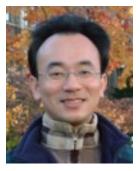
Artificial Intelligence

Deep Learning and Reinforcement Learning

1111AI07 MBA, IM, NTPU (M6132) (Fall 2022) Wed 2, 3, 4 (9:10-12:00) (B8F40)



Min-Yuh Day, Ph.D, Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

Syllabus

Week Date Subject/Topics

- 1 2022/09/14 Introduction to Artificial Intelligence
- 2 2022/09/21 Artificial Intelligence and Intelligent Agents
- 3 2022/09/28 Problem Solving
- 4 2022/10/05 Knowledge, Reasoning and Knowledge Representation; Uncertain Knowledge and Reasoning
- 5 2022/10/12 Case Study on Artificial Intelligence I
- 6 2022/10/19 Machine Learning: Supervised and Unsupervised Learning

Syllabus

Week Date Subject/Topics

- 7 2022/10/26 The Theory of Learning and Ensemble Learning
- 8 2022/11/02 Midterm Project Report
- 9 2022/11/09 Deep Learning and Reinforcement Learning
- 10 2022/11/16 Deep Learning for Natural Language Processing
- 11 2022/11/23 Invited Talk: AI for Information Retrieval
- 12 2022/11/30 Case Study on Artificial Intelligence II

Syllabus

Week Date Subject/Topics

- 13 2022/12/07 Computer Vision and Robotics
- 14 2022/12/14 Philosophy and Ethics of AI and the Future of AI
- 15 2022/12/21 Final Project Report I
- 16 2022/12/28 Final Project Report II
- 17 2023/01/04 Self-learning
- 18 2023/01/11 Self-learning

Deep Learning and Reinforcement Learning

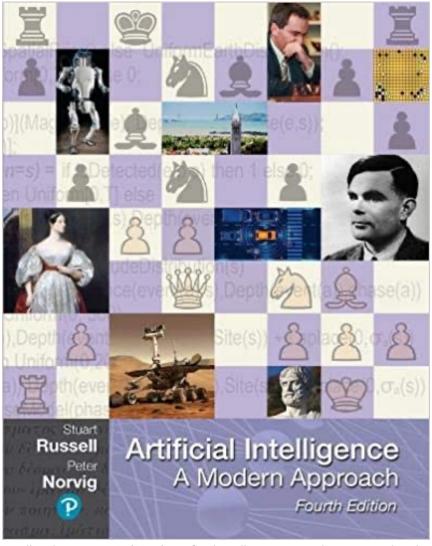
Outline

- Deep Learning
 - Neural Networks (NN)
 - Convolutional Neural Networks (CNN)
 - Recurrent Neural Networks (RNN)
- Reinforcement Learning (RL)
 - Markov Decision Processes (MDP)
- Deep Reinforcement Learning (DRL) Algorithms
 - SARSA
 - Q-Learning
 - DQN
 - A3C
 - Rainbow

Stuart Russell and Peter Norvig (2020),

Artificial Intelligence: A Modern Approach,

4th Edition, Pearson



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: A Modern Approach

- 1. Artificial Intelligence
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- 5. Machine Learning
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of Al

Artificial Intelligence: Machine Learning

Artificial Intelligence: 5. Machine Learning

- Learning from Examples
- Learning Probabilistic Models
- Deep Learning
- Reinforcement Learning

Artificial Intelligence: Reinforcement Learning

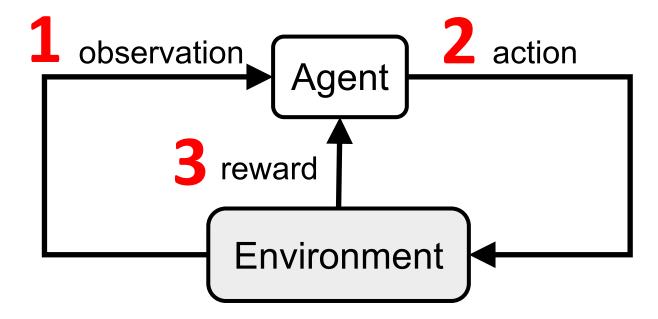
- Learning from Rewards
- Passive Reinforcement Learning
- Active Reinforcement Learning
- Generalization in Reinforcement Learning
- Policy Search
- Apprenticeship and Inverse Reinforcement Learning
- Applications of Reinforcement Learning

Reinforcement Learning (DL)

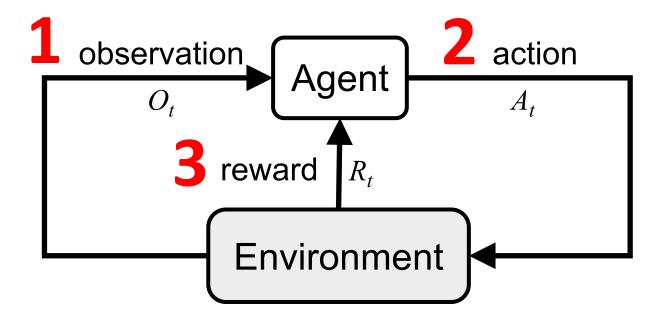
Agent

Environment

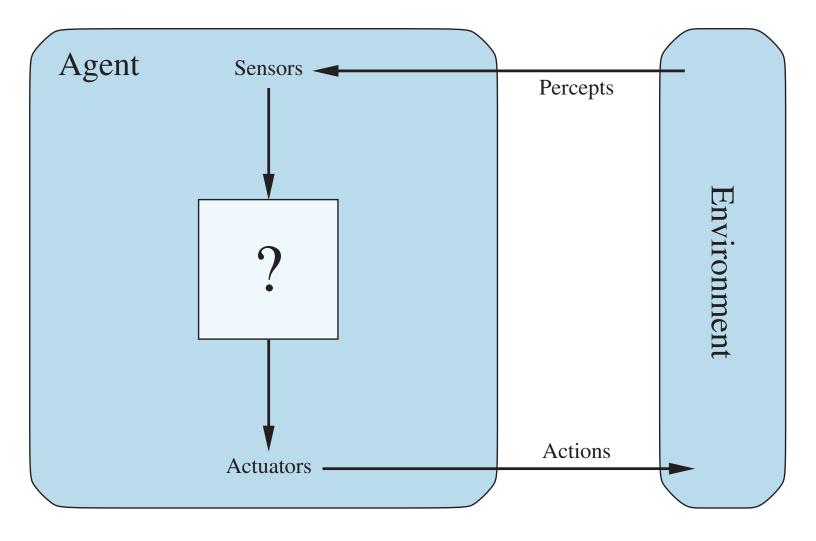
Reinforcement Learning (DL)



Reinforcement Learning (DL)



Agents interact with environments through sensors and actuators

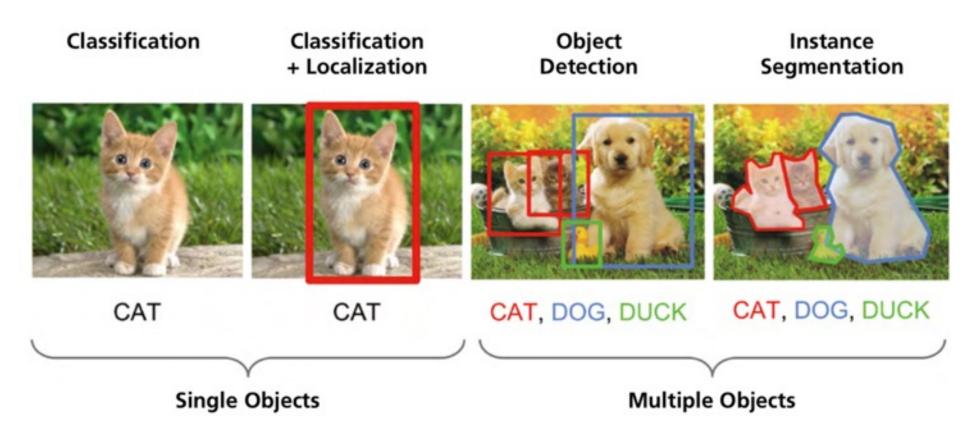


Al Acting Humanly: The Turing Test Approach

(Alan Turing, 1950)

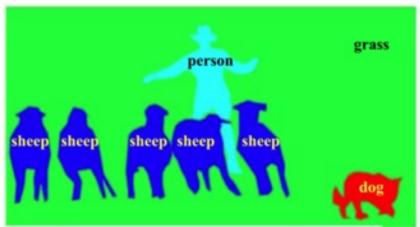
- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)
 - Deep Learning (DL)
- Computer Vision (Image, Video)
- Natural Language Processing (NLP)
- Robotics

Computer Vision: Image Classification, Object Detection, Object Instance Segmentation

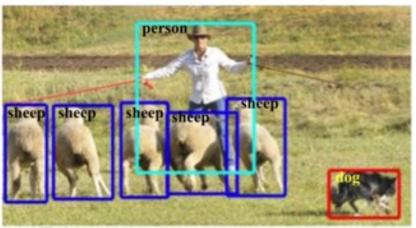


Computer Vision: Object Detection

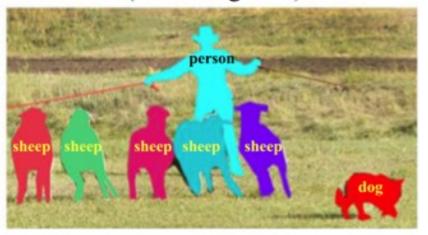
(a) Object Classification



(c) Semantic Segmentation

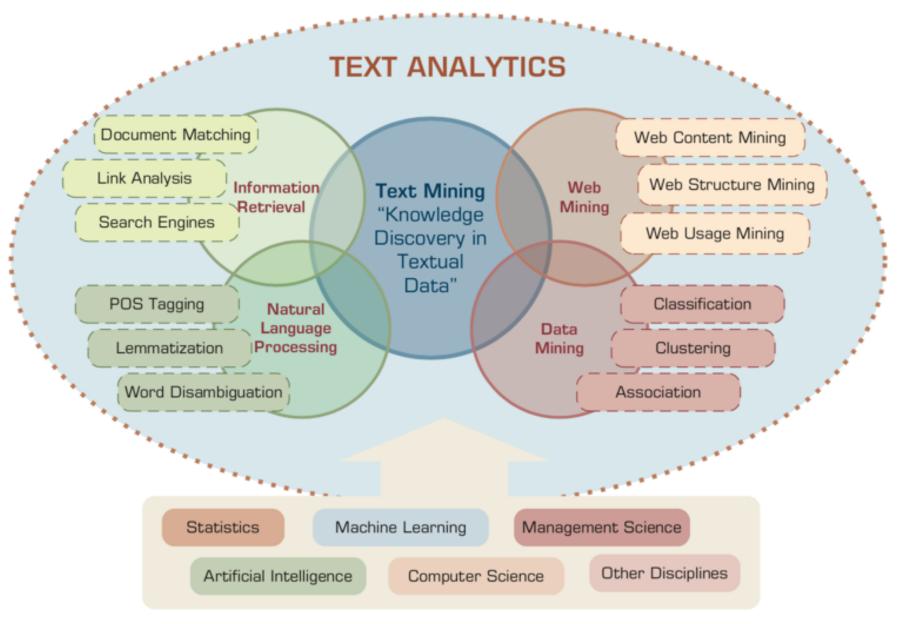


(b) Generic Object Detection (Bounding Box)



(d) Object Instance Segmetation

Text Analytics and Text Mining



Deep learning for financial applications: **A survey Applied Soft Computing (2020)**

Source:

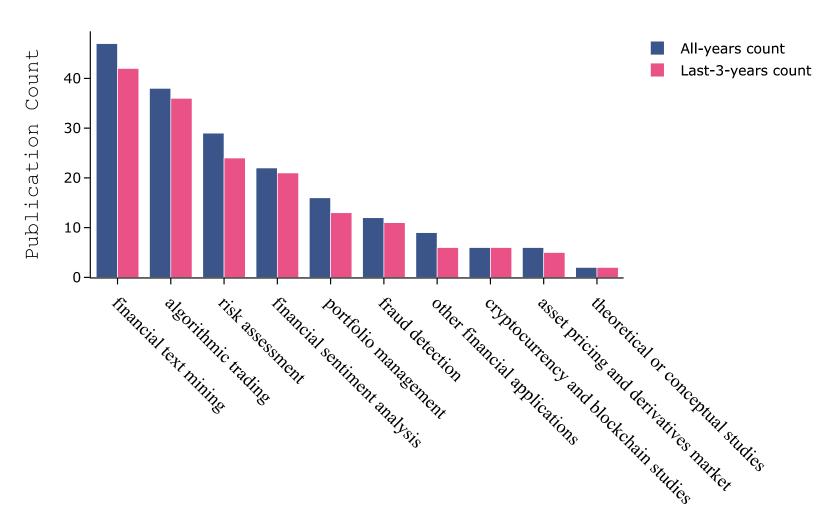
Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey."

Applied Soft Computing (2020): 106384.

Financial time series forecasting with deep learning: A systematic literature review: 2005-2019 **Applied Soft Computing (2020)**

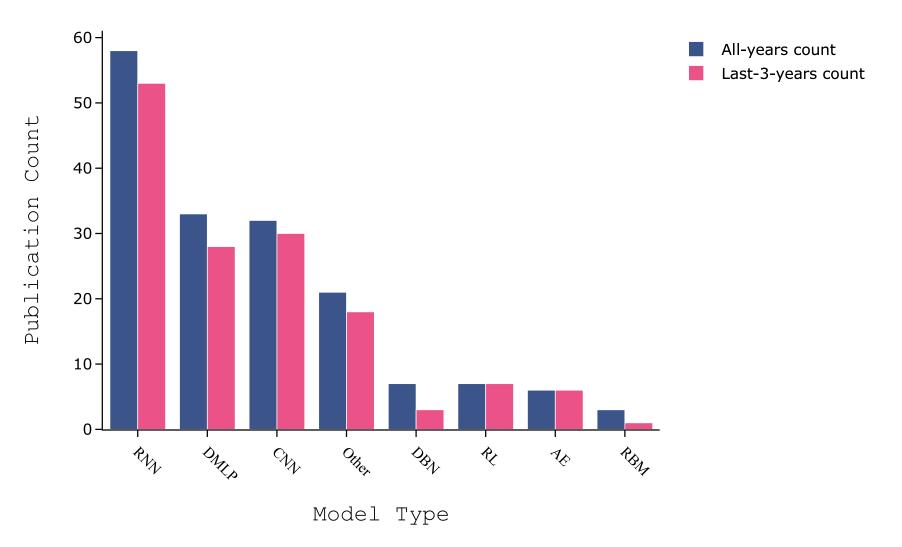
Source:

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

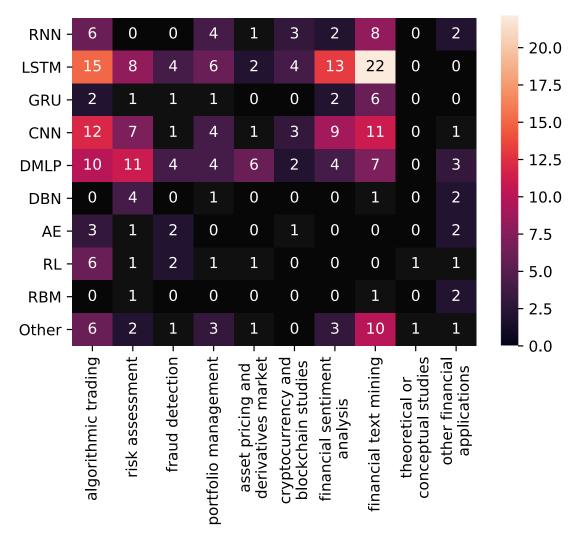


Topic Name

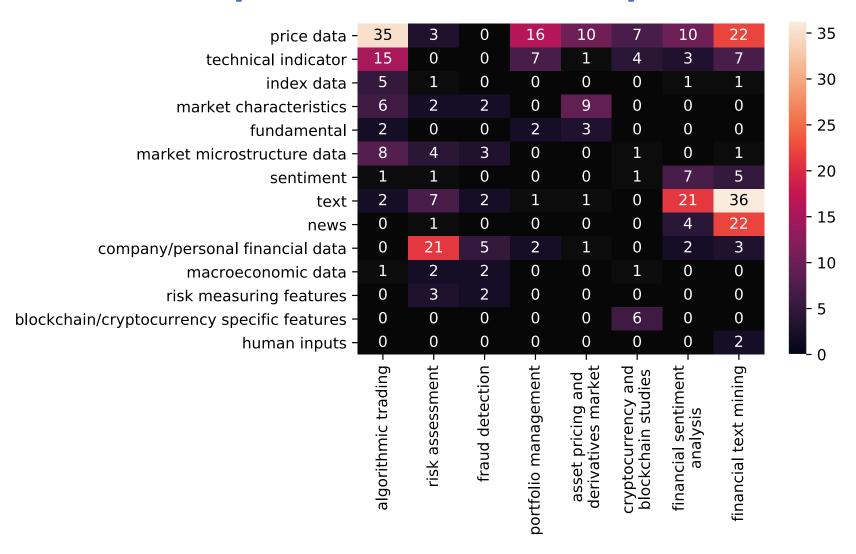
Deep learning for financial applications: Deep Learning Models



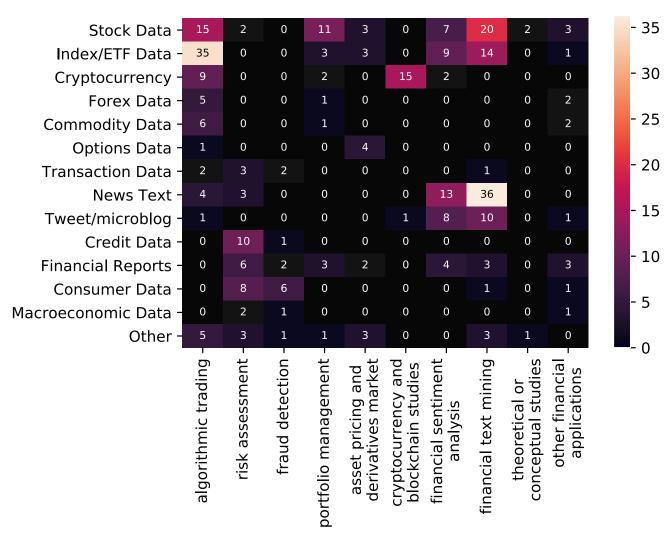
Deep learning for financial applications: Topic-Model Heatmap



Deep learning for financial applications: Topic-Feature Heatmap



Deep learning for financia applications: Topic-Dataset Heatmap



Algo-trading applications embedded with time series forecasting models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[33]	GarantiBank in BIST, Turkey	2016	OCHLV, Spread, Volatility, Turnover, etc.	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, Correlation R-square	Spark
[34]	CSI300, Nifty50, HSI, Nikkei 225, S&P500, DJIA	2010–2016	OCHLV, Technical Indicators	WT, Stacked autoencoders, LSTM	MAPE, Correlation coefficient, THEIL-U	-
[35]	Chinese Stocks	2007–2017	OCHLV	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[36]	50 stocks from NYSE	2007-2016	Price data	SFM	MSE	_
[37]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[38]	300 stocks from SZSE, Commodity	2014–2015	Price data	FDDR, DMLP+RL	Profit, return, SR, profit-loss curves	Keras
[39]	S&P500 Index	1989–2005	Price data, Volume	LSTM	Return, STD, SR, Accuracy	Python, TensorFlow, Keras, R, H2O
[40]	Stock of National Bank of Greece (ETE).	2009–2014	FTSE100, DJIA, GDAX, NIKKEI225, EUR/USD, Gold	GASVR, LSTM	Return, volatility, SR, Accuracy	Tensorflow
[41]	Chinese stock-IF-IH-IC contract	2016–2017	Decisions for price change	MODRL+LSTM	Profit and loss, SR	-
[42]	Singapore Stock Market Index	2010–2017	OCHL of last 10 days of Index	DMLP	RMSE, MAPE, Profit, SR	-
[43]	GBP/USD	2017	Price data	Reinforcement Learning + LSTM + NES	SR, downside deviation ratio, total profit	Python, Keras, Tensorflow
[44]	Commodity, FX future, ETF	1991–2014	Price Data	DMLP	SR, capability ratio, return	C++, Python
[45]	USD/GBP, S&P500, FTSE100, oil, gold	2016	Price data	AE + CNN	SR, % volatility, avg return/trans, rate of return	H2O

