Artificial Intelligence

Knowledge，Reasoning and Knowledge Representation

Uncertain Knowledge and Reasoning

1111AI04
MBA，IM，NTPU（M6132）（Fall 2022）
Wed 2，3， 4 （9：10－12：00）（B8F40）

Min－Yuh Day，Ph．D，
 Associate Professor

Institute of Information Management，National Taipei University

Syllabus

Week Date Subject／Topics

1 2022／09／14 Introduction to Artificial Intelligence
2 2022／09／21 Artificial Intelligence and Intelligent Agents
3 2022／09／28 Problem Solving
4 2022／10／05 Knowledge，Reasoning and Knowledge Representation； Uncertain Knowledge and Reasoning

5 2022／10／12 Case Study on Artificial Intelligence I
6 2022／10／19 Machine Learning：Supervised and Unsupervised Learning

Syllabus

Week Date Subject／Topics
7 2022／10／26 The Theory of Learning and Ensemble Learning
8 2022／11／02 Midterm Project Report
9 2022／11／09 Deep Learning and Reinforcement Learning
10 2022／11／16 Deep Learning for Natural Language Processing
11 2022／11／23 Invited Talk：AI for Information Retrieval
12 2022／11／30 Case Study on Artificial Intelligence II

Syllabus

Week Date Subject/Topics
13 2022/12/07 Computer Vision and Robotics
14 2022/12/14 Philosophy and Ethics of AI and the Future of AI
15 2022/12/21 Final Project Report I
16 2022/12/28 Final Project Report II
17 2023/01/04 Self-learning
18 2023/01/11 Self-learning

Knowledge, Reasoning and Knowledge Representation

Uncertain Knowledge and Reasoning

Outline

- Knowledge and Reasoning
- Logical Agents
- First-Order Logic
- Inference in First-Order Logic
- Knowledge Representation
- Knowledge Graph (KG)
- Uncertain Knowledge and Reasoning
- Quantifying Uncertainty
- Probabilistic Reasoning
- Making Complex Decisions

Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Artificial Intelligence: A Modern Approach

1. Artificial Intelligence
2. Problem Solving
3. Knowledge and Reasoning
4. Uncertain Knowledge and Reasoning

5. Machine Learning

6. Communicating, Perceiving, and Acting
7. Philosophy and Ethics of AI

Artificial Intelligence:

 Knowledge and Reasoning
Artificial Intelligence: 3. Knowledge and Reasoning

- Logical Agents
- First-Order Logic
- Inference in First-Order Logic
- Knowledge Representation
- Automated Planning

Intelligent Agents

4 Approaches of AI

$\left.\begin{array}{|c|c|}\hline \text { 2. } & \begin{array}{c}3 . \\ \text { Thinking Humanly: } \\ \text { The Cognitive } \\ \text { Modeling Approach }\end{array}\end{array} \begin{array}{c}\text { Thinking Rationally: } \\ \text { The "Laws of Thought" } \\ \text { Approach }\end{array}\right]$

Reinforcement Learning (DL)

Agent

Environment

Reinforcement Learning (DL)

Reinforcement Learning (DL)

Agents interact with environments through sensors and actuators

Logical Agents

Logical Agents

Knowledge-based Agents KB Agents

Knowledge-based Agent (KB Agent)

function KB-AGENT(percept) returns an action persistent: $K B$, a knowledge base t, a counter, initially 0 , indicating time

Tell($K B$, Make-Percept-Sentence percept, t)) action $\leftarrow \operatorname{AsK}(K B$, MAKE-ACtion-Query $(t))$ Tell($K B$, MaKe-Action-Sentence $($ action, $t)$) $t \leftarrow t+1$

return action

Sentences are physical configurations of the agent

Reasoning is a process of constructing new physical configurations from old ones

Logical reasoning should ensure that the new configurations represent aspects of the world that actually follow from the aspects that the old configurations represent.

A BNF (Backus-Naur Form) grammar of sentences in propositional logic

Sentence \rightarrow AtomicSentence \mid ComplexSentence
AtomicSentence \rightarrow True \mid False $|P| Q|R| \ldots$
ComplexSentence \rightarrow (Sentence)
| \neg Sentence
| Sentence \wedge Sentence
Sentence \vee Sentence
Sentence \Rightarrow Sentence
| Sentence \Leftrightarrow Sentence

Operator Precedence $\quad: \quad \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$

Truth Tables (TT) for the Five Logical Connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

A Truth Table constructed for the knowledge base given in the text

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
\vdots												
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true						
false	true	false	false	false	true	false	true	true	true	true	true	$\underline{\text { true }}$
false	true	false	false	false	true							
false	true	false	false	true	false	false	true	false	false	true	true	false
\vdots												
true	false	true	true	false	true	false						

A Truth-Table (TT) enumeration algorithm for deciding propositional entailment

```
function TT-EnTAILS?(KB,\alpha) returns true or false
    inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
    symbols }\leftarrow\textrm{a}\mathrm{ list of the proposition symbols in KB and }
    return TT-CHECK-ALL(KB, \alpha, symbols, { })
function TT-CHECK-AlL(KB, \alpha, symbols, model) returns true or false
    if EmpTY?(symbols) then
    if PL-TruE?(KB, model) then return PL-TruE?( }\alpha,\mathrm{ model)
    else return true // when KB is false, always return true
    else
        P\leftarrowFIRST(symbols)
        rest }\leftarrow\mathrm{ REST(symbols)
        return(TT-CHECK-ALL(KB, \alpha, rest, model \cup{P=true})
            and
            TT-CHECK-ALL(KB, }\alpha\mathrm{ , rest, model }\cup{P=\mathrm{ false }))
```


Standard Logical Equivalences

The symbols α, β, and γ stand for arbitrary sentences of propositional logic.

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

A grammar for Conjunctive Normal Form (CNF), Horn clauses, and definite clauses

$$
\begin{aligned}
& \text { CNFSentence } \rightarrow \text { Clause }_{1} \wedge \cdots \wedge \text { Clause }_{n} \\
& \text { Clause } \rightarrow \text { Literal }_{1} \vee \cdots \vee \text { Literal }_{m} \\
& \text { Fact } \rightarrow \text { Symbol } \\
& \text { Literal } \rightarrow \text { Symbol } \mid \neg \text { Symbol } \\
& \text { Symbol } \rightarrow P|Q| R \mid \ldots \\
& \text { HornClauseForm } \rightarrow \text { DefiniteClauseForm } \mid \text { GoalClauseForm } \\
& \text { DefiniteClauseForm } \rightarrow \text { Fact } \mid\left(\text { Symbol }_{1} \wedge \cdots \wedge \text { Symbol }_{l}\right) \Rightarrow \text { Symbol } \\
& \text { GoalClauseForm } \rightarrow\left(\text { Symbol }_{1} \wedge \cdots \wedge \text { Symbol }_{l}\right) \Rightarrow \text { False }
\end{aligned}
$$

