Artificial Intelligence

Knowledge, Reasoning and Knowledge Representation Uncertain Knowledge and Reasoning

1111AI04 MBA, IM, NTPU (M6132) (Fall 2022) Wed 2, 3, 4 (9:10-12:00) (B8F40)

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2022-10-05

Week Date Subject/Topics

- **1 2022/09/14 Introduction to Artificial Intelligence**
- 2 2022/09/21 Artificial Intelligence and Intelligent Agents
- 3 2022/09/28 Problem Solving
- 4 2022/10/05 Knowledge, Reasoning and Knowledge Representation; Uncertain Knowledge and Reasoning
- 5 2022/10/12 Case Study on Artificial Intelligence I
- 6 2022/10/19 Machine Learning: Supervised and Unsupervised Learning

- Week Date Subject/Topics
- 7 2022/10/26 The Theory of Learning and Ensemble Learning
- 8 2022/11/02 Midterm Project Report
- 9 2022/11/09 Deep Learning and Reinforcement Learning
- 10 2022/11/16 Deep Learning for Natural Language Processing
- 11 2022/11/23 Invited Talk: AI for Information Retrieval
- 12 2022/11/30 Case Study on Artificial Intelligence II

- Week Date Subject/Topics
- 13 2022/12/07 Computer Vision and Robotics
- 14 2022/12/14 Philosophy and Ethics of AI and the Future of AI
- 15 2022/12/21 Final Project Report I
- 16 2022/12/28 Final Project Report II
- 17 2023/01/04 Self-learning
- 18 2023/01/11 Self-learning

Knowledge, Reasoning and Knowledge Representation

Uncertain Knowledge and Reasoning

Outline

- Knowledge and Reasoning
 - Logical Agents
 - First-Order Logic
 - Inference in First-Order Logic
 - Knowledge Representation
 - Knowledge Graph (KG)
- Uncertain Knowledge and Reasoning
 - Quantifying Uncertainty
 - Probabilistic Reasoning
 - Making Complex Decisions

Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

Artificial Intelligence: A Modern Approach

- **1. Artificial Intelligence**
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- **5. Machine Learning**
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of Al

Artificial Intelligence: Knowledge and Reasoning

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 3. Knowledge and Reasoning

- Logical Agents
- First-Order Logic
- Inference in First-Order Logic
- Knowledge Representation
- Automated Planning

Intelligent Agents

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

4 Approaches of Al

Reinforcement Learning (DL)

Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

Reinforcement Learning (DL)

Reinforcement Learning (DL)

Agents interact with environments through sensors and actuators

Logical Agents

Logical Agents

Knowledge-based Agents KB Agents

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Knowledge-based Agent (KB Agent)

function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time

TELL(*KB*, MAKE-PERCEPT-SENTENCE(*percept*, *t*)) *action* \leftarrow ASK(*KB*, MAKE-ACTION-QUERY(*t*)) TELL(*KB*, MAKE-ACTION-SENTENCE(*action*, *t*)) *t* \leftarrow *t* + 1 **return** *action*

Sentences are

physical configurations of the agent

Reasoning is a process of

constructing new physical configurations from old ones

Logical reasoning should ensure that the new configurations represent aspects of the world that actually follow from the aspects that the old configurations represent.

A BNF (Backus–Naur Form) grammar of sentences in propositional logic

Sentence \rightarrow AtomicSentence | ComplexSentence AtomicSentence \rightarrow True | False | P | Q | R | ... $ComplexSentence \rightarrow (Sentence)$ \neg Sentence Sentence \land Sentence Sentence \lor Sentence Sentence \Rightarrow Sentence Sentence \Leftrightarrow Sentence

OPERATOR PRECEDENCE : $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$

Truth Tables (TT) for the Five Logical Connectives

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

A Truth Table constructed for the knowledge base given in the text

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false false	false false	false false	false false	false false	false false	$false\ true$	true true	true true	true false	true true	false false	false false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	$\frac{true}{true}$ $\frac{true}{true}$
false	true	false	false	false	true	false	true	true	true	true	true	
false	true	false	false	false	true	true	true	true	true	true	true	
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false	true	true	false	true	false

A Truth-Table (TT) enumeration algorithm for deciding propositional entailment

function TT-ENTAILS?(KB, α) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic α , the query, a sentence in propositional logic

```
symbols \leftarrow a list of the proposition symbols in KB and \alpha
return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
```

function TT-CHECK-ALL($KB, \alpha, symbols, model$) returns true or false if EMPTY?(symbols) then

if PL-TRUE?(*KB*, model) then return PL-TRUE?(α , model)

else return true // when KB is false, always return true else

```
P \leftarrow \text{FIRST}(symbols)
rest \leftarrow \text{REST}(symbols)
return (TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = true\})
and
TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false\}))
```

Standard Logical Equivalences

The symbols α , β , and γ stand for arbitrary sentences of propositional logic.

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

A grammar for Conjunctive Normal Form (CNF), Horn clauses, and definite clauses

 $\begin{array}{rcl} CNFSentence & \rightarrow & Clause_1 \wedge \cdots \wedge Clause_n \\ Clause & \rightarrow & Literal_1 \vee \cdots \vee Literal_m \\ Fact & \rightarrow & Symbol \\ Literal & \rightarrow & Symbol \mid \neg Symbol \\ Symbol & \rightarrow & P \mid Q \mid R \mid \ldots \\ HornClauseForm & \rightarrow & DefiniteClauseForm \mid & GoalClauseForm \\ DefiniteClauseForm & \rightarrow & Fact \mid (Symbol_1 \wedge \cdots \wedge Symbol_l) \Rightarrow Symbol \\ GoalClauseForm & \rightarrow & (Symbol_1 \wedge \cdots \wedge Symbol_l) \Rightarrow False \end{array}$

A simple resolution algorithm for propositional logic

function PL-RESOLUTION(KB, α) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic α , the query, a sentence in propositional logic