Algo-trading applications embedded with time series forecasting models

Art.	Data set	Period	Feature set	Method	Performance	Environment
					criteria	

					ruce or recurri	
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX returns, Euribor interest rates, OCHLV	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[47]	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning, DMLP	Total profit, Correlation	-
[48]	Stocks in the S&P500	1990–2015	Price data	DMLP, GBT, RF	Mean return, MDD, Calmar ratio	H2O
[49]	Fundamental and Technical Data, Economic Data	-	Fundamental , technical and market information	CNN	-	-

Classification (buy-sell signal, or trend detection) based algo-trading models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[51]	Stocks in Dow30	1997–2017	RSI	DMLP with genetic algorithm	Annualized return	Spark MLlib, Java
[52]	SPY ETF, 10 stocks from S&P500	2014–2016	Price data	FFNN	Cumulative gain	MatConvNet, Matlab
[53]	Dow30 stocks	2012-2016	Close data and several technical indicators	LSTM	Accuracy	Python, Keras, Tensorflow, TALIE
[54]	High-frequency record of all orders	2014–2017	Price data, record of all orders, transactions	LSTM	Accuracy	-
[55]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price and volume data in LOB	LSTM	Precision, Recall, F1-score, Cohen's k	-
[56]	17 ETFs	2000-2016	Price data, technical indicators	CNN	Accuracy, MSE, Profit, AUROC	Keras, Tensorflow
[57]	Stocks in Dow30 and 9 Top Volume ETFs	1997-2017	Price data, technical indicators	CNN with feature imaging	Recall, precision, F1-score, annualized return	Python, Keras, Tensorflow, Java
[58]	FTSE100	2000-2017	Price data	CAE	TR, SR, MDD, mean return	-
[59]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price, Volume data, 10 orders of the LOB	CNN	Precision, Recall, F1-score, Cohen's k	Theano, Scikit learn, Python
[60]	Borsa Istanbul 100 Stocks	2011–2015	75 technical indicators and OCHLV	CNN	Accuracy	Keras
[61]	ETFs and Dow30	1997-2007	Price data	CNN with feature imaging	Annualized return	Keras, Tensorflow
[62]	8 experimental assets from bond/derivative market	-	Asset prices data	RL, DMLP, Genetic Algorithm	Learning and genetic algorithm error	-
[63]	10 stocks from S&P500	-	Stock Prices	TDNN, RNN, PNN	Missed opportunities, false alarms ratio	-
[64]	London Stock Exchange	2007–2008	Limit order book state, trades, buy/sell orders, order deletions	CNN	Accuracy, kappa	Caffe
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-

Deep learning for financial applications: Stand-alone and/or other algorithmic models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[66]	DAX, FTSE100, call/put options	1991–1998	Price data	Markov model, RNN	Ewa-measure, iv, daily profits' mean and std	-
[67]	Taiwan Stock Index Futures, Mini Index Futures	2012–2014	Price data to image	Visualization method + CNN	Accumulated profits,accuracy	-
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015–2016	Text and Price data	LSTM, RNN, GRU	Return, SR, precision, recall, accuracy	Python, Tweepy API
[69]	CME FIX message	2016	Limit order book, time-stamp, price data	RNN	Precision, recall, F1-measure	Python, TensorFlow, R
[70]	Taiwan stock index futures (TAIFEX)	2017	Price data	Agent based RL with CNN pre-trained	Accuracy	-
[71]	Stocks from S&P500	2010-2016	OCHLV	DCNL	PCC, DTW, VWL	Pytorch
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013–2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[73]	489 stocks from S&P500 and NASDAQ-100	2014–2015	Limit Order Book	Spatial neural network	Cross entropy error	NVIDIA's cuDNN
[74]	Experimental dataset	-	Price data	DRL with CNN, LSTM, GRU, DMLP	Mean profit	Python

Deep learning for financial applications: Credit scoring or classification studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[77]	The XR 14 CDS contracts	2016	Recovery rate, spreads, sector and region	DBN+RBM	AUROC, FN, FP, Accuracy	WEKA
[78]	German, Japanese credit datasets	-	Personal financial variables	SVM + DBN	Weighted- accuracy, TP, TN	-
[79]	Credit data from Kaggle	-	Personal financial variables	DMLP	Accuracy, TP, TN, G-mean	-
[80]	Australian, German credit data	-	Personal financial variables	GP + AE as Boosted DMLP	FP	Python, Scikit-learn
[81]	German, Australian credit dataset	-	Personal financial variables	DCNN, DMLP	Accuracy, False/Missed alarm	-
[82]	Consumer credit data from Chinese finance company	-	Relief algorithm chose the 50 most important features	CNN + Relief	AUROC, K-s statistic, Accuracy	Keras
[83]	Credit approval dataset by UCI Machine Learning repo	_	UCI credit approval dataset	Rectifier, Tanh, Maxout DL	-	AWS EC2, H2O, R

Financial distress, bankruptcy, bank risk, mortgage risk, crisis forecasting studies.

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[84]	966 french firms	-	Financial ratios	RBM+SVM	Precision, Recall	-
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, RF	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[86]	The event data set for large European banks, news articles from Reuters	2007-2014	Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	-
[87]	Event dataset on European banks, news from Reuters	2007–2014	Text, sentence	Sentence vector + DFFN	Usefulness, F1-score, AUROC	-
[88]	News from Reuters, fundamental data	2007-2014	Financial ratios and news text	doc2vec + NN	Relative usefulness	Doc2vec
[89]	Macro/Micro economic variables, Bank charac- teristics/performance variables from BHC	1976–2017	Macro economic variables and bank performances	CGAN, MVN, MV-t, LSTM, VAR, FE-QAR	RMSE, Log likelihood, Loan loss rate	-
[90]	Financial statements of French companies	2002–2006	Financial ratios	DBN	Recall, Precision, F1-score, FP, FN	-
[91]	Stock returns of American publicly-traded companies from CRSP	2001–2011	Price data	DBN	Accuracy	Python, Theano
[92]	Financial statements of several companies from Japanese stock market	2002-2016	Financial ratios	CNN	F1-score, AUROC	-
[93]	Mortgage dataset with local and national economic factors	1995-2014	Mortgage related features	DMLP	Negative average log-likelihood	AWS
[94]	Mortgage data from Norwegian financial service group, DNB	2012-2016	Personal financial variables	CNN	Accuracy, Sensitivity, Specificity, AUROC	-
[95]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	CNN, LSTM	F1-Score	Keras, Tensorflow
[96]	Several datasets combined to create a new one	1996–2017	Index data, 10-year Bond yield, exchange rates,	Logit, CART, RF, SVM, NN, XGBoost, DMLP	AUROC, KS, G-mean, likelihood ratio, DP, BA, WBA	R

Deep learning for financial applications: Fraud detection studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[114]	Debit card transactions by a local Indonesia bank	2016–2017	Financial transaction amount on several time periods	CNN, Stacked-LSTM, CNN-LSTM	AUROC	-
[115]	Credit card transactions from retail banking	2017	Transaction variables and several derived features	LSTM, GRU	Accuracy	Keras
[116]	Card purchases' transactions	2014–2015	Probability of fraud per currency/origin country, other fraud related features	DMLP	AUROC	-
[117]	Transactions made with credit cards by European cardholders	2013	Personal financial variables to PCA	DMLP, RF	Recall, Precision, Accuracy	-
[118]	Credit-card transactions	2015	Transaction and bank features	LSTM	AUROC	Keras, Scikit-learn
[119]	Databases of foreign trade of the Secretariat of Federal Revenue of Brazil	2014	8 Features: Foreign Trade, Tax, Transactions, Employees, Invoices, etc	AE	MSE	H2O, R
[120]	Chamber of Deputies open data, Companies data from Secretariat of Federal Revenue of Brazil	2009–2017	21 features: Brazilian State expense, party name, Type of expense, etc.	Deep Autoencoders	MSE, RMSE	H2O, R
[121]	Real-world data for automobile insurance company labeled as fradulent	-	Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	-
[122]	Transactions from a giant online payment platform	2006	Personal financial variables	GBDT+DMLP	AUROC	-
[123]	Financial transactions	_	Transaction data	LSTM	t-SNE	-
[124]	Empirical data from Greek firms	-	-	DQL	Revenue	Torch

Deep learning for financial applications: Portfolio management studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-
[127]	Stocks from NYSE, AMEX, NASDAQ	1965–2009	Price data	Autoencoder + RBM	Accuracy, confusion matrix	-
[128]	20 stocks from S&P500	2012–2015	Technical indicators	DMLP	Accuracy	Python, Scikit Learn, Keras, Theano
[129]	Chinese stock data	2012–2013	Technical, fundamental data	Logistic Regression, RF, DMLP	AUC, accuracy, precision, recall, f1, tpr, fpr	Keras, Tensorflow, Python, Scikit Iearn
[130]	Top 5 companies in S&P500	-	Price data and Financial ratios	LSTM, Auto-encoding, Smart indexing	CAGR	-
[131]	IBB biotechnology index, stocks	2012-2016	Price data	Auto-encoding, Calibrating, Validating, Verifying	Returns	-
[132]	Taiwans stock market	-	Price data	Elman RNN	MSE, return	_
[133]	FOREX (EUR/USD, etc.), Gold	2013	Price data	Evolino RNN	Return	Python
[134]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	LSTM+DMLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[135]	S&P500	1985–2006	monthly and daily log-returns	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[136]	10 stocks in S&P500	1997–2016	OCHLV, Price data	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[137]	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[138]	Stocks from Chinese/American stock market	2015–2018	OCHLV, Fundamental data	DDPG, PPO	SR, MDD	-
[139]	Hedge fund monthly return data	1996–2015	Return, SR, STD, Skewness, Kurtosis, Omega ratio, Fund alpha	DMLP	Sharpe ratio, Annual return, Cum. return	-
[140]	12 most-volumed cryptocurrency	2015–2016	Price data	CNN + RL	SR, portfolio value, MDD	-

Deep learning for financial applications: Asset pricing and derivatives market studies

Art.	Der. type	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Asset pricing	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[142]	Options	Simulated a range of call option prices	-	Price data, option strike/maturity, dividend/risk free rates, volatility	DMLP	RMSE, the average percentage pricing error	Tensorflow
[143]	Futures, Options	TAIEX Options	2017	OCHLV, fundamental analysis, option price	DMLP, DMLP with Black scholes	RMSE, MAE, MAPE	-
[144]	Equity returns	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	Fama-French n-factor model DL	R ² ,RMSE	Tensorflow

Deep learning for financial applications: Cryptocurrency and blockchain studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX daily returns, Euribor interest rates, OCHLV of EURO/UK, EURO/USD, US/JPY	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN	Accumulative portfolio value, MDD, SR	-
[140]	12 most-volumed cryptocurrency	2015–2016	Price data	CNN + RL	SR, portfolio value, MDD	
[145]	Bitcoin data	2010–2017	Hash value, bitcoin address, public/private key, digital signature, etc.	Takagi–Sugeno Fuzzy cognitive maps	Analytical hierarchy process	-
[146]	Bitcoin data	2012, 2013, 2016	TransactionId, input/output Addresses, timestamp	Graph embedding using heuristic, laplacian eigen-map, deep AE	F1-score	-
[147]	Bitcoin, Litecoin, StockTwits	2015–2018	OCHLV, technical indicators, sentiment analysis	CNN, LSTM, State Frequency Model	MSE	Keras, Tensorflow
[148]	Bitcoin	2013–2016	Price data	Bayesian optimized RNN, LSTM	Sensitivity, specificity, precision, accuracy, RMSE	Keras, Python, Hyperas

Financial sentiment studies coupled with text mining for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[150]	Sina Weibo, Stock market records	2012–2015	Technical indicators, sentences	DRSE	F1-score, precision, recall, accuracy, AUROC	Python
[151]	News from Reuters and Bloomberg for S&P500 stocks			DeepClue	Accuracy	Dynet software
[152]	News from Reuters and 2006–2013 Bloomberg, Historical stock security data		News, price data DMLP		Accuracy	-
[153]	SCI prices	2008–2015	OCHL of change rate, price	Emotional Analysis + LSTM	MSE	-
[154]	SCI prices	2013–2016	Text data and Price data	LSTM	Accuracy, F1-Measure	Python, Keras
[155]	Stocks of Google, Microsoft and Apple	2016–2017	Twitter sentiment and stock prices	RNN	-	Spark, Flume,Twitter API,
[156]	30 DJIA stocks, S&P500, 2002–2016 DJI, news from Reuters		Price data and features from news articles	features from and word2vec		VADER
[157]	Stocks of CSI300 index, OCHLV of CSI300 index	2009–2014	Sentiment Posts, Price data	Naive Bayes + LSTM	Precision, Recall, F1-score, Accuracy	Python, Keras
[158]	S&P500, NYSE Composite, DJIA, NASDAQ Composite	2009–2011	Twitter moods, index data	DNN, CNN	Error rate	Keras, Theano

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	Company-Centric Tweets data		RNN, KNN, SVR, LinR	Return, SR, precision, recall, accuracy	Python, Tweepy API
[165]	News from Reuters, Bloomberg	2006–2013	Financial news, price data	Bi-GRU	Accuracy	Python, Keras
[166]	News from Sina.com, ACE2005 Chinese corpus	2012–2016	A set of news text	Their unique algorithm	Precision, Recall, F1-score	-
[167]			Financial news, stock market data	•		TensorFlow, Theano, Python, Scikit-Learn
[168]	Apple, Airbus, Amazon 2006–2013 news from Reuters, Bloomberg, S&P500 stock prices		Price data, news, technical indicators	nical		Keras, Python
[169]	S&P500 Index, 15 stocks in S&P500	2006–2013	News from Reuters and Bloomberg	CNN	Accuracy, MCC	-
[170]	S&P500 index news from 2006–2013 Reuters		Financial news titles, Technical indicators	titles, Technical CNN)		-
[171]	10 stocks in Nikkei 225 2001–2008 and news		Textual information and Stock prices	information and + LSTM		-
[172]	NIFTY50 Index, NIFTY Bank/Auto/IT/Energy Index, News	NIFTY50 Index, NIFTY 2013-2017 Bank/Auto/IT/Energy		Index data, news LSTM		-
[173]	Price data, index data, news, social media data	2015	Price data, news from articles and social media	Coupled matrix and tensor	Accuracy, MCC	Jieba
[174]	HS300	2015–2017	Social media news, price data	RNN-Boost with LDA	Accuracy, MAE, MAPE, RMSE	Python, Scikit-learn

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[175]	News and Chinese stock data	2014–2017	Selected words in a news	HAN	Accuracy, Annual return	-
[176]	News, stock prices from Hong Kong Stock Exchange	2001	Price data and TF-IDF from news	ELM, DLR, PCA, BELM, KELM, NN	Accuracy	Matlab
[177]	TWSE index, 4 stocks in 2001–2017 TWSE		Technical indicators, Price data, News	indicators, Price		Keras, Python, TALIB
[178]	Stock of Tsugami Corporation	•		Price data LSTM		Keras, Tensorflow
[179]	News, Nikkei Stock 1999–2008 Average and 10-Nikkei companies		news, MACD RNN, RBM+DBN		Accuracy, P-value	-
[180]	ISMIS 2017 Data Mining Competition dataset	-	Expert identifier, classes			-
[181]	Reuters, Bloomberg News, S&P500 price	2006–2013	News and sentences	LSTM	Accuracy	-
[182]	APPL from S&P500 and 2011–2017 news from Reuters		Input news, CNN + LSTM, OCHLV, Technical CNN+SVM indicators		Accuracy, F1-score	Tensorflow
[183]	Nikkei225, S&P500, news 2001–2013 from Reuters and Bloomberg		Stock price data and news			-
[184]	Stocks from S&P500	2006–2013	Text (news) and Price data	LAR+News, RF+News	MAPE, RMSE	-

Financial sentiment studies coupled with text mining without forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, Random Forest	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[185]	SemEval-2017 dataset, financial text, news, stock market data	2017	Sentiments in Tweets, News headlines	Ensemble SVR, CNN, LSTM, GRU	Cosine similarity score, agreement score, class score	Python, Keras, Scikit Learn
[186]	Financial news from 2006–2015 Reuters		Word vector, Lexical and Contextual input	Targeted dependency tree LSTM	Cumulative abnormal return	-
[187]	Stock sentiment analysis 2015 from StockTwits		StockTwits messages	LSTM, Doc2Vec, CNN	Accuracy, precision, recall, f-measure, AUC	-
[188]	Sina Weibo, Stock market records	•		Technical DRSE indicators, sentences		Python
[189]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	leDaily, LTN,		Text, Sentiment LSTM, CNN		Python, Tensorflow
[190]	StockTwits	2008-2016	Sentences, CNN, LSTM, GRU StockTwits messages		MCC, WSURT	Keras, Tensorflow
[191]	Financial statements of Japan companies	-	Sentences, text	DMLP	Precision, recall, f-score	-
[192]	Twitter posts, news headlines	-	Sentences, text	Sentences, text Deep-FASP		-
[193]	Forums data	2004–2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
[194]	News from Financial Times related US stocks	-	Sentiment of news headlines	SVR, Bidirectional LSTM	Cosine similarity	Python, Scikit Learn, Keras, Tensorflow

Deep learning for financial applications: Other text mining studies

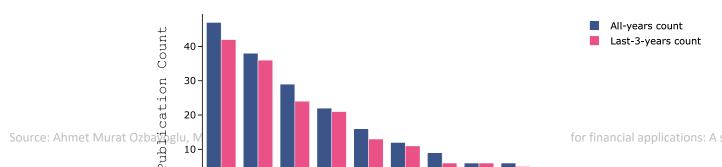
Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013–2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[86]	The event data set for 2007–2014 Wo large European banks, news articles from Reuters		Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	-
[87]	Event dataset on 2007–2014 European banks, news from Reuters		Text, sentence Sentence vector + DFFN		Usefulness, F1-score, AUROC	-
[88]	News from Reuters, fundamental data	2007–2014	Financial ratios and news text	doc2vec + NN	Relative usefulness	Doc2vec
[121]	Real-world data for – automobile insurance company labeled as fradulent		Car, insurance and DMLP + LDA accident related features		TP, FP, Accuracy, Precision, F1-score	-
[123]	Financial transactions	-	Transaction data	LSTM	t-SNE	_
[195]	Taiwan's National 2008–2014 Pension Insurance		Insured's id, RNN area-code, gender, etc.		Accuracy, total error	Python
[196]	StockTwits	2015–2016	Sentences, StockTwits messages	Doc2vec, CNN	Accuracy, precision, recall, f-measure, AUC	Python, Tensorflow

Deep learning for financial applications: Other theoretical or conceptual studies