A simple resolution algorithm for propositional logic

function PL-RESOLUTION $(K B, \alpha)$ returns true or false inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$ new $\leftarrow\}$
while true do
for each pair of clauses C_{i}, C_{j} in clauses do resolvents $\leftarrow \operatorname{PL}-\operatorname{ReSOLVE}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true new \leftarrow new \cup resolvents
if new \subseteq clauses then return false clauses \leftarrow clauses \cup new

The forward-chaining algorithm for propositional logic

function PL-FC-Entails? $(K B, q)$ returns true or false
inputs: $K B$, the knowledge base, a set of propositional definite clauses
q, the query, a proposition symbol
count \leftarrow a table, where count $[c]$ is initially the number of symbols in clause c 's premise inferred \leftarrow a table, where inferred $[s]$ is initially false for all symbols queue \leftarrow a queue of symbols, initially symbols known to be true in $K B$
while queue is not empty do
$p \leftarrow \operatorname{POP}(q u e u e)$
if $p=q$ then return true
if inferred $[p]=$ false then
inferred $[p] \leftarrow$ true
for each clause c in $K B$ where p is in c. PREMISE do
decrement count $[c]$
if count $[c]=0$ then add c. CONCLUSION to queue
return false

A set of Horn clauses

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

(b)

The corresponding AND-OR graph

First-Order Logic

Formal languages and their ontological and epistemological commitments

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in[0,1]$
Fuzzy logic	facts with degree of truth $\in[0,1]$	known interval value

A model containing five objects

two binary relations (brother and on-head), three unary relations (person, king, and crown), and one unary function (left-leg).

The syntax of first-order logic with equality

Some members of the set of all models for a language with two constant symbols, R and J, and one binary relation symbol

Some members of the set of all models for a language with two constant symbols, R and J, and one binary relation symbol, under database semantics

A digital circuit C1, purporting to be a one-bit full adder.

Inference in First-Order Logic

The unification algorithm

function $\operatorname{UNIFY}(x, y, \theta=$ empty $)$ returns a substitution to make x and y identical, or failure
if $\theta=$ failure then return failure
else if $x=y$ then return θ
else if $\operatorname{VARIABLE} ?(x)$ then return $\operatorname{Unify-VAR}(x, y, \theta)$
else if Variable? (y) then return $\operatorname{Unify-\operatorname {Var}(y,x,\theta)}$
else if Compound? (x) and Compound? (y) then
return $\operatorname{Unify}(\operatorname{ArgS}(x), \operatorname{ArgS}(y), \operatorname{Unify}(\operatorname{OP}(x), \operatorname{OP}(y), \theta))$
else if LISt? (x) and List? (y) then
return $\operatorname{UnIFY}(\operatorname{Rest}(x), \operatorname{Rest}(y), \operatorname{UnIFY}(\operatorname{First}(x), \operatorname{FIRST}(y), \theta))$
else return failure
function UNIFY-VAR $(v a r, x, \theta)$ returns a substitution
if $\{$ var $/$ val $\} \in \theta$ for some val then return $\operatorname{UNIFY}($ val, $x, \theta)$
else if $\{x /$ val $\} \in \theta$ for some val then return UNify (var, val, θ)
else if OCCUR-CHECK? (var, x) then return failure
else return add $\{\operatorname{var} / x\}$ to θ

The subsumption lattice whose lowest node is Employs (IBM , Richard)

The subsumption lattice for the sentence Employs (John, John)

(a)

(b)

A conceptually straightforward, but inefficient, forward-chaining algorithm

function FOL-FC-ASK $(K B, \alpha)$ returns a substitution or false
inputs: $K B$, the knowledge base, a set of first-order definite clauses
α, the query, an atomic sentence
while true do
new $\leftarrow\} \quad / /$ The set of new sentences inferred on each iteration
for each rule in $K B$ do
$\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow$ Standardize-VARIABLES $($ rule $)$
for each θ such that $\operatorname{SUBST}\left(\theta, p_{1} \wedge \ldots \wedge p_{n}\right)=\operatorname{Subst}\left(\theta, p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right)$
for some $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$ in $K B$
$q^{\prime} \leftarrow \operatorname{SUBST}(\theta, q)$
if q^{\prime} does not unify with some sentence already in $K B$ or new then add q^{\prime} to new $\phi \leftarrow \operatorname{UNiFY}\left(q^{\prime}, \alpha\right)$ if ϕ is not failure then return ϕ
if $n e w=\{ \}$ then return false
add new to $K B$

The proof tree generated by forward chaining on the crime example

Constraint graph for coloring the map of Australia

(a)

$$
\begin{aligned}
& \text { Diff }(w a, n t) \wedge \text { Diff }(w a, s a) \wedge \\
& \text { Diff }(n t, q) \wedge \text { Diff }(n t, s a) \wedge \\
& \text { Diff }(q, n s w) \wedge \text { Diff }(q, s a) \wedge \\
& \text { Diff }(n s w, v) \wedge \text { Diff }(n s w, \text { sa }) \wedge \\
& \text { Diff }(v, \text { sa }) \Rightarrow \text { Colorable }() \\
& \text { Diff }(\text { Red, Blue }) \quad \text { Diff }(\text { Red, Green }) \\
& \text { Diff }(\text { Green }, \text { Red }) \text { Diff }(\text { Green , Blue }) \\
& \text { Diff }(\text { Blue }, \text { Red }) \quad \text { Diff (Blue, Green })
\end{aligned}
$$

(b)

A simple backward-chaining algorithm for first-order knowledge bases

function FOL-BC-ASK (KB, query) returns a generator of substitutions return $\mathrm{FOL}-\mathrm{BC}-\mathrm{OR}(K B$, query, $\{ \})$
function $\mathrm{FOL}-\mathrm{BC}-\mathrm{OR}(K B$, goal, $\theta)$ returns a substitution
for each rule in Fetch-Rules-For-Goal($K B$, goal) do
$(l h s \Rightarrow r h s) \leftarrow$ STANDARDIZE-VARIABLES $(r u l e)$
for each θ^{\prime} in FOL-BC-AND $(K B$, $l h s$, $\operatorname{UNIFY}(r h s, g o a l, \theta))$ do yield θ^{\prime}
function FOL-BC-AND ($K B$, goals, θ) returns a substitution if $\theta=$ failure then return
else if LENGTH $($ goals $)=0$ then yield θ
else
first, rest $\leftarrow \mathrm{FIRST}($ goals $), \operatorname{REST}($ goals $)$
for each θ^{\prime} in $\operatorname{FOL}-\mathrm{BC}-\mathrm{Or}(K B, \operatorname{Subst}(\theta$, first $), \theta)$ do
for each $\theta^{\prime \prime}$ in FOL-BC- $\operatorname{AND}\left(K B\right.$, rest, $\left.\theta^{\prime}\right)$ do yield $\theta^{\prime \prime}$

Proof tree constructed by backward chaining t o prove that West is a criminal

Pseudocode representing the result of compiling the Append predicate

```
procedure APPEND( ax, y, az, continuation)
    trail \leftarrowGLOBAL-TRAIL-POINTER()
    if }ax=[] \mathrm{ and UNIFY(y,az) then CALL(continuation)
    RESET-TRAIL(trail)
    a,x,z\leftarrowNEW-VARIABLE(), NEW-VARIABLE(), NEW-VARIABLE()
    if UNIFY(ax,[a]+x) and UNIFY( }az,[a|z])\mathrm{ then APPEND(x,y,z, continuation)
```


Finding a path from A to C can lead Prolog into an infinite loop.

