

(Artificial Intelligence in Finance and Quantitative Analysis)

財務金融事件研究法 (Event Studies in Finance)

1101AIFQA04 MBA, IM, NTPU (M6132) (Fall 2021) Tue 2, 3, 4 (9:10-12:00) (8F40)

<u>戴敏育</u>副教授 Min-Yuh Day, Ph.D, Associate Professor

國立臺北大學 資訊管理研究所

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2021-10-19

週次(Week) 日期(Date) 內容(Subject/Topics)

- 1 2021/09/28 智慧金融量化分析概論 (Introduction to Artificial Intelligence in Finance and Quantitative Analysis)
- 2 2021/10/05 AI 金融科技: 金融服務創新應用 (AI in FinTech: Financial Services Innovation and Application)
- 3 2021/10/12 投資心理學與行為財務學 (Investing Psychology and Behavioral Finance)
- 4 2021/10/19 財務金融事件研究法 (Event Studies in Finance)
- 5 2021/10/26 智慧金融量化分析個案研究 I (Case Study on AI in Finance and Quantitative Analysis I)
- 6 2021/11/02 財務金融理論 (Finance Theory)

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 7 2021/11/09 數據驅動財務金融 (Data-Driven Finance)
- 8 2021/11/16 期中報告 (Midterm Project Report)
- 9 2021/11/23 金融計量經濟學 (Financial Econometrics)
- 10 2021/11/30 人工智慧優先金融 (AI-First Finance)
- 11 2021/12/07 智慧金融量化分析產業實務 (Industry Practices of AI in Finance and Quantitative Analysis)
- 12 2021/12/14 智慧金融量化分析個案研究 II (Case Study on AI in Finance and Quantitative Analysis II)


週次(Week) 日期(Date) 內容(Subject/Topics)

- 13 2021/12/21 財務金融深度學習(Deep Learning in Finance); 財務金融強化學習 (Reinforcement Learning in Finance)
- 14 2021/12/28 演算法交易 (Algorithmic Trading); 風險管理 (Risk Management); 交易機器人與基於事件的回測 (Trading Bot and Event-Based Backtesting)
- 15 2022/01/04 期末報告 I (Final Project Report I)
- 16 2022/01/11 期末報告 II (Final Project Report II)
- 17 2022/01/18 學生自主學習 (Self-learning)
- 18 2022/01/25 學生自主學習 (Self-learning)

Event Studies in Finance

Doron Kliger and Gregory Gurevich (2014), Event Studies for Financial Research: A Comprehensive Guide,

Palgrave Macmillan

Event Studies for Financial Research

state-of-the-art event study software

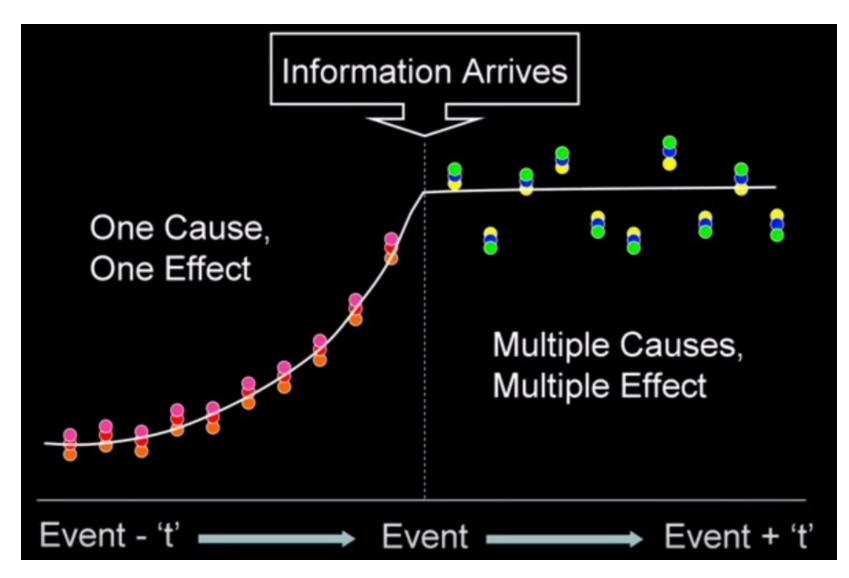
event studies

Short- and Long-Term Event Studies

Cumulative Abnormal Returns Buy-and-hod Abnormal Returns Farma-French Calander Time Portfolios Parametric and Non-Parametric Tests

Time-Series t-Test Cross-Sectional t-Test Standardized Residual Test Standardized Cross-Sectional Test Corrado Rank Test Generalized Sign Test Skewness-Adjusted t-Test \langle

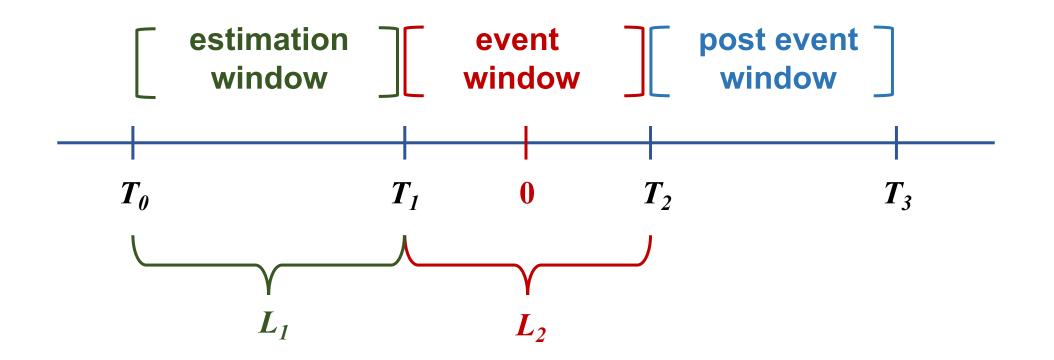
Return Models

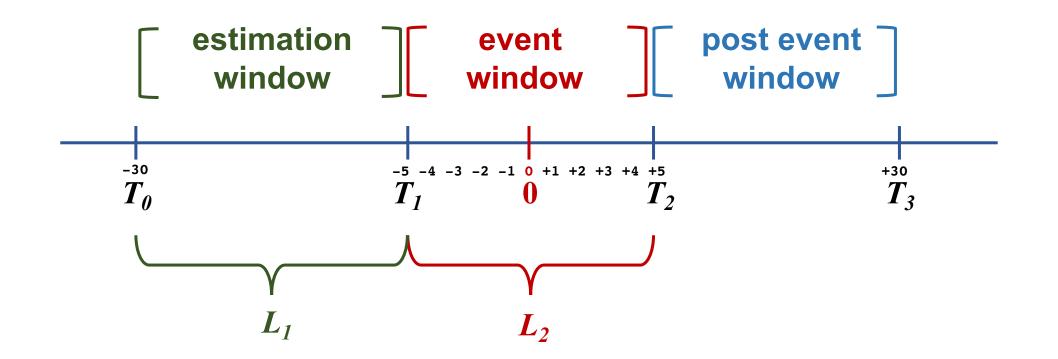

Constant-Mean Market Adjusted Market Model Factor Model Matching Models Stocks and Bonds