 $clauses \leftarrow$ the set of clauses in the CNF representation of $KB \land \neg \alpha$ $new \leftarrow \{ \}$

while true do

for each pair of clauses C_i, C_j in clauses do $resolvents \leftarrow PL-RESOLVE(C_i, C_j)$ if resolvents contains the empty clause then return true $new \leftarrow new \cup resolvents$ if $new \subseteq clauses$ then return false $clauses \leftarrow clauses \cup new$

The forward-chaining algorithm for propositional logic

function PL-FC-ENTAILS?(KB, q) returns true or false inputs: KB, the knowledge base, a set of propositional definite clauses q, the query, a proposition symbol $count \leftarrow$ a table, where count[c] is initially the number of symbols in clause c's premise inferred \leftarrow a table, where inferred[s] is initially false for all symbols $queue \leftarrow$ a queue of symbols, initially symbols known to be true in KB

```
while queue is not empty do

p \leftarrow POP(queue)

if p = q then return true

if inferred[p] = false then

inferred[p] \leftarrow true

for each clause c in KB where p is in c.PREMISE do

decrement count[c]

if count[c] = 0 then add c.CONCLUSION to queue

return false
```

A set of Horn clauses

(a)

The corresponding AND–OR graph

First-Order Logic

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Formal languages and their ontological and epistemological commitments

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	facts with degree of truth $\in [0, 1]$	known interval value

A model containing five objects

two binary relations (brother and on-head), three unary relations (person, king, and crown), and one unary function (left-leg).

The syntax of first-order logic with equality

```
Sentence \rightarrow AtomicSentence | ComplexSentence
          AtomicSentence \rightarrow Predicate | Predicate (Term,...) | Term = Term
         ComplexSentence \rightarrow (Sentence)
                                      \neg Sentence
                                      Sentence \land Sentence
                                      Sentence \lor Sentence
                                      Sentence \Rightarrow Sentence
                                      Sentence \Leftrightarrow Sentence
                                      Quantifier Variable,... Sentence
                        Term \rightarrow Function(Term, ...)
                                       Constant
                                       Variable
                  Quantifier \rightarrow \forall \mid \exists
                   Constant \rightarrow A \mid X_1 \mid John \mid \cdots
                    Variable \rightarrow a \mid x \mid s \mid \cdots
                   Predicate \rightarrow True \mid False \mid After \mid Loves \mid Raining \mid \cdots
                   Function \rightarrow Mother | LeftLeg | ...
OPERATOR PRECEDENCE : \neg, =, \land, \lor, \Rightarrow, \Leftrightarrow
```

Some members of the set of all models for a language with two constant symbols, R and J, and one binary relation symbol

Some members of the set of all models for a language with two constant symbols, R and J, and one binary relation symbol, under database semantics

A digital circuit C1, purporting to be a one-bit full adder.

Inference in First-Order Logic

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

The unification algorithm

```
function UNIFY(x, y, \theta = empty) returns a substitution to make x and y identical, or failure

if \theta = failure then return failure

else if x = y then return \theta

else if VARIABLE?(x) then return UNIFY-VAR(x, y, \theta)

else if VARIABLE?(y) then return UNIFY-VAR(y, x, \theta)

else if COMPOUND?(x) and COMPOUND?(y) then

return UNIFY(ARGS(x), ARGS(y), UNIFY(OP(x), OP(y), \theta))

else if LIST?(x) and LIST?(y) then

return UNIFY(REST(x), REST(y), UNIFY(FIRST(x), FIRST(y), \theta))

else return failure
```

```
function UNIFY-VAR(var, x, \theta) returns a substitution

if \{var/val\} \in \theta for some val then return UNIFY(val, x, \theta)

else if \{x/val\} \in \theta for some val then return UNIFY(var, val, \theta)

else if OCCUR-CHECK?(var, x) then return failure

else return add \{var/x\} to \theta
```


A conceptually straightforward, but inefficient, forward-chaining algorithm

function FOL-FC-ASK(KB, α) returns a substitution or *false* inputs: KB, the knowledge base, a set of first-order definite clauses α , the query, an atomic sentence

while true do

 $new \leftarrow \{\}$ // The set of new sentences inferred on each iteration for each rule in KB do

 $(p_1 \land \ldots \land p_n \Rightarrow q) \leftarrow \text{STANDARDIZE-VARIABLES}(rule)$ for each θ such that $\text{SUBST}(\theta, p_1 \land \ldots \land p_n) = \text{SUBST}(\theta, p'_1 \land \ldots \land p'_n)$ for some p'_1, \ldots, p'_n in KB $q' \leftarrow \text{SUBST}(\theta, q)$ if q' does not unify with some sentence already in KB or new then add q' to new $\phi \leftarrow \text{UNIFY}(q', \alpha)$ if ϕ is not failure then return ϕ if new = {} then return false add new to KB

The proof tree generated by forward chaining on the crime example

Constraint graph for coloring the map of Australia

 $\begin{array}{ll} Diff(wa,nt) \wedge Diff(wa,sa) \wedge \\ Diff(nt,q) \wedge Diff(nt,sa) \wedge \\ Diff(q,nsw) \wedge Diff(q,sa) \wedge \\ Diff(nsw,v) \wedge Diff(nsw,sa) \wedge \\ Diff(v,sa) \Rightarrow Colorable() \\ Diff(Red,Blue) & Diff(Red,Green) \end{array}$

Diff(Green, Red) Diff(Green, Blue) Diff(Blue, Red) Diff(Blue, Green)

(b)

A simple backward-chaining algorithm for first-order knowledge bases

function FOL-BC-ASK(KB, query) returns a generator of substitutions
return FOL-BC-OR(KB, query, { })

function FOL-BC-OR(*KB*, *goal*, θ) **returns** a substitution **for each** *rule* in FETCH-RULES-FOR-GOAL(*KB*, *goal*) **do** (*lhs* \Rightarrow *rhs*) \leftarrow STANDARDIZE-VARIABLES(*rule*) **for each** θ' in FOL-BC-AND(*KB*, *lhs*, UNIFY(*rhs*, *goal*, θ)) **do yield** θ'

```
function FOL-BC-AND(KB, goals, \theta) returns a substitution

if \theta = failure then return

else if LENGTH(goals) = 0 then yield \theta

else

first, rest \leftarrow FIRST(goals), REST(goals)

for each \theta' in FOL-BC-OR(KB, SUBST(\theta, first), \theta) do

for each \theta'' in FOL-BC-AND(KB, rest, \theta') do

yield \theta''
```

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Pseudocode representing the result of compiling the Append predicate

procedure APPEND(*ax*, *y*, *az*, *continuation*)

 $trail \leftarrow GLOBAL-TRAIL-POINTER()$ **if** ax = [] and UNIFY(y, az) **then** CALL(continuation) RESET-TRAIL(trail) $a, x, z \leftarrow NEW-VARIABLE()$, NEW-VARIABLE(), NEW-VARIABLE() **if** UNIFY(ax, [a] + x) and UNIFY($az, [a \mid z]$) **then** APPEND(x, y, z, continuation)

Finding a path from A to C can lead Prolog into an infinite loop.

