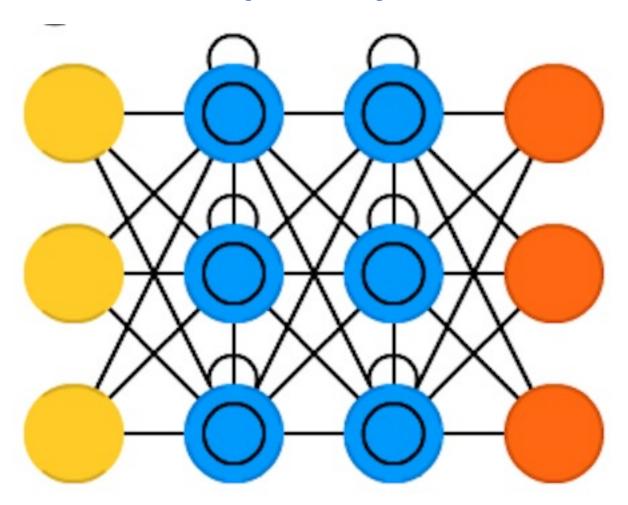
(CNN or Deep Convolutional Neural Networks, DCNN)



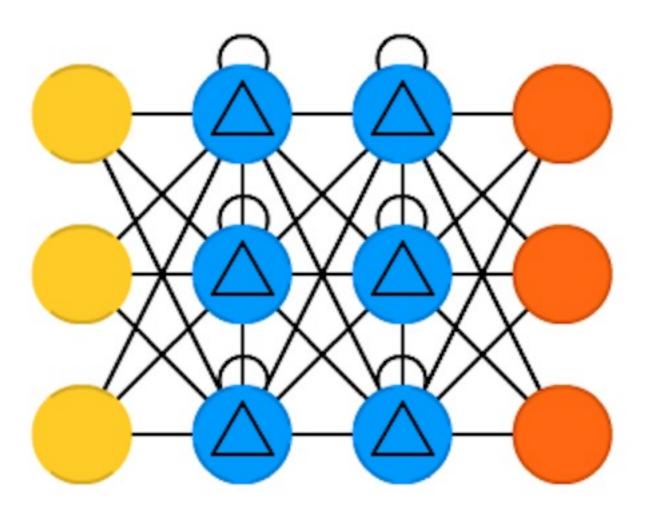
Recurrent Neural Networks (RNN)



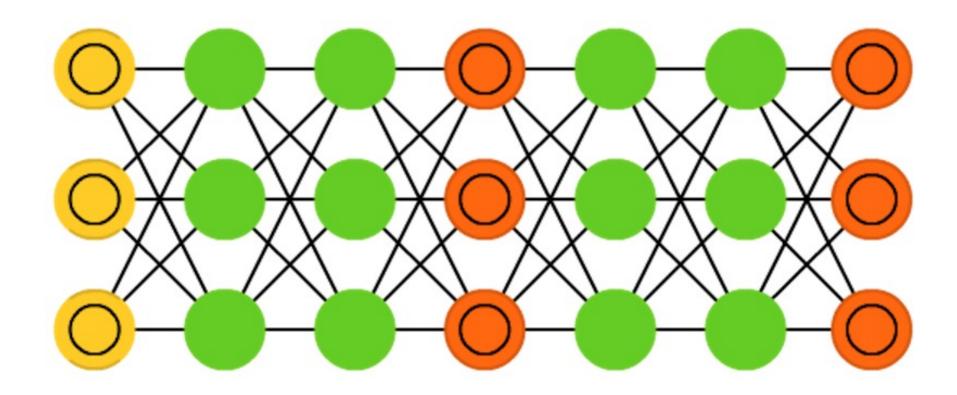
Long / Short Term Memory (LSTM)



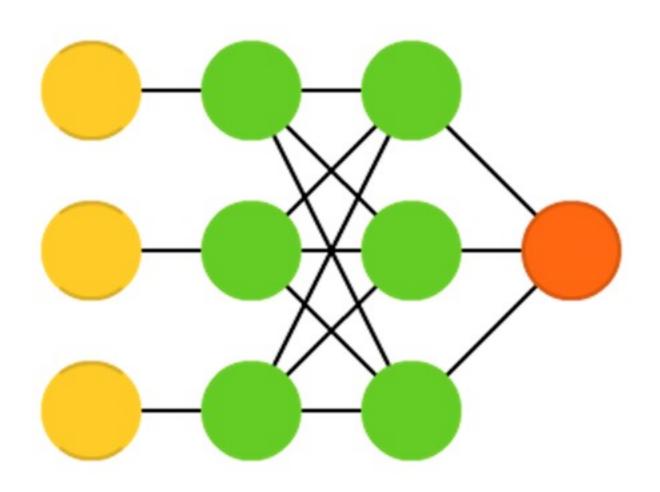
Gated Recurrent Units (GRU)



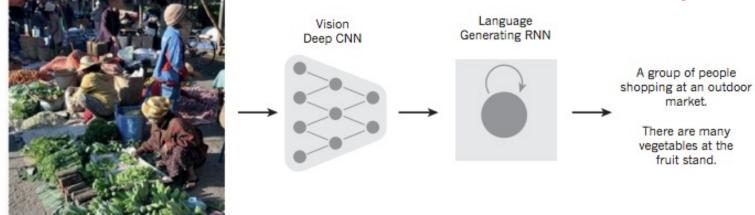
Generative Adversarial Networks (GAN)



Support Vector Machines (SVM)



From image to text



A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

From image to text

Image: deep convolution neural network (CNN)

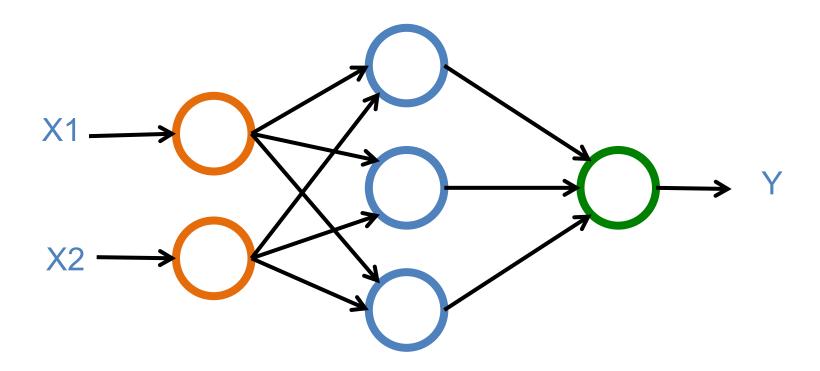
Text: recurrent neural network (RNN)

A group of **people** sitting on a boat in the water.

(X)