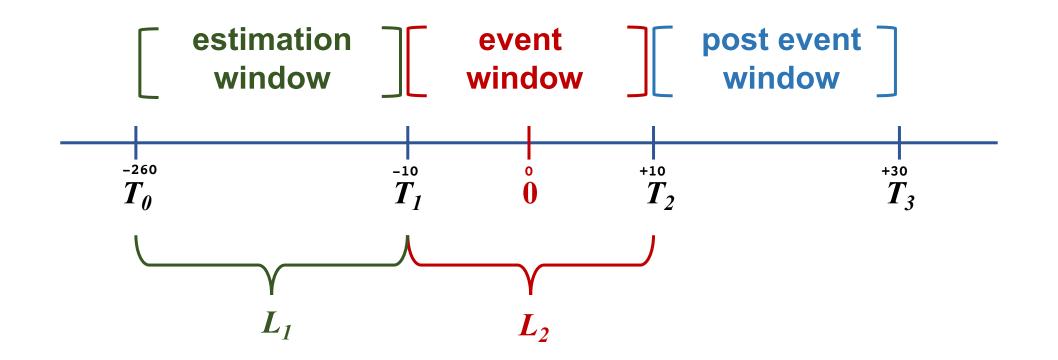
https://eventstudymetrics.com/

Event Studies in Economics and Finance 0.025 -0.02 **Good News** 0.015 0.01 0.005 **No News** CAR -0.005 -0.01 -0.015 **Bad News** -0.02 -0.025-12 21 -21 -18 -15 12 15 18 -9 -3 3 9 -6 0 6 Event Time Good News Firms No News Firms - Bad News Firms

Source: MacKinlay, A. C. (1997). Event studies in economics and finance. Journal of economic literature, 35(1), 13-39.


Event Study


Event Study Time line for an event study


Event Study Methodology

Event Study Methodology

Event Study Methodology

Efficient

Markets

Behavioral

Economics

Behavioral

Finance

Rational Behavior

Irrational Behavior

Emotion

Sentiment

Modern Financial Research

- Theoretical Finance
 - study of logical relationships among assets.
- Empirical Finance
 - study of data in order to infer relationships.
- Behavioral Finance
 - integrates psychology into the investment process.

Behavioral Finance Themes

- Heuristic-Driven Bias
- Framing Dependence
- Inefficient Markets

Efficient Market Hypothesis (EMH)

Source: Doron Kliger and Gregory Gurevich (2014), Event Studies for Financial Research: A Comprehensive Guide, Palgrave Macmillan

Efficient Market Hypothesis (EMH) (Fama, 1970)

Efficient capital markets: A review of theory and empirical work

BG Malkiel, EF Fama - The Journal of Finance, 1970

This paper reviews the theoretical and empirical iterature on the efficient markets model. After a discussion of the theory, empirical work concerned with the adjustment of security prices to three relevant information subsets is considered. First, weak form tests, in which the information set is just historical prices, are discussed. Then semi-strong form tests, in which the concern is whether prices efficiently adjust to other information that is obviously ...

Cited by 32010 Related articles All 29 versions

Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417.

Efficient Market Hypothesis (EMH) (Fama, 1970)

SESSION TOPIC: STOCK MARKET PRICE BEHAVIOR

SESSION CHAIRMAN: BURTON G. MALKIEL

EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK*

EUGENE F. FAMA**

Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417.

Efficient Market Hypothesis (EMH) (Fama, 1970)

SESSION TOPIC: STOCK MARKET PRICE BEHAVIOR

SESSION CHAIRMAN: BURTON G. MALKIEL

EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK*

EUGENE F. FAMA**

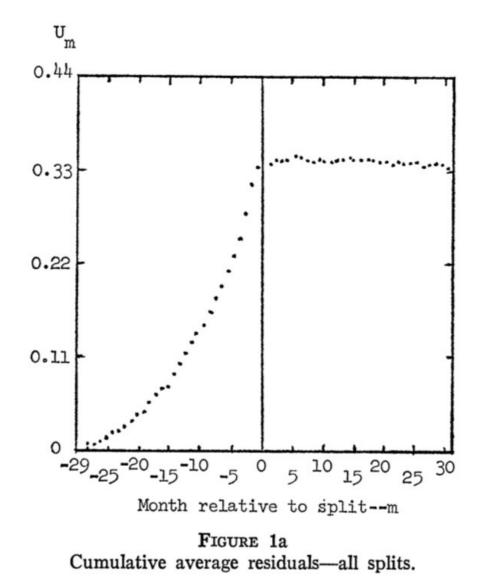
I. INTRODUCTION

THE PRIMARY ROLE of the capital market is allocation of ownership of the economy's capital stock. In general terms, the ideal is a market in which prices provide accurate signals for resource allocation: that is, a market in which firms can make production-investment decisions, and investors can choose among the securities that represent ownership of firms' activities under the assumption that security prices at any time "fully reflect" all available information. A market in which prices always "fully reflect" available information is called "efficient."

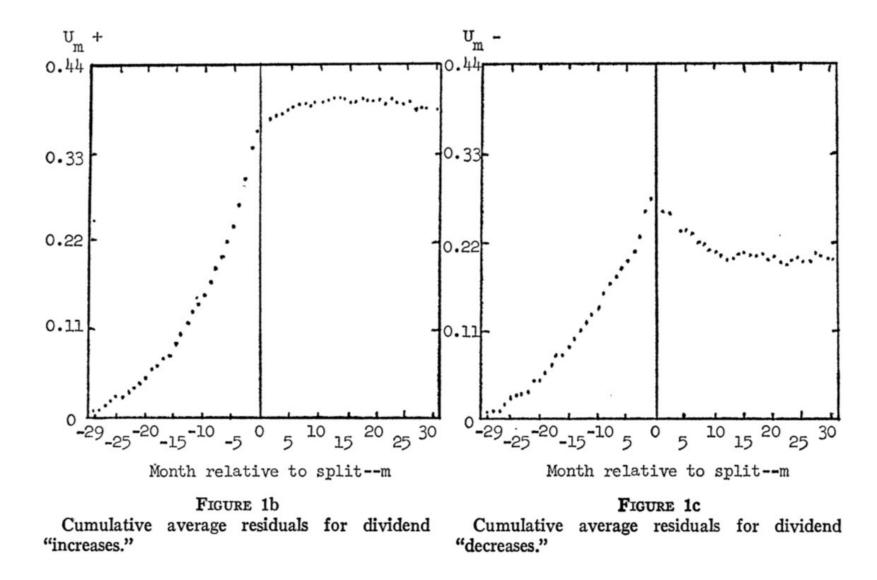
This paper reviews the theoretical and empirical literature on the efficient markets model. After a discussion of the theory, empirical work concerned with the adjustment of security prices to three relevant information subsets is considered. First, *weak form* tests, in which the information set is just historical prices, are discussed. Then *semi-strong form* tests, in which the concern is whether prices efficiently adjust to other information that is obviously publicly available (e.g., announcements of annual earnings, stock splits, etc.) are considered. Finally, *strong form* tests concerned with whether given investors or groups have monopolistic access to any information relevant for price formation are reviewed.¹ We shall conclude that, with but a few exceptions, the efficient markets model stands up well.