Proof that a path exists from A to C.

Infinite proof tree generated when the clauses are in the "wrong" order

A resolution proof that West is a criminal

A resolution proof that Curiosity killed the cat

Structure of a completeness proof for resolution

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Knowledge Representation

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

The Upper Ontology of the World

Predicates on time intervals

A schematic view of the object President (USA) for the early years

A semantic network

with four objects (John, Mary, 1, and 2) and four categories Relations are denoted by labeled links

Semantic network

Representation of the logical assertion Fly (Shankar, NewYork, NewDelhi, Yesterday)

The syntax of descriptions in a subset of the CLASSIC language.

 $Concept \rightarrow Thing \mid ConceptName$ $And(Concept, \ldots)$ All(RoleName, Concept) AtLeast(Integer, RoleName) **AtMost**(*Integer*, *RoleName*) **Fills**(*RoleName*, *IndividualName*,...) **SameAs**(*Path*, *Path*) **OneOf**(*IndividualName*,...) $Path \rightarrow [RoleName, \ldots]$ $ConceptName \rightarrow Adult \mid Female \mid Male \mid \dots$ $RoleName \rightarrow Spouse \mid Daughter \mid Son \mid \dots$

Knowledge Graph (KG)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Knowledge Graph (KG)

- Knowledge Graph (KG)
 - A knowledge graph is a multi-relational graph composed of entities and relations, which are regarded as nodes and different types of edges, respectively (Ji et al., 2021).
 - Represents knowledge as concepts (entities) and their relationships (Facts)
 - Triple of facts
 - SPO: (subject, predicate, object)
 - *HRT: (head, relation, tail)*
- Common Knowledge Graph: DBpedia, YAGO, Wikidata

Knowledge Graph, Facts, Triple, Embedding

- *G*
 - Knowledge graph
- F
 - Set of facts
- (h, r, t)
 - Triple of head, relation, and tail
- (h, r, t)
 - Embedding of head, relation, and tail

Knowledge Representation Factual Triple and Knowledge Graph

- Albert Einstein, winner of the 1921 Nobel prize in physics
- The Nobel Prize in Physics 1921 was awarded to Albert Einstein "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect."

Triple(Albert Einstein, WinnerOf, Nobel Prize in Physics)

Factual Triples in Knowledge Base (*h*, *r*, *t*)

(Albert Einstein, **BornIn**, German Empire) (Albert Einstein, **SonOf**, Hermann Einstein)

(Albert Einstein, GraduateFrom, University of Zurich) (Albert Einstein, WinnerOf, Nobel Prize in Physics)

(Albert Einstein, ExpertIn, Physics)
(Nobel Prize in Physics, AwardIn, Physics)
(The theory of relativity, TheoryOf, Physics)
(Albert Einstein, SupervisedBy, Alfred Kleiner)
(Alfred Kleiner, ProfessorOf, University of Zurich)
(The theory of relativity, ProposedBy, Albert Einstein)
(Hans Albert Einstein, SonOf, Albert Einstein)

Entities and Relations in Knowledge Graph

(Albert Einstein, WinnerOf, Nobel Prize in Physics)

Source: Ji, S., Pan, S., Cambria, E., Marttinen, P., & Philip, S. Y. (2021). A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning Systems.

knowledge base and knowledge graph

Factual triples in knowledge base

(Albert Einstein, BornIn, German Empire) (Albert Einstein, SonOf, Hermann Einstein) (Albert Einstein, GraduateFrom, University of Zurich) (Albert Einstein, WinnerOf, Nobel Prize in Physics) (Albert Einstein, ExpertIn, Physics) (Nobel Prize in Physics, AwardIn, Physics) (The theory of relativity, TheoryOf, Physics) (Albert Einstein, SupervisedBy, Alfred Kleiner) (Alfred Kleiner, ProfessorOf, University of Zurich) (The theory of relativity, ProposedBy, Albert Einstein) (Hans Albert Einstein, SonOf, Albert Einstein)

Entities and relations in knowledge graph

Source: Ji, S., Pan, S., Cambria, E., Marttinen, P., & Philip, S. Y. (2021). A survey on knowledge graphs: Representation, acquisition, and applications.

IEEE Transactions on Neural Networks and Learning Systems.

Categorization of Research on Knowledge Graphs

Source: Ji, S., Pan, S., Cambria, E., Marttinen, P., & Philip, S. Y. (2021). A survey on knowledge graphs: Representation, acquisition, and applications.

Knowledge Graph Completion (KGC) Datasets

Knowledge Graph Completion (KGC) Dataset	#Entity	#Relation	#Train	#Valid	#Test	Reference
WN18RR	40,943	11	86,835	3,034	3,134	Toutanova & Chen (2015); Zhang et al. (2020)
FB15k-237	14,541	237	272,115	17,535	20,466	Dettmers et al. (2018); Zhang et al. (2020)
YAGO3-10	123,182	37	1,079,040	5,000	5,000	Mahdisoltani et al. (2015); Zhang et al. (2020)

Domain-Specific Knowledge Graph

- Domain-Specific Knowledge Graph
 - PubMed Knowledge Graph (PKG)
 - Extracting biological entities from 29 million PubMed abstracts
 - Lynx: Legal Knowledge Graph for Multilingual Compliance Services
 - Legal Knowledge Graph (LKG) integrates and links heterogeneous compliance data sources including legislation, case law, standards and other private contracts.