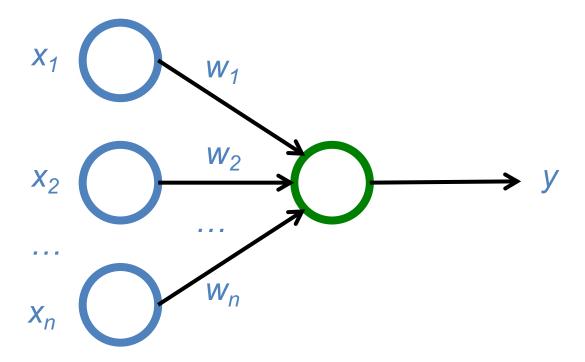
Input Layer Hidden Layer

Output Layer

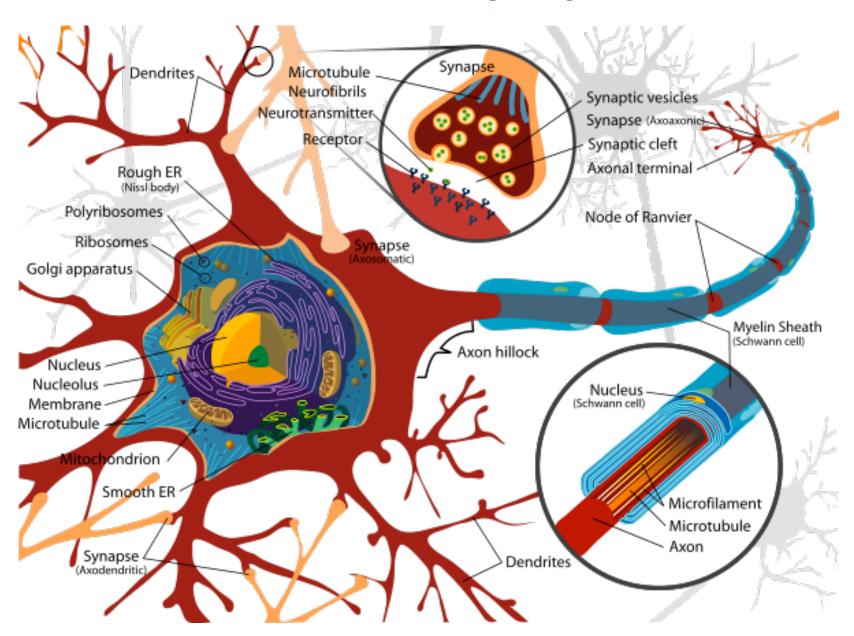


83

The Neuron



Neuron and Synapse



The Neuron

$$y = F\left(\sum_{i} w_{i} x_{i}\right)$$

$$x_{1}$$

$$x_{2}$$

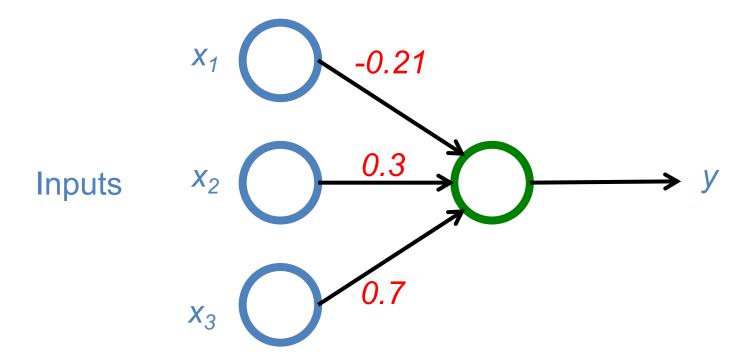
$$w_{2}$$

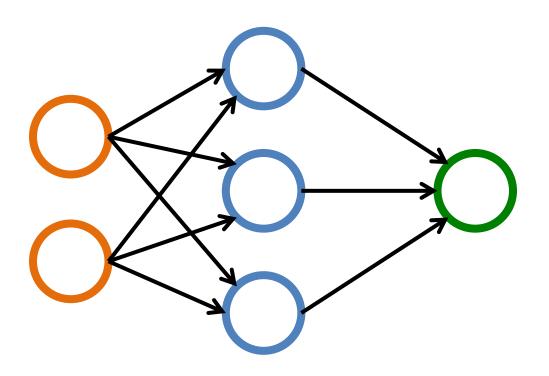
$$w_{n}$$

$$F(x) = \max(0, x)$$

$$y = max(0, -0.21 * x_1 + 0.3 * x_2 + 0.7 * x_3)$$

Weights

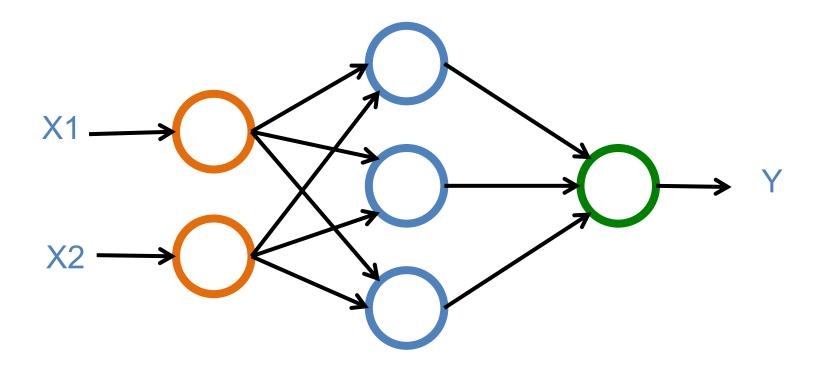




(X)

Input Layer Hidden Layer

Output Layer

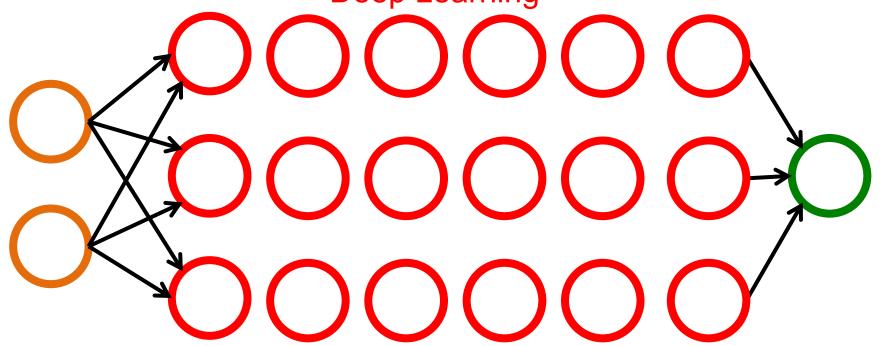


Input Layer (X)

Hidden Layers (H)

Output Layer (Y)

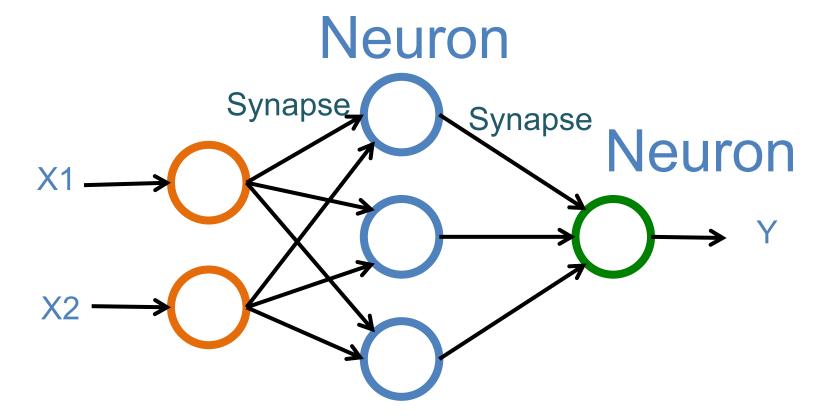
Deep Neural Networks
Deep Learning



(X)

Input Layer Hidden Layer

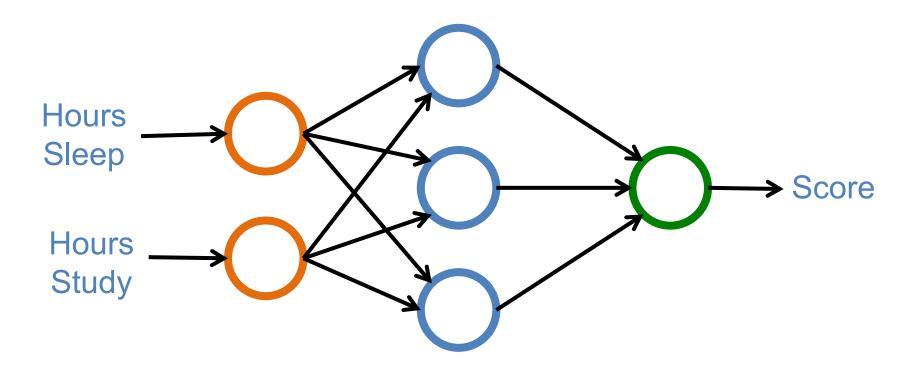
Output Layer

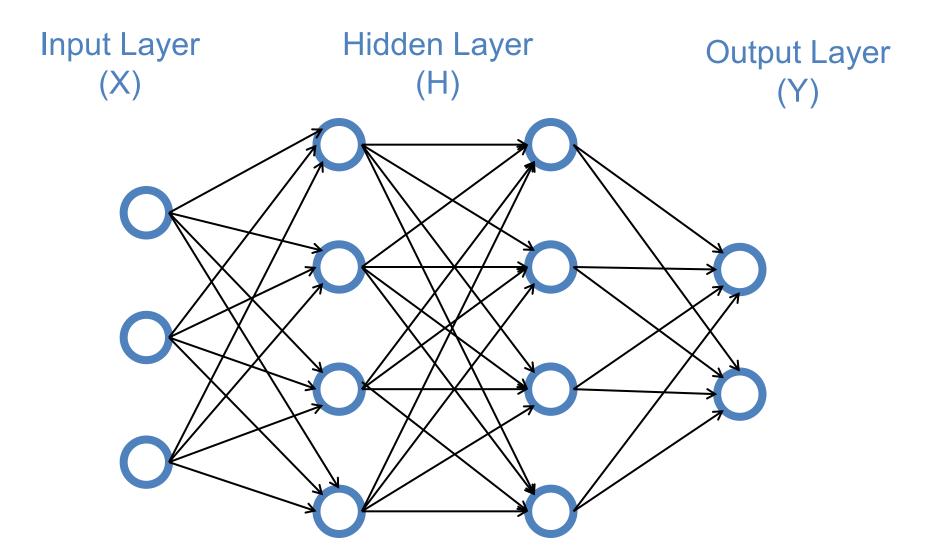


(X)