393

TABLE 1 (from [10])


First-order Serial Correlation Coefficients for One-, Four-, Nine-, and Sixteen-Day Changes in Log_e Price

Stock.	Differencing Interval (Days)			
	One	Four	Nine	Sixteen
Allied Chemical	.017	.029	091	118
Alcoa	.118*	.095	112	044
American Can	087*	124*	060	.031
А. Т. & Т.	039	010	009	003
American Tobacco	.111*	175*	.033	.007
Anaconda	.067*	068	125	.202
Bethlehem Steel	.013	122	148	.112
Chrysler	.012	.060	026	.040
Du Pont	.013	.069	043	055
Eastman Kodak	.025	006	053	023
General Electric	.011	.020	004	.000
General Foods	.061*	005	140	098
General Motors	004	128*	.009	028
Goodyear	123*	.001	037	.033
International Harvester	017	068	244*	.116
International Nickel	.096*	.038	.124	.041
International Paper	.046	.060	004	010
Johns Manville	.006	068	002	.002
Owens Illinois	021	006	.003	022
Procter & Gamble	.099*	006	.098	.076
Sears	.097*	070	113	.041
Standard Oil (Calif.)	.025	143*	046	.040
Standard Oil (N.J.)	.008	109	082	121
Swift & Co.	004	072	.118	197
Texaco	.094*	053	047	178
Union Carbide	.107*	.049	101	.124
United Aircraft	.014	190*	192*	040
U.S. Steel	.040	006	056	.236
Westinghouse	027	097	137	.067
Woolworth	.028	033	112	.040


* Coefficient is twice its computed standard error.

Source: Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417.

Cumulative Average Residuals

Cumulative Average Residuals

Market Efficiency

The empirical work itself can be divided into three categories depending on the nature of the information subset of interest. *Strong-form* tests are concerned with whether individual investors or groups have monopolistic access to any information relevant for price formation. One would not expect such an extreme model to be an exact description of the world, and it is probably best viewed as a benchmark against which the importance of deviations from market efficiency can be judged. In the less restrictive *semi-strong-form* tests the information subset of interest includes all obviously publicly available information, while in the *weak form* tests the information subset is just historical price or return sequences.

Types of Efficiency Market

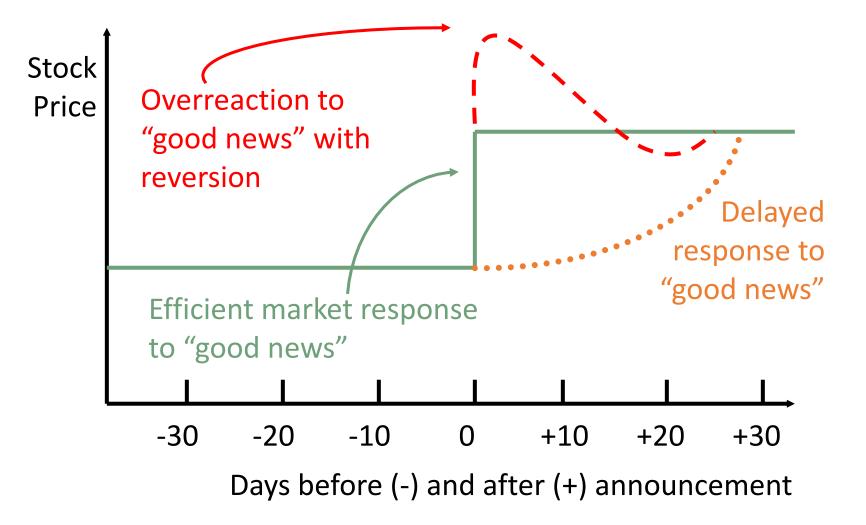
- Weak Form
 - Security prices reflect all information found in past prices and volume.
- Semi-Strong Form
 - Security prices reflect all publicly available information.
- Strong Form
 - Security prices reflect all information—public and private.

Can Financing Decisions Create Value?

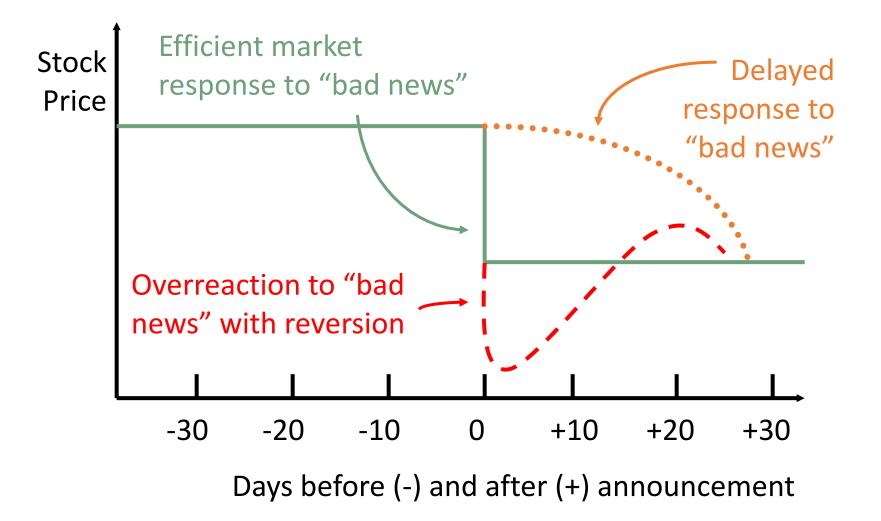
What Sort of Financing Decisions?

- Typical financing decisions include:
 - How much debt and equity to sell
 - When (or if) to pay dividends
 - When to sell debt and equity
- Just as we can use NPV criteria to evaluate investment decisions, we can use NPV to evaluate financing decisions.