Lynx: Legal Knowledge Graph for Multilingual Compliance Services

Source: Lynx Legal Knowledge Graph (LKG), <u>https://lynx-project.eu/</u>

Automated Planning

A PDDL description of an air cargo transportation planning problem

 $Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)$ $\wedge Cargo(C_1) \wedge Cargo(C_2) \wedge Plane(P_1) \wedge Plane(P_2)$ $\wedge Airport(JFK) \wedge Airport(SFO)$ $Goal(At(C_1, JFK) \land At(C_2, SFO))$ Action(Load(c, p, a)),**PRECOND:** $At(c, a) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)$ EFFECT: $\neg At(c, a) \land In(c, p)$ Action(Unload(c, p, a),**PRECOND:** $In(c, p) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)$ EFFECT: $At(c, a) \land \neg In(c, p)$) Action(Fly(p, from, to),**PRECOND:** $At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)$ EFFECT: $\neg At(p, from) \land At(p, to))$

The simple spare tire problem

```
Init(Tire(Flat) \land Tire(Spare) \land At(Flat, Axle) \land At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc),
  PRECOND: At(obj, loc)
   EFFECT: \neg At(obj, loc) \land At(obj, Ground))
Action(PutOn(t, Axle)),
   PRECOND: Tire(t) \land At(t, Ground) \land \neg At(Flat, Axle) \land \neg At(Spare, Axle)
   EFFECT: \neg At(t, Ground) \land At(t, Axle))
Action(LeaveOvernight,
   PRECOND:
   EFFECT: \neg At(Spare, Ground) \land \neg At(Spare, Axle) \land \neg At(Spare, Trunk)
            \wedge \neg At(Flat, Ground) \land \neg At(Flat, Axle) \land \neg At(Flat, Trunk))
```


Start State

A planning problem in the blocks world: building a three-block tower

 $\begin{array}{l} Init(On(A, Table) \land On(B, Table) \land On(C, A) \\ \land Block(A) \land Block(B) \land Block(C) \land Clear(B) \land Clear(C) \land Clear(Table)) \\ Goal(On(A, B) \land On(B, C)) \\ Action(Move(b, x, y), \\ PRECOND: On(b, x) \land Clear(b) \land Clear(y) \land Block(b) \land Block(y) \land \\ (b \neq x) \land (b \neq y) \land (x \neq y), \\ EFFECT: On(b, y) \land Clear(x) \land \neg On(b, x) \land \neg Clear(y)) \\ Action(MoveToTable(b, x), \\ PRECOND: On(b, x) \land Clear(b) \land Block(b) \land Block(x), \\ EFFECT: On(b, Table) \land Clear(x) \land \neg On(b, x)) \end{array}$

Two approaches to searching for a plan (a)

Forward (progression) search (b) Backward (regression) search

Two state spaces from planning problems with the ignore-delete-lists heuristic

Definitions of possible refinements for two high-level actions

Refinement(Go(Home, SFO), STEPS: [Drive(Home, SFOLongTermParking), Shuttle(SFOLongTermParking, SFO)]) Refinement(Go(Home, SFO), STEPS: [Taxi(Home, SFO)])

```
\begin{aligned} &Refinement(Navigate([a, b], [x, y]), \\ & \text{PRECOND: } a = x \ \land \ b = y \\ & \text{STEPS: [] }) \\ &Refinement(Navigate([a, b], [x, y]), \\ & \text{PRECOND: } Connected([a, b], [a - 1, b]) \\ & \text{STEPS: } [Left, Navigate([a - 1, b], [x, y])] ) \\ &Refinement(Navigate([a, b], [x, y]), \\ & \text{PRECOND: } Connected([a, b], [a + 1, b]) \\ & \text{STEPS: } [Right, Navigate([a + 1, b], [x, y])] ) \end{aligned}
```

A breadth-first implementation of hierarchical forward planning search

function HIERARCHICAL-SEARCH(problem, hierarchy) returns a solution or failure

frontier \leftarrow a FIFO queue with [*Act*] as the only element

while true do

if IS-EMPTY(*frontier*) **then return** *failure*

 $plan \leftarrow POP(frontier)$ // chooses the shallowest plan in frontier

 $hla \leftarrow$ the first HLA in *plan*, or *null* if none

 $prefix, suffix \leftarrow$ the action subsequences before and after hla in plan

 $outcome \leftarrow \text{RESULT}(problem.INITIAL, prefix)$

if hla is null **then** // so plan is primitive and outcome is its result **if** problem.IS-GOAL(outcome) **then return** plan

else for each sequence in REFINEMENTS(*hla*, *outcome*, *hierarchy*) do add APPEND(*prefix*, *sequence*, *suffix*) to *frontier* Schematic examples of reachable sets

Goal achievement for high-level plans with approximate descriptions

A hierarchical planning algorithm

function ANGELIC-SEARCH(problem, hierarchy, initialPlan) returns solution or fail

frontier \leftarrow a FIFO queue with *initialPlan* as the only element

while true do

if EMPTY?(*frontier*) **then return** *fail*

 $plan \leftarrow POP(frontier)$ // chooses the shallowest node in frontier

if REACH⁺(*problem*.INITIAL, *plan*) intersects *problem*.GOAL then

if plan is primitive then return plan // REACH⁺ is exact for primitive plans guaranteed \leftarrow REACH⁻(problem.INITIAL, plan) \cap problem.GOAL

if $guaranteed \neq \{\}$ and MAKING-PROGRESS(plan, initialPlan) then

 $finalState \leftarrow any element of guaranteed$

return DECOMPOSE(*hierarchy*, *problem*.INITIAL, *plan*, *finalState*) $hla \leftarrow$ some HLA in *plan*

 $prefix, suffix \leftarrow$ the action subsequences before and after hla in plan $outcome \leftarrow \text{RESULT}(problem.INITIAL, prefix)$

for each sequence **in** REFINEMENTS(*hla*, *outcome*, *hierarchy*) **do** *frontier* ← *Insert*(APPEND(*prefix*, *sequence*, *suffix*), *frontier*)