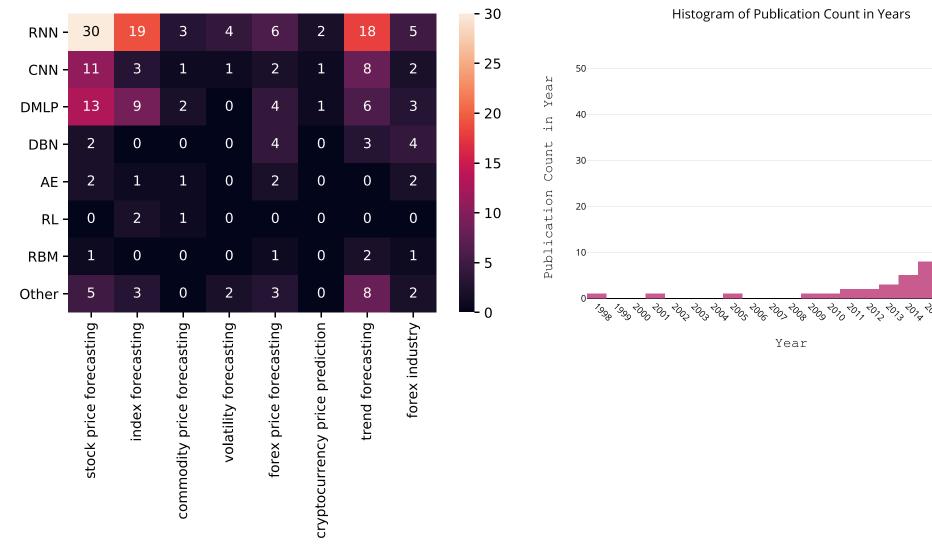
Art.	SubTopic	IsTimeSeries?	Data set	Period	Feature set	Method
[197]	Analysis of AE, SVD	Yes	Selected stocks from the IBB index and stock of Amgen Inc.	2012–2014	Price data	AE, SVD
[198]	Fraud Detection in Banking	No	Risk Management / Fraud Detection	-	_	DRL

Deep learning for financial applications: Other financial applications

• •						
Subtopic	Data set	Period	Feature set	Method	Performance criteria	Env.
Improving trading decisions	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning and DMLP	Total profit, Correlation	-
Identifying Top Sellers In Underground Economy	Forums data	2004–2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
Predicting Social Ins. Payment Behavior	Taiwan's National Pension Insurance	2008–2014	Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
Speedup	45 CME listed commodity and FX futures	1991–2014	Price data	DNN	-	-
Forecasting Fundamentals	Stocks in NYSE, NASDAQ or AMEX exchanges	1970–2017	16 fundamental features from balance sheet	DMLP, LFM	MSE, Compound annual return, SR	-
Predicting Bank Telemarketing	Phone calls of bank marketing data	2008–2010	16 finance-related attributes	CNN	Accuracy	-
Corporate Performance Prediction	22 pharmaceutical companies data in US stock market	2000–2015	11 financial and 4 patent indicator	RBM, DBN	RMSE, profit	-
	Subtopic Improving trading decisions Identifying Top Sellers In Underground Economy Predicting Social Ins. Payment Behavior Speedup Forecasting Fundamentals Predicting Bank Telemarketing Corporate Performance	Subtopic Data set Improving trading decisions S&P500, KOSPI, HSI, and EuroStoxx50 Identifying Top Forums data Sellers In Underground Economy Predicting Social Ins. Payment Behavior Pension Insurance Speedup 45 CME listed commodity and FX futures Forecasting Stocks in NYSE, NASDAQ or AMEX exchanges Predicting Bank Phone calls of bank marketing data Corporate Performance 22 pharmaceutical companies data in US	Subtopic Data set Period Improving trading decisions S&P500, KOSPI, HSI, and EuroStoxx50 Identifying Top Forums data 2004–2013 Sellers In Underground Economy Predicting Social Ins. Payment Behavior Pension Insurance Speedup 45 CME listed commodity and FX futures Forecasting Stocks in NYSE, NASDAQ or AMEX exchanges Predicting Bank Phone calls of bank Telemarketing marketing data Corporate Performance 22 pharmaceutical companies data in US	SubtopicData setPeriodFeature setImproving trading decisionsS&P500, KOSPI, HSI, and EuroStoxx501987–2017200-days stock priceIdentifying Top Sellers In Underground EconomyForums data2004–2013Sentences and keywordsPredicting Social Ins. Payment BehaviorTaiwan's National Pension Insurance2008–2014Insured's id, area-code, gender, etc.Speedup45 CME listed commodity and FX futures1991–2014Price dataForecasting FundamentalsStocks in NYSE, NASDAQ or AMEX exchanges1970–201716 fundamental features from balance sheetPredicting Bank TelemarketingPhone calls of bank marketing data2008–201016 finance-related attributesCorporate Performance22 pharmaceutical companies data in US2000–201511 financial and 4 patent indicator	SubtopicData setPeriodFeature setMethodImproving trading decisionsS&P500, KOSPI, HSI, and EuroStoxx501987–2017200-days stock priceDeep Q-Learning and DMLPIdentifying Top Sellers In Underground EconomyForums data2004–2013Sentences and keywordsRecursive neural tensor networksPredicting Social Ins. Payment BehaviorTaiwan's National Pension Insurance2008–2014Insured's id, area-code, gender, etc.RNNSpeedup45 CME listed commodity and FX futures1991–2014Price dataDNNForecasting FundamentalsStocks in NYSE, NASDAQ or AMEX exchanges1970–201716 fundamental features from balance sheetDMLP, LFMPredicting Bank TelemarketingPhone calls of bank marketing data2008–201016 finance-related attributesCNNCorporate Performance22 pharmaceutical companies data in US2000–201511 financial and 4 patent indicatorRBM, DBN	SubtopicData setPeriodFeature setMethodPerformance criteriaImproving trading decisionsS&P500, KOSPI, HSI, and EuroStoxx501987–2017200-days stock priceDeep Q-Learning and DMLPTotal profit, CorrelationIdentifying Top Sellers In Underground EconomyForums data2004–2013Sentences and keywordsRecursive neural tensor networksPrecision, recall, f-measurePredicting Social Ins. Payment BehaviorTaiwan's National Pension Insurance2008–2014Insured's id, area-code, gender, etc.RNNAccuracy, total errorSpeedup45 CME listed commodity and FX futures1991–2014Price dataDNN-Forecasting FundamentalsStocks in NYSE, NASDAQ or AMEX exchanges1970–201716 fundamental features from balance sheetDMLP, LFMMSE, Compound annual return, SRPredicting Bank TelemarketingPhone calls of bank marketing data2008–201016 finance-related attributesCNNAccuracyCorporate Performance22 pharmaceutical companies data in US2000–201511 financial and 4 patent indicatorRBM, DBNRMSE, profit



Financial time series forecasting with deep learning: Topic-model heatmap



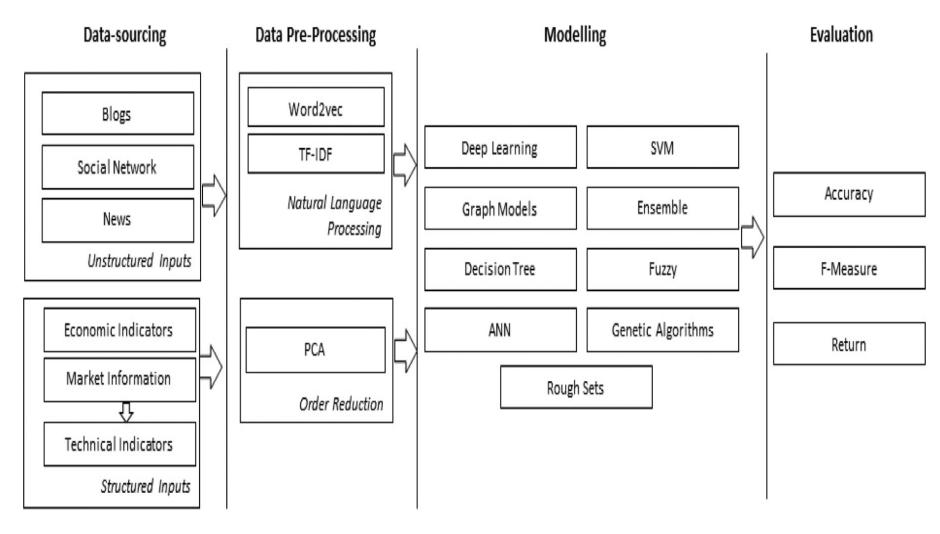
Stock price forecasting using only raw time series data

Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[80]	38 stocks in KOSPI	2010–2014	Lagged stock returns	50 min	5 min	DNN	NMSE, RMSE, MAE, MI	-
[81]	China stock market, 3049 Stocks	1990–2015	OCHLV	30 d	3 d	LSTM	Accuracy	Theano, Keras
[82]	Daily returns of 'BRD' stock in Romanian Market	2001–2016	OCHLV	-	1 d	LSTM	RMSE, MAE	Python, Theano
[83]	297 listed companies of CSE	2012–2013	OCHLV	2 d	1 d	LSTM, SRNN, GRU	MAD, MAPE	Keras
[84]	5 stock in NSE	1997-2016	OCHLV, Price data, turnover and number of trades.	200 d	110 d	LSTM, RNN, CNN, MLP	MAPE	_
[85]	Stocks of Infosys, TCS and CIPLA from NSE	2014	Price data	-	-	RNN, LSTM and CNN	Accuracy	-
[86]	10 stocks in S&P500	1997–2016	OCHLV, Price data	36 m	1 m	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[87]	Stocks data from S&P500	2011–2016	OCHLV	1 d	1 d	DBN	MSE, norm-RMSE, MAE	-
[88]	High-frequency transaction data of the CSI300 futures	2017	Price data	-	1 min	DNN, ELM, RBF	RMSE, MAPE, Accuracy	Matlab
[89]	Stocks in the S&P500	1990–2015	Price data	240 d	1 d	DNN, GBT, RF	Mean return, MDD, Calmar ratio	H2O
[90]	ACI Worldwide, Staples, and Seagate in NASDAQ	2006–2010	Daily closing prices	17 d	1 d	RNN, ANN	RMSE	-
[91]	Chinese Stocks	2007–2017	OCHLV	30 d	15 d	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[92]	20 stocks in S&P500	2010–2015	Price data	-	-	AE + LSTM	Weekly Returns	-
[93]	S&P500	1985–2006	Monthly and daily log-returns	*	1 d	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[94]	12 stocks from SSE Composite Index	2000–2017	OCHLV	60 d	17 d	DWNN	MSE	Tensorflow
[95]	50 stocks from NYSE	2007–2016	Price data	-	1d, 3 d, 5 d	SFM	MSE	-

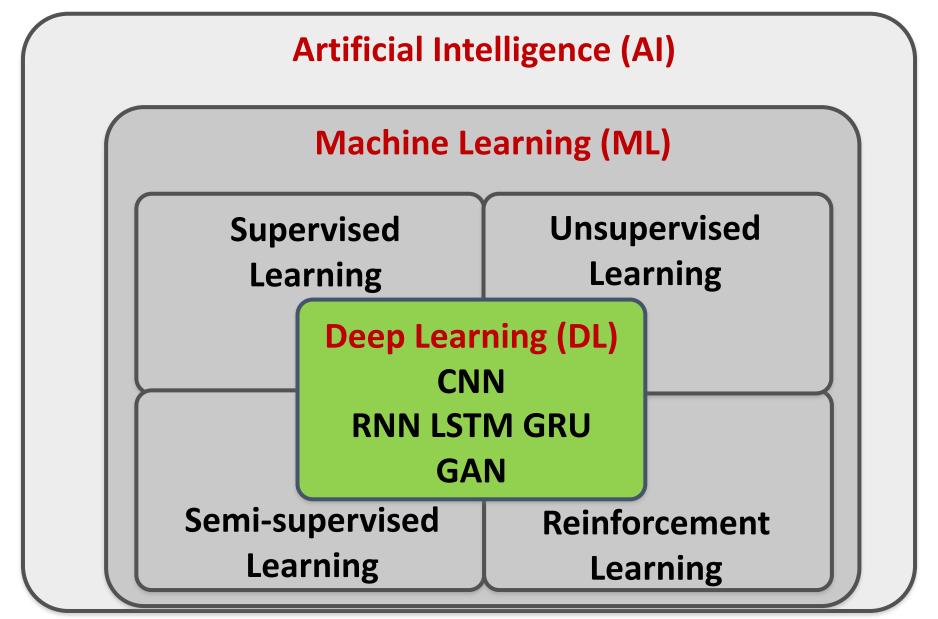
Stock price forecasting using various data

At-	Data ant	Daniad	Fasture ast	1	Hariman	Mathad	Daufannan as anitania	Γ
Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[96]	Japan Index constituents from WorldScope	1990–2016	25 Fundamental Features	10 d	1 d	DNN	Correlation, Accuracy, MSE	Tensorflow
[97]	Return of S&P500	1926-2016	Fundamental Features:	-	1 s	DNN	MSPE	Tensorflow
[98]	U.S. low-level disaggregated macroeconomic time series	1959–2008	GDP, Unemployment rate, Inventories, etc.	-	-	DNN	\mathbb{R}^2	-
[99]	CDAX stock market data	2010–2013	Financial news, stock market data	20 d	1 d	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Pythor Scikit-Learn
[100]	Stock of Tsugami Corporation	2013	Price data	-	-	LSTM	RMSE	Keras, Tensorflow
[101]	Stocks in China's A-share	2006–2007	11 technical indicators	-	1 d	LSTM	AR, IR, IC	-
[102]	SCI prices	2008-2015	OCHL of change rate, price	7 d	-	EmotionalAnalysis + LSTM	MSE	-
[103]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	10 d	-	Paragraph Vector + LSTM	Profit	-
[104]	TKC stock in NYSE and QQQQ ETF	1999–2006	Technical indicators, Price	50 d	1 d	RNN (Jordan–Elman)	Profit, MSE	Java
[105]	10 Stocks in NYSE	-	Price data, Technical indicators	20 min	1 min	LSTM, MLP	RMSE	-
[106]	42 stocks in China's SSE	2016	OCHLV, Technical Indicators	242 min	1 min	GAN (LSTM, CNN)	RMSRE, DPA, GAN-F, GAN-D	-
[107]	Google's daily stock data	2004–2015	OCHLV, Technical indicators	20 d	1 d	$(2D)^2$ PCA + DNN	SMAPE, PCD, MAPE, RMSE, HR, TR, R ²	R, Matlab
[108]	GarantiBank in BIST, Turkey	2016	OCHLV, Volatility, etc.	-	-	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, R ²	Spark
[109]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	80 d	1 d	LSTM+MLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[110]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	-	-	CNN, LSTM	F1-Score	Keras, Tensorflow
111]	Fundamental and Technical Data, Economic Data	-	Fundamental, technical and market	-	-	CNN	-	-
112]	The LOB of 5 stocks of Finnish Stock Market	2010	information FI-2010 dataset: bid/ask and volume	-	*	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[113]	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	*	-	Fama-French n-factor model DL	R ² , RMSE	Tensorflow

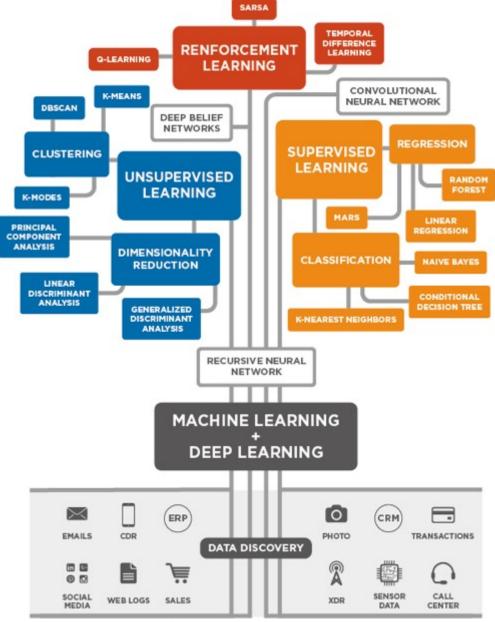
Stock Market Movement Forecast: Phases of the stock market modeling



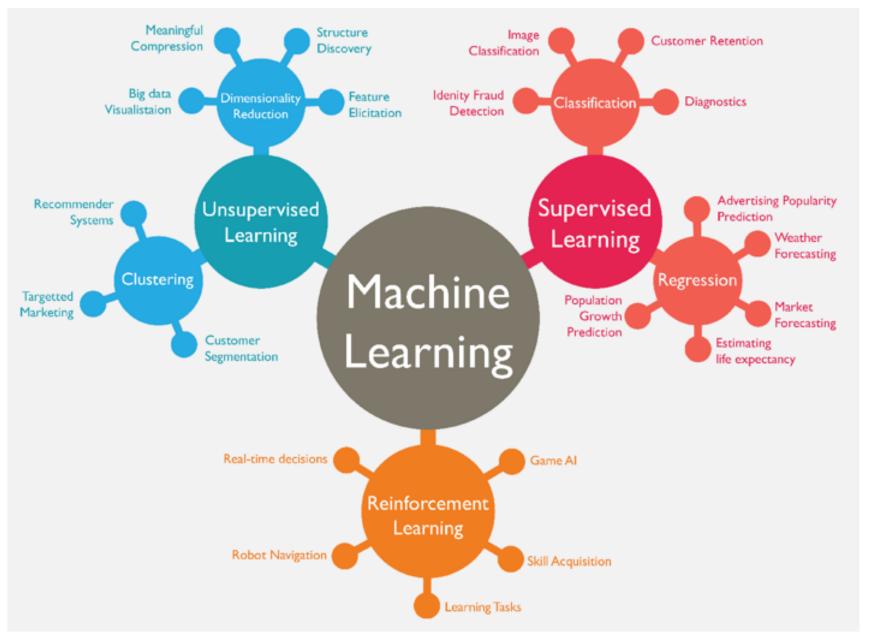
AI, ML, DL



3 Machine Learning Algorithms



Machine Learning (ML)



Machine Learning Models

Deep Learning

Kernel

Association rules

Ensemble

Decision tree

Dimensionality reduction

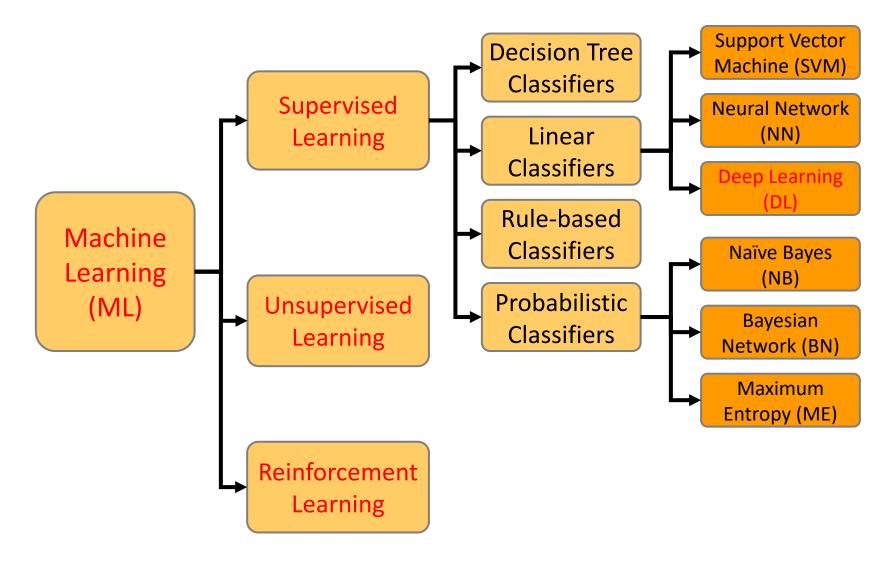
Clustering

Regression Analysis

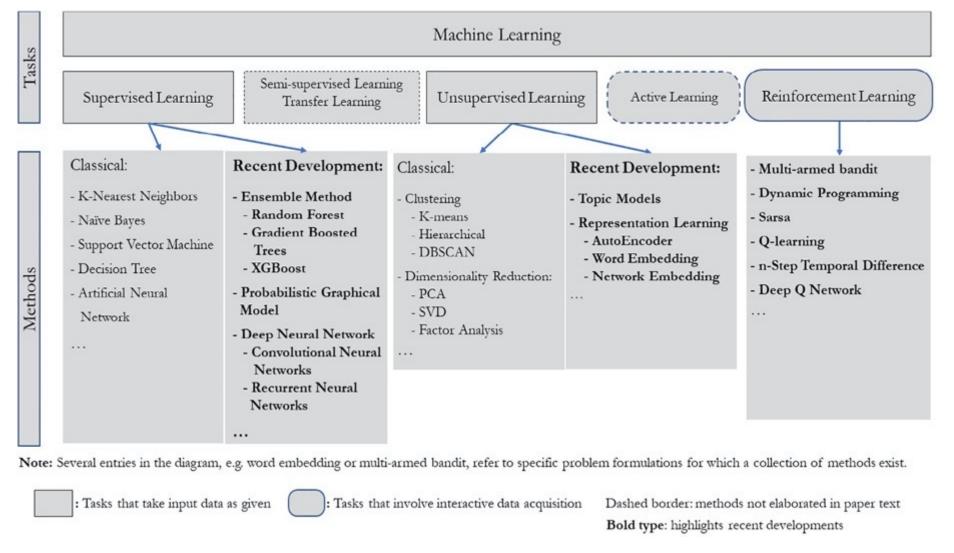
Bayesian

Instance based

Machine Learning (ML) / Deep Learning (DL)