(a)

(b)

Proof that a path exists from A to C.

A resolution proof that West is a criminal

A resolution proof that Curiosity killed the cat

Structure of a

completeness proof for resolution

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Some set S^{\prime} of ground instances is unsatisfiable

There is a resolution proof for the contradiction in S^{\prime}

Knowledge
 Representation

The Upper Ontology of the World

Predicates on time intervals

A schematic view of the object
President (USA) for the early years

A semantic network

with four objects (John, Mary, 1, and 2) and four categories Relations are denoted by labeled links

Semantic network

Representation of the logical assertion Fly (Shankar, NewYork, NewDelhi, Yesterday)

The syntax of descriptions in a subset of the CLASSIC language.

```
    Concept }->\mathrm{ Thing | ConceptName
        And(Concept, ...)
        All(RoleName, Concept)
        AtLeast(Integer, RoleName)
        AtMost(Integer, RoleName)
        Fills(RoleName, IndividualName,...)
        SameAs(Path, Path)
        OneOf(IndividualName,...)
        Path }->\mathrm{ [RoleName,...]
ConceptName }->\mathrm{ Adult | Female| Male|...
    RoleName }->\mathrm{ Spouse | Daughter | Son | ...
```


Knowledge Graph (KG)

Knowledge Graph (KG)

- Knowledge Graph (KG)
- A knowledge graph is a multi-relational graph composed of entities and relations, which are regarded as
nodes and different types of edges, respectively (Ji et al., 2021).
- Represents knowledge as concepts (entities) and their relationships (Facts)
- Triple of facts
- SPO: (subject, predicate, object)
- HRT: (head, relation, tail)
- Common Knowledge Graph: DBpedia, YAGO, Wikidata

Knowledge Graph, Facts, Triple, Embedding

- G
- Knowledge graph
- F
- Set of facts
- (h, r, t)
- Triple of head, relation, and tail
- (h, r, t)
- Embedding of head, relation, and tail

Knowledge Representation Factual Triple and Knowledge Graph

- Albert Einstein, winner of the 1921 Nobel prize in physics
- The Nobel Prize in Physics 1921 was awarded to Albert Einstein "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect."

Knowledge
 Graph

Factual Triples in Knowledge Base

$$
(h, r, t)
$$

(Albert Einstein, BornIn, German Empire)
(Albert Einstein, SonOf, Hermann Einstein)
(Albert Einstein, GraduateFrom, University of Zurich)
(Albert Einstein, WinnerOf, Nobel Prize in Physics)
(Albert Einstein, ExpertIn, Physics)
(Nobel Prize in Physics, AwardIn, Physics)
(The theory of relativity, TheoryOf, Physics)
(Albert Einstein, SupervisedBy, Alfred Kleiner)
(Alfred Kleiner, ProfessorOf, University of Zurich)
(The theory of relativity, ProposedBy, Albert Einstein) (Hans Albert Einstein, SonOf, Albert Einstein)

Entities and Relations in Knowledge Graph

(Albert Einstein, WinnerOf, Nobel Prize in Physics)

knowledge base and knowledge graph

Factual triples in knowledge base
Entities and relations in knowledge graph
(Albert Einstein, BornIn, German Empire) (Albert Einstein, SonOf, Hermann Einstein) (Albert Einstein, GraduateFrom, University of Zurich) (Albert Einstein, WinnerOf, Nobel Prize in Physics)
(Albert Einstein, ExpertIn, Physics) (Nobel Prize in Physics, AwardIn, Physics) (The theory of relativity, TheoryOf, Physics)
(Albert Einstein, SupervisedBy, Alfred Kleiner) (Alfred Kleiner, ProfessorOf, University of Zurich) (The theory of relativity, ProposedBy, Albert Einstein) (Hans Albert Einstein, SonOf, Albert Einstein)
(Albert Einstein, WinnerOf, Nobel Prize in Physics)

Categorization of Research on Knowledge Graphs

Knowledge Graph Completion (KGC) Datasets

Knowledge Graph Completion (KGC) Dataset	\#Entity	\#Relation	\#Train	\#Valid	\#Test	Reference
WN18RR	40,943	11	86,835	3,034	3,134	Toutanova \& Chen (2015); Zhang et al. (2020)
FB15k-237	14,541	237	272,115	17,535	20,466	Dettmers et al. (2018); Zhang et al. (2020)
YAGO3-10	123,182	37	$1,079,040$	5,000	5,000	Mahdisoltani et al. (2015); Zhang et al. (2020)

Domain-Specific Knowledge Graph

- Domain-Specific Knowledge Graph
- PubMed Knowledge Graph (PKG)
- Extracting biological entities from 29 million PubMed abstracts
- Lynx: Legal Knowledge Graph for Multilingual Compliance Services
- Legal Knowledge Graph (LKG) integrates and links heterogeneous compliance data sources including legislation, case law, standards and other private contracts.

Lynx: Legal Knowledge Graph for Multilingual Compliance Services

Automated Planning

A PDDL description of an air cargo transportation planning problem

$\operatorname{Init}\left(A t\left(C_{1}, S F O\right) \wedge \operatorname{At}\left(C_{2}, J F K\right) \wedge \operatorname{At}\left(P_{1}, S F O\right) \wedge \operatorname{At}\left(P_{2}, J F K\right)\right.$
$\wedge \operatorname{Cargo}\left(C_{1}\right) \wedge \operatorname{Cargo}\left(C_{2}\right) \wedge \operatorname{Plane}\left(P_{1}\right) \wedge \operatorname{Plane}\left(P_{2}\right)$
$\wedge \operatorname{Airport}(J F K) \wedge \operatorname{Airport}(S F O))$
$\operatorname{Goal}\left(\operatorname{At}\left(C_{1}, J F K\right) \wedge \operatorname{At}\left(C_{2}, S F O\right)\right)$
Action $(\operatorname{Load}(c, p, a)$,
PRECOND: $\operatorname{At}(c, a) \wedge \operatorname{At}(p, a) \wedge \operatorname{Cargo}(c) \wedge \operatorname{Plane}(p) \wedge \operatorname{Airport}(a)$
Effect: $\neg A t(c, a) \wedge \operatorname{In}(c, p))$
Action(Unload (c, p, a),
Precond: $\operatorname{In}(c, p) \wedge \operatorname{At}(p, a) \wedge \operatorname{Cargo}(c) \wedge \operatorname{Plane}(p) \wedge \operatorname{Airport}(a)$
EFFECT: $\operatorname{At}(c, a) \wedge \neg \operatorname{In}(c, p))$
Action(Fly (p, from, to),
Precond: $\operatorname{At}(p$, from $) \wedge \operatorname{Plane}(p) \wedge \operatorname{Airport}($ from $) \wedge \operatorname{Airport}(t o)$
Effect: $\neg A t(p$, from $) \wedge A t(p, t o))$

