
財務⾦融深度學習 (Deep Learning in Finance)
財務⾦融強化學習 (Reinforcement Learning in Finance)

智慧⾦融量化分析
(Artificial Intelligence in Finance and Quantitative Analysis)

1

戴敏育副教授
Min-Yuh Day, Ph.D, Associate Professor
國⽴臺北⼤學資訊管理研究所

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1101AIFQA09
MBA, IM, NTPU (M6132) (Fall 2021)

Tue 2, 3, 4 (9:10-12:00) (8F40)

2021-12-21

https://web.ntpu.edu.tw/~myday/cindex.htm
https://web.ntpu.edu.tw/~myday/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday

課程⼤綱 (Syllabus)
週次 (Week) ⽇期 (Date) 內容 (Subject/Topics)

1 2021/09/28 智慧⾦融量化分析概論
(Introduction to Artificial Intelligence in Finance and Quantitative Analysis)

2 2021/10/05 AI ⾦融科技: ⾦融服務創新應⽤
(AI in FinTech: Financial Services Innovation and Application)

3 2021/10/12 投資⼼理學與⾏為財務學
(Investing Psychology and Behavioral Finance)

4 2021/10/19 財務⾦融事件研究法 (Event Studies in Finance)

5 2021/10/26 智慧⾦融量化分析個案研究 I
(Case Study on AI in Finance and Quantitative Analysis I)

6 2021/11/02 財務⾦融理論 (Finance Theory)
2

課程⼤綱 (Syllabus)
週次 (Week) ⽇期 (Date) 內容 (Subject/Topics)

7 2021/11/09 數據驅動財務⾦融 (Data-Driven Finance)

8 2021/11/16 期中報告 (Midterm Project Report)

9 2021/11/23 ⾦融計量經濟學 (Financial Econometrics)

10 2021/11/30 ⼈⼯智慧優先⾦融 (AI-First Finance)

11 2021/12/07 智慧⾦融量化分析產業實務
(Industry Practices of AI in Finance and Quantitative Analysis)

[演講主題：指數設計的⽅法論、數據分析與量化投資應⽤，演講者：李政剛，基⾦經理/元⼤投信]
[Invited Talk: Index Design – Methodology、Data Analysis and the Application of Quantitative Investing, Invited Speaker: Jervis J.G. Li, Fund Manager, Yuanta SITC]

12 2021/12/14 智慧⾦融量化分析個案研究 II
(Case Study on AI in Finance and Quantitative Analysis II)

3

課程⼤綱 (Syllabus)
週次 (Week) ⽇期 (Date) 內容 (Subject/Topics)

13 2021/12/21 財務⾦融深度學習 (Deep Learning in Finance);
財務⾦融強化學習 (Reinforcement Learning in Finance)

14 2021/12/28 演算法交易 (Algorithmic Trading);
⾵險管理 (Risk Management);
交易機器⼈與基於事件的回測
(Trading Bot and Event-Based Backtesting)

15 2022/01/04 期末報告 I (Final Project Report I)

16 2022/01/11 期末報告 II (Final Project Report II)

17 2022/01/18 學⽣⾃主學習 (Self-learning)

18 2022/01/25 學⽣⾃主學習 (Self-learning)
4

Deep Learning in Finance

Reinforcement Learning in Finance

5

Outline
• Deep Learning (DL) in Finance
• Dense Neural Networks (DNN)
• Recurrent Neural Networks (RNN)
• Convolutional Neural Networks (CNN)
• Reinforcement Learning (RL) in Finance
• Q Learning (QL)
• Improved Finance Environment
• Improved Financial QL Agent

6Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Deep Learning in Finance

• Dense Neural Networks (DNN)
• Recurrent Neural Networks (RNN)
• Convolutional Neural Networks (CNN)

7Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

AI, ML, DL

8Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html

Artificial Intelligence (AI)

Machine Learning (ML)

Deep Learning (DL)
CNN

RNN LSTM GRU
GAN

Supervised
Learning

Unsupervised
Learning

Semi-supervised
Learning

Reinforcement
Learning

Deep learning for financial applications:
Topic-Model Heatmap

9
Source: Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft

Computing (2020): 106384.

A.M. Ozbayoglu, M.U. Gudelek and O.B. Sezer / Applied Soft Computing Journal 93 (2020) 106384 21

Fig. 9. The histogram of publication count in model types.

Fig. 10. Topic-model heatmap.

the model-topic heatmap, in this case, we saw a distinction
between the associations. Even though price data and technical
indicators have been very popular for most of the research areas
that are involved with time series forecasting, like algorithmic
trading, portfolio management, financial sentiment analysis and
financial text mining, the studies that had more significant spatial
characteristics like risk assessment and fraud detection did not
depend much on these temporal features. One other noteworthy
difference came up with the adaptation of text related features.
Highly text-based applications like financial sentiment analysis,
financial text mining, risk assessment and fraud detection pre-
ferred to use features like text (extracted from tweets, news or
financial data) and sentiments during their model development
and implementation. However, the temporal characteristics of
the financial time series data were also important for financial
sentiment analysis and financial text mining, since a significant
portion of these models were integrated into algorithmic trading
systems.