Machine Learning Tasks and Methods

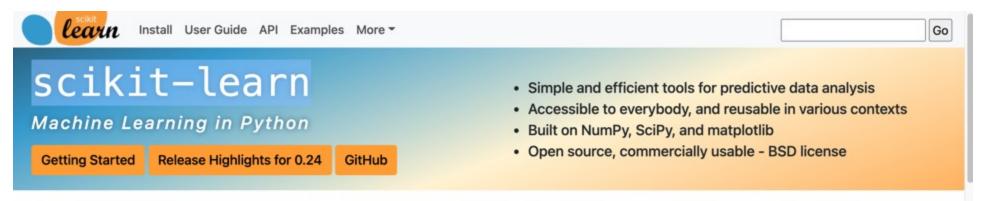


Machine Learning

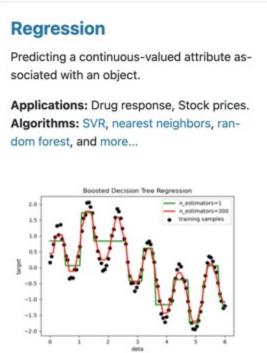
Scikit-Learn

Machine Learning in Python

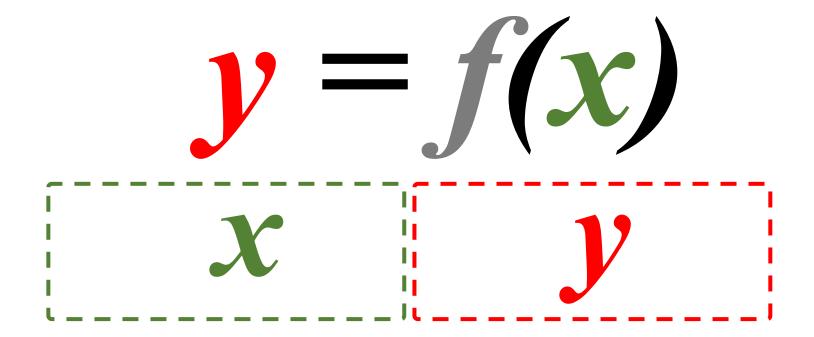
Scikit-Learn



Classification Identifying which category an object belongs to. Applications: Spam detection, image recognition. Algorithms: SVM, nearest neighbors, random forest, and more...



Machine Learning Supervised Learning (Classification) Learning from Examples



Machine Learning Supervised Learning (Classification) Learning from Examples v = f(x)

5.1,3.5,1.4,0.2 Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2, Iris-setosa 7.0,3.2,4.7,1.4, Iris-versicolor 6.4,3.2,4.5,1.5, Iris-versicolor 6.9,3.1,4.9,1.5, Iris-versicolor 6.3,3.3,6.0,2.5, Iris-virginica 5.8,2.7,5.1,1.9, Iris-virginica 7.1,3.0,5.9,2.1, Iris-virginica

Linear function

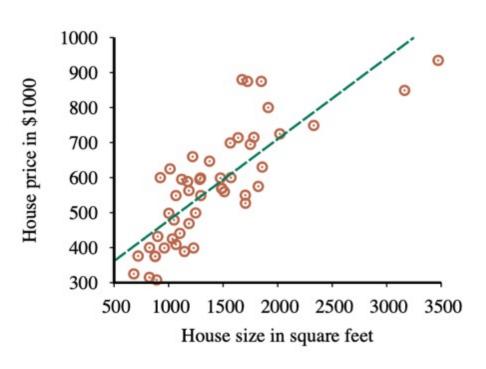
$$y = f(x)$$

$$y = w_1 x + w_0$$

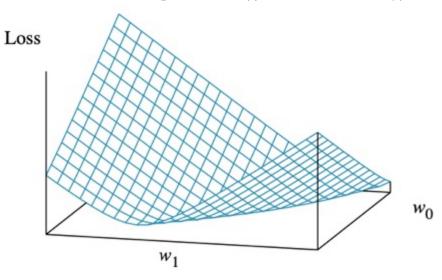
$$h_w(x) = w_1 x + w_0$$

Linear Regression Weight Space

$$h_w(x) = w_1 x + w_0$$



$$w^* = \operatorname{argmin}_{w} Loss(h_{w})$$



$$y = 0.232 x + 246$$

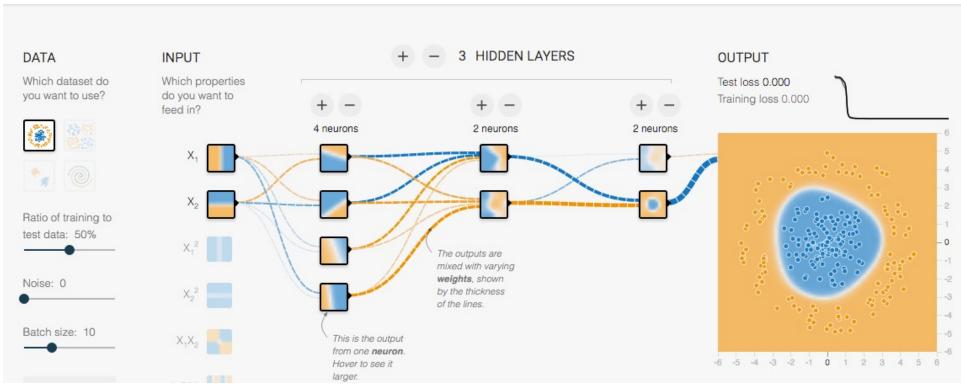
Loss function for Weights (w_1, w_0)

Deep Learning

Deep Learning and Neural Networks

TensorFlow Playground

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.



Tensor

- 3
 - # a rank 0 tensor; this is a scalar with shape []
- [1.,2.,3.]
 - # a rank 1 tensor; this is a vector with shape [3]
- [[1., 2., 3.], [4., 5., 6.]]
 - # a rank 2 tensor; a matrix with shape [2, 3]
- [[[1., 2., 3.]], [[7., 8., 9.]]]
 - # a rank 3 tensor with shape [2, 1, 3]

Scalar

80

Vector

[50 60 70]

Matrix

 50
 60
 70

 55
 65
 75

Tensor

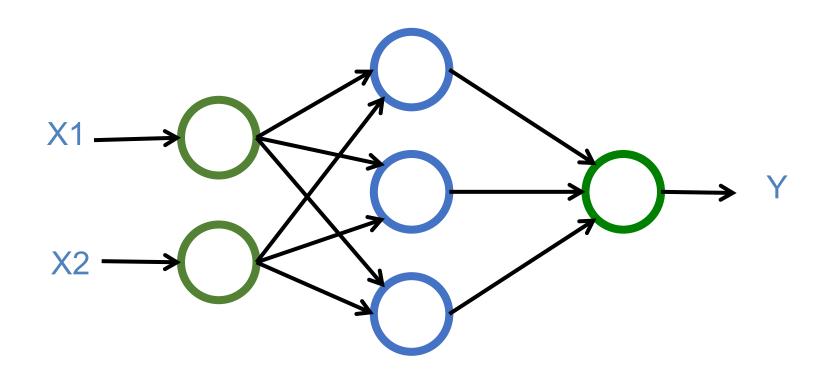
[50 60 70] [70 80 90] [55 65 75] [75 85 95]

Deep Learning and Neural Networks

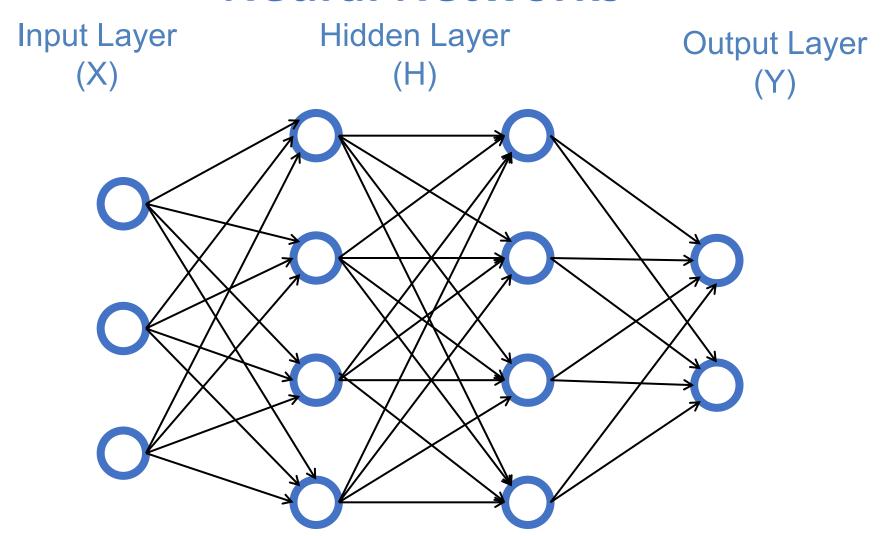
Deep Learning Foundations: Neural Networks

Deep Learning and Neural Networks

Input Layer Hidden Layer Output Layer (X) (H) (Y)



Deep Learning and Neural Networks



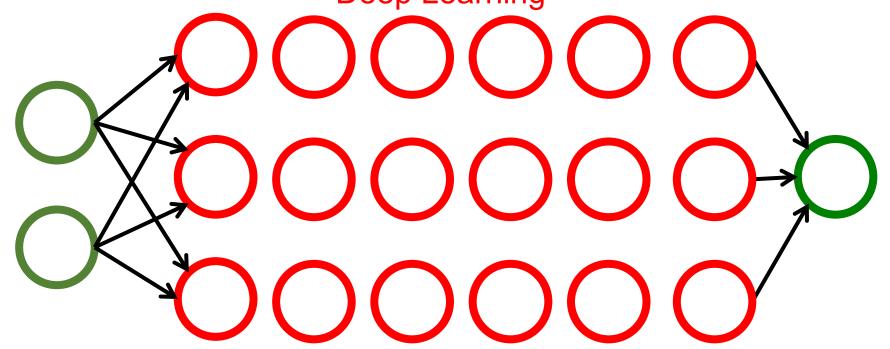
Deep Learning and Neural Networks

Input Layer (X)

Hidden Layers (H)

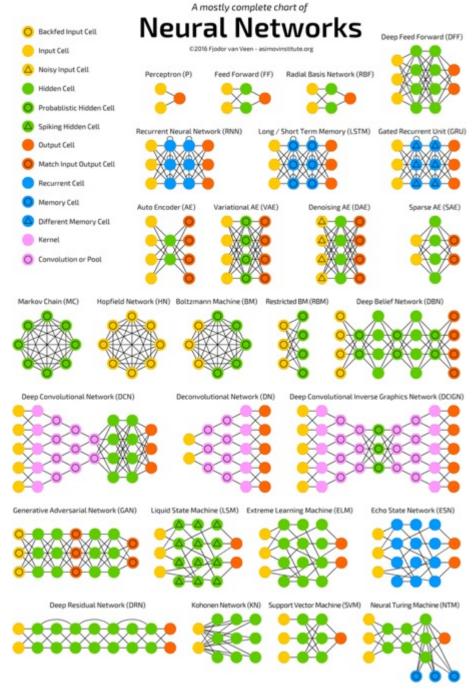
Output Layer (Y)

Deep Neural Networks
Deep Learning



Deep Learning and Deep Neural Networks

Neural Networks (NN)



A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

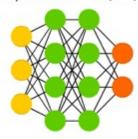
Deep Feed Forward (DFF)

Probablistic Hidden Cell

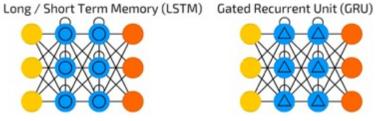
Backfed Input Cell

- Spiking Hidden Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell

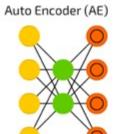
- Kernel

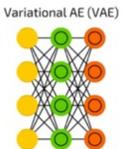


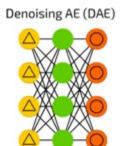
Recurrent Neural Network (RNN)

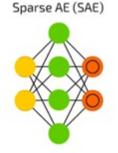


Memory Cell







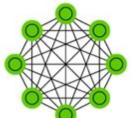


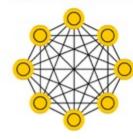
Markov Chain (MC)

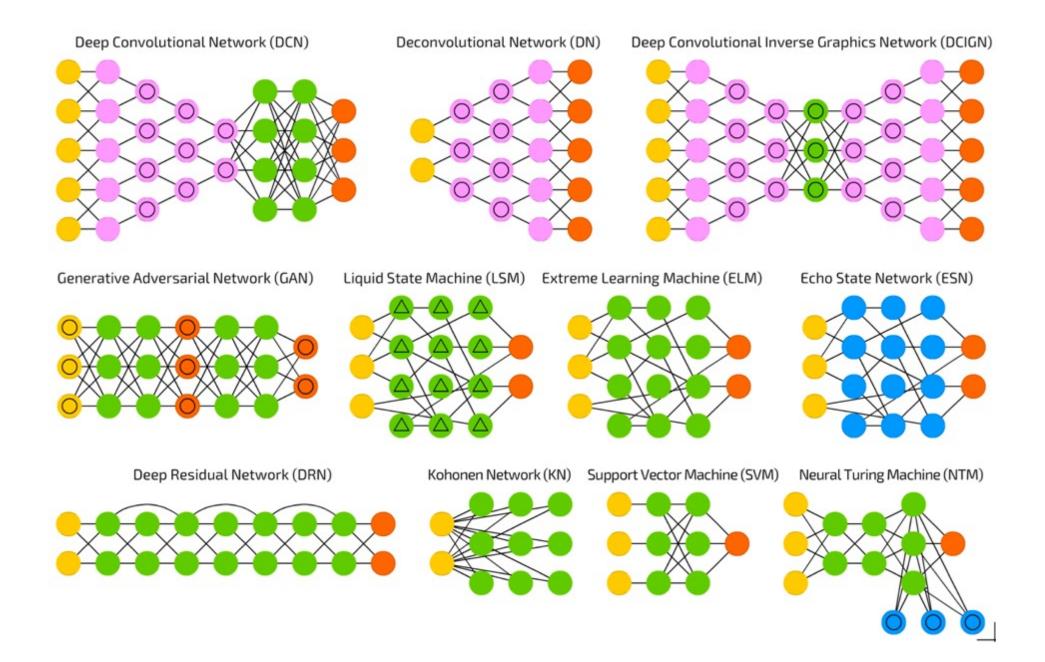
Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM)



Deep Belief Network (DBN)

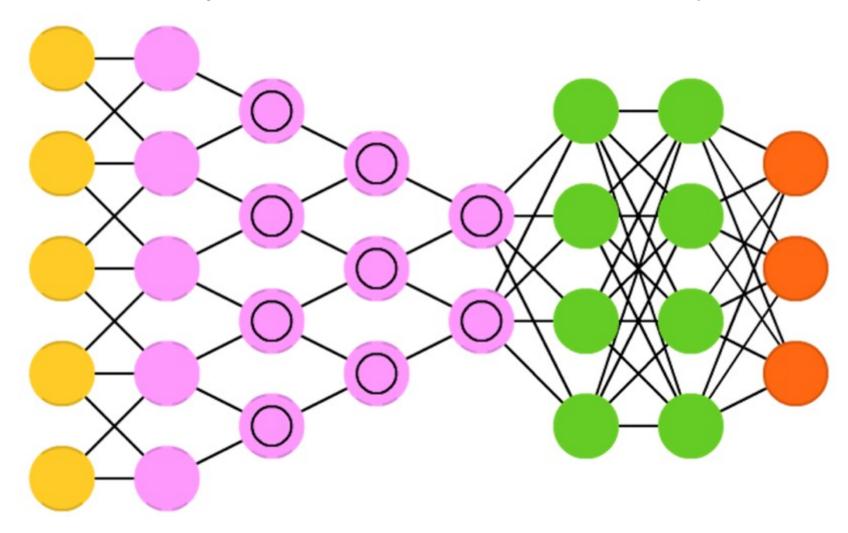




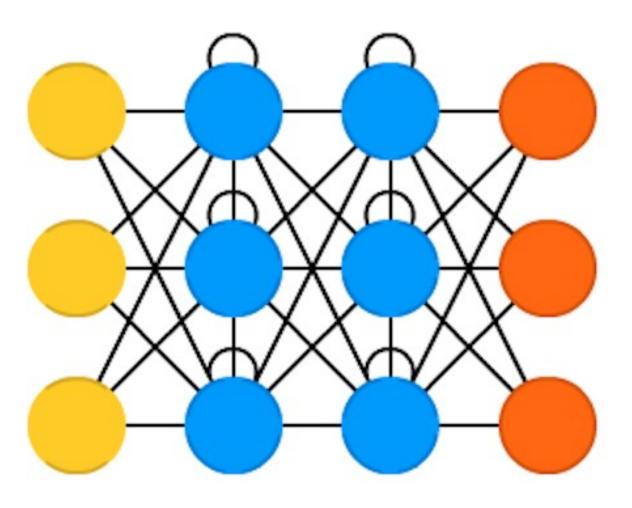


Convolutional Neural Networks (CNN

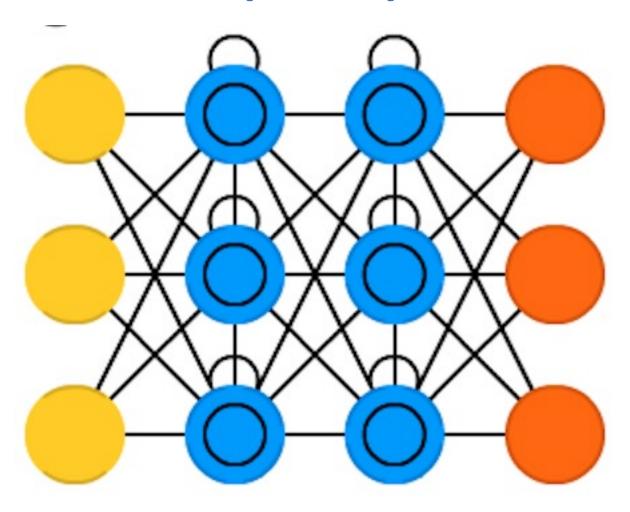
or Deep Convolutional Neural Networks, DCNN)



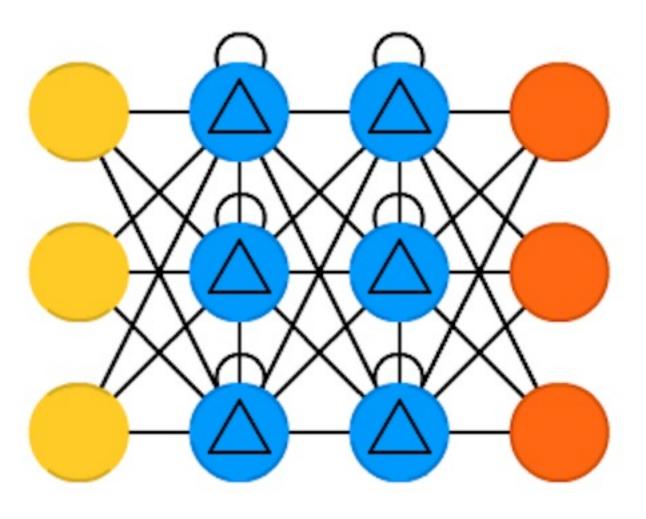
Recurrent Neural Networks (RNN)