A hierarchical planning algorithm Decompose solution

function DECOMPOSE(*hierarchy*, s_0 , *plan*, s_f) returns a solution

 $solution \leftarrow an empty plan$

while *plan* is not empty **do**

 $action \leftarrow \text{REMOVE-LAST}(plan)$

 $s_i \leftarrow a \text{ state in REACH}^-(s_0, plan) \text{ such that } s_f \in \text{REACH}^-(s_i, action)$ $problem \leftarrow a \text{ problem with INITIAL} = s_i \text{ and GOAL} = s_f$ $solution \leftarrow \text{APPEND}(\text{ANGELIC-SEARCH}(problem, hierarchy, action}), solution)$ $s_f \leftarrow s_i$

return solution

At first, the sequence "whole plan" is expected to get the agent from S to G

A job-shop scheduling problem for assembling two cars, with resource constraints

 $Jobs(\{AddEngine1 \prec AddWheels1 \prec Inspect1\}, \\ \{AddEngine2 \prec AddWheels2 \prec Inspect2\})$

Resources(EngineHoists(1), WheelStations(1), Inspectors(e2), LugNuts(500))

 $\begin{aligned} &Action(AddEngine1, \text{DURATION:}30, \\ & \text{USE:} EngineHoists(1)) \\ &Action(AddEngine2, \text{DURATION:}60, \\ & \text{USE:} EngineHoists(1)) \\ &Action(AddWheels1, \text{DURATION:}30, \\ & \text{CONSUME:} LugNuts(20), \text{USE:} WheelStations(1)) \\ &Action(AddWheels2, \text{DURATION:}15, \\ & \text{CONSUME:} LugNuts(20), \text{USE:} WheelStations(1)) \\ &Action(Inspect_i, \text{DURATION:}10, \\ & \text{USE:} Inspectors(1)) \end{aligned}$

A representation of the temporal constraints for the job-shop scheduling problem

A solution to the job-shop scheduling problem

Artificial Intelligence: Uncertain Knowledge and Reasoning

Artificial Intelligence:

4. Uncertain Knowledge and Reasoning

- Quantifying Uncertainty
- Probabilistic Reasoning
- Probabilistic Reasoning over Time
- Probabilistic Programming
- Making Simple Decisions
- Making Complex Decisions
- Multiagent Decision Making

Quantifying Uncertainty

DT-Agent

A Decision-Theoretic Agent that Selects Rational Actions

update *belief_state* based on *action* and *percept* calculate outcome probabilities for actions,

given action descriptions and current *belief_state* select *action* with highest expected utility

given probabilities of outcomes and utility information return *action*

Agent 1 has inconsistent beliefs

A full joint distribution for the Toothache, Cavity, Catch world

Weather and Dental problems are independent

Coin flips are independent

 $Coin_1 \cdots Coin_n$

Probabilistic Reasoning

A Simple Bayesian Network

Weather is independent to the other three variables. Toothache and Catch are conditionally independent, given Cavity.

A Typical Bayesian Network

Topology and the Conditional Probability Tables (CPTs)

Conditional Probability Table for P(Fever | Cold, Flu, Malaria)

Cold	Flu	Malaria	$P(fever \cdot)$	$P(\neg fever \mid \cdot)$
f	f	f	0.0	1.0
f	f	t	0.9	0.1
f	t	f	0.8	0.2
f	t	t	0.98	$0.02 = 0.2 \times 0.1$
t	f	f	0.4	0.6
t	f	t	0.94	$0.06 = 0.6 \times 0.1$
t	t	f	0.88	$0.12 = 0.6 \times 0.2$
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

A Simple Network

with discrete variables (Subsidy and Buys) and continuous variables (Harvest and Cost)

Probability distribution

over Cost as a function of Harvest size

A normal (Gaussian) distribution for the cost threshold

Expit and Probit models for the probability of buys given cost

A Bayesian Network

for evaluating car insurance applications

The structure of the expression

The Enumeration Algorithm for Exact Inference in Bayes Nets

function ENUMERATION-ASK (X, \mathbf{e}, bn) returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayes net with variables vars

 $\mathbf{Q}(X) \leftarrow$ a distribution over X, initially empty for each value x_i of X do

 $\mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(vars, \mathbf{e}_{x_i})$

where \mathbf{e}_{x_i} is \mathbf{e} extended with $X = x_i$ return NORMALIZE($\mathbf{Q}(X)$)

function ENUMERATE-ALL(*vars*, **e**) **returns** a real number **if** EMPTY?(*vars*) **then return** 1.0

 $V \leftarrow \text{First}(vars)$

if V is an evidence variable with value v in e then return $P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e)$ else return $\sum_{v} P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e_v)$ where e_v is e extended with V = v

Pointwise Multiplication $f(X,Y) \times g(Y,Z) = h(X,Y,Z)$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	Χ	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

The Variable Elimination Algorithm for Exact Inference in Bayes Nets

function ELIMINATION-ASK (X, \mathbf{e}, bn) returns a distribution over X **inputs**: X, the query variable e, observed values for variables E bn, a Bayesian network with variables vars factors \leftarrow [] for each V in ORDER(vars) do $factors \leftarrow [MAKE-FACTOR(V, \mathbf{e})] + factors$ if V is a hidden variable then factors \leftarrow SUM-OUT(V, factors) **return** NORMALIZE(POINTWISE-PRODUCT(*factors*))

Bayes Net Encoding

of the 3-CNF (Conjunctive Normal Form) Sentence (W VX VY) ∧ (¬W VY VZ) ∧ (X VY V¬Z)

Multiply Connected Network

(b) A clustered equivalent

A Sampling Algorithm

that generates events from a Bayesian network

function PRIOR-SAMPLE(*bn*) returns an event sampled from the prior specified by *bn* inputs: *bn*, a Bayesian network specifying joint distribution $P(X_1, ..., X_n)$