The simple spare tire problem

```
\(\operatorname{Init}(\) Tire \((\) Flat \() \wedge \operatorname{Tire}(\) Spare \() \wedge\) At (Flat, Axle \() \wedge\) At(Spare, Trunk \())\)
Goal(At(Spare, Axle))
Action(Remove (obj, loc),
    Precond: At (obj, loc)
    Effect: ᄀ At (obj, loc) \(\wedge\) At (obj, Ground))
Action(PutOn (t, Axle),
    Precond: Tire \((t) \wedge A t(t\), Ground \() \wedge \neg A t(\) Flat, Axle \() \wedge \neg A t(\) Spare, Axle \()\)
    Effect: \(\neg A t(t\), Ground \() \wedge \operatorname{At}(t\), Axle \())\)
Action(LeaveOvernight,
    Precond:
    Effect: \(\neg\) At (Spare, Ground) \(\wedge \neg\) At(Spare, Axle) \(\wedge \neg\) At(Spare, Trunk)
        \(\wedge \neg\) At (Flat, Ground \() \wedge \neg\) At (Flat, Axle \() \wedge \neg\) At (Flat, Trunk) \()\)
```


Diagram of the blocks-world problem

Start State

Goal State

A planning problem in the blocks world: building a three-block tower

```
\(\operatorname{Init}(O n(A\), Table \() \wedge O n(B, T a b l e) \wedge O n(C, A)\)
    \(\wedge \operatorname{Block}(A) \wedge \operatorname{Block}(B) \wedge \operatorname{Block}(C) \wedge \operatorname{Clear}(B) \wedge \operatorname{Clear}(C) \wedge \operatorname{Clear}(\) Table \())\)
\(\operatorname{Goal}(O n(A, B) \wedge O n(B, C))\)
Action(Move ( \(b, x, y\) ),
    Precond: On \((b, x) \wedge \operatorname{Clear}(b) \wedge \operatorname{Clear}(y) \wedge \operatorname{Block}(b) \wedge \operatorname{Block}(y) \wedge\)
        \((b \neq x) \wedge(b \neq y) \wedge(x \neq y)\),
    Effect: On \((b, y) \wedge \operatorname{Clear}(x) \wedge \neg \operatorname{On}(b, x) \wedge \neg \operatorname{Clear}(y))\)
Action(MoveToTable (b, \(x\) ),
    Precond: On \((b, x) \wedge \operatorname{Clear}(b) \wedge \operatorname{Block}(b) \wedge \operatorname{Block}(x)\),
    Effect: On \((b\), Table \() \wedge \operatorname{Clear}(x) \wedge \neg O n(b, x))\)
```


Two approaches to searching for a plan (a)

Forward (progression) search
(b) Backward (regression) search

Two state spaces from planning problems with the ignore-delete-lists heuristic

Definitions of possible refinements for two high-level actions

```
Refinement(Go(Home, SFO),
    STEPS: [Drive(Home, SFOLongTermParking),
    Shuttle(SFOLongTermParking, SFO)] )
Refinement(Go(Home, SFO),
    Steps: [Taxi(Home, SFO)] )
Refinement(Navigate \(([a, b],[x, y])\),
    PRECOND: \(a=x \wedge b=y\)
    Steps: [] )
Refinement(Navigate \(([a, b],[x, y])\),
    Precond:Connected \(([a, b],[a-1, b])\)
    Steps: \([\) Left, Navigate \(([a-1, b],[x, y])])\)
Refinement(Navigate \(([a, b],[x, y])\),
    Precond:Connected \(([a, b],[a+1, b])\)
    Steps: \([\operatorname{Right}\), Navigate \(([a+1, b],[x, y])])\)
```


A breadth-first implementation of hierarchical forward planning search

function HIERARCHICAL-SEARCH(problem, hierarchy) returns a solution or failure
frontier \leftarrow a FIFO queue with $[A c t]$ as the only element while true do
if Is-Empty (frontier) then return failure
plan $\leftarrow \operatorname{POP}($ frontier $) \quad / /$ chooses the shallowest plan in frontier
$h l a \leftarrow$ the first HLA in plan, or null if none
prefix,suffix \leftarrow the action subsequences before and after hla in plan
outcome $\leftarrow \operatorname{RESULT}($ problem.INITIAL, prefix)
if hla is null then / so plan is primitive and outcome is its result if problem.Is-GoAL(outcome) then return plan
else for each sequence in REFINEMENTS(hla, outcome, hierarchy) do add APPEND (prefix, sequence, suffix) to frontier

Schematic examples of reachable sets

Goal achievement for high-level plans with approximate descriptions

A hierarchical planning algorithm

```
function ANGELIC-SEARCH(problem, hierarchy, initialPlan) returns solution or fail
    frontier }\leftarrow\mathrm{ a FIFO queue with initialPlan as the only element
    while true do
        if Empty?(frontier) then return fail
        plan \leftarrowPOP(frontier) // chooses the shallowest node in frontier
        if REACH }\mp@subsup{}{}{+}\mathrm{ (problem.Initial, plan) intersects problem.GoAL then
            if plan is primitive then return plan // REACH
            guaranteed }\leftarrow\mp@subsup{\textrm{REACH}}{}{-}(\mathrm{ problem.InitiAL, plan ) }\cap\mathrm{ problem.GoAL
            if guaranteed }\not={}\mathrm{ and MAKING-Progress(plan, initialPlan) then
            finalState }\leftarrow\mathrm{ any element of guaranteed
            return DECOMPOSE(hierarchy, problem.InITIAL, plan, finalState)
            hla}\leftarrow\mathrm{ some HLA in plan
            prefix,suffix \leftarrowt the action subsequences before and after hla in plan
            outcome \leftarrow & RESULT(problem.InITIAL, prefix)
            for each sequence in RefinEmENTS(hla,outcome, hierarchy) do
            frontier }\leftarrow\mathrm{ Insert(APPEND(prefix, sequence, suffix), frontier)
```


A hierarchical planning algorithm Decompose solution

function DECOMPOSE (hierarchy, s_{0}, plan, s_{f}) returns a solution

```
solution }\leftarrow\mathrm{ an empty plan
while plan is not empty do
    action }\leftarrow\mathrm{ REMOVE-LAST(plan)
    si}\leftarrow\mp@code{a state in REACH}\mp@subsup{}{}{-}(\mp@subsup{s}{0}{},\mathrm{ plan ) such that }\mp@subsup{s}{f}{}\in\mp@subsup{\operatorname{REACH}}{}{-}(\mp@subsup{s}{i}{},\mathrm{ action }
    problem}\leftarrow\mathrm{ a problem with INITIAL = si}\mathrm{ and GOAL = sf
    solution }\leftarrow\mathrm{ APPEND(ANGELIC-SEARCH(problem, hierarchy,action), solution)
    sf}\leftarrow\mp@subsup{s}{i}{
return solution
```