Fig. 12 elaborates on the distribution of the dataset types for
the research areas through a dataset-topic heatmap. If we analyze

the heatmap, we see similarities with the feature-topic associa-
tions. However, this time, we had three main clusters of dataset
types, the first one being the temporal datasets like Stock, Index,
ETF, Cryptocurrency, Forex and Commodity price datasets, and
the second one being the text-based datasets like News, Tweets,
Microblogs and Financial Reports, and the last one being the
datasets that had both numeric and textual components like Con-
sumer Data, Credit Data and Financial Reports from companies or
analysts. As far as the dataset vs. application area associations are
concerned, these three main clusters were distributed as follows:
Stock, Index, Cryptocurrency, ETF datasets were used almost in
every application area except Risk Assessment and Fraud Detec-
tion which had less of temporal properties. Meanwhile, Credit
Data, Financial Reports and Consumer Data were particularly
used by these two application areas, namely Risk Assessment
and Fraud Detection. Lastly, pure text based datasets like news,
tweets, microblogs were preferred by Financial Sentiment Analy-
sis and Financial Text Mining studies. However, as was the case in
the feature-topic associations, temporal datasets like stock, ETF,
Index price datasets were also used with these studies since some
of them were tied with algorithmic trading models.

6. Discussion and open issues

After reviewing all the publications based on the selected cri-
teria explained in the previous section, we wanted to provide our
findings of the current state-of-the-art situation. Our discussions
are categorized by the DL models and implementation topics.

6.1. Discussions on DL models

It is possible to claim that LSTM is the dominant DL model
that is preferred by most researchers, due to its well-established
structure for financial time series data forecasting. Most of the fi-
nancial implementations have time-varying data representations
requiring regression-type approaches which fits very well for
LSTM and its derivatives due to their easy adaptations to the
problems. As long as the temporal nature of the financial data
remains, LSTM and its related family models will maintain their
popularities.

Meanwhile, CNN based models started getting more traction
among researchers in the last two years. Unlike LSTM, CNN works
better for classification problems and is more suitable for either
non-time varying or static data representations. However, since
most financial data is time-varying, under normal circumstances,

Deep learning for financial applications:
Topic-Feature Heatmap

10
Source: Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft

Computing (2020): 106384.

22 A.M. Ozbayoglu, M.U. Gudelek and O.B. Sezer / Applied Soft Computing Journal 93 (2020) 106384

Fig. 11. Topic-feature heatmap.

Fig. 12. Topic-dataset heatmap.

CNN is not the natural choice for financial applications. However,
in some independent studies, the researchers performed an inno-
vative transformation of 1-D time-varying financial data into 2-D
mostly stationary image-like data to be able to utilize the power
of CNN through adaptive filtering and implicit dimensionality
reduction. This novel approach seems working remarkably well
in complex financial patterns regardless of the application area.
In the future, more examples of such implementations might be
more common; only time will tell.

Another model that has a rising interest is DRL based im-
plementations; in particular, the ones coupled with agent-based
modeling. Even though algorithmic trading is the most preferred
implementation area for such models, it is possible to develop the
working structures for any problem type.

Careful analyses of the reviews indicate in most of the papers
hybrid models are preferred over native models for better ac-
complishments. A lot of researchers configure the topologies and
network parameters for achieving higher performance. However,
there is also the danger of creating more complex hybrid models
that are not easy to build, and their interpretation also might be
difficult.

Through the performance evaluation results, it is possible to
claim that in general terms, DL models outperform ML coun-
terparts when working on the same problems. DL models also
have the advantage of being able to work on larger amount of
data. With the growing expansion of open-source DL libraries
and frameworks, DL model building and development process is
easier than ever.

Deep learning for financial applications:
Topic-Dataset Heatmap

11
Source: Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft

Computing (2020): 106384.

22 A.M. Ozbayoglu, M.U. Gudelek and O.B. Sezer / Applied Soft Computing Journal 93 (2020) 106384

Fig. 11. Topic-feature heatmap.

Fig. 12. Topic-dataset heatmap.

CNN is not the natural choice for financial applications. However,
in some independent studies, the researchers performed an inno-
vative transformation of 1-D time-varying financial data into 2-D
mostly stationary image-like data to be able to utilize the power
of CNN through adaptive filtering and implicit dimensionality
reduction. This novel approach seems working remarkably well
in complex financial patterns regardless of the application area.
In the future, more examples of such implementations might be
more common; only time will tell.

Another model that has a rising interest is DRL based im-
plementations; in particular, the ones coupled with agent-based
modeling. Even though algorithmic trading is the most preferred
implementation area for such models, it is possible to develop the
working structures for any problem type.