$\mathbf{x} \leftarrow$ an event with *n* elements for each variable X_i in X_1, \ldots, X_n do $\mathbf{x}[i] \leftarrow$ a random sample from $\mathbf{P}(X_i \mid parents(X_i))$ return \mathbf{x}

The Rejection-Sampling Algorithm

for answering queries given evidence in a Bayesian network

function REJECTION-SAMPLING(X, \mathbf{e} , bn, N) returns an estimate of $\mathbf{P}(X | \mathbf{e})$ inputs: X, the query variable \mathbf{e} , observed values for variables \mathbf{E} bn, a Bayesian network N, the total number of samples to be generated local variables: \mathbf{C} , a vector of counts for each value of X, initially zero

for j = 1 to N do $\mathbf{x} \leftarrow PRIOR\text{-}SAMPLE(bn)$ if \mathbf{x} is consistent with \mathbf{e} then $\mathbf{C}[j] \leftarrow \mathbf{C}[j]+1$ where x_j is the value of X in \mathbf{x} return NORMALIZE(\mathbf{C})

The Likelihood-Weighting Algorithm for inference in Bayesian networks

function LIKELIHOOD-WEIGHTING(X, \mathbf{e} , bn, N) returns an estimate of $\mathbf{P}(X | \mathbf{e})$

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network specifying joint distribution $\mathbf{P}(X_1, \ldots, X_n)$

N, the total number of samples to be generated

local variables: W, a vector of weighted counts for each value of X, initially zero

for j = 1 to N do **x**, $w \leftarrow \text{WEIGHTED-SAMPLE}(bn, \mathbf{e})$

 $\mathbf{W}[j] \leftarrow \mathbf{W}[j] + w$ where x_j is the value of X in **x**

return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

 $w \leftarrow 1$; $\mathbf{x} \leftarrow$ an event with *n* elements, with values fixed from **e** for i = 1 to *n* do

if X_i is an evidence variable with value x_{ij} in e then $w \leftarrow w \times P(X_i = x_{ij} | parents(X_i))$ else $\mathbf{x}[i] \leftarrow a$ random sample from $\mathbf{P}(X_i | parents(X_i))$ return \mathbf{x}, w

Performance of rejection sampling and likelihood weighting on the insurance network

The Gibbs Sampling Algorithm for approximate inference in Bayes nets

function GIBBS-ASK (X, \mathbf{e}, bn, N) returns an estimate of $\mathbf{P}(X | \mathbf{e})$ local variables: C, a vector of counts for each value of X, initially zero Z, the nonevidence variables in bnx, the current state of the network, initialized from \mathbf{e}

initialize **x** with random values for the variables in **Z** for k = 1 to N do

choose any variable Z_i from \mathbb{Z} according to any distribution $\rho(i)$ set the value of Z_i in \mathbb{X} by sampling from $\mathbb{P}(Z_i | mb(Z_i))$ $\mathbb{C}[j] \leftarrow \mathbb{C}[j] + 1$ where x_j is the value of X in \mathbb{X} return NORMALIZE(\mathbb{C})

The States and Transition Probabilities of the Markov Chain

for the query **P**(*Rain* | *Sprinkler* = *true*, *WetGrass* = *true*)

when the CPT for Rain constrains it to have the same value as Cloudy

Performance of Gibbs sampling compared to likelihood weighting on the car insurance network

for the case where the output variables are observed and Age is the query variable

A Causal Bayesian Network

representing cause-effect relations among five variables

The network after performing the action "turn Sprinkler on."

Probabilistic Reasoning over Time

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Bayesian network structure

corresponding to a First-order Markov Process with state defined by the variables *Xt*.

Bayesian Network Structure and Conditional Distributions describing the umbrella world

Smoothing computes $P(X_k | e_{1:t})$

the posterior distribution of the state at some past time k given a complete sequence of observations from 1 to t.

The Forward–Backward Algorithm for Smoothing

```
function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions inputs: ev, a vector of evidence values for steps 1,...,t
prior, the prior distribution on the initial state, P(X<sub>0</sub>)
local variables: fv, a vector of forward messages for steps 0,...,t
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1,...,t
```

```
fv[0] \leftarrow prior
for i = 1 to t do
fv[i] \leftarrow FORWARD(fv[i - 1], ev[i])
for i = t down to 1 do
sv[i] \leftarrow NORMALIZE(fv[i] \times b)
b \leftarrow BACKWARD(b, ev[i])
return sv
```

Possible state sequences for Rain t can

be viewed as paths through a graph of the possible states at each time step

Operation of the Viterbi algorithm for the umbrella observation sequence [true, true, false, true, true]

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Algorithm for Smoothing with a Fixed Time Lag of d Step

function FIXED-LAG-SMOOTHING(e_t , hmm, d) returns a distribution over \mathbf{X}_{t-d} inputs: e_t , the current evidence for time step t

hmm, a hidden Markov model with $S \times S$ transition matrix **T**

d, the length of the lag for smoothing

persistent: *t*, the current time, initially 1

f, the forward message $\mathbf{P}(X_t | e_{1:t})$, initially *hmm*.PRIOR

- \mathbf{B} , the *d*-step backward transformation matrix, initially the identity matrix
- $e_{t-d:t}$, double-ended list of evidence from t-d to t, initially empty

local variables: O_{t-d} , O_t , diagonal matrices containing the sensor model information

```
add e_t to the end of e_{t-d:t}

\mathbf{O}_t \leftarrow \text{diagonal matrix containing } \mathbf{P}(e_t \mid X_t)

if t > d then

\mathbf{f} \leftarrow \text{FORWARD}(\mathbf{f}, e_{t-d})

remove e_{t-d-1} from the beginning of e_{t-d:t}

\mathbf{O}_{t-d} \leftarrow \text{diagonal matrix containing } \mathbf{P}(e_{t-d} \mid X_{t-d})

\mathbf{B} \leftarrow \mathbf{O}_{t-d}^{-1} \mathbf{T}^{-1} \mathbf{B} \mathbf{T} \mathbf{O}_t

else \mathbf{B} \leftarrow \mathbf{B} \mathbf{T} \mathbf{O}_t

t \leftarrow t+1

if t > d+1 then return NORMALIZE(\mathbf{f} \times \mathbf{B1}) else return null
```