Input Layer Hidden Layer

Output Layer

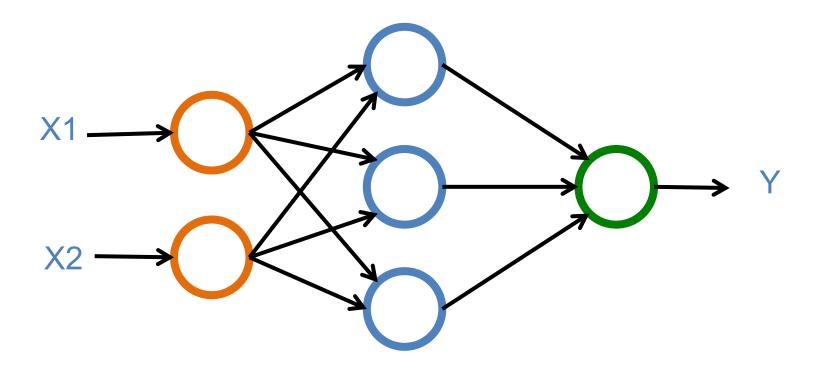


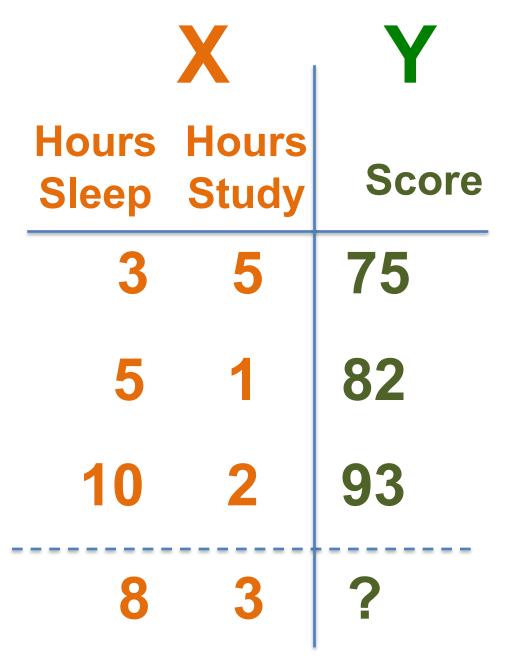


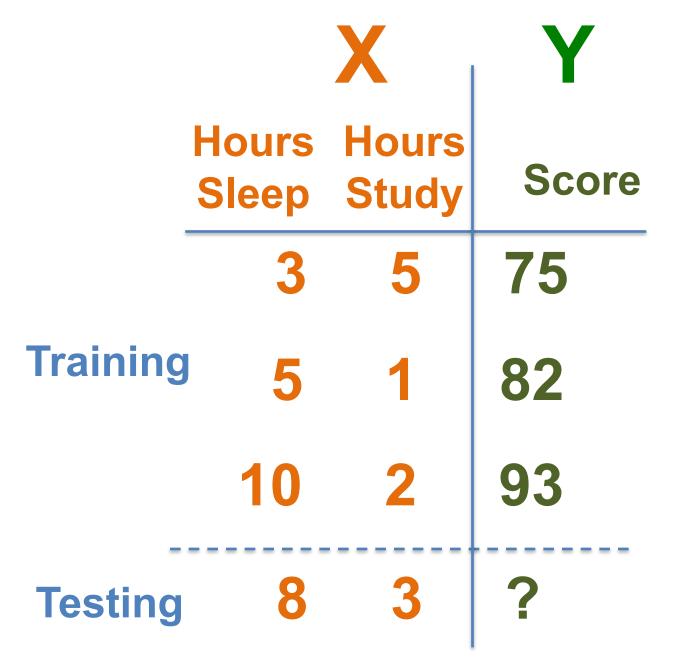
(X)

Input Layer Hidden Layer

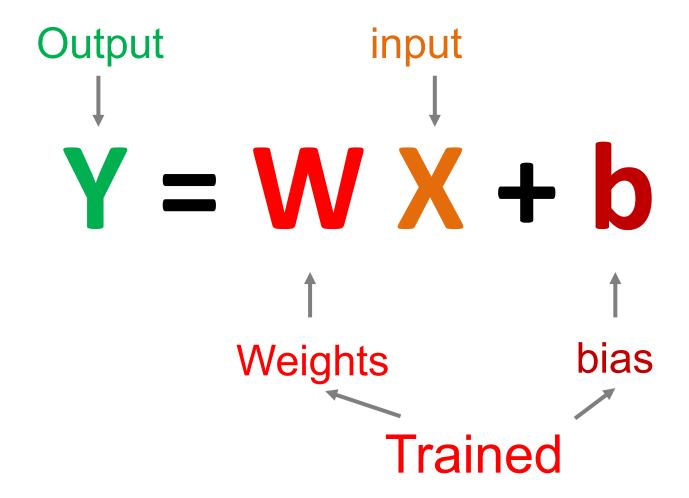
Output Layer





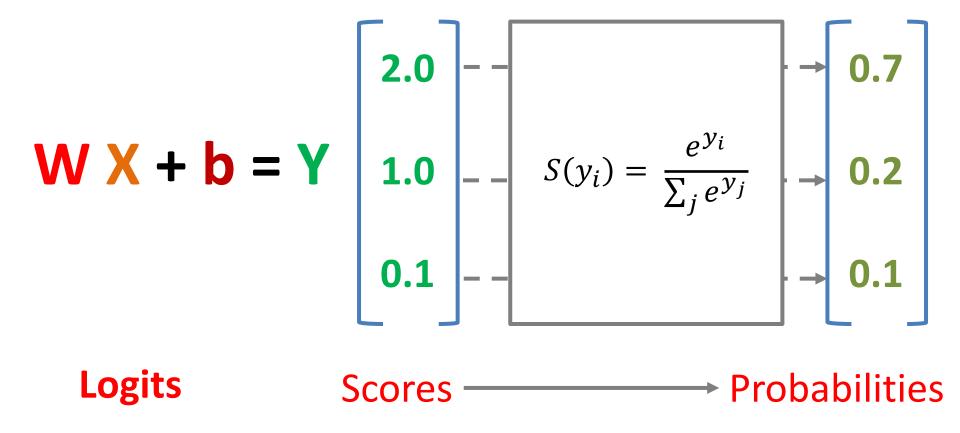


Y = W X + b



W X + b = Y
$$\begin{bmatrix} 2.0 \\ 1.0 \\ 0.1 \end{bmatrix}$$
 O.2 O.1 Scores Probabilities

SoftMAX

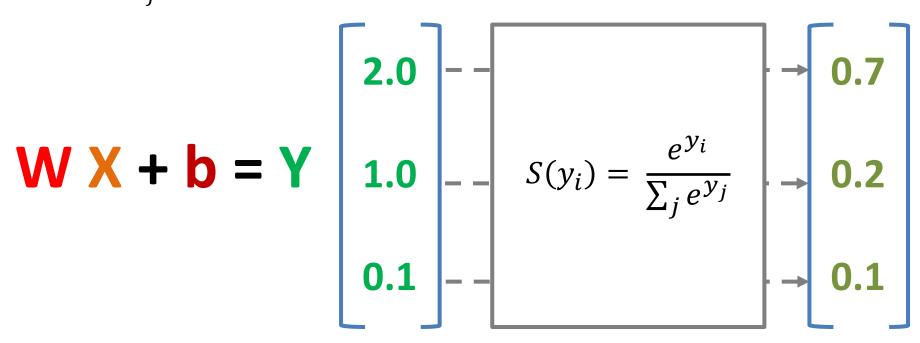


$$S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_i}} = \frac{e^{2.0}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{2.0}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.7$$

$$S(y_i) = \frac{e^{y_i}}{\sum_i e^{y_j}} = \frac{e^{1.0}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{1.0}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.2$$

$$S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} = \frac{e^{1.0}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{1.0}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.2$$

$$S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} = \frac{e^{0.1}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{0.1}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.1$$