Careful analyses of the reviews indicate in most of the papers
hybrid models are preferred over native models for better ac-
complishments. A lot of researchers configure the topologies and
network parameters for achieving higher performance. However,
there is also the danger of creating more complex hybrid models
that are not easy to build, and their interpretation also might be
difficult.

Through the performance evaluation results, it is possible to
claim that in general terms, DL models outperform ML coun-
terparts when working on the same problems. DL models also
have the advantage of being able to work on larger amount of
data. With the growing expansion of open-source DL libraries
and frameworks, DL model building and development process is
easier than ever.

12
Source: Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning:

A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

Financial time series forecasting with deep
learning: Topic-model heatmapO.B. Sezer, M.U. Gudelek and A.M. Ozbayoglu / Applied Soft Computing Journal 90 (2020) 106181 21

Fig. 7. Topic-model heatmap.

In addition to DMLP, CNN is also a popular choice for
classification-type financial time series forecasting implementa-
tions. Most of these studies appeared within the last 3 years. As
mentioned before, to convert time-varying sequential data into a
more stationary classifiable form, some preprocessing might be
necessary. Even though some 1-D representations exist, the 2-
D implementation for CNN is more common, mostly inherited
through image recognition applications of CNN from computer
vision implementations. In some studies [188,189,193,199,219],
innovative transformations of financial time series data into an
image-like representation have been adapted, and impressive
performances have been achieved. As a result, CNN might in-
crease its share of interest for financial time series forecasting
in the next few years.

As one final note, Fig. 13 shows which frameworks and plat-
forms the researchers and developers used while implementing
their work. We tried our best to extract this information from the
papers. However, we must keep in mind that not every publica-
tion provided their development environment. Also, most papers
did not give details, preventing us from a more thorough compar-
ison chart, i.e, some researchers claimed they used Python, but
no further information was given, while some others mentioned
the use of Keras or TensorFlow, providing more details. Also,
within the ‘‘Other’’ section, the usage of Pytorch has increased
in the last year or so, even though it is not visible from the
chart. Regardless, Python-related tools were the most influential
technologies behind the implementations covered in this survey.

6. Discussion and open issues

From an application perspective, even though financial time
series forecasting has a relatively narrow focus, i.e., the imple-
mentations were mainly based on price or trend prediction, de-
pending on the underlying DL model, very different and versatile
models exist in the literature. We must remember that even

Fig. 8. The histogram of publication count in years.

though financial time series forecasting is a subset of time-series
studies, due to the embedded profit-making expectations from
successful prediction models, some differences exist, such that
higher prediction accuracy sometimes might not reflect a prof-
itable model. Hence, the risk and reward structure must also be
taken into consideration. At this point, we will try to elaborate on
our observations about these differences in various model designs
and implementations.

6.1. DL models for financial time series forecasting

According to the publication statistics, LSTM was the preferred
choice of most researchers for financial time series forecasting.
LSTM and its variations utilized time-varying data with feedback
embedded representations, resulting in higher performances for
time series prediction implementations. Because most financial
data, one way or another, included time-dependent components,
LSTM was the natural choice in financial time series forecasting
problems. Meanwhile, LSTM is a special DL model derived from a
more general classifier family, namely RNN.

Careful analysis of Fig. 11 illustrates the dominance of RNNs
(which mainly consist of LSTM). As a matter of fact, more than
half of the published papers on time series forecasting fall into
the RNN model category. Regardless of its problem type, price,
or trend prediction, the ordinal nature of the data represen-
tation forced researchers to consider RNN, GRU, and LSTM as
viable preferences for their model choices. Hence, RNN models
were chosen, at least for benchmarking, in many studies for
performance comparison with other developed models.

Meanwhile, other models were also used for time series fore-
casting problems. Among those, DMLP had the most interest due
to the market dominance of its shallow cousin (MLP) and its wide
acceptance and long history within ML society. However, there is
a fundamental difference in how DMLP- and RNN-based models
were used for financial time series prediction problems.

DMLP fits well for both regression and classification problems.
However, in general, data order independence must be preserved
to better utilize the internal working dynamics of such networks,
even though some adjustments can be made through the learning
algorithm configuration. In most cases, either trend components
of the data need to be removed from the underlying time series or
some data transformations might be needed so that the resulting
data becomes stationary. Regardless, some careful preprocessing
might be necessary for a DMLP model to be successful. In contrast,

13

Xt Xt+1Xt-1

yt yt+1yt-1

Xt-2 Xt+2

yt+2yt-2

ht ht+1ht-1ht-2 ht+2

Input

hidden

output

100 110 120 130 140

110 120 130 140 150

Recurrent Neural Networks (RNN)
Time Series Forecasting

Deep
Learning

14

Deep Learning
and

Neural Networks
15

TensorFlow Playground

16http://playground.tensorflow.org/

http://playground.tensorflow.org/

Tensor
• 3
• # a rank 0 tensor; this is a scalar with shape []

• [1. ,2., 3.]
• # a rank 1 tensor; this is a vector with shape [3]

• [[1., 2., 3.], [4., 5., 6.]]
• # a rank 2 tensor; a matrix with shape [2, 3]

• [[[1., 2., 3.]], [[7., 8., 9.]]]