Specification of the prior, transition model, and sensor model for the umbrella DBN

A DBN fragment

the sensor status variable required for modeling persistent failure of the battery sensor

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Unrolling a Dynamic Bayesian Network

The Particle Filtering Algorithm

function PARTICLE-FILTERING(e, N, dbn) **returns** a set of samples for the next time step **inputs**: e, the new incoming evidence

N, the number of samples to be maintained

dbn, a DBN defined by $\mathbf{P}(\mathbf{X}_0)$, $\mathbf{P}(\mathbf{X}_1 | \mathbf{X}_0)$, and $\mathbf{P}(\mathbf{E}_1 | \mathbf{X}_1)$

persistent: S, a vector of samples of size N, initially generated from $P(X_0)$ local variables: W, a vector of weights of size N

for i = 1 to N do $S[i] \leftarrow \text{sample from } \mathbf{P}(\mathbf{X}_1 | \mathbf{X}_0 = S[i]) / / \text{step } 1$ $W[i] \leftarrow \mathbf{P}(\mathbf{e} | \mathbf{X}_1 = S[i]) / / \text{step } 2$ $S \leftarrow \text{WEIGHTED-SAMPLE-WITH-REPLACEMENT}(N, S, W) / / \text{step } 3$ return S

The Particle Filtering Update Cycle for the Umbrella DBN

A Dynamic Bayes Net

for simultaneous localization and mapping in the stochastic-dirt vacuum world

Probabilistic Programming

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Possible Worlds

for a language with two constant symbols, R and J

Bayes Net for a Single customer C1

recommending a single book B1. Honest(C1) is Boolean

Bayes net with two customers and two books

Bayes Net

for the book recommendation when Author(B2) is unknown

One particular world for the book recommendation OUPM

Variable	Value	Probability
#Customer	2	0.3333
#Book	3	0.3333
$Honest_{(Customer, ,1)}$	true	0.99
$Honest_{(Customer, ,2)}$	false	0.01
$Kindness_{(Customer, ,1)}$	4	0.3
Kindness (Customer, 2)	1	0.1
$Quality_{\langle Book,,1\rangle}$	1	0.05
$Quality_{\langle Book, ,2 \rangle}$	3	0.4
$Quality_{\langle Book, , 3 \rangle}$	5	0.15
$\#LoginID_{(Owner, (Customer, ,1))}$	1	1.0
$\#LoginID_{(Owner, (Customer, ,2))}$	2	0.25
$Recommendation_{(LoginID, (Owner, (Customer, ,1)), 1), (Book, ,1)}$	2	0.5
$Recommendation_{(LoginID, (Owner, (Customer, ,1)), 1), (Book, ,2)}$	4	0.5
$Recommendation_{(LoginID, (Owner, (Customer, ,1)), 1), (Book, ,3)}$	5	0.5
$Recommendation_{(LoginID, (Owner, (Customer, ,2)),1), (Book, ,1)}$	5	0.4
$Recommendation_{(LoginID, (Owner, (Customer, ,2)),1), (Book, ,2)}$	5	0.4
$Recommendation_{(LoginID, (Owner, (Customer, ,2)),1), (Book, ,3)}$	1	0.4
$Recommendation_{(LoginID, (Owner, (Customer, ,2)), 2), (Book, ,1)}$	5	0.4
$Recommendation_{\langle LoginID, \langle Owner, \langle Customer, ,2 \rangle \rangle, 2 \rangle, \langle Book, ,2 \rangle}$	5	0.4
$Recommendation_{(LoginID, (Owner, (Customer, ,2)), 2), (Book, ,3)}$	1	0.4

An OUPM for Citation Information Extraction

type Researcher, Paper, Citation random String Name(Researcher) random String Title(Paper) random Paper PubCited(Citation) random String Text(Citation) random Boolean Professor(Researcher) origin Researcher Author(Paper)

```
\begin{aligned} &\# Researcher \sim OM(3,1) \\ &Name(r) \sim NamePrior() \\ &Professor(r) \sim Boolean(0.2) \\ &\# Paper(Author = r) \sim \text{if } Professor(r) \text{ then } OM(1.5,0.5) \text{ else } OM(1,0.5) \\ &Title(p) \sim PaperTitlePrior() \\ &CitedPaper(c) \sim UniformChoice(\{Paper \ p\}) \\ &Text(c) \sim HMMGrammar(Name(Author(CitedPaper(c))), Title(CitedPaper(c))) \end{aligned}
```

Making Simple Decisions

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Nontransitive preferences A > B > C > Acan result in irrational behavior: a cycle of exchanges each costing one cent

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

The Utility of Money

Unjustified optimism caused by choosing the best of k options

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Strict dominance (a) Deterministic (b) Uncertain

Stochastic dominance

Cumulative distributions for the frugality of S1 and S2.

A decision network for the airport-siting problem

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

A simplified representation of the airport-siting problem

Making Complex Decisions

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

A dynamic decision network

for a mobile robot with state variables for battery level, charging status, location, and velocity, and action variables for the left and right wheel motors and for charging.

The game of Tetris The DDN for the Tetris MDP

(b)

Next

(a)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

The Value Iteration Algorithm for calculating utilities of states

function VALUE-ITERATION(mdp, ϵ) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a), rewards R(s, a, s'), discount γ ϵ , the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero δ , the maximum relative change in the utility of any state

repeat

 $\begin{array}{l} U \leftarrow U'; \delta \leftarrow 0 \\ \text{for each state } s \text{ in } S \text{ do} \\ U'[s] \leftarrow \max_{a \in A(s)} \ \mathbf{Q}\text{-VALUE}(mdp, s, a, U) \\ \text{if } |U'[s] - U[s]| > \delta \text{ then } \delta \leftarrow |U'[s] - U[s]| \\ \text{until } \delta \leq \epsilon(1 - \gamma)/\gamma \\ \text{return } U \end{array}$

Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

Artificial Intelligence: A Modern Approach (AIMA)

- Artificial Intelligence: A Modern Approach (AIMA)
 - http://aima.cs.berkeley.edu/
- AIMA Python
 - http://aima.cs.berkeley.edu/python/readme.html
 - <u>https://github.com/aimacode/aima-python</u>
- Logic, KB Agent
 - http://aima.cs.berkeley.edu/python/logic.html
- Probability Models (DTAgent)
 - http://aima.cs.berkeley.edu/python/probability.html
- Markov Decision Processes (MDP)
 - <u>http://aima.cs.berkeley.edu/python/mdp.html</u>

Artificial Intelligence: A Modern Approach (AIMA)

Artificial Intelligence: A Modern Approach, 4th US ed.

by Stuart Russell and Peter Norvig

The authoritative, most-used AI textbook, adopted by over 1500 schools.