At first, the sequence "whole plan" is expected to get the agent from S to G

A job-shop scheduling problem for assembling two cars, with resource constraints

$\begin{aligned} & \text { Jobs }(\{\text { AddEngine } 1 \prec \text { AddWheels } 1 \\ &\text { Ad Inspect1 }\}, \\ & \text { AdEngine } 2 \prec \text { AddWheels2 } \\ &\text { Inspect } 2\})\end{aligned}$

Resources(EngineHoists(1), WheelStations(1), Inspectors(e2), LugNuts(500))
Action(AddEngine1, DURATION:30,
USE:EngineHoists(1))
Action(AddEngine2, Duration:60,
USE:EngineHoists(1))
Action(AddWheels1, Duration:30,
Consume:LugNuts(20), Use:WheelStations(1))
Action(AddWheels2, Duration:15,
Consume:LugNuts(20), Use: WheelStations(1))
Action(Inspect $_{i}$, DURATION:10,
UsE:Inspectors(1))

A representation of the temporal constraints for the job-shop scheduling problem

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

A solution to the

job-shop scheduling problem

Artificial Intelligence: Uncertain Knowledge and Reasoning

Artificial Intelligence:

4. Uncertain Knowledge and Reasoning

- Quantifying Uncertainty
- Probabilistic Reasoning
- Probabilistic Reasoning over Time
- Probabilistic Programming
- Making Simple Decisions
- Making Complex Decisions
- Multiagent Decision Making

Quantifying Uncertainty

DT-Agent
 A Decision-Theoretic Agent that Selects Rational Actions

function DT-AGENT (percept) returns an action persistent: belief_state, probabilistic beliefs about the current state of the world action, the agent's action
update belief_state based on action and percept calculate outcome probabilities for actions, given action descriptions and current belief_state select action with highest expected utility
given probabilities of outcomes and utility information return action

Agent 1 has inconsistent beliefs

Proposition Agent 1's Agent2 Agent1 Agent 1 payoffs for each outcome
 belief bets bets $a, b a, \neg b \neg a, b \neg a, \neg b$

$$
\begin{array}{cccccccc}
a & 0.4 & \$ 4 o n a & \$ 6 \text { on } \sim a & -\$ 6 & -\$ 6 & \$ 4 & \$ 4 \\
b & 0.3 & \$ 3 \text { on } b & \$ 70 n-b & -\$ 7 & \$ 3 & -\$ 7 & \$ 3 \\
a \vee b & 0.8 & \$ 2 \text { on } 7(a \vee b) & \$ 8 \text { on } a \vee b & \$ 2 & \$ 2 & \$ 2 & -\$ 8 \\
& & & & -\$ 11 & -\$ 1 & -\$ 1 & -\$ 1
\end{array}
$$

A full joint distribution for the Toothache, Cavity, Catch world

	toothache		-toothache	
	catch	ratch	catch	רcatch
cavity	0.108	0.012	0.072	0.008
racuity	0.016	0.064	0.144	0.576

Weather and Dental problems are independent

Coin flips are independent

Probabilistic Reasoning

A Simple Bayesian Network

Weather is independent to the other three variables. Toothache and Catch are conditionally independent, given Cavity.

A Typical Bayesian Network

Topology and the Conditional Probability Tables (CPTs)

Conditional Probability Table for P(Fever |Cold, Flu, Malaria)

Cold	Flu	Malaria $P($ fever $\mid \cdot)$	$P(\neg$ fever $\mid \cdot)$	
f	f	f	0.0	1.0
f	f	t	0.9	$\mathbf{0 . 1}$
f	t	f	0.8	$\mathbf{0 . 2}$
f	t	t	0.98	$0.02=0.2 \times 0.1$
t	f	f	0.4	$\mathbf{0 . 6}$
t	f	t	0.94	$0.06=0.6 \times 0.1$
t	t	f	0.88	$0.12=0.6 \times 0.2$
t	t	t	0.988	$0.012=0.6 \times 0.2 \times 0.1$

A Simple Network

with discrete variables (Subsidy and Buys) and continuous variables (Harvest and Cost)

Probability distribution

over Cost as a function of Harvest size

A normal (Gaussian) distribution for the cost threshold

(a)

(b)

Expit and Probit models for the probability of buys given cost

A Bayesian Network

for evaluating car insurance applications

The structure of the expression

The Enumeration Algorithm for Exact Inference in Bayes Nets

function EnUMERATION-ASK $(X, \mathbf{e}, b n)$ returns a distribution over X inputs: X, the query variable
\mathbf{e}, observed values for variables \mathbf{E} $b n$, a Bayes net with variables vars
$\mathbf{Q}(X) \leftarrow$ a distribution over X, initially empty
for each value x_{i} of X do
$\mathbf{Q}\left(x_{i}\right) \leftarrow$ Enumerate-AlL $\left(\right.$ vars, $\left.\mathbf{e}_{x_{i}}\right)$
where $\mathbf{e}_{x_{i}}$ is \mathbf{e} extended with $X=x_{i}$
return Normalize $(\mathbf{Q}(X))$
function EnUMERATE-ALL(vars, e) returns a real number
if Empty? (vars) then return 1.0
$V \leftarrow \mathrm{FIRST}($ vars $)$
if V is an evidence variable with value v in \mathbf{e}
then return $P(v \mid$ parents $(V)) \times$ Enumerate-All(Rest(vars), e)
else return $\sum_{v} P(v \mid \operatorname{parents}(V)) \times$ Enumerate-All(Rest(vars), $\left.\mathbf{e}_{v}\right)$
where \mathbf{e}_{v} is \mathbf{e} extended with $V=v$

Pointwise Multiplication $\mathrm{f}(X, Y) \times \mathrm{g}(Y, Z)=\mathrm{h}(X, Y, Z)$

X	Y	$\mathbf{f}(X, Y)$	Y	Z	$\mathbf{g}(Y, Z)$	X	Y	Z	$\mathbf{h}(X, Y, Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2=.06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8=.24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6=.42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4=.28$
						f	t	t	$.9 \times .2=.18$
						f	t	f	$.9 \times .8=.72$
						f	f	t	$.1 \times .6=.06$
						f	f	$.1 \times .4=.04$	

The Variable Elimination Algorithm for Exact Inference in Bayes Nets

function ELIMINATION- $\operatorname{AsK}(X, \mathbf{e}, b n)$ returns a distribution over X inputs: X, the query variable
\mathbf{e}, observed values for variables \mathbf{E}
$b n$, a Bayesian network with variables vars
factors $\leftarrow[]$
for each V in ORDER(vars) do
factors $\leftarrow[\operatorname{MAKE}-\mathrm{FACTOR}(V, \mathbf{e})]+$ factors
if V is a hidden variable then factors \leftarrow Sum-Out (V, factors)
return Normalize(Pointwise-Product(factors))

Bayes Net Encoding

of the 3-CNF (Conjunctive Normal Form) Sentence $(W \vee X V Y) \wedge(\neg W \vee Y V Z) \wedge(X \vee Y \vee \neg Z)$