• # a rank 3 tensor with shape [2, 1, 3]

17https://www.tensorflow.org/

https://www.tensorflow.org/

18

80

[50 60 70]

50 60 70
55 65 75

[50 60 70] [70 80 90]
[55 65 75] [75 85 95]

Scalar

Vector

Matrix

Tensor

Deep Learning
and

Neural Networks
19

Deep Learning
Foundations:

Neural Networks
20

21

Input Layer
(X)

Output Layer
(Y)

Hidden Layer
(H)

Y
X1

X2

Deep Learning and
Neural Networks

22

Deep Learning and
Neural Networks

Input Layer
(X)

Output Layer
(Y)

Hidden Layer
(H)

23

Input Layer
(X)

Output Layer
(Y)

Hidden Layers
(H)

Deep Neural Networks
Deep Learning

Deep Learning and
Neural Networks

Deep Learning
and

Deep Neural Networks

24

25
Source: http://www.asimovinstitute.org/neural-network-zoo/

Neural
Networks

(NN)

26
Source: http://www.asimovinstitute.org/neural-network-zoo/

27
Source: http://www.asimovinstitute.org/neural-network-zoo/

Convolutional Neural Networks (CNN
or Deep Convolutional Neural Networks, DCNN)

28
Source: http://www.asimovinstitute.org/neural-network-zoo/

LeCun, Yann, et al. “Gradient-based learning applied to document recognition.” Proceedings of the IEEE 86.11 (1998): 2278-2324.

29

Recurrent Neural Networks
(RNN)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Elman, Jeffrey L. “Finding structure in time.” Cognitive science 14.2 (1990): 179-211

Long / Short Term Memory
(LSTM)

30
Hochreiter, Sepp, and Jürgen Schmidhuber. “Long short-term memory.” Neural computation 9.8 (1997): 1735-1780.

Source: http://www.asimovinstitute.org/neural-network-zoo/

Gated Recurrent Units
(GRU)

31
Source: http://www.asimovinstitute.org/neural-network-zoo/

Chung, Junyoung, et al. “Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:1412.3555 (2014).

Generative Adversarial Networks (GAN)

32Source: http://www.asimovinstitute.org/neural-network-zoo/

Goodfellow, Ian, et al. “Generative adversarial nets.” Advances in Neural Information Processing Systems. 2014.

Support Vector Machines
(SVM)

33
Cortes, Corinna, and Vladimir Vapnik. “Support-vector networks.” Machine learning 20.3 (1995): 273-297.

Source: http://www.asimovinstitute.org/neural-network-zoo/

Neural Networks

34

Input Layer
(X)

Output Layer
(Y)

Hidden Layer
(H)

Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

Y
X1

X2

35Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016

The Neuron

x1

x2

xn

…
…

y

w1

w2

wn

Neuron and Synapse

36Source: https://en.wikipedia.org/wiki/Neuron

37Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016

The Neuron

x1

x2

xn

…
…

y

w1

w2

wn

y = F wixi
i
∑
⎛

⎝
⎜

⎞

⎠
⎟

F(x) =max(0, x)

38Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016

x1

x2

x3

y

-0.21

0.3

0.7

Weights

Inputs

y = max (0, -0.21 * x1 + 0.3 * x2 + 0.7 * x3)

Neural Networks

39Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

Neural Networks

40

Input Layer
(X)

Output Layer
(Y)

Hidden Layer
(H)

Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

Y
X1

X2

Neural Networks

41

Input Layer
(X)

Output Layer
(Y)

Hidden Layers
(H)

Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

Deep Neural Networks
Deep Learning

Neural Networks

42

Input Layer
(X)

Output Layer
(Y)

Hidden Layer
(H)

Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

Y
X1

X2

Synapse

Neuron

Neuron
Synapse

Neural Networks

43Source: https://www.youtube.com/watch?v=P2HPcj8lRJE&list=PLjJh1vlSEYgvGod9wWiydumYl8hOXixNu&index=2

Input Layer
(X)

Output Layer
(Y)

Hidden Layer
(H)

https://www.youtube.com/watch?v=P2HPcj8lRJE&list=PLjJh1vlSEYgvGod9wWiydumYl8hOXixNu&index=2

Neural Networks

44

Input Layer
(X)

Output Layer
(Y)

Hidden Layer
(H)

Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

Y
X1

X2

Y = W X + b

45Source: https://www.youtube.com/watch?v=G8eNWzxOgqE

Y = W X + b

46

Weights bias

Output input

Trained

Source: https://www.youtube.com/watch?v=G8eNWzxOgqE

W X + b = Y

47Source: https://www.youtube.com/watch?v=G8eNWzxOgqE

2.0

1.0

0.1

0.7

0.2

0.1

Scores Probabilities

W X + b = Y

48Source: https://www.youtube.com/watch?v=G8eNWzxOgqE

2.0

1.0

0.1

0.7

0.2

0.1

Scores ProbabilitiesLogits

SoftMAX

𝑆 𝑦! =
𝑒"!
∑# 𝑒""