Logits

Probabilities Scores

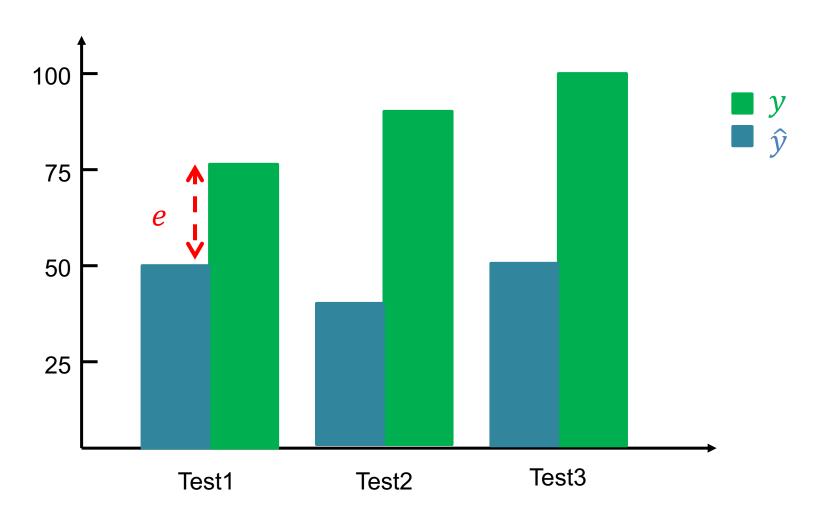
Training a Network =

Minimize the Cost Function

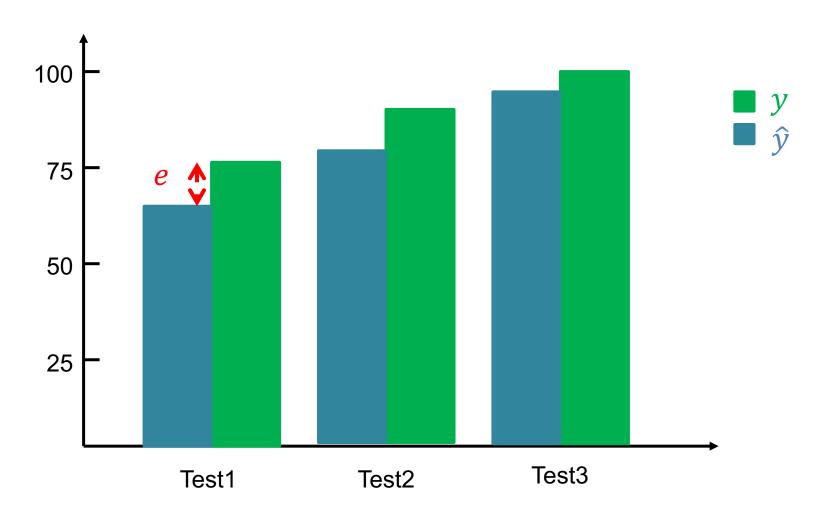
Training a Network

Minimize the Cost Function Minimize the Loss Function

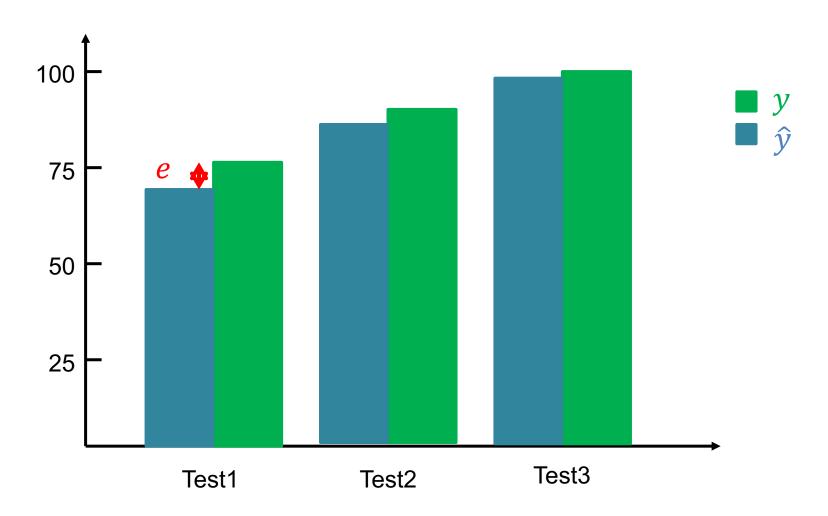
Error = Predict Y - Actual Y Error : Cost : Loss



Error = Predict Y - Actual Y Error : Cost : Loss



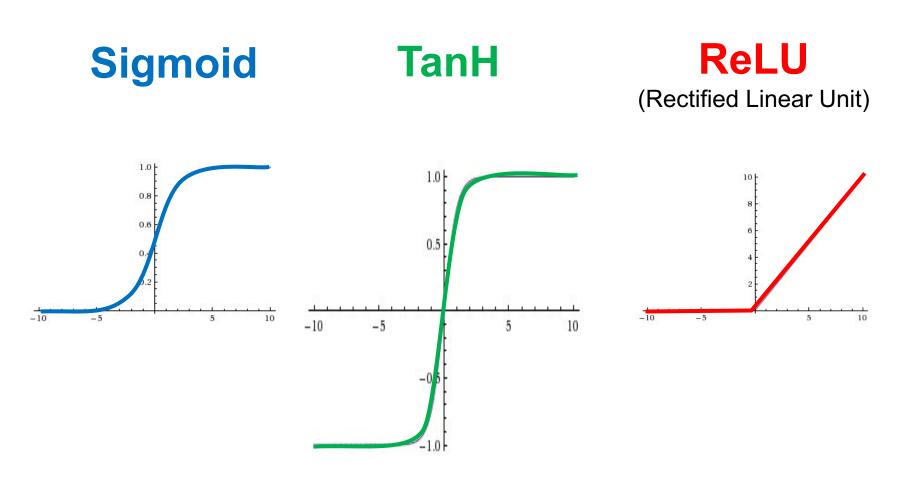
Error = Predict Y - Actual Y Error : Cost : Loss



106

Activation Functions

Activation Functions

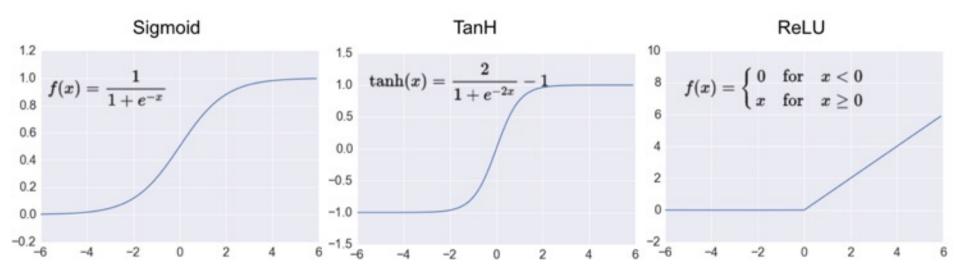


[0, 1]

[-1, 1]

f(x) = max(0, x)

Activation Functions



Loss Function

Binary Classification: 2 Class

Activation Function: Sigmoid

Loss Function: Binary Cross-Entropy

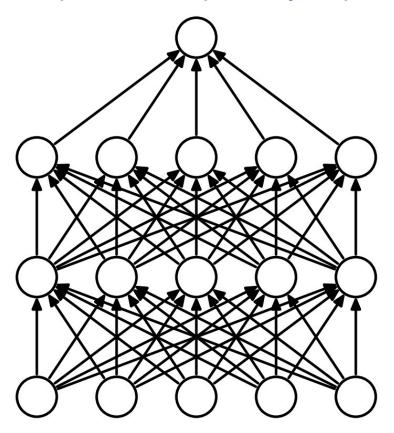
Multiple Classification: 10 Class

Activation Function: SoftMAX

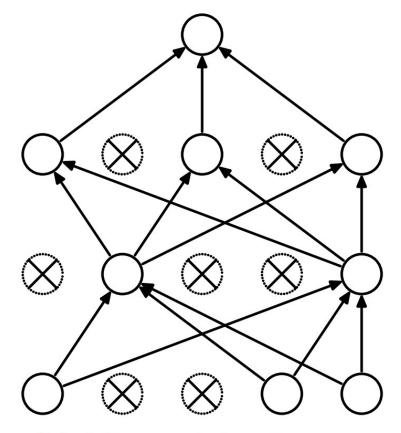
Loss Function: Categorical Cross-Entropy

Dropout

Dropout: a simple way to prevent neural networks from overfitting



(a) Standard Neural Net



(b) After applying dropout.

Learning Algorithm

While not done:

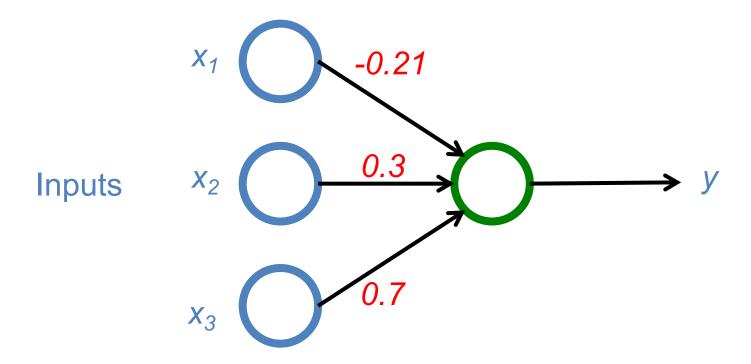
Pick a random training example "(input, label)"

Run neural network on "input"

Adjust weights on edges to make output closer to "label"

$$y = max(0, -0.21 * x_1 + 0.3 * x_2 + 0.7 * x_3)$$

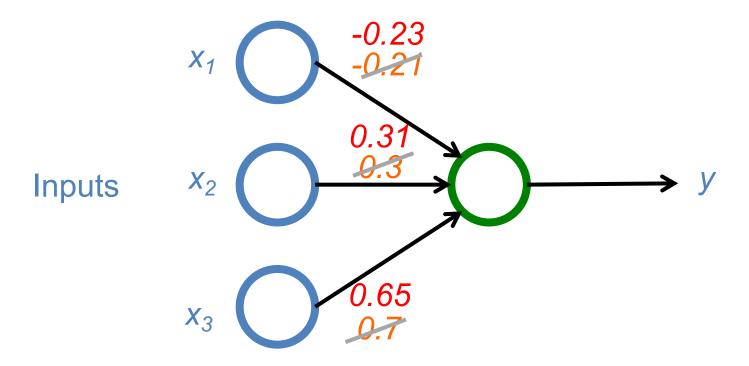
Weights



Next time:

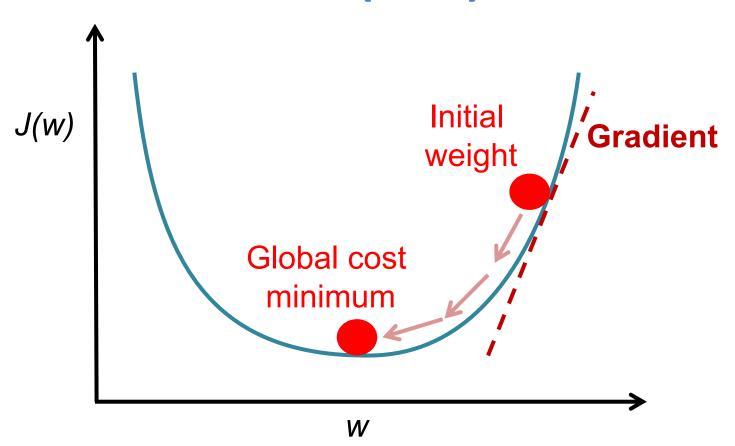
$$y = max(0, -0.23 * x_1 + 0.31 * x_2 + 0.65 * x_3)$$

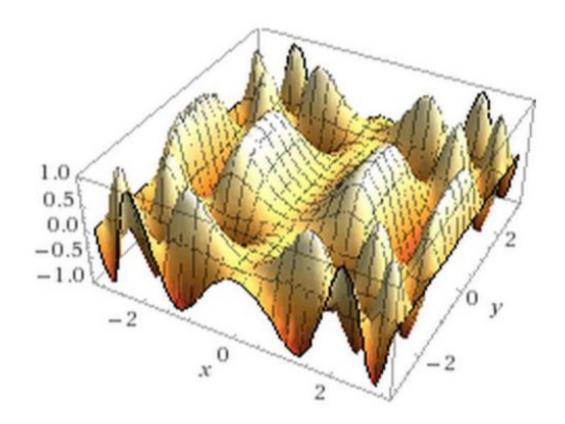
 $y = max(0, -0.21 * x_1 + 0.3 * x_2 + 0.7 * x_3)$
Weights



Optimizer:

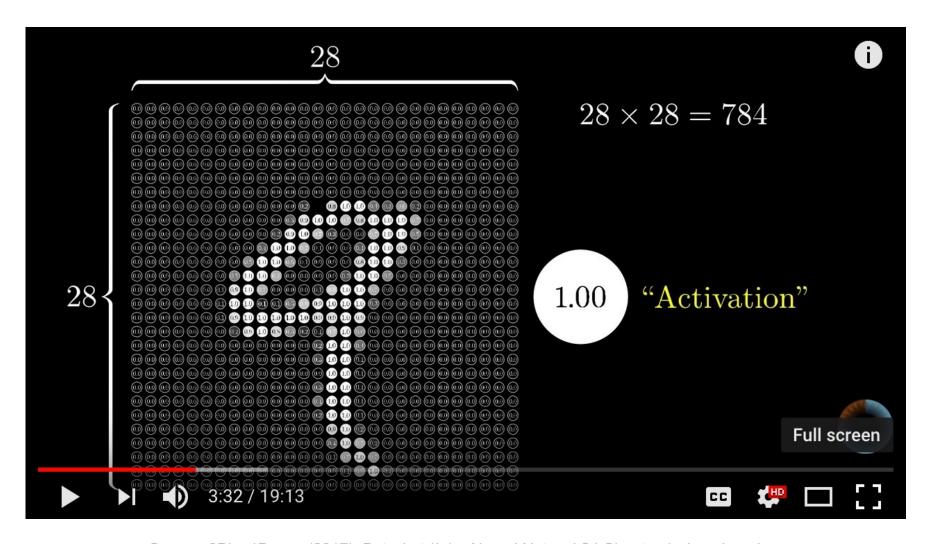
Stochastic Gradient Descent (SGD)





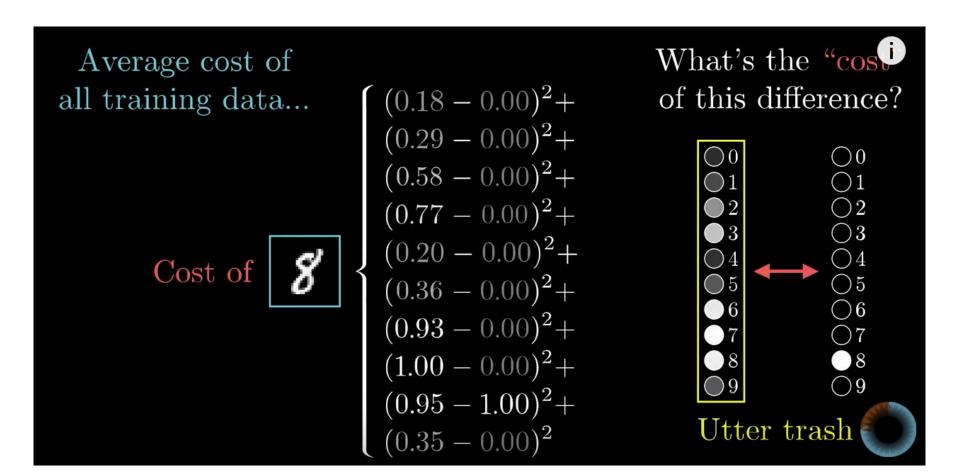
This shows a function of 2 variables: real neural nets are functions of hundreds of millions of variables!

Neural Network and Deep Learning

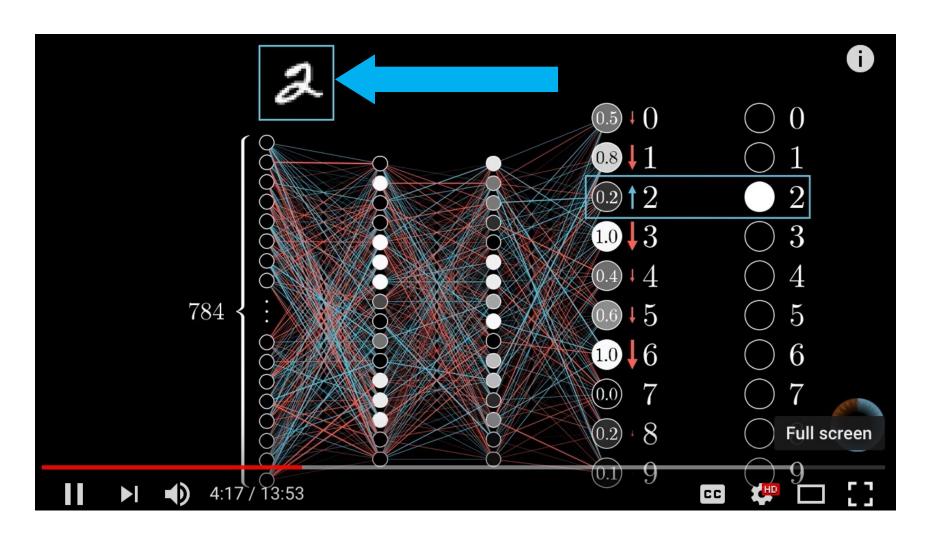


Gradient Descent

how neural networks learn



Backpropagation



Learning Algorithm

While not done:

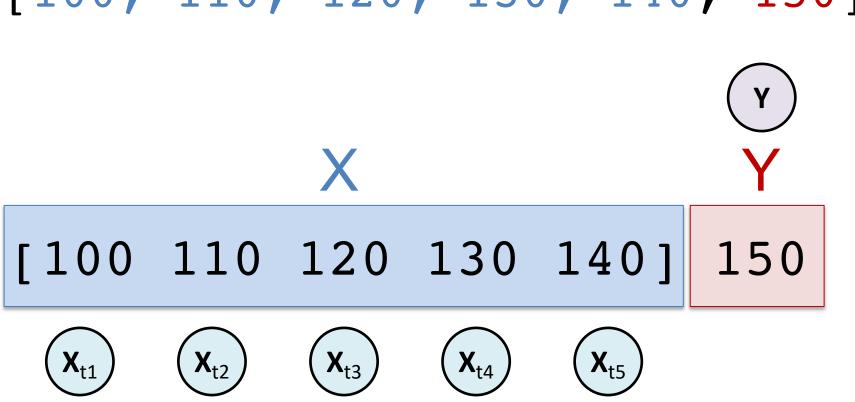
Pick a random training example "(input, label)"

Run neural network on "input"

Adjust weights on edges to make output closer to "label"

Time Series Data

[100, 110, 120, 130, 140, 150]