Multiply Connected Network

(b) A clustered equivalent

A Sampling Algorithm that generates events from a Bayesian network

function PRIIoR-SAMPLE($b n$) returns an event sampled from the prior specified by $b n$ inputs: bn, a Bayesian network specifying joint distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
$\mathbf{x} \leftarrow$ an event with n elements
for each variable X_{i} in X_{1}, \ldots, X_{n} do
$\mathbf{x}[i] \leftarrow \operatorname{arandom}$ sample from $\mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
return x

The Rejection-Sampling Algorithm

for answering queries given evidence in a Bayesian network

function REJECTION-SAMPLING $(X, \mathbf{e}, b n, N)$ returns an estimate of $\mathbf{P}(X \mid \mathbf{e})$ inputs: X, the query variable
\mathbf{e}, observed values for variables \mathbf{E}
$b n$, a Bayesian network
N, the total number of samples to be generated
local variables: \mathbf{C}, a vector of counts for each value of X, initially zero
for $j=1$ to N do
$\mathbf{x} \leftarrow \operatorname{PRIOR}-\operatorname{SAMPLE}(b n)$
if \mathbf{x} is consistent with \mathbf{e} then
$\mathbf{C}[j] \leftarrow \mathbf{C}[j]+1$ where x_{j} is the value of X in \mathbf{x}
return Normalize(\mathbf{C})

The Likelihood-Weighting Algorithm for inference in Bayesian networks

function Likelihood-Weighting $(X, \mathbf{e}, b n, N)$ returns an estimate of $\mathbf{P}(X \mid \mathbf{e})$ inputs: X, the query variable
\mathbf{e}, observed values for variables \mathbf{E}
$b n$, a Bayesian network specifying joint distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
N, the total number of samples to be generated
local variables: \mathbf{W}, a vector of weighted counts for each value of X, initially zero

$$
\text { for } j=1 \text { to } N \text { do }
$$

$\mathbf{x}, w \leftarrow$ WEIGHTED-SAMPLE $(b n, \mathbf{e})$
$\mathbf{W}[j] \leftarrow \mathbf{W}[j]+w$ where x_{j} is the value of X in \mathbf{x} return $\operatorname{Normalize}(\mathbf{W})$
function Weighted-SAMPLE $(b n, \mathbf{e})$ returns an event and a weight
$w \leftarrow 1 ; \mathbf{x} \leftarrow$ an event with n elements, with values fixed from \mathbf{e}
for $i=1$ to n do
if X_{i} is an evidence variable with value $x_{i j}$ in \mathbf{e}
then $w \leftarrow w \times P\left(X_{i}=x_{i j} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
else $\mathbf{x}[i] \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
return \mathbf{x}, w

Performance of rejection sampling and likelihood weighting on the insurance network

The Gibbs Sampling Algorithm for approximate inference in Bayes nets

function $\operatorname{Gibbs-Ask}(X, \mathbf{e}, b n, N)$ returns an estimate of $\mathbf{P}(X \mid \mathbf{e})$
local variables: \mathbf{C}, a vector of counts for each value of X, initially zero
\mathbf{Z}, the nonevidence variables in $b n$
\mathbf{x}, the current state of the network, initialized from \mathbf{e}
initialize \mathbf{x} with random values for the variables in \mathbf{Z} for $k=1$ to N do
choose any variable Z_{i} from \mathbf{Z} according to any distribution $\rho(i)$
set the value of Z_{i} in \mathbf{x} by sampling from $\mathbf{P}\left(Z_{i} \mid m b\left(Z_{i}\right)\right)$
$\mathbf{C}[j] \leftarrow \mathbf{C}[j]+1$ where x_{j} is the value of X in \mathbf{x}
return Normalize(\mathbf{C})

The States and Transition Probabilities of the Markov Chain

for the query $\mathbf{P}($ Rain I Sprinkler $=$ true, WetGrass $=$ true $)$

(a)

(b)

Transition Probabilities
when the CPT for Rain constrains it to have the same value as Cloudy

Performance of Gibbs sampling compared to likelihood weighting on the car insurance network

(a)
for the standard query on PropertyCost

(b)
for the case where the output variables are observed and Age is the query variable

A Causal Bayesian Network

representing cause-effect relations among five variables

The network after performing the action "turn Sprinkler on."

Probabilistic

 Reasoning over Time
Bayesian network structure

corresponding to a First-order Markov Process

 with state defined by the variables $X t$.

Bayesian Network Structure and Conditional Distributions describing the umbrella world

Smoothing computes $P\left(X_{k} \mid e_{1: t}\right)$

 the posterior distribution of the state at some past time k given a complete sequence of observations from 1 to t .

The Forward-Backward Algorithm for Smoothing

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps $1, \ldots, t$
prior, the prior distribution on the initial state, $\mathbf{P}\left(\mathbf{X}_{0}\right)$
local variables: $\mathbf{f v}$, a vector of forward messages for steps $0, \ldots, t$
b, a representation of the backward message, initially all 1 s
$\mathbf{s v}$, a vector of smoothed estimates for steps $1, \ldots, t$
$\mathbf{f v}[0] \leftarrow$ prior
for $i=1$ to t do
$\mathbf{f v}[i] \leftarrow \operatorname{FORWARD}(\mathbf{f v}[i-1], \mathbf{e v}[i])$
for $i=t$ down to 1 do
$\mathbf{s v}[i] \leftarrow \operatorname{NORMALIZE}(\mathbf{f v}[i] \times \mathbf{b})$
$\mathbf{b} \leftarrow \operatorname{BACKWARD}(\mathbf{b}, \mathbf{e v}[i])$
return sv

Possible state sequences for Rain $_{t}$ can

be viewed as paths through a graph of the possible states
at each time step
(a)

Umbrella ${ }_{t}$
true true
false
true
true

$\mathbf{m}_{1: 0}$
$\mathbf{m}_{1: 1}$
$\mathbf{m}_{1: 2}$
$\mathbf{m}_{1: 3}$
$\mathbf{m}_{1: 4}$
$\mathbf{m}_{1: 5}$
Operation of the Viterbi algorithm for the umbrella observation sequence [true, true, false, true, true]