W X + b = Y

49Source: https://www.youtube.com/watch?v=G8eNWzxOgqE

2.0

1.0

0.1

0.7

0.2

0.1

Scores ProbabilitiesLogits

𝑆 𝑦! =
𝑒"!
∑# 𝑒""

𝑆 𝑦! = $#!
∑" $

#!
= $$.&

$$.&&$'.&&$&.' =
'.)*+'$.&

'.)*+'$.&&'.)*+''.&&'.)*+'&.' = 0.7

𝑆 𝑦! = $#!
∑" $

#" =
$'.&

$$.&&$'.&&$&.' =
'.)*+''.&

'.)*+'$.&&'.)*+''.&&'.)*+'&.' = 0.2

𝑆 𝑦! = $#!
∑" $

#" =
$&.'

$$.&&$'.&&$&.' =
'.)*+'&.'

'.)*+'$.&&'.)*+''.&&'.)*+'&.' = 0.1

Training a Network
=

Minimize the Cost Function

50Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

Training a Network
=

Minimize the Cost Function
Minimize the Loss Function

51Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

Error = Predict Y - Actual Y
Error : Cost : Loss

52Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

25

50

75

100

Test1 Test2 Test3

𝑦
+𝑦

𝑒

Error = Predict Y - Actual Y
Error : Cost : Loss

53Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

25

50

75

100

Test1 Test2 Test3

𝑦
+𝑦

𝑒

Error = Predict Y - Actual Y
Error : Cost : Loss

54Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

25

50

75

100

Test1 Test2 Test3

𝑦
+𝑦

𝑒

Activation
Functions

55

Activation Functions

56Source: http://cs231n.github.io/neural-networks-1/

ReLU
(Rectified Linear Unit)

Sigmoid TanH

f(x) = max(0, x)[0, 1] [-1, 1]

Activation Functions

57Source: http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

Loss
Function

58

Binary Classification: 2 Class

Activation Function:
Sigmoid

Loss Function:
Binary Cross-Entropy

59

Multiple Classification: 10 Class

Activation Function:
SoftMAX

Loss Function:
Categorical Cross-Entropy

60

Dropout

61
Source: Srivastava, Nitish, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

"Dropout: a simple way to prevent neural networks from overfitting." Journal of machine learning research 15, no. 1 (2014): 1929-1958.

Dropout: a simple way to prevent neural networks from overfitting

Learning Algorithm

While not done:

Pick a random training example “(input, label)”

Run neural network on “input”

Adjust weights on edges to make output closer to
“label”

62Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016

63Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016

x1

x2

x3

y

-0.21

0.3

0.7

Weights

Inputs

y = max (0, -0.21 * x1 + 0.3 * x2 + 0.7 * x3)

64Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016

x1

x2

x3

y

-0.21

0.3

0.65

Weights

Inputs

Next time:
y = max (0, -0.23 * x1 + 0.31 * x2 + 0.65 * x3)
y = max (0, -0.21 * x1 + 0.3 * x2 + 0.7 * x3)

-0.23

0.31

0.7

Optimizer:
Stochastic Gradient Descent

(SGD)

65

w

J(w) Initial
weight Gradient

Global cost
minimum

66Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016

Neural Network and Deep Learning

67
Source: 3Blue1Brown (2017), But what *is* a Neural Network? | Chapter 1, deep learning,

https://www.youtube.com/watch?v=aircAruvnKk

https://www.youtube.com/watch?v=aircAruvnKk

Gradient Descent
how neural networks learn

68
Source: 3Blue1Brown (2017), Gradient descent, how neural networks learn | Chapter 2, deep learning,

https://www.youtube.com/watch?v=IHZwWFHWa-w

https://www.youtube.com/watch?v=IHZwWFHWa-w

Backpropagation

69
Source: 3Blue1Brown (2017), What is backpropagation really doing? | Chapter 3, deep learning,

https://www.youtube.com/watch?v=Ilg3gGewQ5U

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Learning Algorithm

While not done:

Pick a random training example “(input, label)”

Run neural network on “input”

Adjust weights on edges to make output closer to
“label”

70Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016

Convolutional
Neural Networks

(CNN)
71

Convolutional Neural Networks
(CNN)

72

Source: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Source: LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
"Gradient-based learning applied to document recognition." Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.