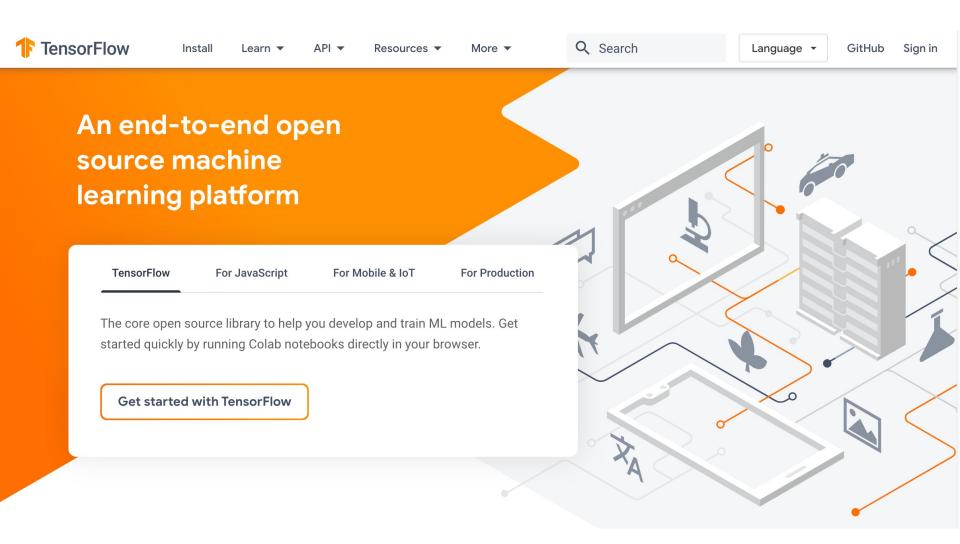


Time Series Data

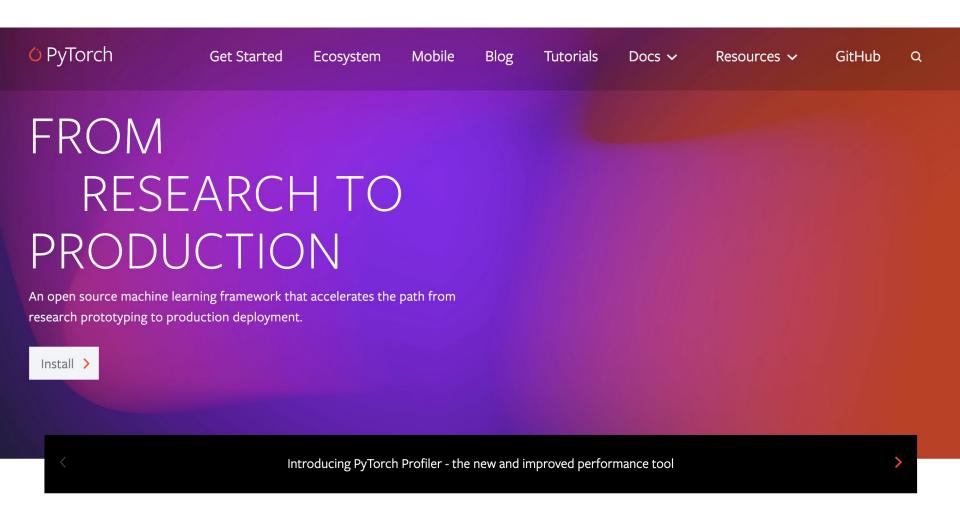
```
[10, 20, 30, 40, 50, 60, 70, 80, 90]
```

	X		Y
[10	20	30]	40
[20	30	40]	50
[30	40	50]	60
[40	50	60]	70
[50	60	70]	80
[60	70	80]	90

TensorFlow



PyTorch



KEY FEATURES &

See all Features >

TensorFlow

- An end-to-end open source machine learning platform.
- The core open source library to help you develop and train ML models.
- Get started quickly by running
 Colab notebooks directly in your browser.

Why TensorFlow 2.0

Why TensorFlow

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications.

About →

Easy model building

Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging.

Robust ML production anywhere

Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use.

Powerful experimentation for research

A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster.

TensorFlow 2.0 vs. 1.X

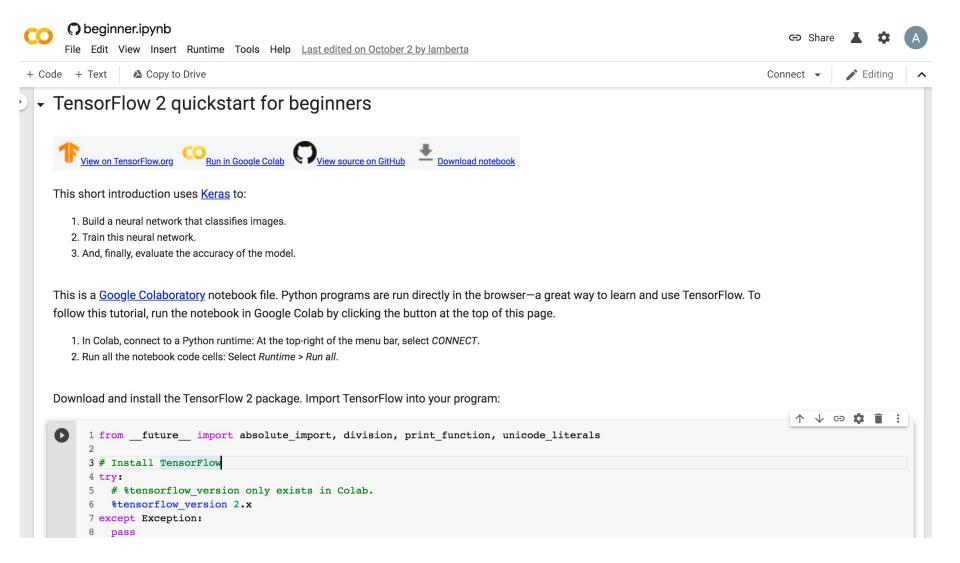
```
# TensorFlow 2.0
outputs = f(input)

# TensorFlow 1.X
outputs = session.run(f(placeholder), feed_dict={placeholder: input})
```