How to Create Value through Financing

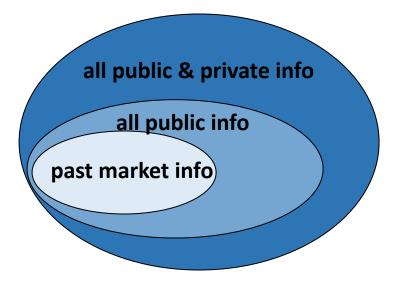

• Fool Investors

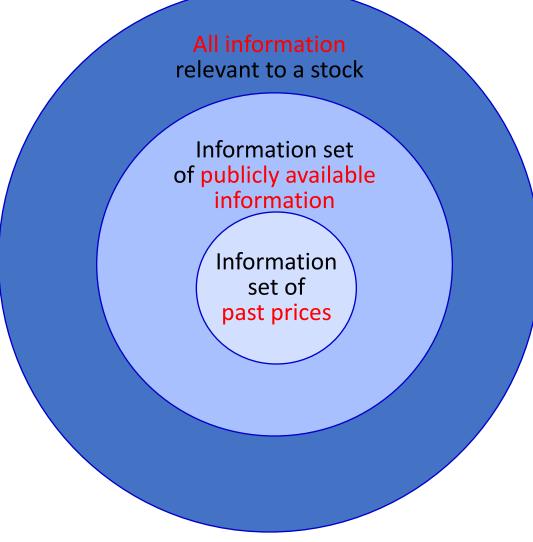
- Empirical evidence suggests that it is hard to fool investors consistently.
- Reduce Costs or Increase Subsidies
 - Certain forms of financing have tax advantages or carry other subsidies.
- Create a New Security
 - Sometimes a firm can find a previously-unsatisfied clientele and issue new securities at favorable prices.
 - In the long-run, this value creation is relatively small, however.


Efficient Capital Markets

- An efficient capital market is one in which stock prices fully reflect available information.
- The EMH has implications for investors and firms.
 - Since information is reflected in security prices quickly, knowing information when it is released does an investor no good.
 - Firms should expect to receive the fair value for securities that they sell. Firms cannot profit from fooling investors in an efficient market.

Reaction of Stock Price to New Information in Efficient and Inefficient Markets


Reaction of Stock Price to New Information in Efficient and Inefficient Markets


Versions of EMH/Info-Efficiency

• Weak-form efficiency:

- Prices reflect all information contained in past prices
- Semi-strong-form efficiency:
 - Prices reflect all publicly available information
- Strong-form efficiency:
 - Prices reflect all relevant information, include private (insider) information

Relationship among Three Different Information Sets

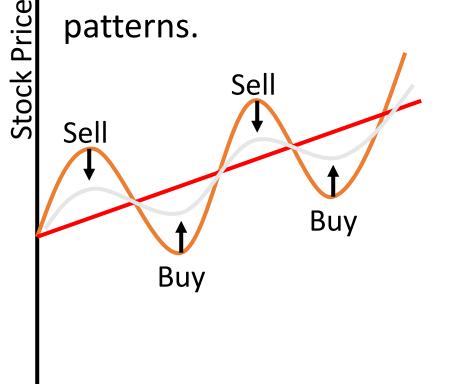
Efficient Market

- An efficient market incorporates information in security prices.
- There are three forms of the EMH:
 - Weak-Form EMH

Security prices reflect past price data.

• Semistrong-Form EMH

Security prices reflect publicly available information.


• Strong-Form EMH

Security prices reflect all information.

• There is abundant evidence for the first two forms of the EMH.

Why Technical Analysis Fails

Investor behavior tends to eliminate any profit opportunity associated with stock price

If it were possible to make big money simply by finding "the pattern" in the stock price movements, everyone would do it and the profits would be competed away.

Time

Evidence on Market Efficiency

- Return Predictability Studies
- Event Studies
- Performance Studies

Event Studies

- Objective
 - Examine if new (company specific) information is incorporated into the stock price in one single price jump upon public release?

Event Studies Methodology

- 1. Define as day "zero" the day the information is released
- Calculate the daily returns R_{it} the 30 days around day "zero":
 t = -30, -29,...-1, 0, 1,..., 29, 30
- 3. Calculate the daily returns R_{mt} for the same days on the market (or a comparison group of firms of similar industry and risk) $AR_{it} = R_{it} - R_{mt}$
- 4. Define Abnormal Returns (AR) as the difference
- 5. Calculate Average Abnormal Returns (AAR) over all N events in the sample for all 60 reference days $AAR_t = \frac{1}{N} \sum_{i=1}^{AR} AR_{it}$
- 6. Cumulate the returns on the first T days to $CAR_T = AR_t$

Event Studies Methodology Step 1. Define as day "zero" the day the information is released

Event Studies Methodology

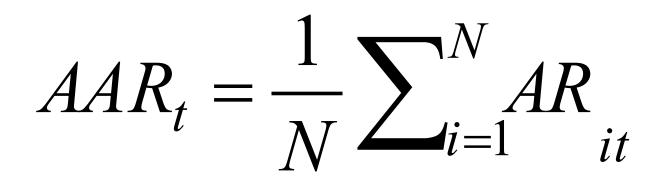
Step 2.

Calculate the daily returns *R_{it}* the 30 days around day "zero": t = -30, -29,...-1, 0, 1,..., 29, 30

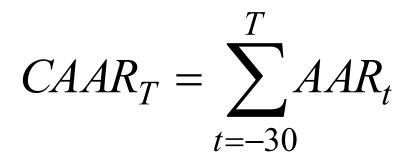
Event Studies Methodology

Step 3.

Calculate the daily returns R_{mt} for the same days on the market (or a comparison group of firms of similar industry and risk)


Event Studies Methodology Step 4. Define **Abnormal Returns (AR)** as the difference

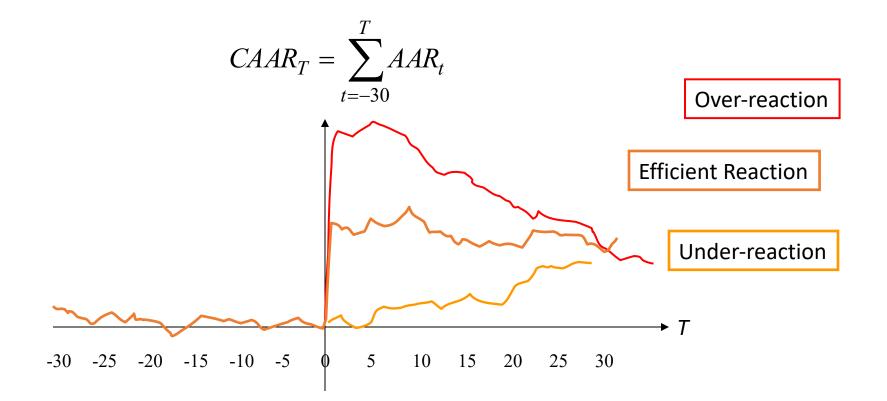
 $AR_{it} = R_{it} - R_{mt}$


Source: Markus K. Brunnermeier (2015), "Lecture 10: Market Efficiency", Finance 501: Asset Pricing, Princeton University