Architecture of LeNet-5 (7 Layers)
(LeCun et al., 1998)

Convolutional Neural Networks
(CNN)

• Convolution
• Pooling

• Fully Connection (FC) (Flattening)

73

A friendly introduction to
Convolutional Neural Networks and Image Recognition

74Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition,
https://www.youtube.com/watch?v=2-Ol7ZB0MmU

1 -1 1
-1 -11
1 -1 1

4 -4
-4 4

+ -
- +

- +
+ -

-4 4
4 -4

Convolution Layer Pooling Layer

https://www.youtube.com/watch?v=2-Ol7ZB0MmU

A friendly introduction to
Convolutional Neural Networks and Image Recognition

75Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition,
https://www.youtube.com/watch?v=2-Ol7ZB0MmU

1 -1 1
-1 -11
1 -1 1

1
-1 1 -1

-11
-1 1 -1

-1 1
-1 -11
1 -1 -1

-1

1 -1
-1 -11

-1 1

-1

-1

1 1-1 -1
1 1-1 -1

-1 -11 1
1 1-1 -1

-1 -1-1 -1
-1 -11 1

1 1-1 -1
-1 -1-1 -1

https://www.youtube.com/watch?v=2-Ol7ZB0MmU

A friendly introduction to
Convolutional Neural Networks and Image Recognition

76Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition,
https://www.youtube.com/watch?v=2-Ol7ZB0MmU

https://www.youtube.com/watch?v=2-Ol7ZB0MmU

77

A friendly introduction to
Convolutional Neural Networks and Image Recognition

Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition,
https://www.youtube.com/watch?v=2-Ol7ZB0MmU

https://www.youtube.com/watch?v=2-Ol7ZB0MmU

CNN Architecture

78
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Convolution Layer

79
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolution is a mathematical operation to merge two sets of information
3x3 convolution

80
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

receptive field: 3x3

CNN Convolution Layer
Input x Filter --> Feature Map

81
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

receptive field: 3x3

CNN Convolution Layer
Input x Filter --> Feature Map

82
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Convolution Layer

Example convolution operation shown in 2D using a 3x3 filter

83
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Convolution Layer
10 different filters 10 feature maps of size 32x32x1

final output of the convolution layer:
a volume of size 32x32x10

84
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Convolution Layer
Sliding operation at 4 locations

85
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Convolution Layer
two feature maps

86
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Convolution Layer
Stride specifies how much
we move the convolution filter at each step

87
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Convolution Layer
Stride specifies how much
we move the convolution filter at each step

88
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Convolution Layer
Stride 1 with Padding

89
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Pooling Layer

Max Pooling

90
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Pooling Layer

91
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Architecture
4 convolution + pooling layers,

followed by 2 fully connected layers

92

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', name='conv_1',

input_shape=(150, 150, 3)))
model.add(MaxPooling2D((2, 2), name='maxpool_1'))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', name='conv_2'))
model.add(MaxPooling2D((2, 2), name='maxpool_2'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv_3'))
model.add(MaxPooling2D((2, 2), name='maxpool_3'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv_4'))
model.add(MaxPooling2D((2, 2), name='maxpool_4'))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(512, activation='relu', name='dense_1'))
model.add(Dense(128, activation='relu', name='dense_2'))
model.add(Dense(1, activation='sigmoid', name='output'))

Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

https://gist.github.com/ardendertat/0fc5515057c47e7386fe04e9334504e3

CNN Architecture
4 convolution + pooling layers,

followed by 2 fully connected layers

https://gist.github.com/ardendertat/0fc5515057c47e7386fe04e9334504e3

Dropout

93
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Model Performance

94
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Recurrent
Neural Networks

(RNN)
95

96

Xt Xt+1Xt-1

yt yt+1yt-1

Xt-2 Xt+2

yt+2yt-2

ht ht+1ht-1ht-2 ht+2

Input

hidden

output

Recurrent Neural Networks (RNN)

97

Xt Xt+1Xt-1

yt yt+1yt-1

Xt-2 Xt+2

yt+2yt-2

ht ht+1ht-1ht-2 ht+2

Input

hidden

output

100 110 120 130 140

110 120 130 140 150

Recurrent Neural Networks (RNN)
Time Series Forecasting

Recurrent Neural Networks (RNN)

98

Xt Xt+1Xt-1Xt-2 Xt+2

y

ht ht+1ht-1ht-2 ht+2

Input

hidden

output

Recurrent Neural Networks (RNN)
Sentiment Analysis

99

Xt Xt+1Xt-1Xt-2 Xt+2

y

ht ht+1ht-1ht-2 ht+2

This movie is very good

Input

hidden

output

Recurrent Neural Networks (RNN)
Sentiment Analysis

100

Xt Xt+1Xt-1Xt-2 Xt+2

y

ht ht+1ht-1ht-2 ht+2

This movie is very boring

Input

hidden

output

Recurrent Neural Network (RNN)

101Source: LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521, no. 7553 (2015): 436-444.