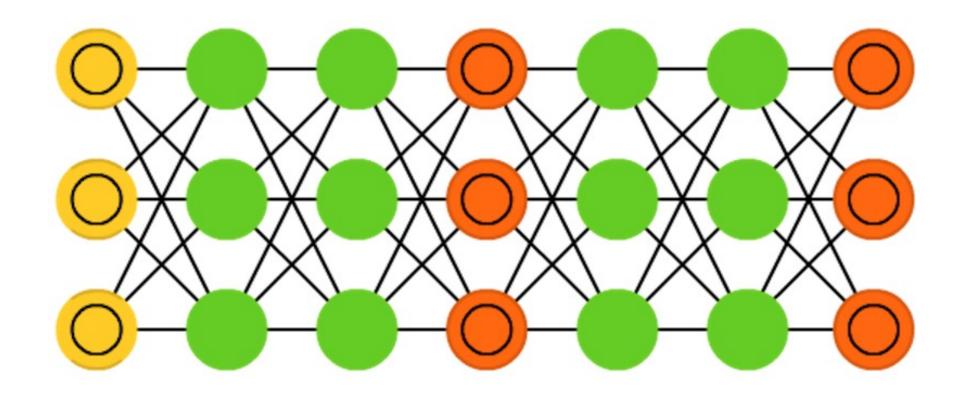
Long / Short Term Memory (LSTM)



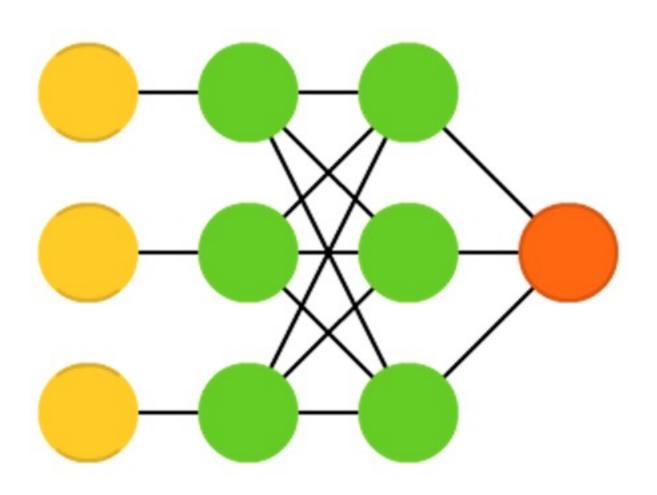
Gated Recurrent Units (GRU)



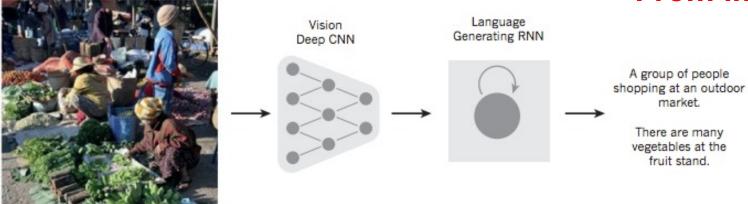
Generative Adversarial Networks (GAN)



Support Vector Machines (SVM)



From image to text



A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

From image to text

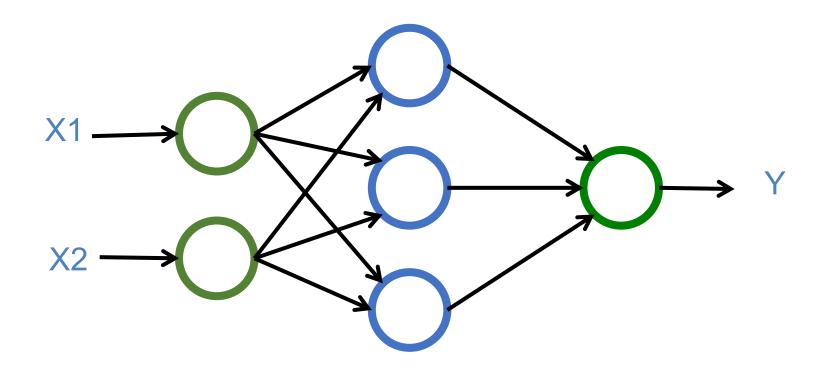
Image: deep convolution neural network (CNN)

Text: recurrent neural network (RNN)

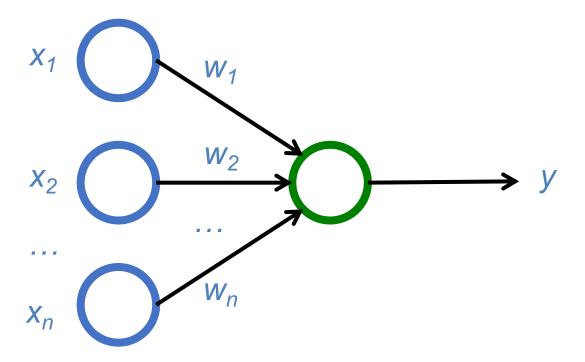
A group of **people** sitting on a boat in the water.

(X)

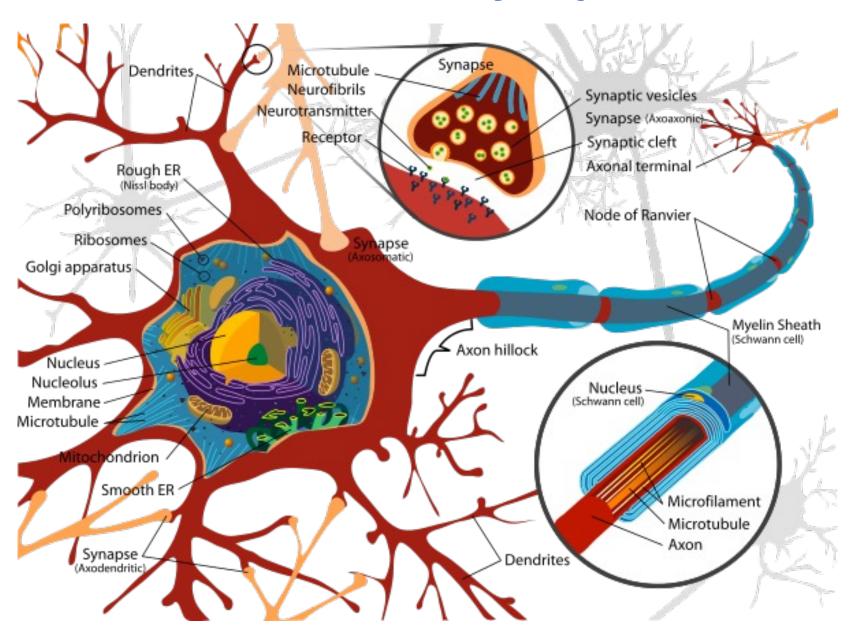
Input Layer Hidden Layer Output Layer



The Neuron



Neuron and Synapse



The Neuron

$$y = F\left(\sum_{i} w_{i} x_{i}\right)$$

$$x_{1}$$

$$x_{2}$$

$$w_{2}$$

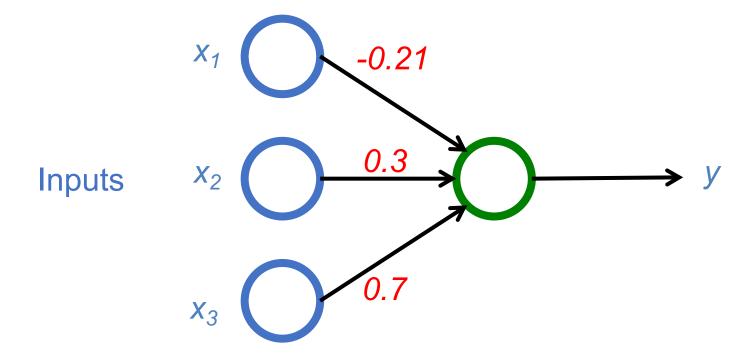
$$x_{n}$$

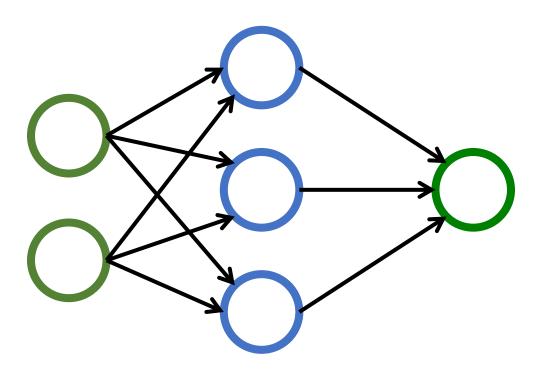
$$w_{n}$$

$$F(x) = \max(0, x)$$

$$y = max(0, -0.21 * x_1 + 0.3 * x_2 + 0.7 * x_3)$$

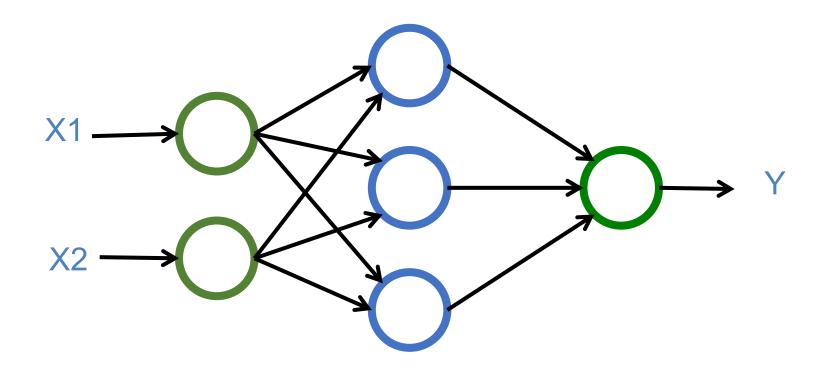
Weights





(X)

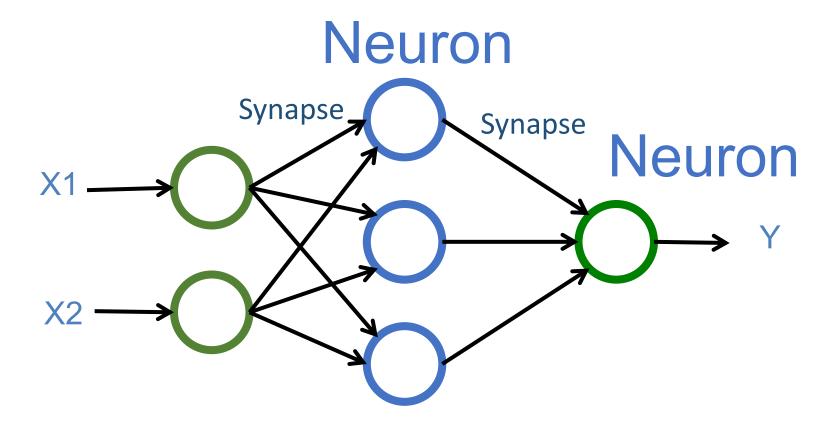
Input Layer Hidden Layer Output Layer



Input Layer Output Layer Hidden Layers (X) **Deep Neural Networks Deep Learning**

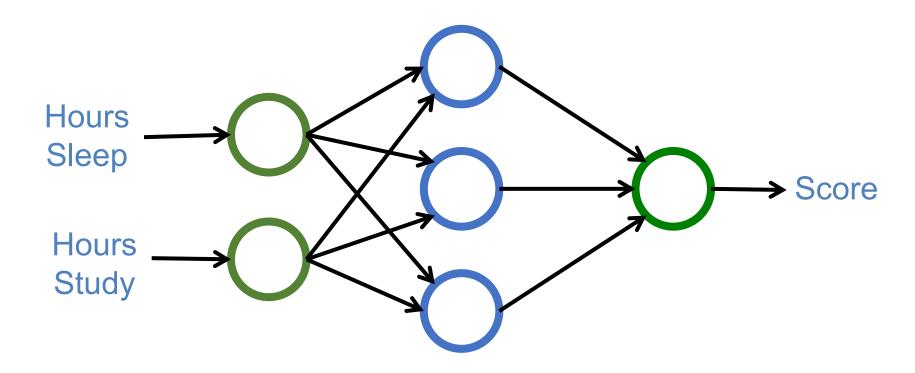
Input Layer (X)

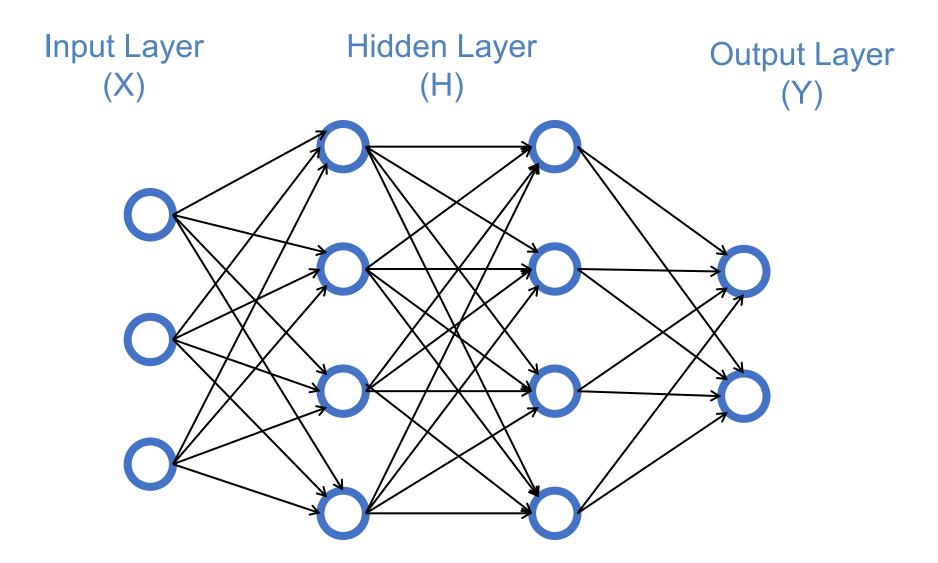
Hidden Layer Output Layer



Input Layer (X)

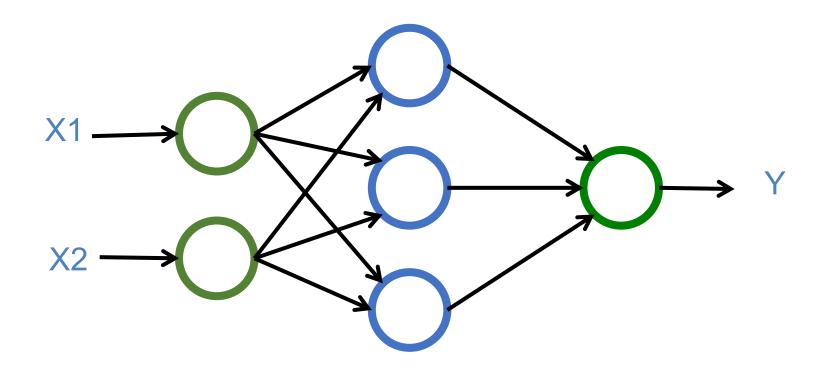
Hidden Layer Output Layer



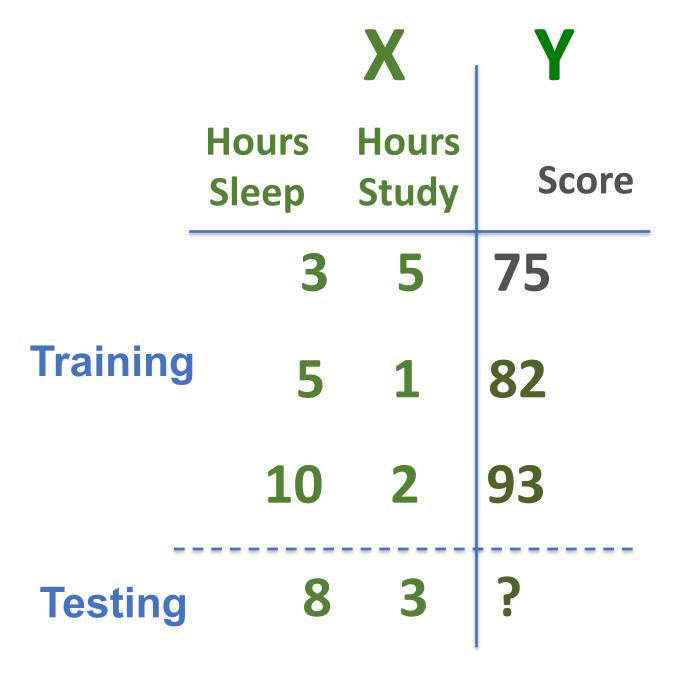


(X)

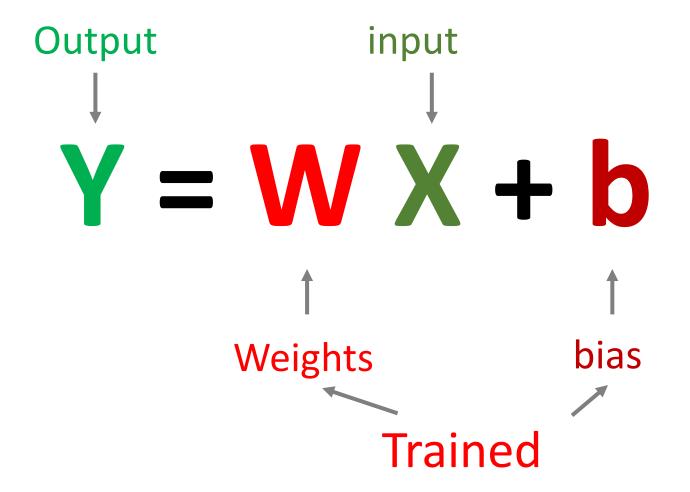
Input Layer Hidden Layer Output Layer

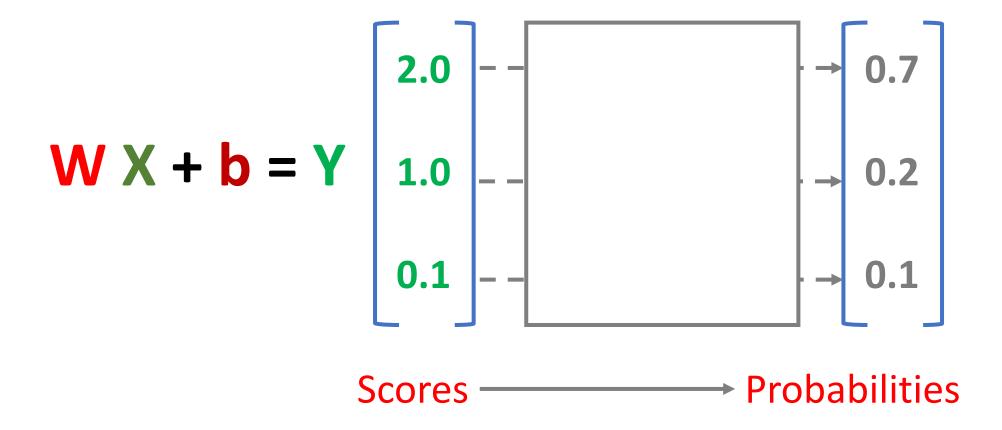


	X		
Hours Sleep	Hou Stud		Score
	3 5	75	
5	5 1	82	
10	2	93	
	3	?	