Event Studies Methodology

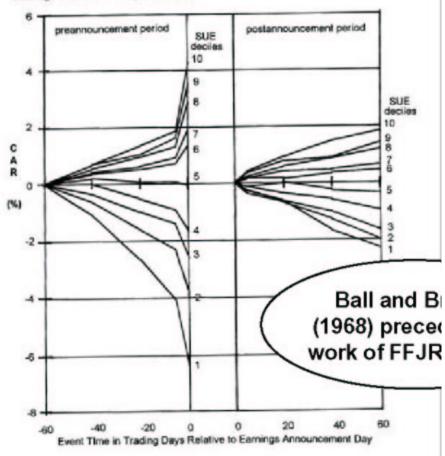
Step 5. Calculate Average Abnormal Returns (AAR) over all N events in the sample for all 60 reference days

Event Studies Methodology Step 6. **Cumulate the returns on the** first T days to **Cumulative Average Abnormal Returns (CAAR)**



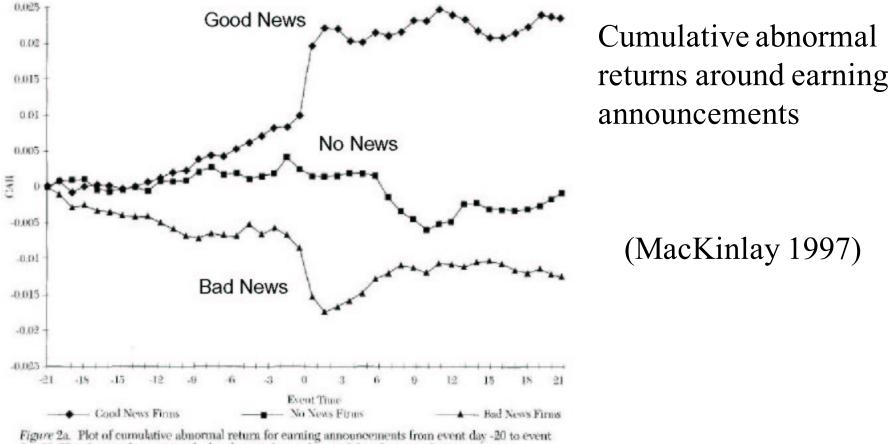
Source: Markus K. Brunnermeier (2015), "Lecture 10: Market Efficiency", Finance 501: Asset Pricing, Princeton University

Event Studies Methodology

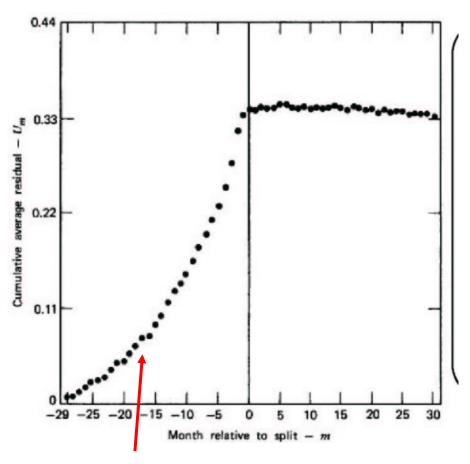

- 1. Define as day "zero" the day the information is released
- Calculate the daily returns R_{it} the 30 days around day "zero":
 t = -30, -29,...-1, 0, 1,..., 29, 30
- 3. Calculate the daily returns R_{mt} for the same days on the market (or a comparison group of firms of similar industry and risk)
- **4.** Define Abnormal Returns (AR) as the difference $AR_{it} = R_{it} R_{mt}$
- 5. Calculate Average Abnormal Returns (AAR) over all N events in the sample for all 60 reference days $AAR_t = \frac{1}{N} \sum_{i=1}^{N} AR_{it}$
- **6.** Cumulate the returns on the first T days to CAAR $CAAR_T = \sum_{t=1}^{T} AAR_t$

Market Efficiency in Event Studies

Event Study: Earning Announcements


Figure 1 Cumulative Abnormal Returns (CAR) for SUE Portfolios (84,792 carnings announcements, 1974-1986)

Event Study by Ball and Brown (1968) Pre-announcement drift prior to earnings due to insider trading ! against strong-form

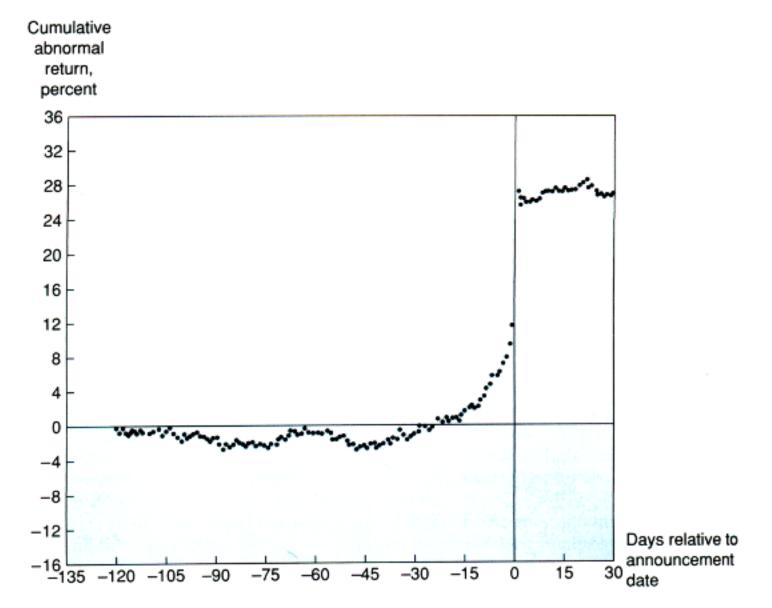

Post-announcement drift ! against semi-strong form

Event Study: Earning Announcement

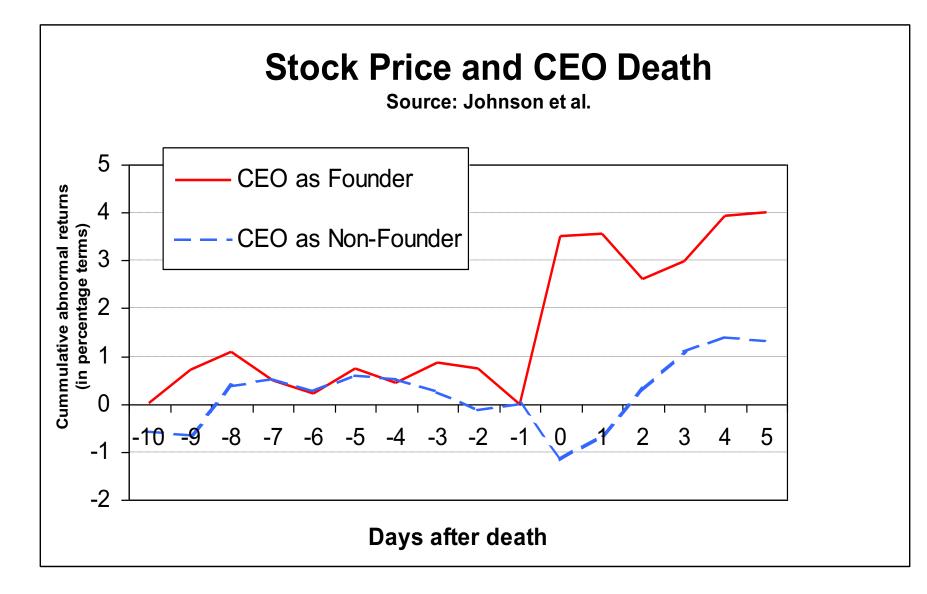
day 20. The abnormal return is calculated using the market model as the normal return measure.