TensorFlow 2.0

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_{train}, x_{test} = x_{train} / 255.0, x_{test} / 255.0
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
```


TensorFlow 2 Quick Start



TensorFlow Image Classification

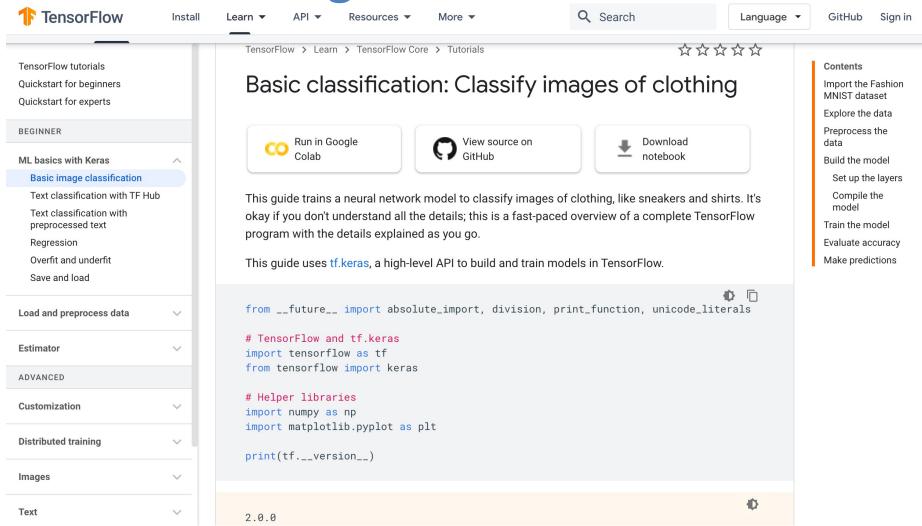
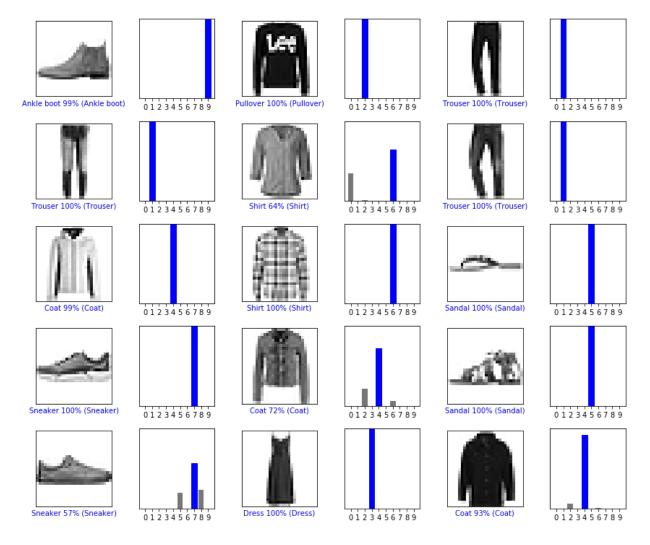
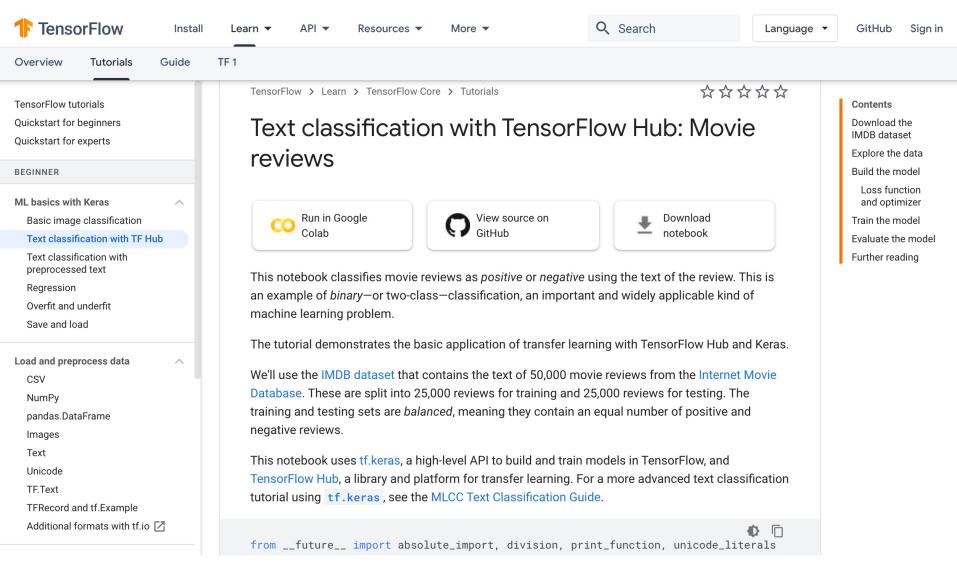


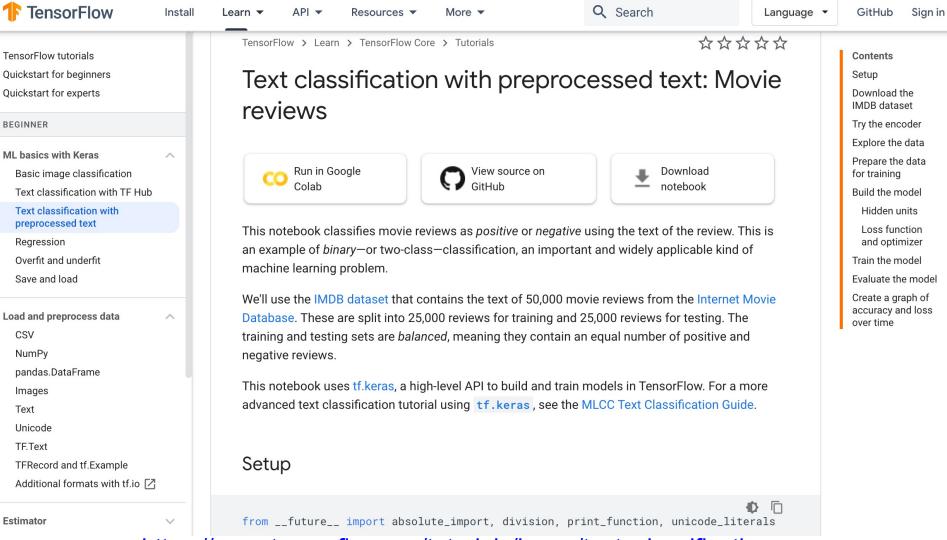
Image Classification Fashion MNIST dataset



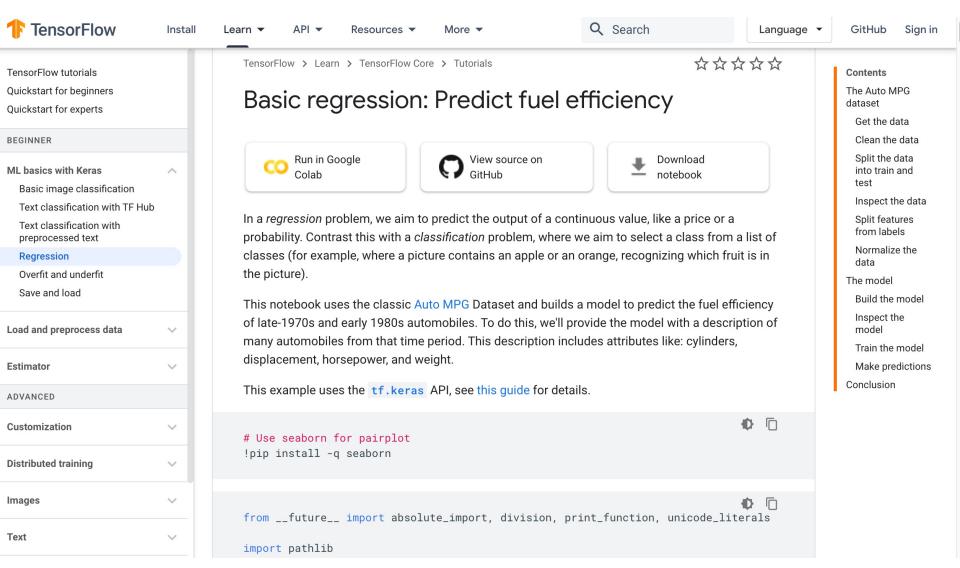
Text Classification with TF Hub



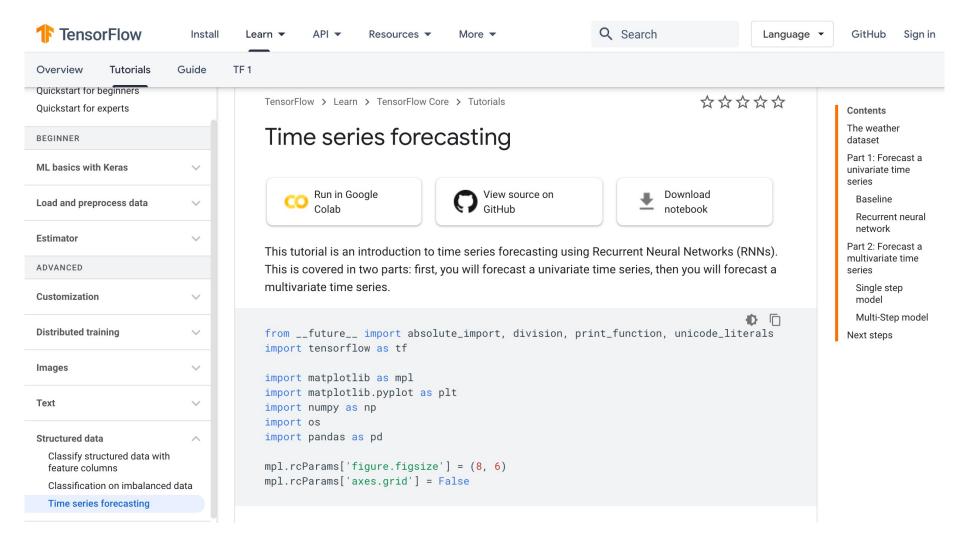
Text Classification with Pre Text



Regression



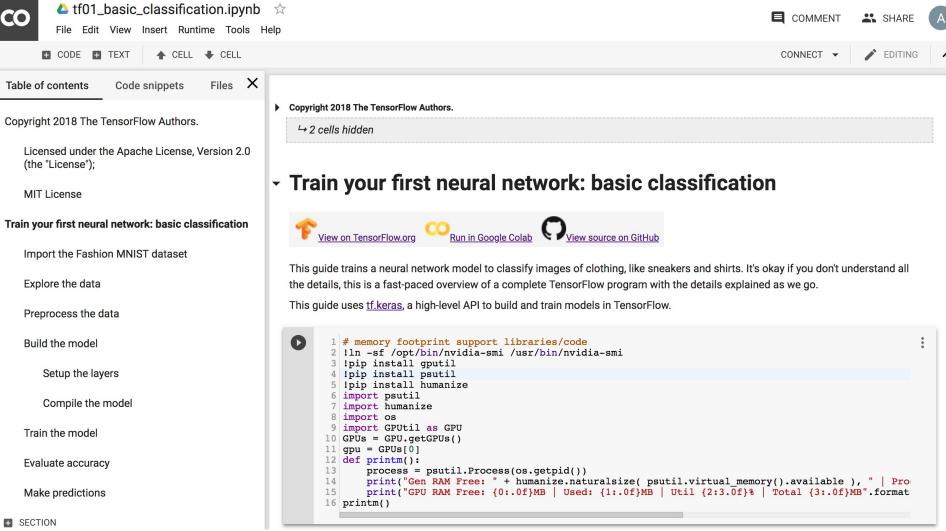
TensorFlow 2.0 Time Series Forecasting



Basic Classification

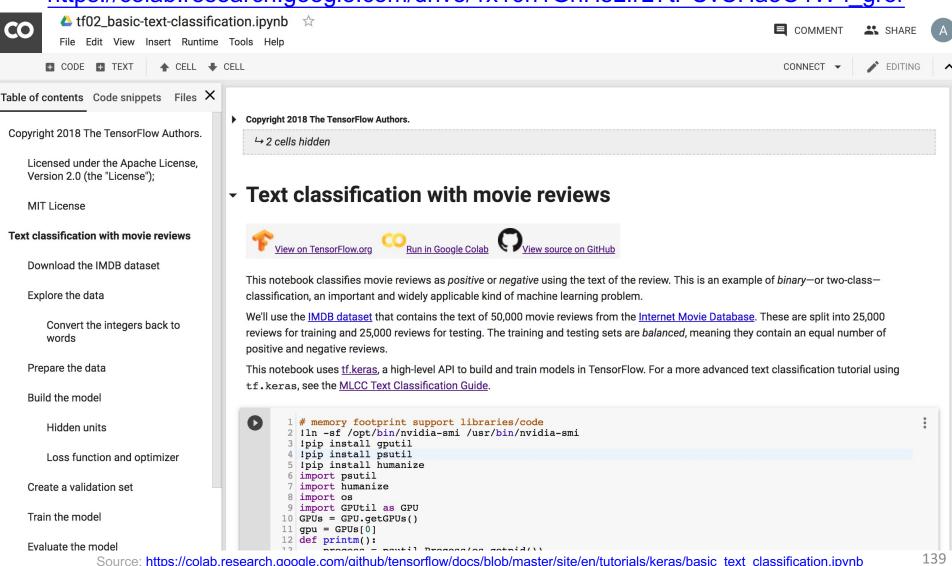
Fashion MNIST Image Classification

https://colab.research.google.com/drive/19PJOJi1vn1kjcutlzNHjRSLbeVl4kd5z



Text Classification IMDB Movie Reviews

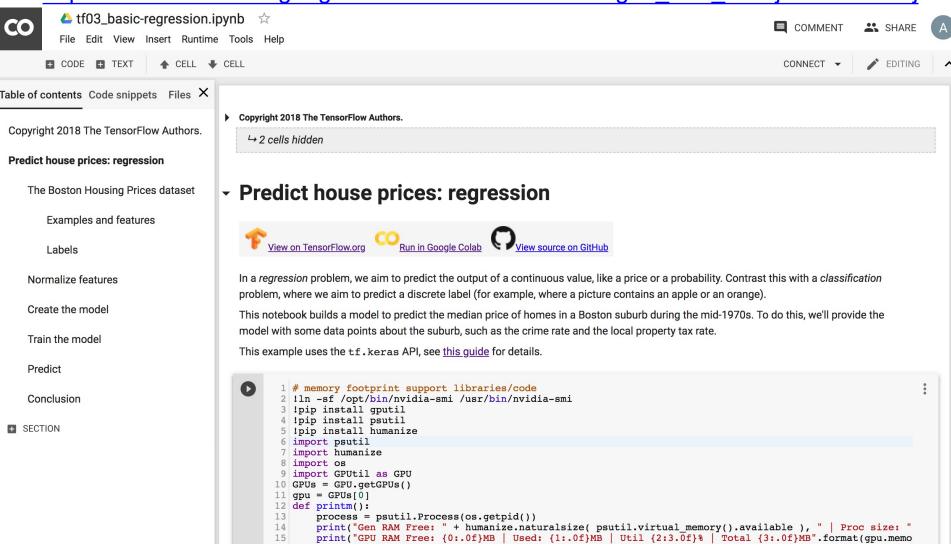
https://colab.research.google.com/drive/1x16h1GhHsLIrLYtPCvCHaoO1W-i gror



139

Basic RegressionPredict House Prices

https://colab.research.google.com/drive/1v4c8ZHTnRtgd2_25K_AURjR6SCVBRdlj



Papers with Code State-of-the-Art (SOTA)

Search for papers, code and tasks

Q

Follow

Discuss

Trends

About

Log In/Register

Browse State-of-the-Art

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

Follow on Twitter for updates

Computer Vision

33 leaderboards
 33 leaderboards
 34 leaderboards
 35 leaderboards
 36 leaderboards
 37 leaderboards
 38 leaderboards
 48 leaderboards

667 papers with code

Image Classification

52 leaderboards

564 papers with code

Object Detection

54 leaderboards

467 papers with code

Image Generation

≤ 51 leaderboards

231 papers with code

Pose Estimation

40 leaderboards

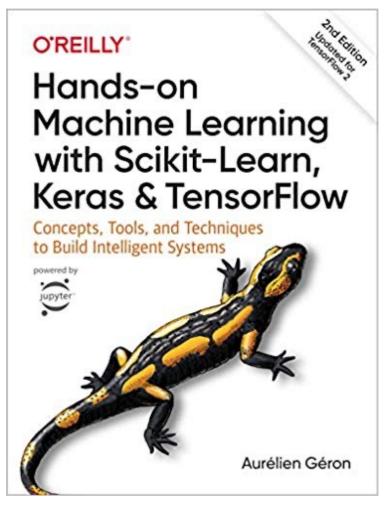
231 papers with code

▶ See all 707 tasks

Natural Language Processing

Aurélien Géron (2019),

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition O'Reilly Media, 2019



https://github.com/ageron/handson-ml2

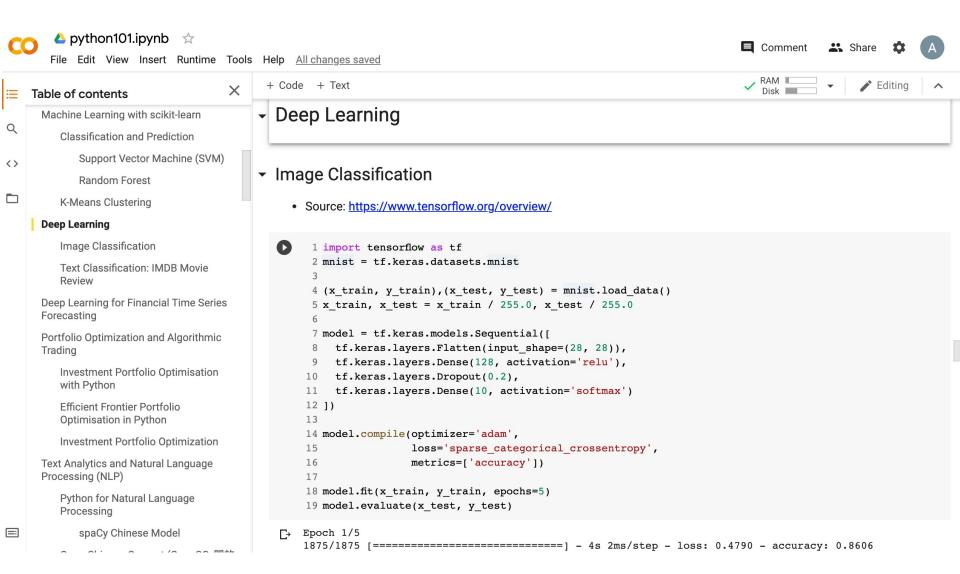
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Notebooks