Algorithm for Smoothing with a Fixed Time Lag of d Step

function Fixed-Lag-Smoothing $\left(e_{t}, h m m, d\right)$ returns a distribution over \mathbf{X}_{t-d}
inputs: e_{t}, the current evidence for time step t
$h m m$, a hidden Markov model with $S \times S$ transition matrix \mathbf{T} d, the length of the lag for smoothing
persistent: t, the current time, initially 1
\mathbf{f}, the forward message $\mathbf{P}\left(X_{t} \mid e_{1: t}\right)$, initially $h m m$.Prior
B, the d-step backward transformation matrix, initially the identity matrix
$e_{t-d: t}$, double-ended list of evidence from $t-d$ to t, initially empty
local variables: $\mathbf{O}_{t-d}, \mathbf{O}_{t}$, diagonal matrices containing the sensor model information
add e_{t} to the end of $e_{t-d: t}$
$\mathbf{O}_{t} \leftarrow$ diagonal matrix containing $\mathbf{P}\left(e_{t} \mid X_{t}\right)$
if $t>d$ then
$\mathbf{f} \leftarrow \operatorname{FORWARD}\left(\mathbf{f}, e_{t-d}\right)$
remove e_{t-d-1} from the beginning of $e_{t-d: t}$
$\mathbf{O}_{t-d} \leftarrow$ diagonal matrix containing $\mathbf{P}\left(e_{t-d} \mid X_{t-d}\right)$
$\mathbf{B} \leftarrow \mathbf{O}_{t-d}^{-1} \mathbf{T}^{-1} \mathbf{B T O}_{t}$
else $\mathbf{B} \leftarrow \mathbf{B T O}_{t}$
$t \leftarrow t+1$
if $t>d+1$ then return $\operatorname{Normalize}(\mathbf{f} \times$ B1) else return null

Specification of the prior, transition model, and sensor model for the umbrella DBN

A DBN fragment

the sensor status variable required for modeling persistent failure of the battery sensor

B_{0}	$P\left(B_{1}\right)$
t	1.000
f	0.001

(a)

Unrolling a

Dynamic Bayesian Network

The Particle Filtering Algorithm

function Particle-Filtering $(\mathbf{e}, N, d b n)$ returns a set of samples for the next time step inputs: e, the new incoming evidence
N, the number of samples to be maintained
$d b n$, a DBN defined by $\mathbf{P}\left(\mathbf{X}_{0}\right), \mathbf{P}\left(\mathbf{X}_{1} \mid \mathbf{X}_{0}\right)$, and $\mathbf{P}\left(\mathbf{E}_{1} \mid \mathbf{X}_{1}\right)$
persistent: S, a vector of samples of size N, initially generated from $\mathbf{P}\left(\mathbf{X}_{0}\right)$ local variables: W, a vector of weights of size N

$$
\begin{array}{ll}
\text { for } i=1 \text { to } N \text { do } & \\
& S[i] \leftarrow \operatorname{sample} \text { from } \mathbf{P}\left(\mathbf{X}_{1} \mid \mathbf{X}_{0}=S[i]\right) \\
& \text { // step 1 } \\
W[i] \leftarrow \mathbf{P}\left(\mathbf{e} \mid \mathbf{X}_{1}=S[i]\right) & \text { //step } 2
\end{array}
$$

$S \leftarrow$ Weighted-Sample-With-Replacement $(N, S, W) \quad / /$ step 3 return S

The Particle Filtering Update Cycle for the Umbrella DBN

(a) Propagate

(b) Weight

Rain $_{t+1}$

(c) Resample

A Dynamic Bayes Net

for simultaneous localization and mapping in the stochastic-dirt vacuum world

Probabilistic Programming

Possible Worlds

for a language with two constant symbols, R and J

Bayes Net for a Single customer C1

recommending a single book B1. Honest(C1) is Boolean

Bayes net with two customers and two books

Bayes Net

for the book recommendation when Author(B2) is unknown

One particular world for the book recommendation OUPM

Variable	Value	Probability
\#Customer	2	0.3333
\#Book	3	0.3333
Honest $_{\langle\text {Customer, ,1] }}$	true	0.99
Honest ${ }_{\text {(Customer, ,2) }}$	false	0.01
Kindness \langle Customer, ,1>	4	0.3
Kindness CCustomer, ,2) $^{\text {, }}$	1	0.1
Quality ${ }_{\text {(Book, ,1> }}$	1	0.05
Quality ${ }_{\text {(Book, ,2> }}$	3	0.4
Quality ${ }_{\text {(Book, ,3> }}$	5	0.15
\#LoginID \langle Owner, \langle Customer, ,1>>	1	1.0
\#LoginID \langle Owner, <Customer, ,2〉\}	2	0.25
Recommendation $\left\langle\right.$ LoginID, $\left\langle\right.$ Owner, $\langle\text { Customer, ,1>>,1\}, } \text { Book, }, 1\rangle^{\text {, }}$	2	0.5
Recommendation $\left\langle\right.$ LoginID, $\left\langle\right.$ Owner, $\langle\text { Customer, ,1>>,1), } \text { Book, }, 2\rangle^{\text {, }}$	4	0.5
Recommendation $\left\langle\right.$ LoginID, $\left\langle\right.$ Owner, $\langle\text { Customer, ,1>>,1\}, } \text { Book, }, 3\rangle^{\text {R }}$	5	0.5
Recommendation $\left\langle\right.$ LoginID, $\left\langle\right.$ Owner, $\langle\text { Customer, ,2\}>,1\}, } \text { Book, }, 1\rangle^{\text {, }}$	5	0.4
Recommendation $\left\langle\right.$ LoginID, $\left\langle\right.$ Owner, $\langle\text { Customer, ,2\}>,1\}, } \text { Book, }, 2\rangle^{\text {, }}$	5	0.4
Recommendation $\left\langle\right.$ LoginID, $\left\langle\right.$ Owner, $\langle\text { Customer, ,2\}>,1\}, } \text { Book, }, 3\rangle^{\text {, }}$	1	0.4
Recommendation ${ }_{\text {LooginID, },\langle\text { Owner, }\langle\text { Customer, ,2\}}\rangle, 2\rangle,\langle\text { Book, }, 1\rangle}$	5	0.4
	5	0.4
Recommendation $\left\langle\right.$ LoginID, $\left\langle\right.$ Owner, $\langle\text { Customer, ,2ो>,2), } \text { Book, }, 3\rangle^{\text {a }}$	1	0.4

An OUPM for

Citation Information Extraction

```
type Researcher, Paper, Citation
random String Name(Researcher)
random String Title(Paper)
random Paper PubCited(Citation)
random String Text(Citation)
random Boolean Professor(Researcher)
origin Researcher Author(Paper)
#Researcher ~ OM(3,1)
Name(r) ~ NamePrior()
Professor(r) ~ Boolean(0.2)
#Paper (Author =r) ~ if Professor (r) then OM (1.5,0.5) else OM (1,0.5)
Title(p) ~ PaperTitlePrior()
CitedPaper(c) ~ UniformChoice({Paper p})
Text(c) ~ HMMGrammar(Name(Author(CitedPaper(c))),Title(CitedPaper(c)))
```


Making Simple
 Decisions

Nontransitive preferences $A>B>C>A$

can result in irrational behavior:
a cycle of exchanges each costing one cent

(a)

is equivalent to

(b)

The decomposability axiom

The Utility of Money

(a)

(b)

Unjustified optimism

caused by choosing the best of k options

Strict dominance

(a) Deterministic (b) Uncertain

(a)

(b)

Stochastic dominance

A decision network for the airport-siting problem

A simplified representation of the airport-siting problem

Making
 Complex Decisions

A dynamic decision network

for a mobile robot with state variables for battery level, charging status, location, and velocity, and action variables for the left and right wheel motors and for charging.