Event Study: Stock Splits

Event Study on Stock Splits by Fama-French-Fischer-Jensen-Roll (1969)

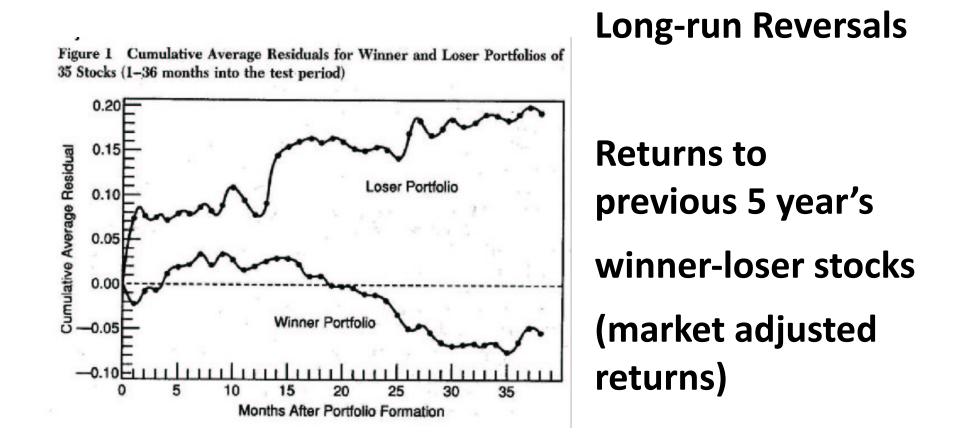

Split is a signal of good profit

Pre-announcement drift can be due to selection bias (only good firms split) or insider trading. ! inconclusive

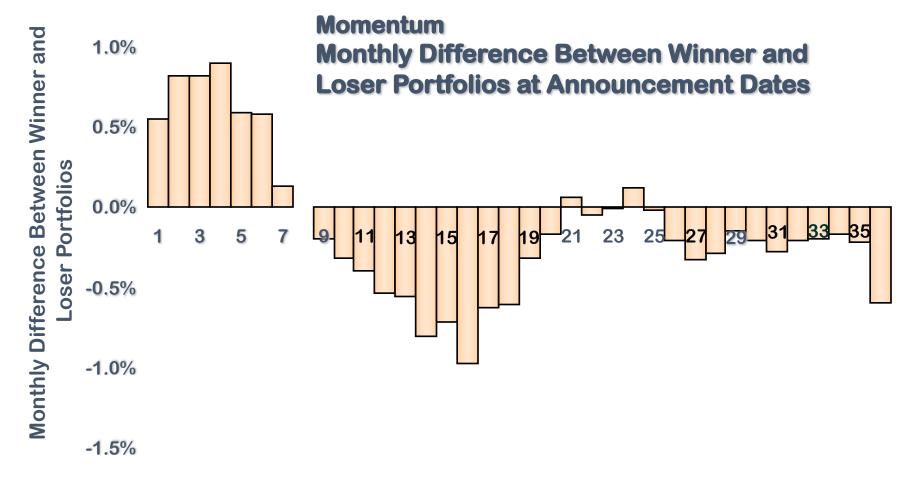

No post-announcement drift ! for weak form

Selection bias or Insider trading

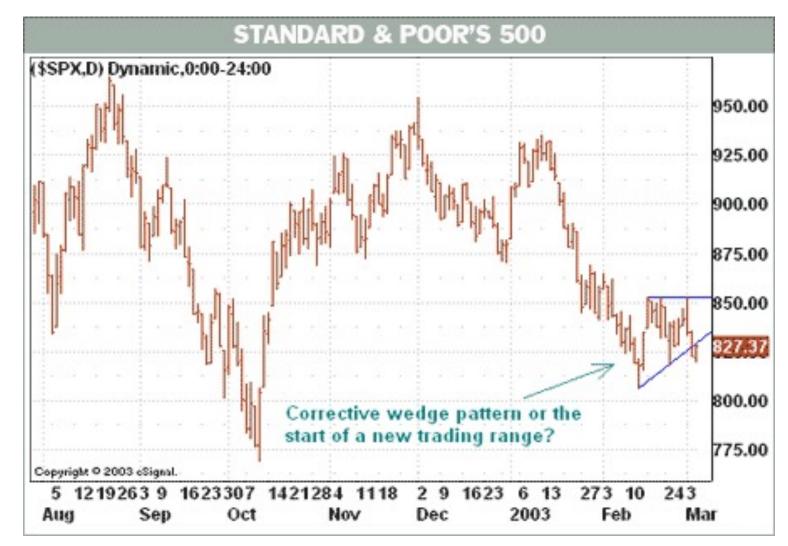
Event Study: Take-over


Event Study: Death of CEO

Evidence I: Predictabilities Studies


- Statistical variables have only low forecasting power, but
 - But some forecasting power for P/E or B/M
 - Short-run momentum and long-run reversals
- Calendar specific abnormal returns due to Monay effect, January effect etc.
- CAVEAT: Data mining: Find variables with spurious forecasting power if we search enough

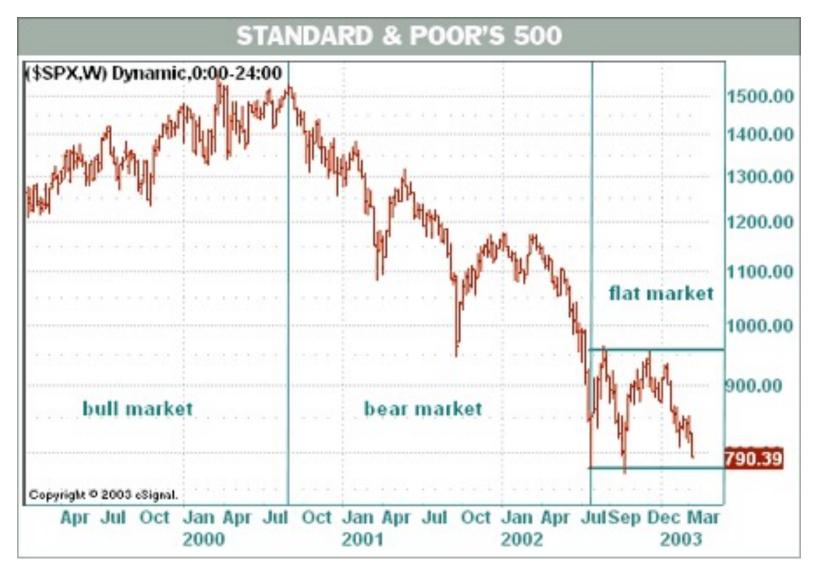
Long-Run Reversals


Source: Markus K. Brunnermeier (2015), "Lecture 10: Market Efficiency", Finance 501: Asset Pricing, Princeton University