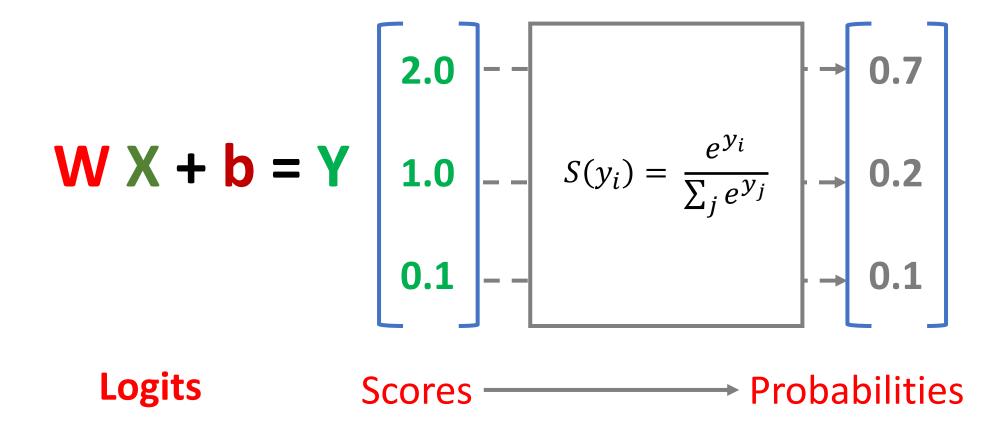


Y = W X + b





SoftMAX



$$S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_i}} = \frac{e^{2.0}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{2.0}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.7$$

$$S(y_i) = \frac{e^{y_i}}{\sum_i e^{y_j}} = \frac{e^{1.0}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{1.0}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.2$$

$$S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} = \frac{e^{1.0}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{1.0}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.2$$

$$S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} = \frac{e^{0.1}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{0.1}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.1$$

WX+b=Y

$$\begin{bmatrix} 2.0 \\ -- \end{bmatrix} - S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} + 0.2$$
0.1

Logits

Probabilities Scores

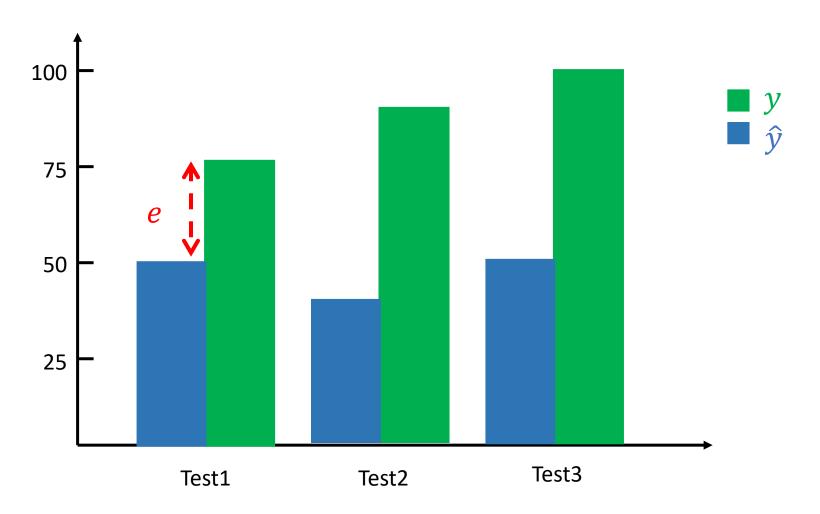
Training a Network =

Minimize the Cost Function

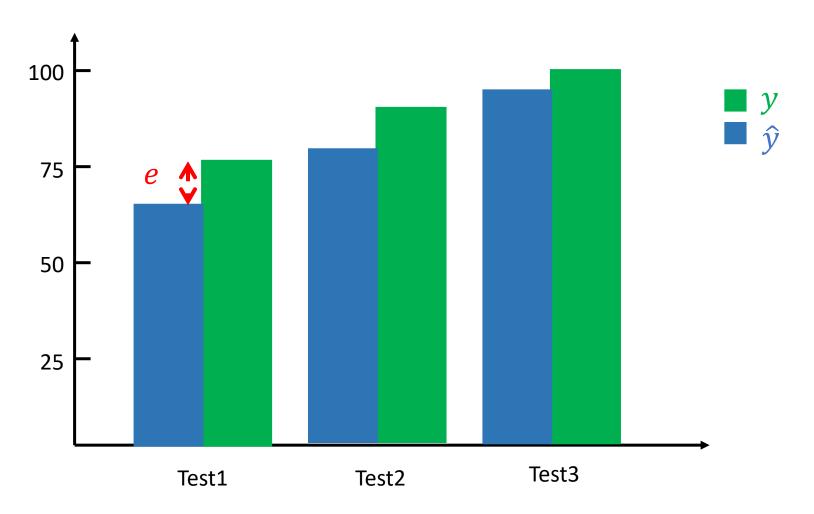
Training a Network

Minimize the Cost Function Minimize the Loss Function

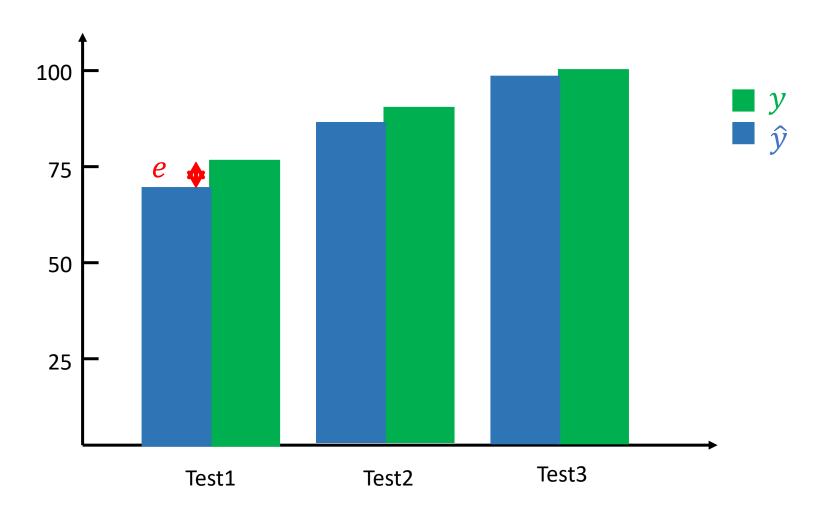
Error = Predict Y - Actual Y Error : Cost : Loss



Error = Predict Y - Actual Y Error : Cost : Loss

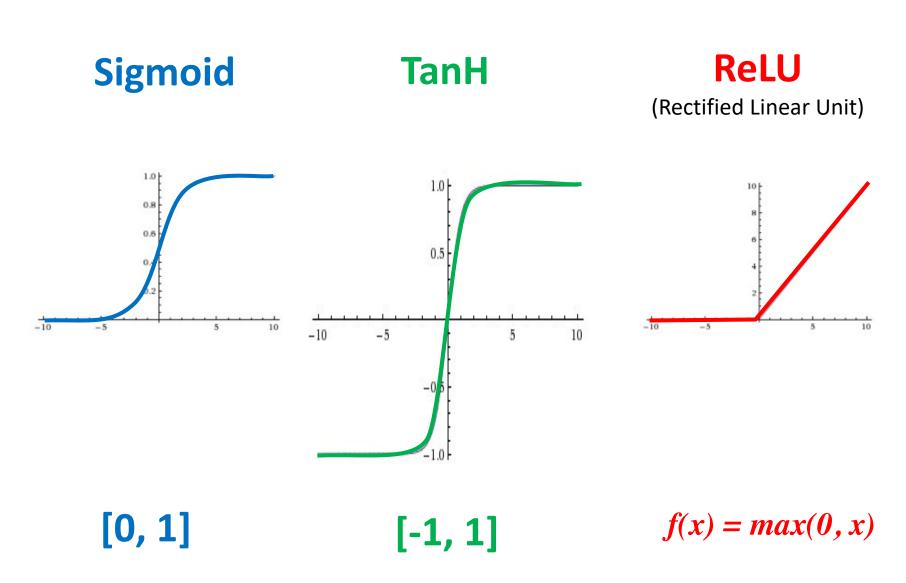


Error = Predict Y - Actual Y Error : Cost : Loss

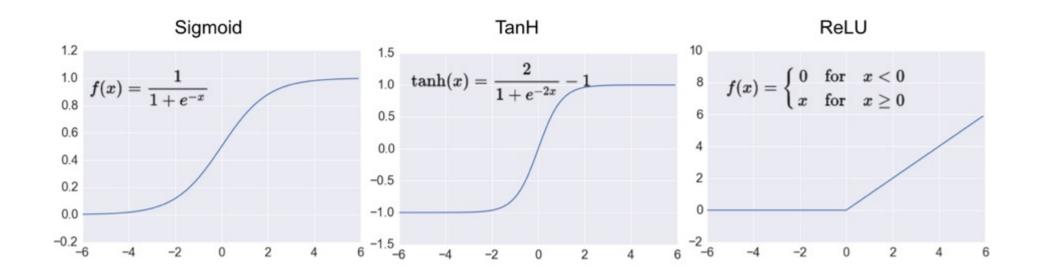


Activation Functions

Activation Functions



Activation Functions



Loss Function

Binary Classification: 2 Class

Activation Function: Sigmoid

Loss Function: Binary Cross-Entropy

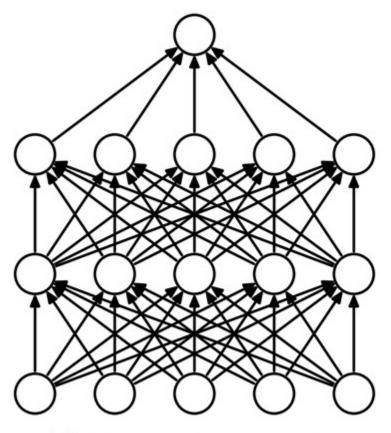
Multiple Classification: 10 Class

Activation Function: SoftMAX

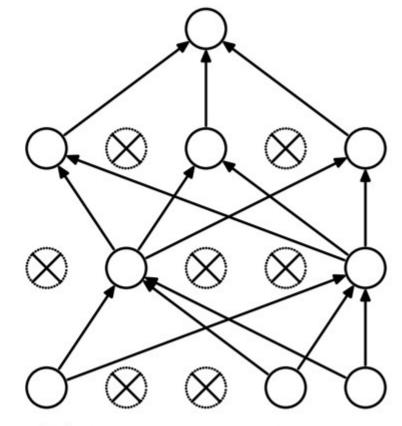
Loss Function:
Categorical Cross-Entropy

Dropout

Dropout: a simple way to prevent neural networks from overfitting



(a) Standard Neural Net



(b) After applying dropout.

Learning Algorithm

While not done:

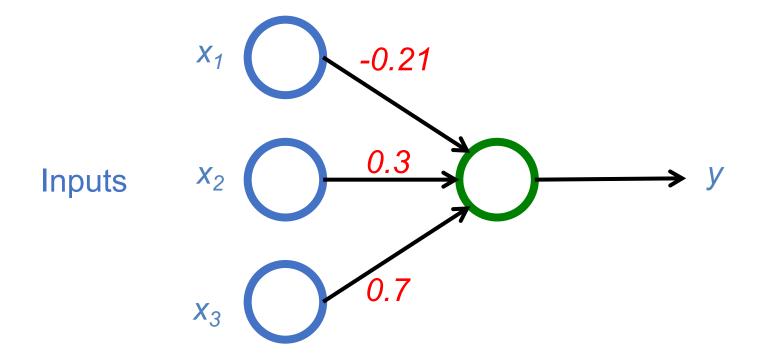
Pick a random training example "(input, label)"

Run neural network on "input"

Adjust weights on edges to make output closer to "label"

$$y = max(0, -0.21 * x_1 + 0.3 * x_2 + 0.7 * x_3)$$

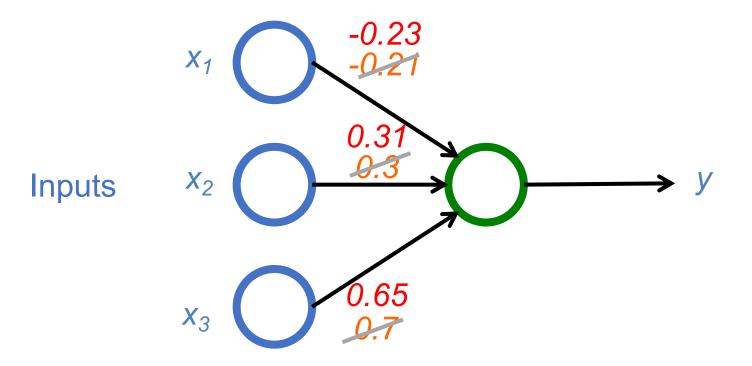
Weights



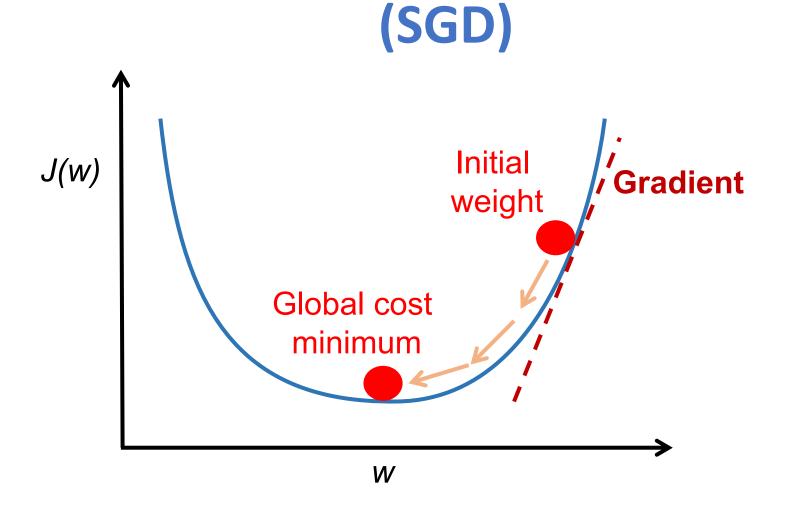
Next time:

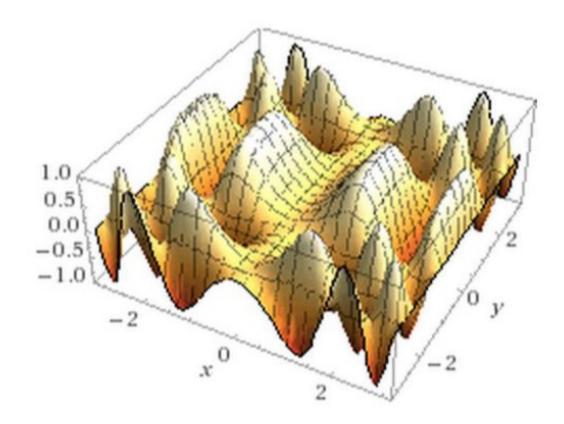
$$y = max(0, -0.23 * x_1 + 0.31 * x_2 + 0.65 * x_3)$$

 $y = max(0, -0.21 * x_1 + 0.3 * x_2 + 0.7 * x_3)$
Weights



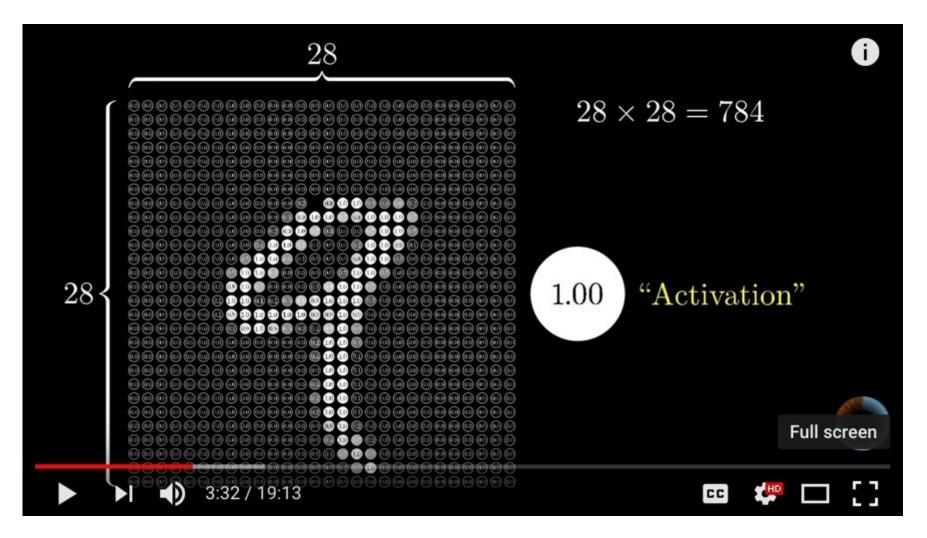
Optimizer: Stochastic Gradient Descent



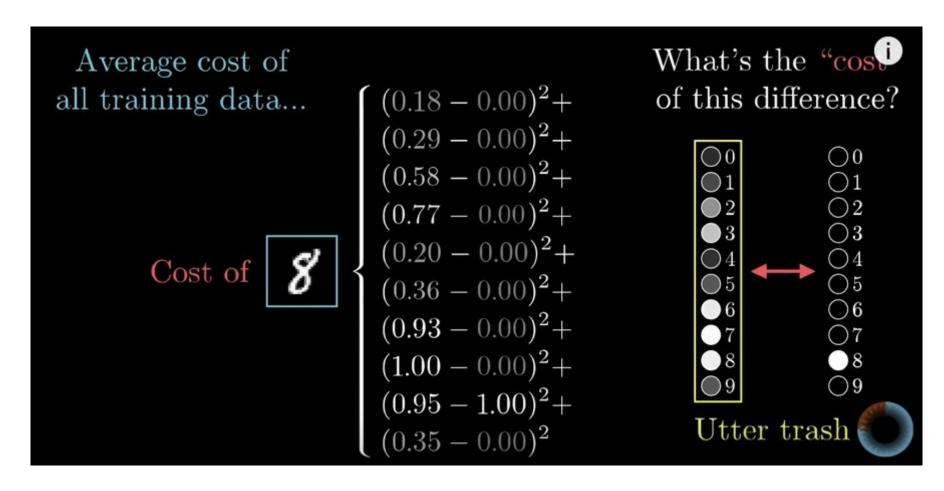


This shows a function of 2 variables: real neural nets are functions of hundreds of millions of variables!