The game of Tetris The DDN for the Tetris MDP

(a)

(b)

The Value Iteration Algorithm for calculating utilities of states

function VALUE-ITERATION $(m d p, \epsilon)$ returns a utility function inputs: $m d p$, an MDP with states S, actions $A(s)$, transition model $P\left(s^{\prime} \mid s, a\right)$, rewards $R\left(s, a, s^{\prime}\right)$, discount γ
ϵ, the maximum error allowed in the utility of any state
local variables: U, U^{\prime}, vectors of utilities for states in S, initially zero δ, the maximum relative change in the utility of any state
repeat
$U \leftarrow U^{\prime} ; \delta \leftarrow 0$
for each state s in S do
$U^{\prime}[s] \leftarrow \max _{a \in A(s)} \operatorname{Q-VALUE}(m d p, s, a, U)$
if $\left|U^{\prime}[s]-U[s]\right|>\delta$ then $\delta \leftarrow\left|U^{\prime}[s]-U[s]\right|$
until $\delta \leq \epsilon(1-\gamma) / \gamma$
return U

Stuart Russell and Peter Norvig (2020),

Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Artificial Intelligence: A Modern Approach (AIMA)

- Artificial Intelligence: A Modern Approach (AIMA)
- http://aima.cs.berkeley.edu/
- AIMA Python
- http://aima.cs.berkeley.edu/python/readme.html
- https://github.com/aimacode/aima-python
- Logic, KB Agent
- http://aima.cs.berkeley.edu/python/logic.html
- Probability Models (DTAgent)
- http://aima.cs.berkeley.edu/python/probability.html
- Markov Decision Processes (MDP)
- http://aima.cs.berkeley.edu/python/mdp.html

Artificial Intelligence: A Modern Approach (AIMA)

Artificial Intelligence: A Modern Approach, 4th US ed.

by Stuart Russell and Peter Norvig

The authoritative, most-used AI textbook, adopted by over 1500 schools.
Table of Contents for the US Edition (or see the Global Edition)

Preface (pdf); Contents with subsections

I Artificial Intelligence

1 Introduction ... 1
2 Intelligent Agents ... 36

II Problem-solving

3 Solving Problems by Searching ... 63
4 Search in Complex Environments ... 110
5 Adversarial Search and Games ... 146
6 Constraint Satisfaction Problems ... 180
III Knowledge, reasoning, and planning
7 Logical Agents ... 208
8 First-Order Logic ... 251
9 Inference in First-Order Logic ... 280
10 Knowledge Representation ... 314
11 Automated Planning ... 344
IV Uncertain knowledge and reasoning
12 Quantifying Uncertainty ... 385
13 Probabilistic Reasoning ... 412
14 Probabilistic Reasoning over Time ... 461
15 Probabilistic Programming ... 500
16 Making Simple Decisions ... 528
17 Making Complex Decisions ... 562
18 Multiagent Decision Making ... 599

V Machine Learning

19 Learning from Examples ... 651
20 Learning Probabilistic Models ... 721
21 Deep Learning ... 750
22 Reinforcement Learning ... 789
VI Communicating, perceiving, and acting
23 Natural Language Processing ... 823
24 Deep Learning for Natural Language Processing ... 856
25 Computer Vision ... 881
26 Robotics ... 925

VII Conclusions

27 Philosophy, Ethics, and Safety of AI ... 98
28 The Future of AI ... 1012
Appendix A: Mathematical Background ... 1023
Appendix B: Notes on Languages and Algorithms ... 1030
Bibliography ... 1033 (pdf and LaTeX .bib file and bib data)
Index ... 1069 (pdf)
Exercises (website)
Figures (pdf)
Code (website); Pseudocode (pdf)
Covers: US, Global

AIMA Code

aimacode
Code for the book "Artificial Intelligence: A Modern Approach"
R2 358 followers \odot Berkeley, CA \mathcal{C} http://aima.cs.berkeley.edu peter@norvig.com

๑ Overview
R Repositories 13 13
Projects
© Packages
R People

Popular repositories

aima-python
Python implementation of algorithms from Russell And Norvig's
"Artificial Intelligence - A Modern Approach"

Jupyter Notebook | Jublic |
| :--- |
| U.6k |
| 3.2 k |

aima-pseudocode	Public
Pseudocode descriptions of the algorithms from Russell And	
Norvig's "Artificial Intelligence - A Modern Approach"	
§ 740	\& 386

aima-javascript Public	aima-lisp Public
Javascript visualization of algorithms from Russell And Norvig's "Artificial Intelligence - A Modern Approach"	Common Lisp implementation of algorithms from Russell And Norvig's "Artificial Intelligence - A Modern Approach"
JavaScript $\begin{gathered} \\ 495 \\ \text { ¢\% }\end{gathered}$	Common Lisp $\widehat{342}$ ย๊95

aima-java

Java implementation of algorithms from Russell And Norvig's
"Artificial Intelligence - A Modern Approach"

- Java § 1.4k ย゚ 767
aima-exercises Public
Exercises for the book Artificial Intelligence: A Modern Approach
- HTML 611 ย゚353

You can now follow organizations

Organization activity like new
discussions, sponsorships, and repositories will appear in your dashboard feed.

OK, got it!

members. You must be a member to see who's a part of this organization.

Top languages

JavaScript Python Java
Common Lisp - Scala

Report abuse

AIMA Python

日 aimacode／aima－python Public

〇 Watch $337 \rightarrow$ ๒ Fork $3.2 \mathrm{k} \rightarrow$ Star 6.6 k －
＜＞Code
\odot Issues
120
\＄\％Pull requests
79
（－）ActionsProjects
W Wiki
（1）Security $\underset{\sim}{\sim}$ Insights

About

Python implementation of algorithms from Russell And Norvig＇s＂Artificial Intelligence－A Modern Approach＂

凹 Readme
$\Delta 18$ MIT license
© 6.6 k stars
－ 337 watching
ย 3.2 k forks

Releases

No releases published

Packages

No packages published

Papers with Code State－of－the－Art（SOTA）

Browse State－of－the－Art

느 1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code
Follow on Twitter for updates

Computer Vision
Semantic
Segmentation
上ュ 33 leaderboards
667 papers with code

> Classification
> ~ 52 leaderboards
> 564 papers with code

－See all 707 tasks

Natural Language Processing

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMaf2RkCrT

```
co python101.ipynb - Colaboraton }\times\quad
```

$\leftarrow \rightarrow \mathrm{C}$. https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ12TunjMqf2RkCrT?authuser=2\#scroll|o=wsh36fLxDKC3

Summary

- Knowledge and Reasoning
- Logical Agents
- First-Order Logic
- Inference in First-Order Logic
- Knowledge Representation
- Knowledge Graph (KG)
- Uncertain Knowledge and Reasoning
- Quantifying Uncertainty
- Probabilistic Reasoning
- Making Complex Decisions

References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Steven D'Ascoli (2022), Artificial Intelligence and Deep Learning with Python: Every Line of Code Explained For Readers New to AI and New to Python, Independently published.
- Nithin Buduma, Nikhil Buduma, Joe Papa (2022), Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 2nd Edition, O'Reilly Media.