- 1. The Machine Learning landscape
- 2. End-to-end Machine Learning project
- 3. Classification
- 4. Training Models
- 5. Support Vector Machines
- 6. Decision Trees
- 7. Ensemble Learning and Random Forests
- 8. <u>Dimensionality Reduction</u>
- 9. Unsupervised Learning Techniques
- 10. Artificial Neural Nets with Keras
- 11. Training Deep Neural Networks
- 12. Custom Models and Training with TensorFlow
- 13.Loading and Preprocessing Data
- 14. Deep Computer Vision Using Convolutional Neural Networks
- 15. Processing Sequences Using RNNs and CNNs
- 16. Natural Language Processing with RNNs and Attention
- 17. Representation Learning Using Autoencoders
- 18. Reinforcement Learning
- 19. Training and Deploying TensorFlow Models at Scale

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



Summary

- Machine Learning
- Deep Learning

References

- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media. https://github.com/wesm/pydata-book
- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Liye Ma and Baohong Sun (2020), "Machine learning and AI in marketing Connecting computing power to human insights." International Journal of Research in Marketing, 37, no. 3, 481-504.
- Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft Computing (2020): 106384.
- Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.
- Deep Learning Basics: Neural Networks Demystified, https://www.youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
- Deep Learning SIMPLIFIED, https://www.youtube.com/playlist?list=PLjJh1vlSEYgvGod9wWiydumYl8hOXixNu
- 3Blue1Brown (2017), But what *is* a Neural Network? | Chapter 1, deep learning, https://www.youtube.com/watch?v=aircAruvnKk
- 3Blue1Brown (2017), Gradient descent, how neural networks learn | Chapter 2, deep learning, https://www.youtube.com/watch?v=IHZwWFHWa-w
- 3Blue1Brown (2017), What is backpropagation really doing? | Chapter 3, deep learning, https://www.youtube.com/watch?v=llg3gGewQ5U
- Scikit-learn Machine Learning in Python: https://scikit-learn.org/
- TensorFlow: https://www.tensorflow.org/
- PyTorch: https://pytorch.org/
- Min-Yuh Day (2021), Python 101, https://tinyurl.com/aintpupython101