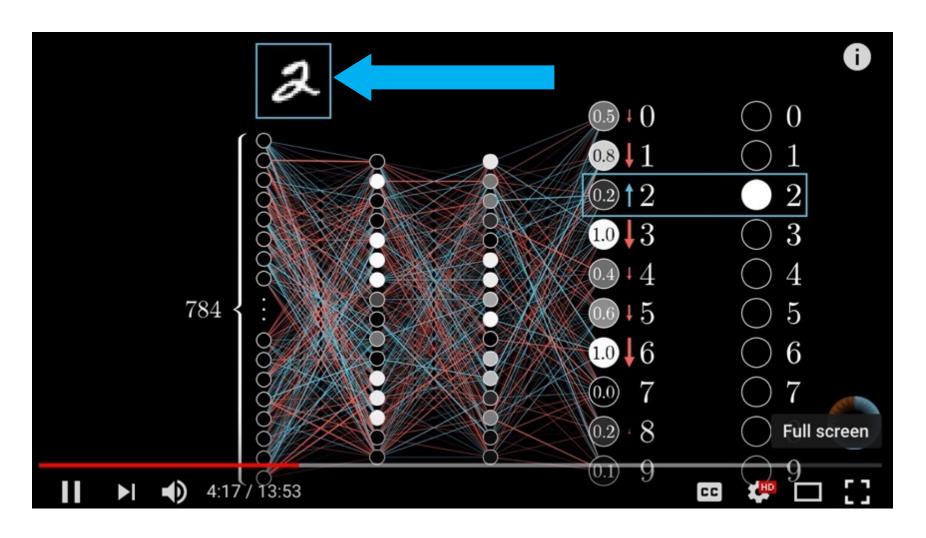
Neural Network and Deep Learning



Gradient Descent how neural networks learn



Backpropagation



Learning Algorithm

While not done:

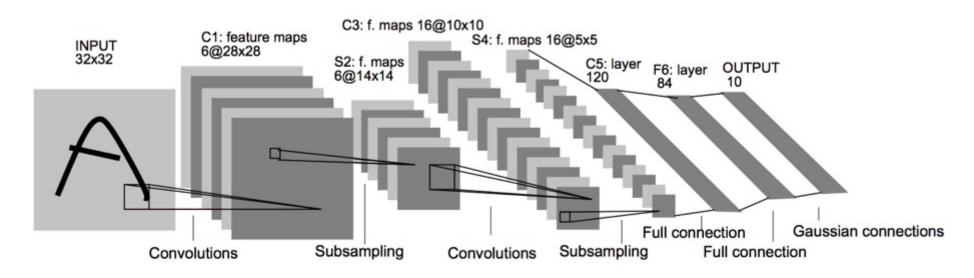
Pick a random training example "(input, label)"

Run neural network on "input"

Adjust weights on edges to make output closer to "label"

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN)

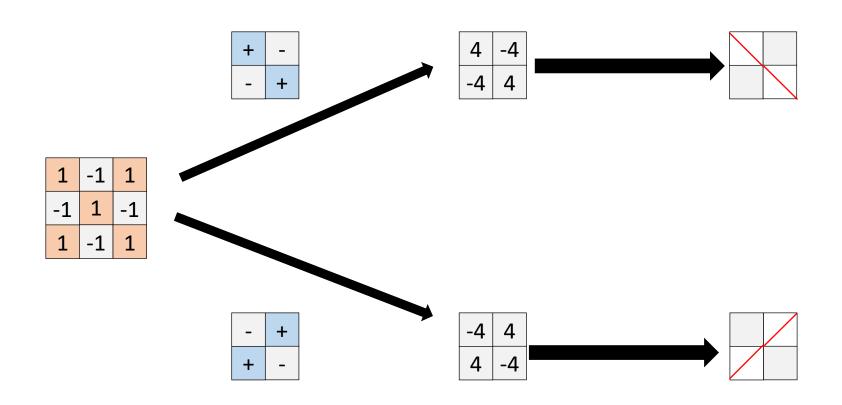


Architecture of LeNet-5 (7 Layers) (LeCun et al., 1998)

Source: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

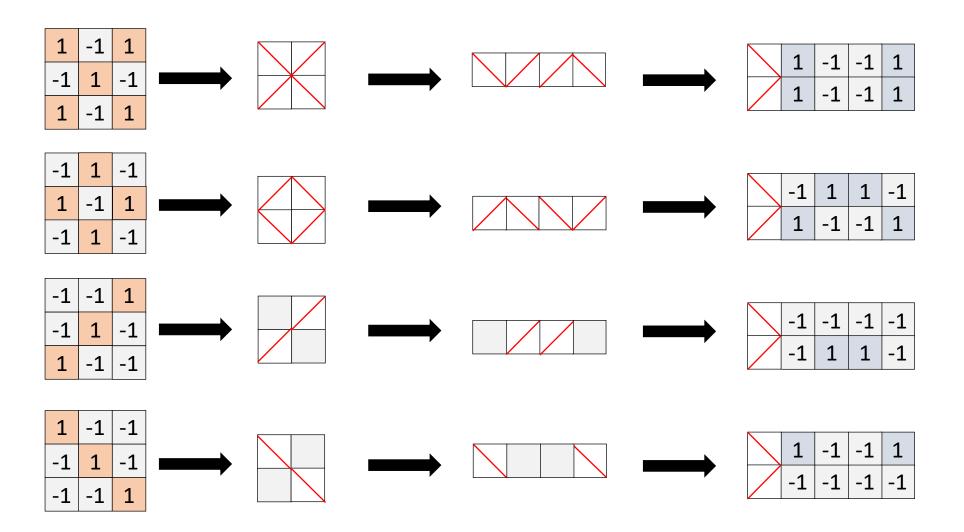
Convolutional Neural Networks (CNN)

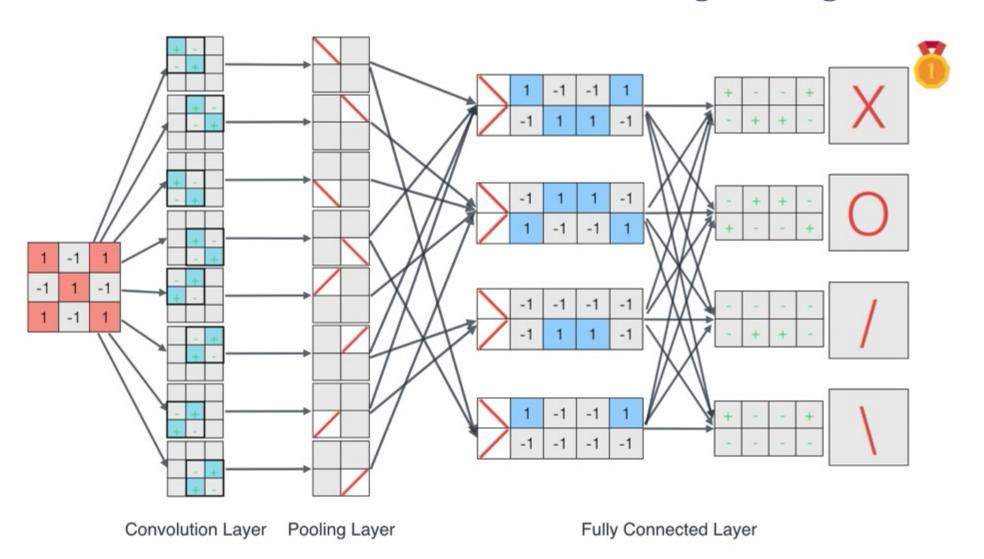
- Convolution
- Pooling
- Fully Connection (FC) (Flattening)



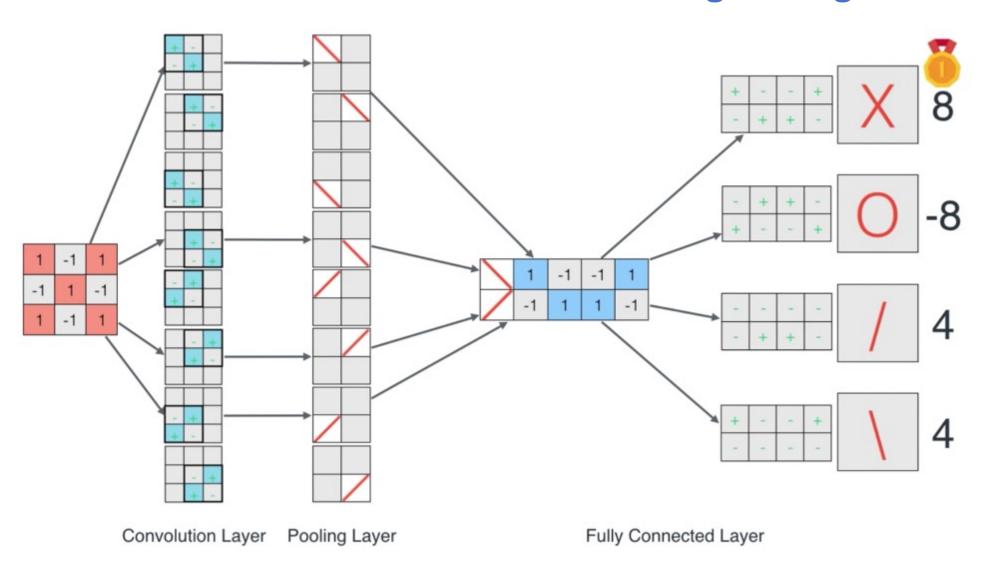
Convolution Layer

Pooling Layer

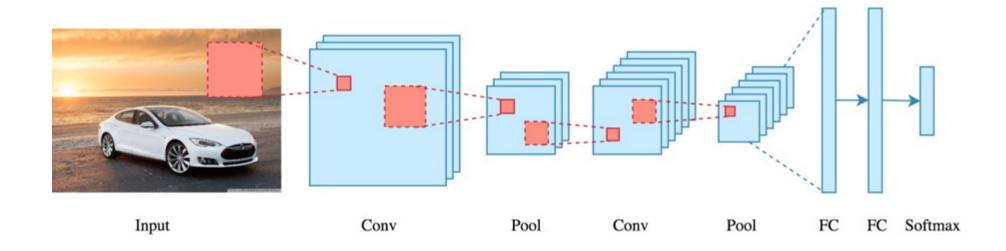




Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition, https://www.youtube.com/watch?v=2-OI7ZB0MmU



CNN Architecture



Convolution is a mathematical operation to merge two sets of information 3x3 convolution

1	1	1	0	0
0	1	1	1	О
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Input

Filter / Kernel

CNN Convolution Layer Input x Filter --> Feature Map

receptive field: 3x3

1x1	1x0	1x1	0	О
0x0	1x1	1x0	1	О
0x1	0x0	1x1	1	1
0	0	1	1	О
0	1	1	0	0

4	

Input x Filter

CNN Convolution Layer Input x Filter --> Feature Map

receptive field

ł	•	3x3
J	•	ンヘン

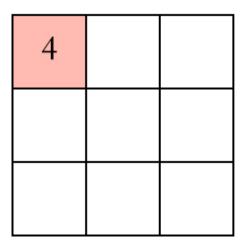
1	1x1	1x0	0x1	0
0	1x0	1x1	1x0	0
0	0x1	1x0	1x1	1
0	0	1	1	0
0	1	1	0	0

4	3	

Input x Filter

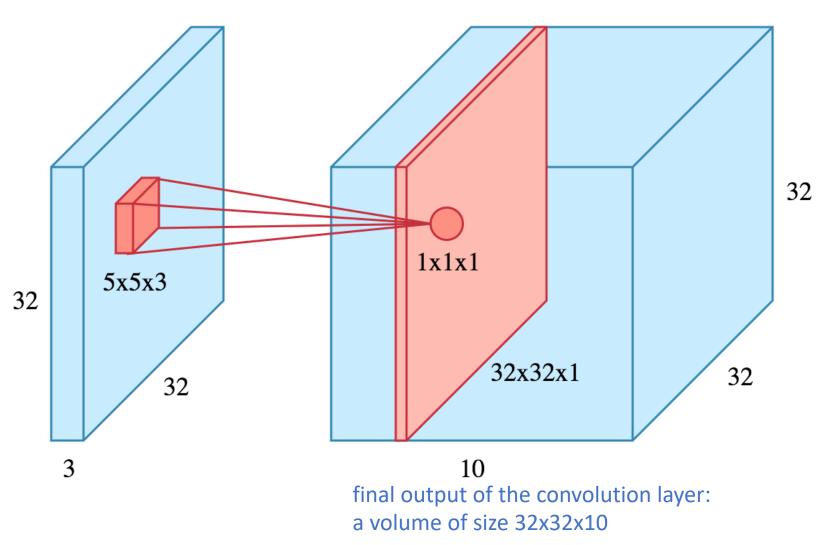
Filter / Kernel

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

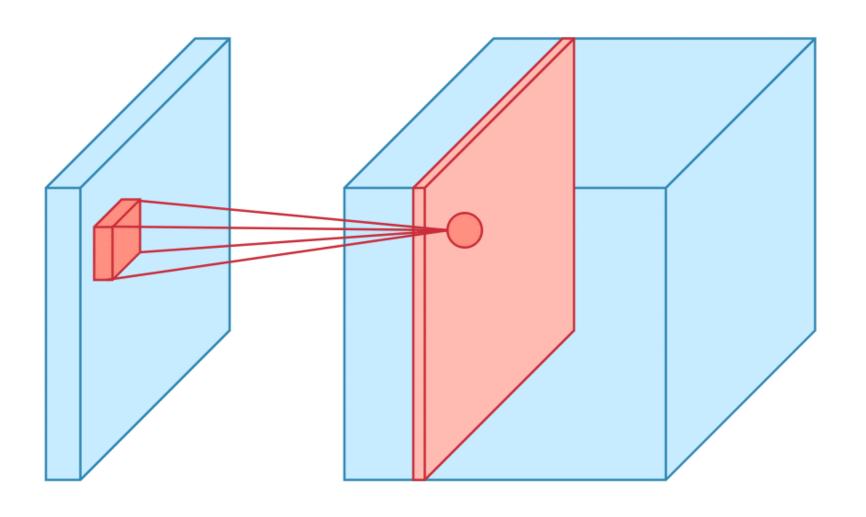


Example convolution operation shown in 2D using a 3x3 filter

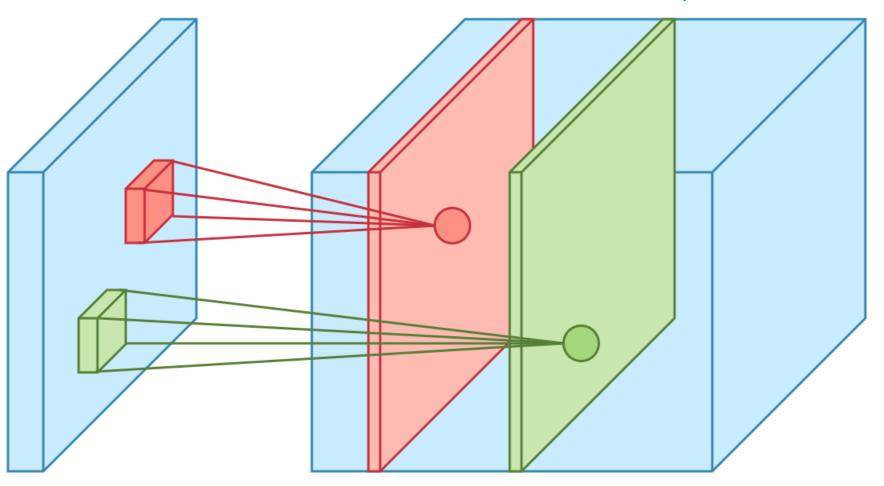
10 different filters 10 feature maps of size 32x32x1



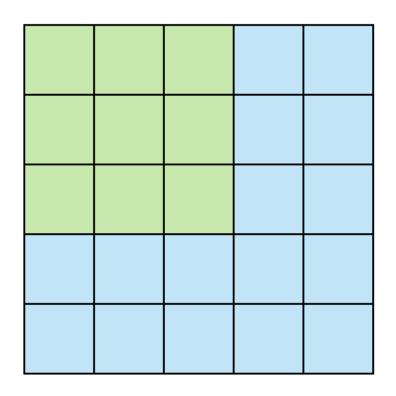
CNN Convolution Layer Sliding operation at 4 locations

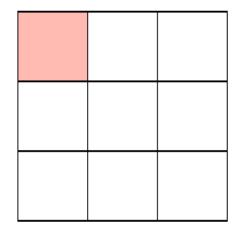


two feature maps



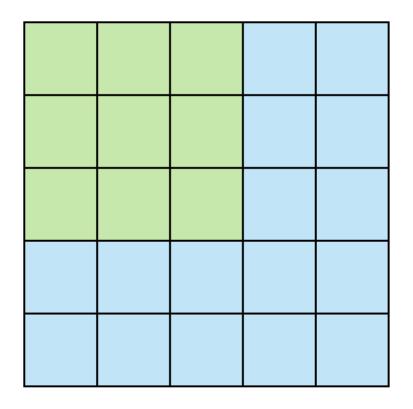
Stride specifies how much we move the convolution filter at each step

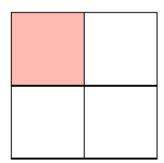




Stride 1

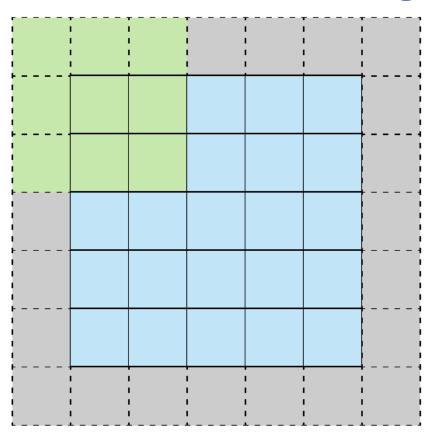
Stride specifies how much we move the convolution filter at each step

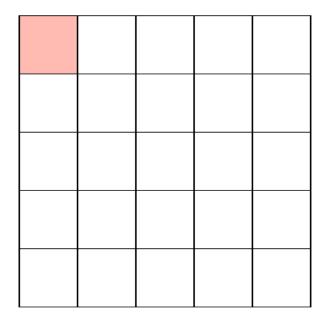




Stride 2

Stride 1 with **Padding**

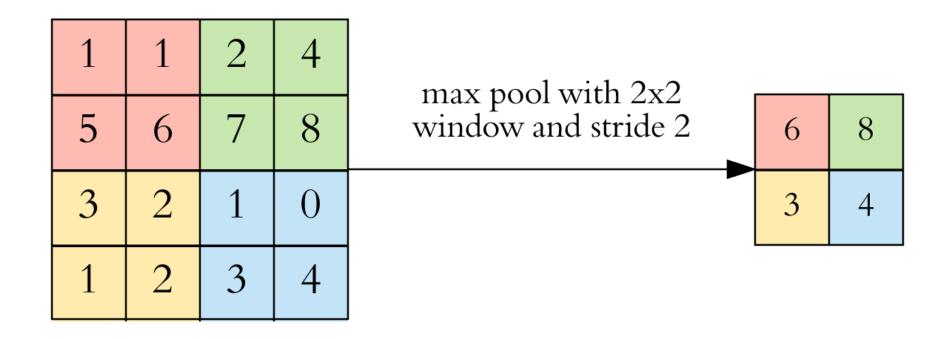




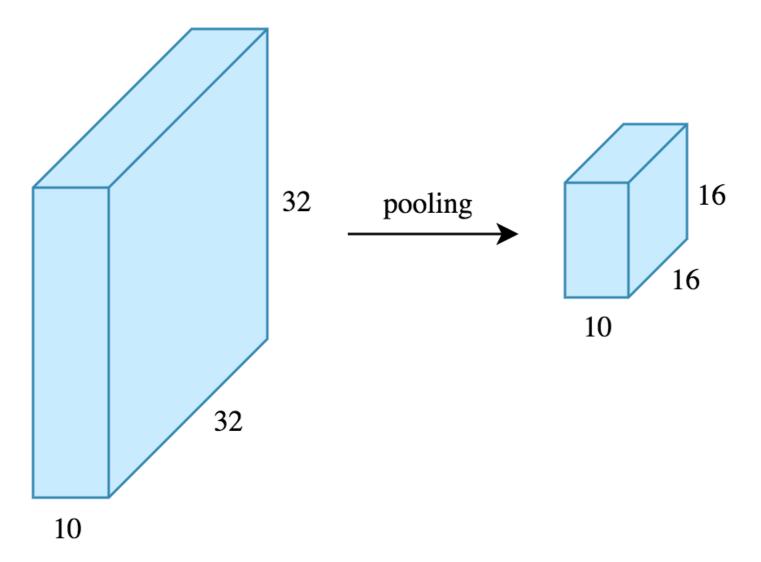
Stride 1 with Padding

CNN Pooling Layer

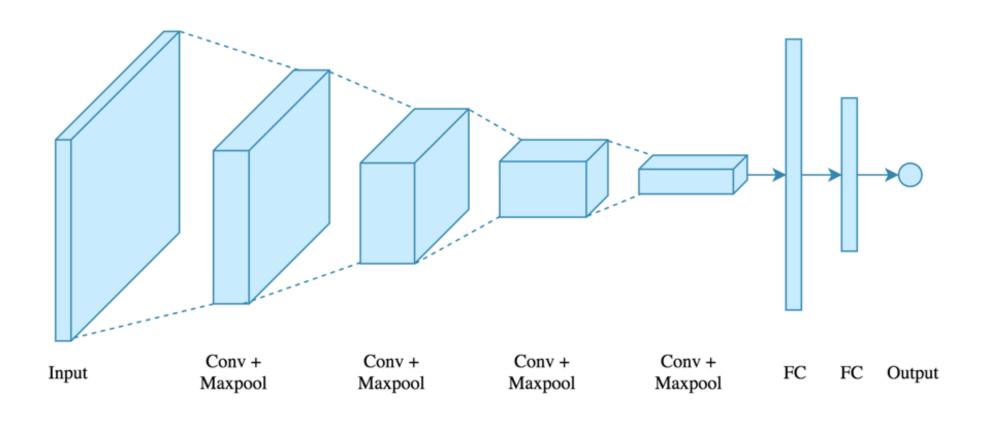
Max Pooling



CNN Pooling Layer



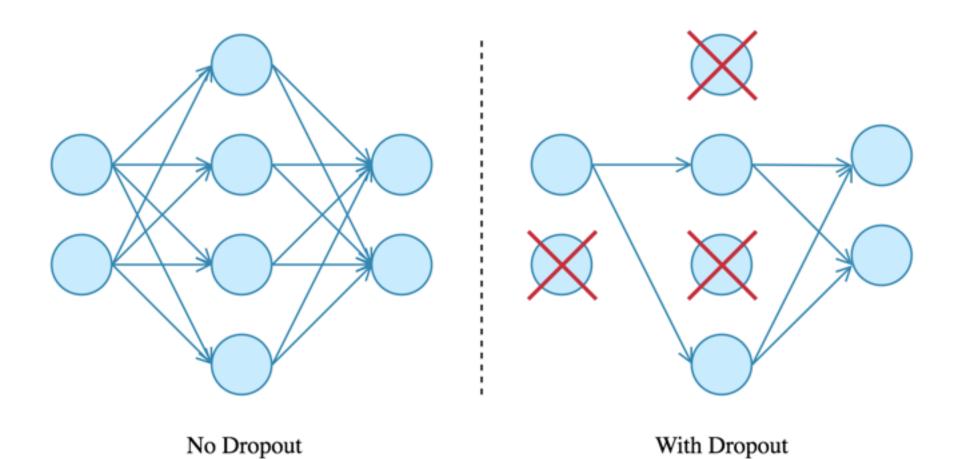
CNN Architecture 4 convolution + pooling layers, followed by 2 fully connected layers