Table of Contents for the US Edition (or see the Global Edition)

	Preface (pdf); Contents with subsections
	I Artificial Intelligence
	1 Introduction 1
	2 Intelligent Agents 36
	II Problem-solving
	3 Solving Problems by Searching 63
	4 Search in Complex Environments 110
ge	5 Adversarial Search and Games 146
	6 Constraint Satisfaction Problems 180
	III Knowledge, reasoning, and planning
	7 Logical Agents 208
	8 First-Order Logic 251
X	9 Inference in First-Order Logic 280
h 4	10 Knowledge Representation 314
-	11 Automated Planning 344
1	IV Uncertain knowledge and reasoning
	12 Quantifying Uncertainty 385
0.0	13 Probabilistic Reasoning 412
1 1 1 1	14 Probabilistic Reasoning over Time 461
ence	15 Probabilistic Programming 500
oach Anns	16 Making Simple Decisions 528
	17 Making Complex Decisions 562
	18 Multiagent Decision Making 599

US Edition

△ Global Edition

Acknowledgements

Code

Courses

Editions

Errata

Exercises

Instructors Pag

Pseudocode

Reviews

Figures

V Machine Learning

19 Learning from Examples ... 651 20 Learning Probabilistic Models ... 721 21 Deep Learning ... 750 22 Reinforcement Learning ... 789 VI Communicating, perceiving, and acting 23 Natural Language Processing ... 823 24 Deep Learning for Natural Language Processing ... 856 25 Computer Vision ... 881 26 Robotics ... 925 VII Conclusions 27 Philosophy, Ethics, and Safety of AI ... 981 28 The Future of AI ... 1012 Appendix A: Mathematical Background ... 1023 Appendix B: Notes on Languages and Algorithms ... 1030 Bibliography ... 1033 (pdf and LaTeX .bib file and bib data) Index ... 1069 (pdf)

Exercises (website) <u>Figures (pdf)</u> <u>Code (website); Pseudocode (pdf)</u> <u>Covers: US, Global</u>

AIMA Code

AIMA Python

	Public Pull requests 79 O Actions E Projects Wiki	⊙ Watch 337 ▾ ① Security 🗠 In	약 Fork 3.2k ▾ ☆ Star 6.6k ▾
양 master ▾ 양 1 branch ⊙ 0 ⓒ mcventur Fixed bug in treatmen	tags Go to file Ad t of repeated nodes in frontier 61d695b on Dec 5, 202	Id file ▼ Code ▼	About Python implementation of algorithms from Russell And Norvig's "Artificial
 aima-data @ f6cbea6 gui images 	updating submodule (#994) fixed tests (#1191) add perception and tests (#1091)	4 years ago 2 years ago 3 years ago	Intelligence - A Modern Approach"
js notebooks	Added TicTacToe to notebook (#213) Image Rendering problem resolved (#1178)	7 years ago 3 years ago	 ⊙ 337 watching ౪ 3.2k forks
 tests .coveragerc .flake8 	fixed tests (#1191) Added coverage report generation to Travis (#1058) Fix flake8 warnings (#508)	2 years ago 3 years ago 5 years ago	Releases No releases published
 .gitignore .gitmodules .travis.yml 	Reworked PriorityQueue and Added Tests (#1025) Updating Submodule (#647) fixed svm for not posdef kernel matrix, updated .travis.yml w	4 years ago 5 years ago i 2 years ago	Packages No packages published

https://github.com/aimacode/aima-python

Papers with Code State-of-the-Art (SOTA)

Search for papers, code and tasks

🗠 Browse State-of-the-Art

🍠 Follow 💠 Discuss Trends About

Trends About Log In/Register

Browse State-of-the-Art

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

Q

Follow on 🎔 Twitter for updates

Computer Vision

Natural Language Processing

https://paperswithcode.com/sota

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

co python101.ipynb - Colaborator) × +	
← → C 🌢 https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3	☆ ◙ 0 :
CO Apython101.ipynb 5 File Edit View Insert Runtime Tools Help	SHARE A
CODE TEXT A CELL CELL	EDITING
<pre></pre>	÷
[→ 194.87	
<pre>[11] 1 amount = 100 2 interest = 10 #10% = 0.01 * 10 3 years = 7 4 future_value = amount * ((1 + (0.01 * interest)) ** years) 6 print(round(future_value, 2))</pre>	
[→ 194.87	
<pre>[12] 1 # Python Function def 2 def getfv(pv, r, n): 3 fv = pv * ((1 + (r)) ** n) 4 return fv 5 fv = getfv(100, 0.1, 7) 6 print(round(fv, 2))</pre>	
[→ 194.87	
<pre>[13] 1 # Python if else 2 score = 80 3 if score >=60 : 4 print("Pass") 5 else: 6 print_("Fail")</pre>	
[→ Pass	

Summary

- Knowledge and Reasoning
 - Logical Agents
 - First-Order Logic
 - Inference in First-Order Logic
 - Knowledge Representation
 - Knowledge Graph (KG)
- Uncertain Knowledge and Reasoning
 - Quantifying Uncertainty
 - Probabilistic Reasoning
 - Making Complex Decisions

References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Steven D'Ascoli (2022), Artificial Intelligence and Deep Learning with Python: Every Line of Code Explained For Readers New to AI and New to Python, Independently published.
- Nithin Buduma, Nikhil Buduma, Joe Papa (2022), Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 2nd Edition, O'Reilly Media.