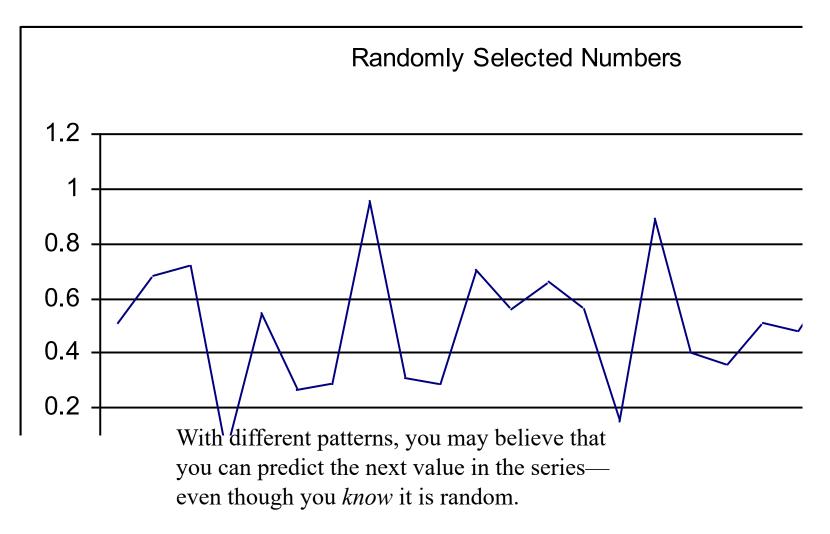
Short-run Momentum

Months Following 6 Month Performance Period

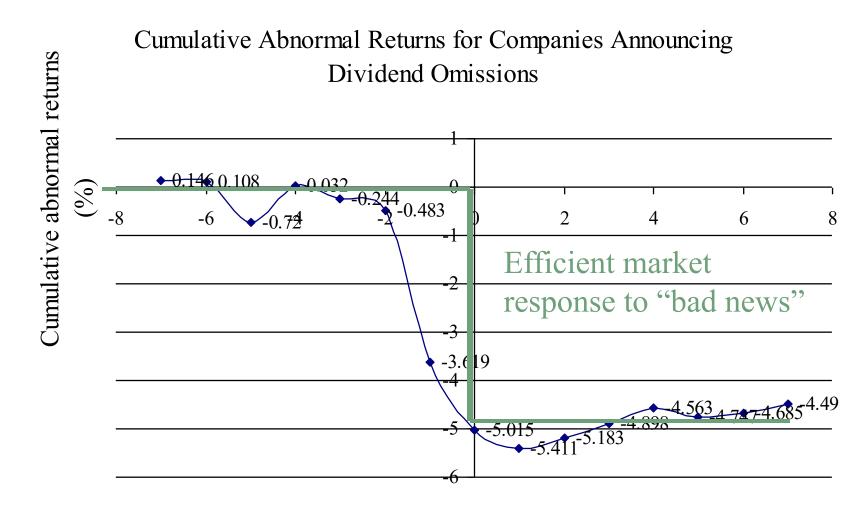
Getting Technical Barron's March 5, 2003



Source: Ross et al. (2005), "Corporate Finance", 7th Edition, McGraw-Hill

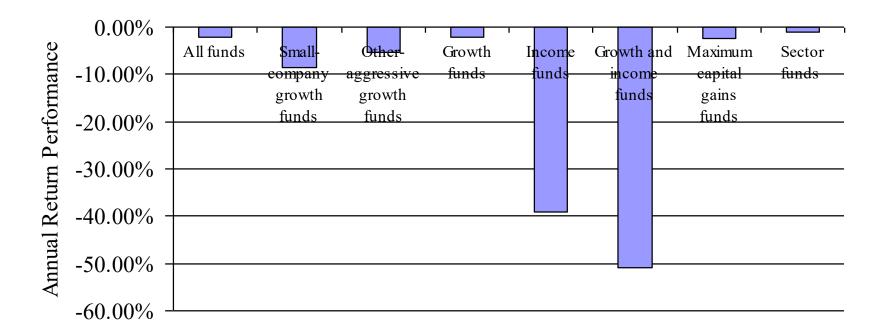

Getting Technical

Back to Buy Low, Sell High


Barron's March 12, 2003

What Pattern Do You See?

Event Studies: Dividend Omissions


Days relative to announcement of dividend omission

S.H. Szewczyk, G.P. Tsetsekos, and Z. Santout "Do Dividend Omissions Signal Future Earnings or Past Earnings?" *Journal of Investing* (Spring 1997)

Source: Ross et al. (2005), "Corporate Finance", 7th Edition, McGraw-Hill

The Record of Mutual Funds

Annual Return Performance of Different Types of U.S. Mutual Funds Relative to a Broad-Based Market Index (1963-1998)

Taken from Lubos Pastor and Robert F. Stambaugh, "Evaluating and Investing in Equity Mutual Funds," unpublished paper, Graduate School of Business, University of Chicago (March 2000).

Weak Form Market Efficiency

- Security prices reflect all information found in past prices and volume.
- If the weak form of market efficiency holds, then technical analysis is of no value.
- Often weak-form efficiency is represented as
- P_t = P_{t-1} + Expected return + random error t
- Since stock prices only respond to new information, which by definition arrives randomly, stock prices are said to follow a random walk.

Market Efficiency

- One group of studies of strong-form market efficiency investigates insider trading.
- A number of studies support the view that insider trading is abnormally profitable.
- Thus, strong-form efficiency does not seem to be substantiated by the evidence

Why Doesn't Everybody Believe the EMH?

- There are optical illusions, mirages, and apparent patterns in charts of stock market returns.
- The truth is less interesting.
- There is some evidence against market efficiency:
 - Seasonality
 - Small versus Large stocks
 - Value versus growth stocks
- The tests of market efficiency are weak.