RNN

102Source: Christopher Olah, (2015) Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN long-term dependencies

103

I grew up in France… I speak fluent French.
Source: Christopher Olah, (2015) Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

104

Vanishing Gradient
Exploding Gradient

Source: https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-term-memory-networks-with-math-21477f8e4235

105

Xt Xt+1Xt-1

yt yt+1yt-1

Xt-2 Xt+2

yt+2yt-2

ht ht+1ht-1ht-2 ht+2

Input

hidden

output

Recurrent Neural Networks (RNN)

V

U

W

V

U

W

V

U

W

V

U

W

106

Xt Xt+1Xt-1

yt yt+1yt-1

Xt-2 Xt+2

yt+2yt-2

ht ht+1ht-1ht-2 ht+2

Input

hidden

output

RNN
Vanishing Gradient problem
Exploding Gradient problem

V

U

W

V

U

W

V

U

W

V

U

W

Error

if |W| < 1 (Vanishing)
if |W| > 1 (Exploding)

Source: https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-term-memory-networks-with-math-21477f8e4235

107

Xt Xt+1Xt-1

yt yt+1yt-1

Xt-2 Xt+2

yt+2yt-2

ht ht+1ht-1ht-2 ht+2

Input

hidden

output

RNN
Vanishing Gradient problem

V

U

0.9

V

U

0.9

V

U

0.9

V

U

0.9

Error

W = 0.9 < 1 (Vanishing)

Source: https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-term-memory-networks-with-math-21477f8e4235

108

Xt Xt+1Xt-1

yt yt+1yt-1

Xt-2 Xt+2

yt+2yt-2

ht ht+1ht-1ht-2 ht+2

Input

hidden

output

RNN
Exploding Gradient problem

V

U

1.1

V

U

1.1

V

U

1.1

V

U

1.1

Error

W = 1.1 > 1 (Exploding)

Source: https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-term-memory-networks-with-math-21477f8e4235

RNN LSTM

109

RNN

LSTM

Source: Christopher Olah, (2015) Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory
(LSTM)

110Source: Christopher Olah, (2015) Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory
(LSTM)

111

forget
gate

input
gate

output
gate

Source: Christopher Olah, (2015) Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Unit
(GRU)

112Source: Christopher Olah, (2015) Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Unit
(GRU)

113

reset
gate

update
gate

Source: Christopher Olah, (2015) Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Recurrent Neural Network

114Source: https://github.com/Vict0rSch/deep_learning/tree/master/keras/recurrent

Traditional
Neural
Network

Music
Generation

Sentiment
Classification

Name
Entity
Recognition

Machine
Translation

Long Short Term Memory (LSTM)
for Time Series Forecasting

115

LSTM

Xt Xt+1Xt-1

ht ht+1ht-1

LSTM LSTM LSTM LSTM

Xt-2 Xt+2

ht+2ht-2

Time Series Data

116

[100, 110, 120, 130, 140, 150]

[100 110 120 130 140] 150

X Y

Xt3 Xt4Xt2Xt1 Xt5

Y

Long Short Term Memory (LSTM)
for Time Series Forecasting

117

LSTM

Xt Xt+1Xt-1

ht ht+1ht-1

LSTM LSTM LSTM LSTM

Xt-2 Xt+2

ht+2ht-2

Time Series Data

118

[10, 20, 30, 40, 50, 60, 70, 80, 90]

[10 20 30] 40
[20 30 40] 50
[30 40 50] 60
[40 50 60] 70
[50 60 70] 80
[60 70 80] 90

X Y

Reinforcement Learning (RL)

119

Engineering

Mathematics

Economics

Psychology

Neuroscience

Computer Science

Machine
Learning

Reward
System

Classical/Operant
Conditioning

Bounded
Rationality

Operations
Research

Optimal
Control

Reinforcement
Learning

Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ

Branches of Machine Learning (ML)
Reinforcement Learning (RL)

120

Unsupervised
Learning

Machine
Learning

Reinforcement
Learning

Supervised
Learning

• Labeled data
• Direct feedback
• Predict

• No Labels
• No feedback
• Find hidden structure

• Decision process
• Reward system
• Learn series of actions

Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ

Reinforcement Learning (DL)

121Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

Agent

Environment

Reinforcement Learning (DL)

122Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

Agent

Environment

action

reward

observation1 2

3

Reinforcement Learning (DL)

123Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

Agent

Environment

action

reward

observation1 2

3
At

Rt

Ot

Agent and Environment

• At each step t the agent:
• Executes action At

• Receives observation Ot

• Receives scalar reward Rt

• The environment:
• Receives action At

• Emits observation Ot+1

• Emits scalar reward Rt+1

• t increments at env. step

124

Agent

Environment

action

reward

observation

At

Rt

Ot

Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ

FinRL:
A Deep Reinforcement Learning Library for

Automated Stock Trading in Quantitative Finance

125Source: Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuqing Yang, Bowen Xiao, and Christina Dan Wang (2020). "FinRL: A Deep Reinforcement Learning Library for Automated Stock
Trading in Quantitative Finance." arXiv preprint arXiv:2011.09607 (2020).

FinRL
Deep Reinforcement Learning Algorithms

126Source: Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuqing Yang, Bowen Xiao, and Christina Dan Wang (2020). "FinRL: A Deep Reinforcement Learning Library for Automated Stock
Trading in Quantitative Finance." arXiv preprint arXiv:2011.09607 (2020).

127Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

import os
import numpy as np
import pandas as pd
from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['savefig.dpi'] = 300
mpl.rcParams['font.family'] = 'serif'
pd.set_option('precision', 4)
np.set_printoptions(suppress=True, precision=4)
os.environ['PYTHONHASHSEED'] = '0'

url = 'http://hilpisch.com/aiif_eikon_id_eur_usd.csv'
symbol = 'EUR_USD'
raw = pd.read_csv(url, index_col=0, parse_dates=True)
raw.head()

Mid-closing prices for EUR/USD (intraday)

128Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

129Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

optimizer = Adam(lr=0.001)

def create_model(hl=1, hu=128, optimizer=optimizer):
model = Sequential()
model.add(Dense(hu, input_dim=len(cols),

activation='relu'))
for _ in range(hl):

model.add(Dense(hu, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',

optimizer=optimizer,
metrics=['accuracy'])

return model

set_seeds()
model = create_model(hl=1, hu=128)
model.summary()

Training and validation accuracy values

130Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Training and validation accuracy values
(normalized features data)

131Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Training and validation accuracy values
(with dropout)

132Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Training and validation accuracy values
(with regularization)

133Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Training and validation accuracy values
(with dropout and regularization)

134Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

135Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

from keras.models import Sequential
from keras.layers import SimpleRNN, LSTM, Dense

model = Sequential()
model.add(SimpleRNN(100, activation='relu’,

input_shape=(lags, 1)))
model.add(Dense(1, activation='linear'))
model.compile(optimizer='adagrad', loss='mse’,

metrics=['mae'])

model.summary()

model.fit(g, epochs=1000, steps_per_epoch=5, verbose=False)

Performance metrics during RNN training

136Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Sample sequence data

137Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

in-sample and out-of-sample predictions
of the RNN

138Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

In-sample prediction for financial price series
by the RNN (whole data set)

139Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

In-sample prediction for financial price series by
the RNN (data sub-set)

140Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Financial Price Series

141Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

data = generate_data()
data.plot()

Financial Return Series

142Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

data['r'] = np.log(data / data.shift(1))
data['r'].plot()

Financial Price and Return Normalization Series

143Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

data.dropna(inplace=True)
data = (data - data.mean()) / data.std()
data.plot()

In-sample prediction for financial return series
by the RNN (data sub-set)

144Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

145Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

model = Sequential()
model.add(Conv1D(filters=96, kernel_size=5,

activation='relu',
input_shape=(len(cols), 1)))

model.add(Flatten())
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])

model.summary()

model.fit(np.atleast_3d(train[cols]), train['d'],
epochs=60, batch_size=48, verbose=False,
validation_split=0.15, shuffle=False)

Performance metrics for the
training and validation of the CNN

146Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Gross performance of passive benchmark
investment and CNN strategy

(before/after transaction costs)

147Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Reinforcement Learning in Finance
• Simple Learning
• DNN Learning
• Q Learning
• Finance Environment
• Improved Finance Environment
• Improved Financial QL Agent

148Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Average total rewards of DQLAgent for CartPole

149Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Average total rewards of DQLAgent for Finance

150Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

Training and validation performance of the
FQLAgent per episode

151Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

The Quant Finance PyData Stack

152Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#/5

Yves Hilpisch (2020),
Artificial Intelligence in Finance:

A Python-Based Guide,
O’Reilly

153Source: https://www.amazon.com/Artificial-Intelligence-Finance-Python-Based-Guide/dp/1492055433

https://www.amazon.com/Artificial-Intelligence-Finance-Python-Based-Guide/dp/1492055433

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly

154Source: https://github.com/yhilpisch/aiif

https://github.com/yhilpisch/aiif

https://github.com/yhilpisch/aiif/tree/main/code
https://github.com/yhilpisch/aiif/tree/main/code

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly

155Source: https://github.com/yhilpisch/aiif/tree/main/code

https://github.com/yhilpisch/aiif/tree/main/code

https://github.com/yhilpisch/aiif/tree/main/code
https://github.com/yhilpisch/aiif/tree/main/code

156

Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101

157

Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101

158

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

159

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

160

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

161

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

162

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

163

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

164

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

165

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

166

Python in Google Colab (Python101)

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

Summary
• Deep Learning (DL) in Finance
• Dense Neural Networks (DNN)
• Recurrent Neural Networks (RNN)
• Convolutional Neural Networks (CNN)
• Reinforcement Learning (RL) in Finance
• Q Learning (QL)
• Improved Finance Environment
• Improved Financial QL Agent

167Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly Media.

References
• Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O’Reilly

Media, https://github.com/yhilpisch/aiif .
• Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition,
O’Reilly Media.
• Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep

learning for financial applications: A survey." Applied Soft Computing (2020): 106384.
• Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020),

"Financial time series forecasting with deep learning: A systematic literature review:
2005–2019." Applied Soft Computing 90 (2020): 106181.
• Min-Yuh Day (2021), Python 101, https://tinyurl.com/aintpupython101

168

https://github.com/yhilpisch/aiif
https://tinyurl.com/aintpupython101