Efficient

Markets

Inefficient

Markets

Behavioral

Finance

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

co python101.ipynb - Colaboratory × +	
← → C https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3	☆ ◙ 0:
CO A python101.ipynb A File Edit View Insert Runtime Tools Help	SHARE A
CODE TEXT A CELL CELL	EDITING
<pre></pre>	:
[→ 194.87	
<pre>[11] 1 amount = 100 2 interest = 10 #10% = 0.01 * 10 3 years = 7 4 5 future_value = amount * ((1 + (0.01 * interest)) ** years) 6 print(round(future_value, 2))</pre>	
[→ 194.87	
<pre>[12] 1 # Python Function def 2 def getfv(pv, r, n): 3 fv = pv * ((1 + (r)) ** n) 4 return fv 5 fv = getfv(100, 0.1, 7) 6 print(round(fv, 2))</pre>	
L→ 194.87	
<pre>[13] 1 # Python if else 2 score = 80 3 if score >=60 : 4 print("Pass") 5 else: 6 print("Fail")</pre>	
[→ Pass	

References

- Doron Kliger and Gregory Gurevich (2014), Event Studies for Financial Research: A Comprehensive Guide, Palgrave Macmillan
- Malkiel, B. G., & Fama, E. F. (1970), Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417.
- MacKinlay, A. C. (1997), Event studies in economics and finance. Journal of economic literature, 35(1), 13-39.
- Ross et al. (2005), Corporate Finance, 7th Edition, McGraw-Hill
- Richard H. Thaler (2016), Misbehaving: The Making of Behavioral Economics, W. W. Norton & Company
- Lucy Ackert and Richard Deaves (2009), "Behavioral Finance: Psychology, Decision-Making, and Markets", South-Western College Pub.
- Hersh Shefrin (2007), "Beyond Greed and Fear: Understanding Behavioral Finance and the Psychology of Investing", Oxford University Press.
- Edwin Burton and Sunit N. Shah (2013), "Behavioral Finance: Understanding the Social, Cognitive, and Economic Debates", Wiley.
- Schertler, A. (2021). Listing of classical options and the pricing of discount certificates. Journal of Banking & Finance, 123.
- Pandey, D. K., & Kumari, V. (2021). Event study on the reaction of the developed and emerging stock markets to the 2019-nCoV outbreak. International Review of Economics & Finance, 71, 467-483.
- Naidu, D., & Ranjeeni, K. (2021). Effect of coronavirus fear on the performance of Australian stock returns: Evidence from an event study. Pacific-Basin Finance Journal, 66.
- Cahill, D., Baur, D. G., Liu, Z. X., & Yang, J. W. (2020). I am a blockchain too: How does the market respond to companies' interest in blockchain? Journal of Banking & Finance, 113.
- Loipersberger, F. (2018). The effect of supranational banking supervision on the financial sector: Event study evidence from Europe. Journal of Banking & Finance, 91, 34-48.
- Lanfear, M. G., Lioui, A., & Siebert, M. G. (2019). Market anomalies and disaster risk: Evidence from extreme weather events. Journal of Financial Markets, 46.
- Dutta, A., Knif, J., Kolari, J. W., & Pynnonen, S. (2018). A robust and powerful test of abnormal stock returns in long-horizon event studies. Journal of Empirical Finance, 47, 1-24.
- Gu, X., Zhang, W. Q., & Cheng, S. (2021). How do investors in Chinese stock market react to external uncertainty? An event study to the Sino-US disputes. Pacific-Basin Finance Journal, 68.
- Bohmann, M., Michayluk, D., Patel, V., & Walsh, K. (2019). Liquidity and earnings in event studies: Does data granularity matter? Pacific-Basin Finance Journal, 54, 118-131.
- Fan, R., Talavera, O., & Tran, V. (2020). Social media bots and stock markets. European Financial Management, 26(3), 753-777.
- Lee, J., & Ryu, D. (2019). The impacts of public news announcements on intraday implied volatility dynamics. Journal of Futures Markets, 39(6), 656-685.

References

- Yulu Liao, Min-Yuh Day, Yirung Cheng, Paoyu Huang, and Yensen Ni (2021), "Does CBOE volatility index jumped or located at a higher level matter for evaluating DJ 30, NASDAQ, and S&P500 index subsequent performance", Journal of Computers, Volume 32, Number 4, August 2021, pp. 57-66.
- Min-Yuh Day, Pao-Yu Huang, Yirung Cheng, Yin-Tzu Lin, and Yensen Ni (2021), "Profitable day trading Bitcoin futures following continuous bullish (bearish) candlesticks", Applied Economics Letters, 16 March 2021, pp. 1-8.
- Yensen Ni, Min-Yuh Day, and Paoyu Huang (2020), "Trading Stocks Following Sharp Movements in the USDX, GBP/USD, and USD/CNY", Financial Innovation, Volume 6, 35, 2020, pp. 1-17.
- Yensen Ni, Min-Yuh Day, Paoyu Huang, and Shang-Ru Yua (2020), "The profitability of Bollinger Bands: Evidence from the constituent stocks of Taiwan 50", Physica A: Statistical Mechanics and its Applications, Volume 551, 1 August 2020, 124144, pp. 1-14.
- Yensen Ni, Paoyu Huang, Yaochia Ku, Yiching Liao, and Min-Yuh Day (2020), "Investing Strategies as Stochastic Oscillator Indicators Staying in Overreaction Zones for Consecutive Days with Big Data Concerns", Journal of Computers, Volume 31, Number 1, February 2020, pp. 1-17.
- Yensen Ni, Manhwa Wu, Min-Yuh Day, and Paoyu Huang (2020), "Do sharp movements in oil prices matter for stock markets?", Physica A: Statistical Mechanics and its Applications, Volume 539, 1 February 2020, pp. 1-11.
- Min-Yuh Day, Paoyu Huang, and Yensen Ni (2019), "Trading as sharp movements in oil prices and technical trading signals emitted with big data concerns", Physica A: Statistical Mechanics and its Applications, Volume 525, 1 July 2019, pp. 349-372.
- Yensen Ni, Min-Yuh Day, and Paoyu Huang (2019), "Does Data Frequency Matter for Trading Signals Emitted by Various Technical Trading Rules?", Pacific Business Review International, Volume 11, Issue 10, April 2019, pp. 7-17.
- Min-Yuh Day, Manhwa Wu, Paoyu Huang, and Yensen Ni (2018), "Investing Strategies as a Sharp Movement in Exchange Rates Occurred– Evidence for the Constituent Stocks of SSE 50 and TW 50", The Journal of Investing, Volume 27, Issue 4, Winter 2018, pp. 58-68.
- Min-Yuh Day, Paoyu Huang, Yensen Ni, and Yuhsin Chen (2018), "Do Implicit Phenomena Matter? Evidence from China Stock Index Futures", The Journal of Alternative Investments, Volume 21, Issue 1, Summer 2018, pp. 79-91.
- Yensen Ni, Yirung Cheng, Paoyu Huang, and Min-Yuh Day (2018), "Trading strategies in terms of continuous rising (falling) prices or continuous bullish (bearish) candlesticks emitted", Physica A: Statistical Mechanics and its Applications, Volume 501, 1 July 2018, pp. 188-204.
- Min-Yuh Day, Paoyu Huang, Yensen Ni, and Yuhsin Chen (2018), "Do Intraday Large Price Changes Matter for Trading Index Futures? Evidence from China Futures Markets", Journal of Financial Studies, Volume 26, Number 2, June 2018, pp. 139-174.