CNN Architecture 4 convolution + pooling layers, followed by 2 fully connected layers

https://gist.github.com/ardendertat/0fc5515057c47e7386fe04e9334504e3

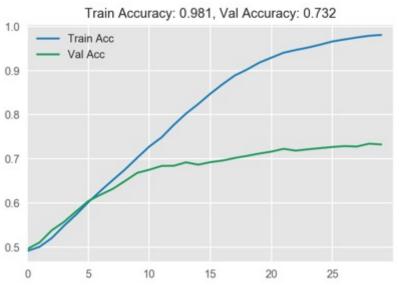
Dropout



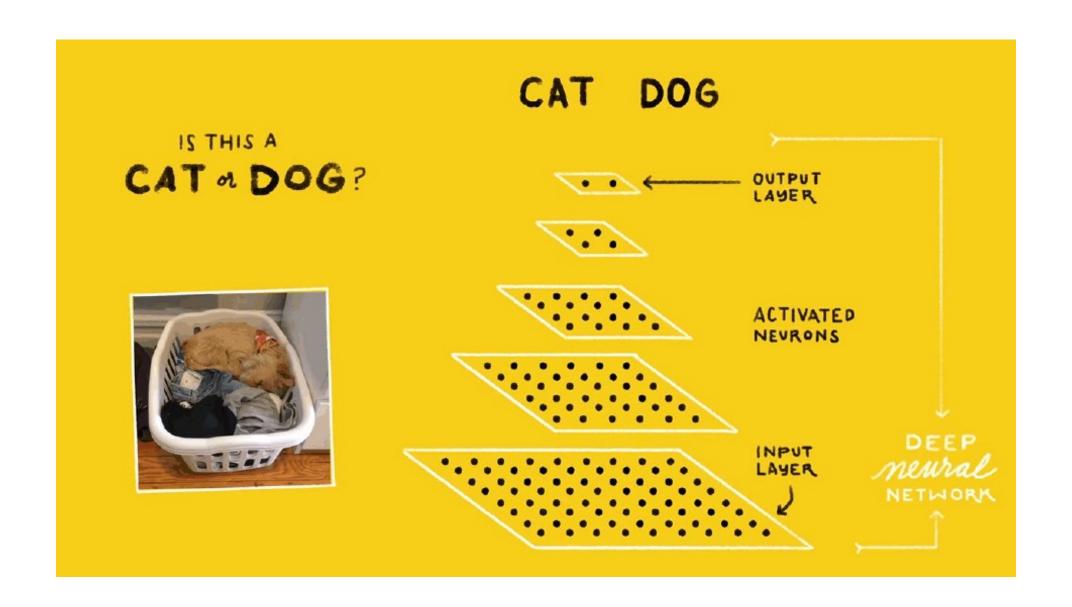
Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks, https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Model Performance



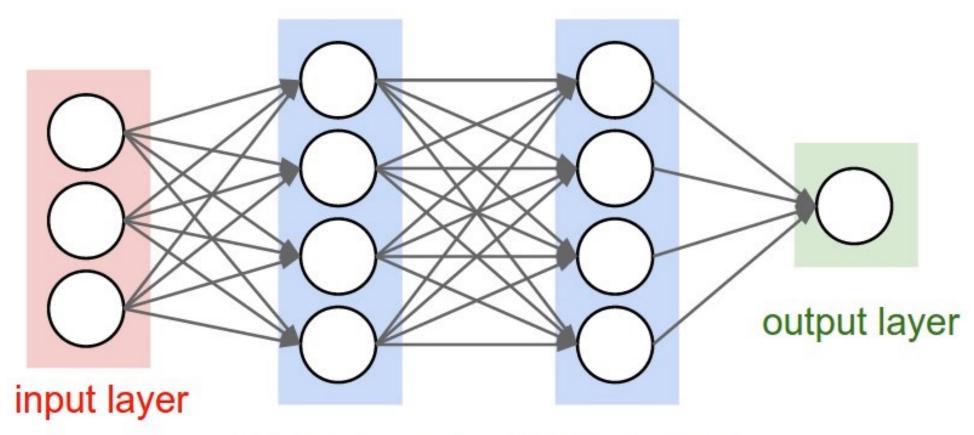


Visual Recognition Image Classification



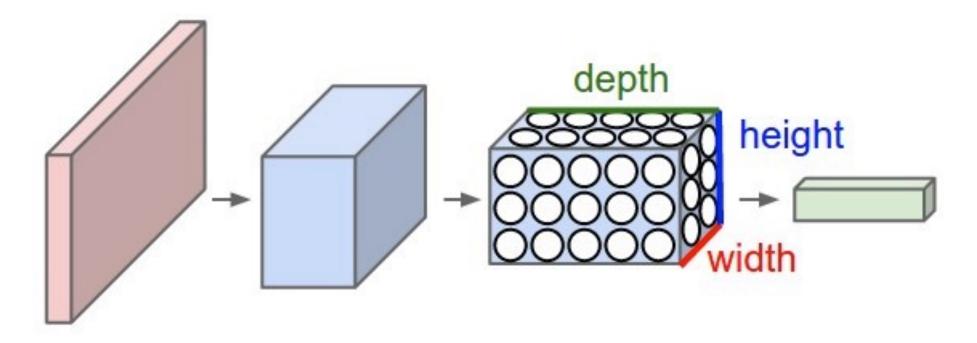
Convolutional Neural Networks (CNNs / ConvNets)

A regular 3-layer Neural Network

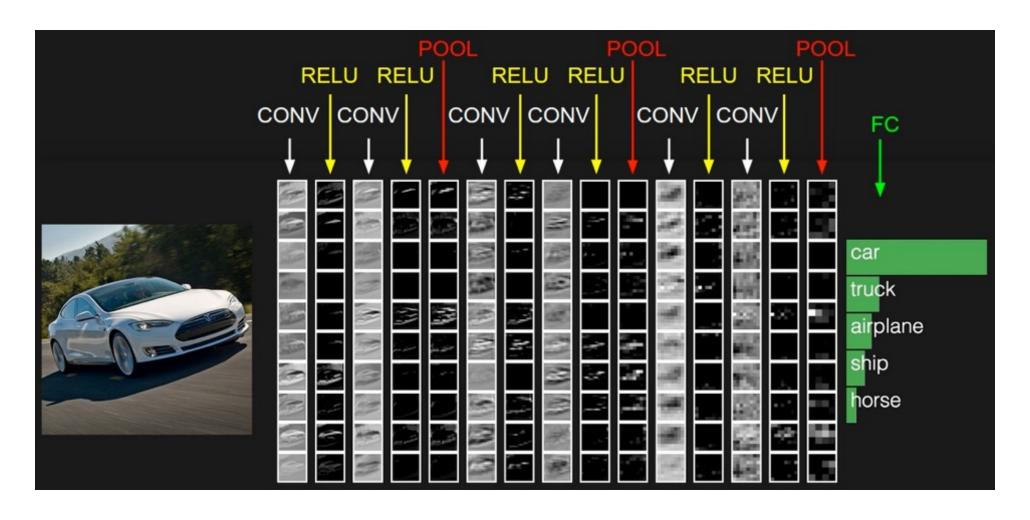


hidden layer 1 hidden layer 2

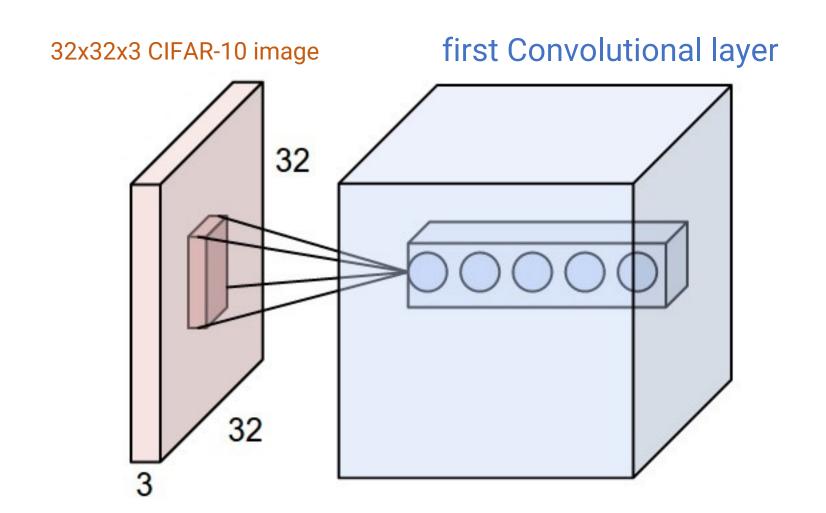
A ConvNet arranges its neurons in three dimensions (width, height, depth)



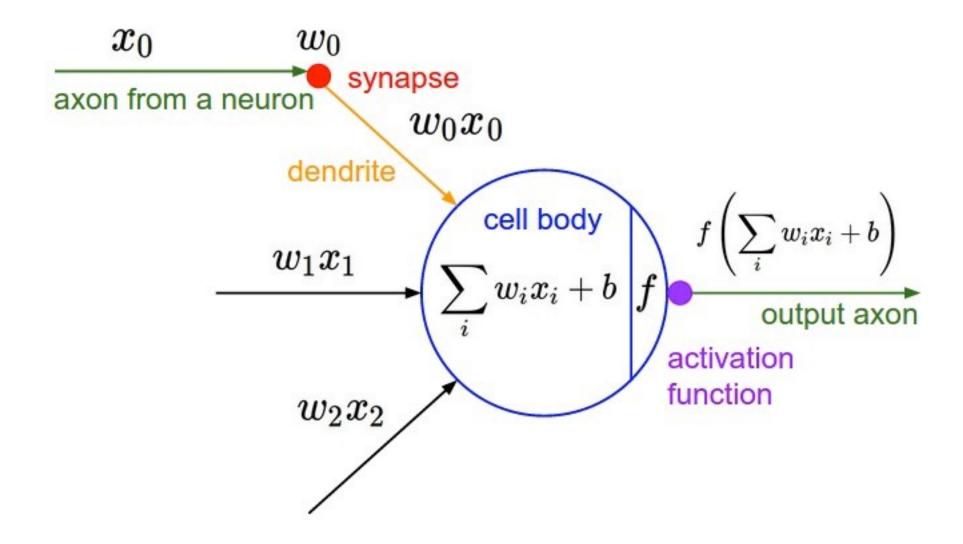
The activations of an example ConvNet architecture.



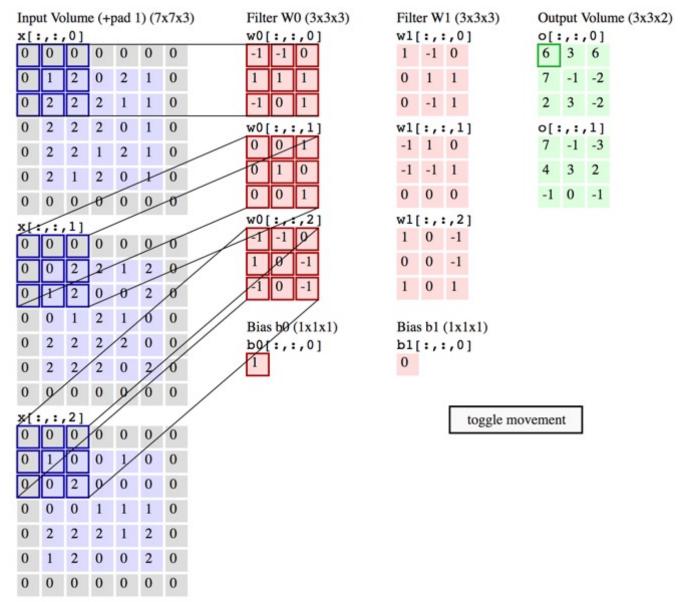
ConvNets



ConvNets

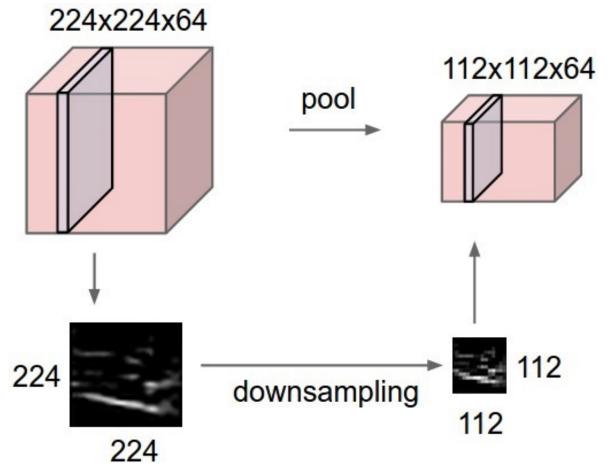


Convolution Demo



ConvNets

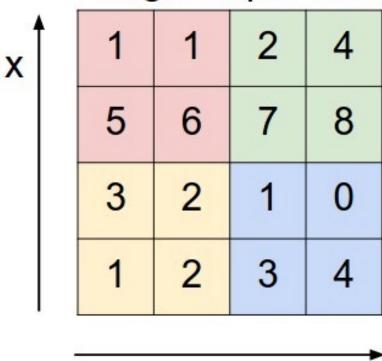
input volume of size [224x224x64] is pooled with **filter** size 2, **stride** 2 into output volume of size [112x112x64]



http://cs231n.github.io/convolutional-networks/

ConvNets max pooling

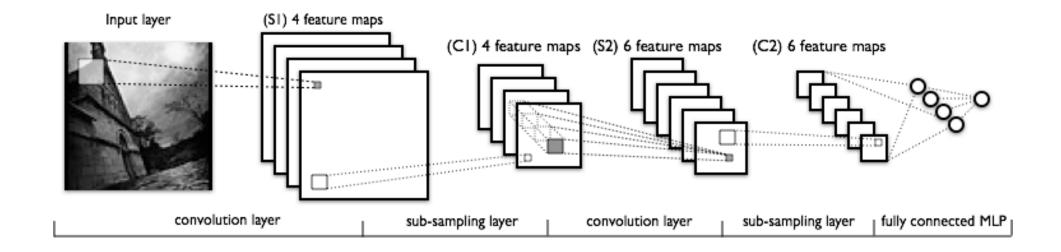
Single depth slice



max pool with 2x2 filters and stride 2

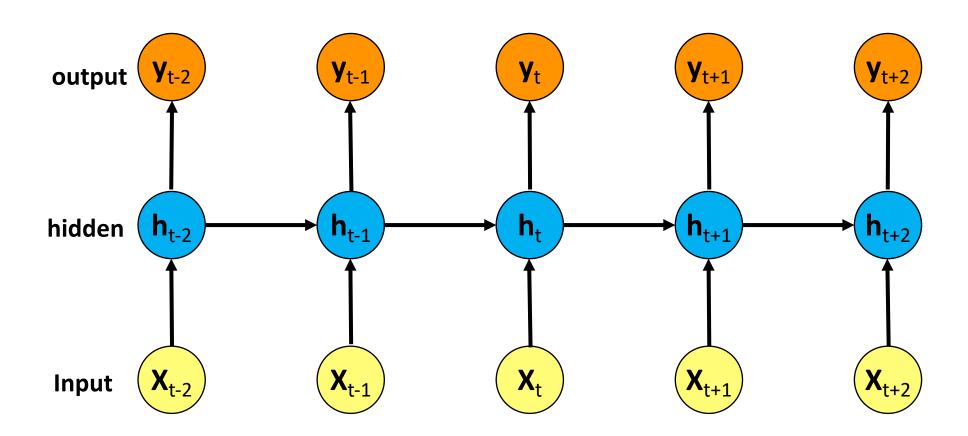
6	8
3	4

Convolutional Neural Networks (CNN) (LeNet)

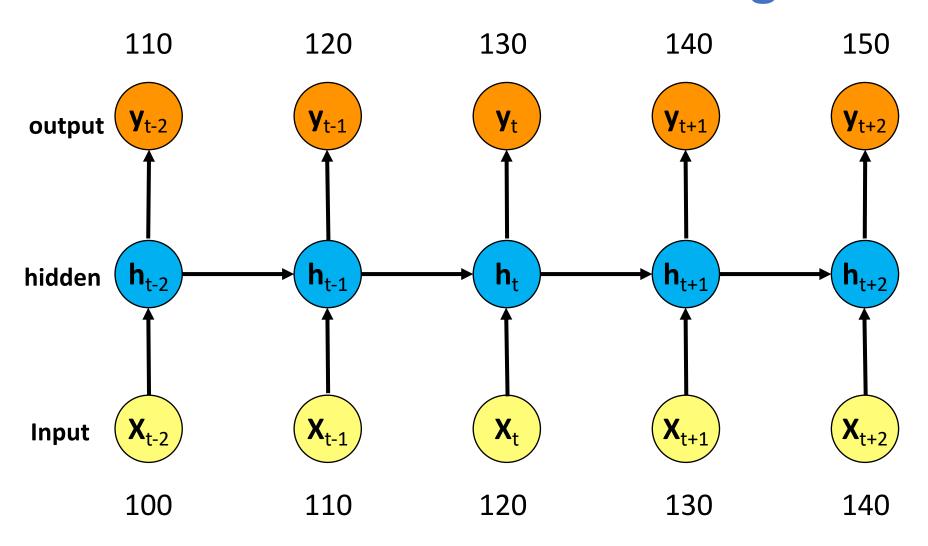


Recurrent Neural Networks (RNN)

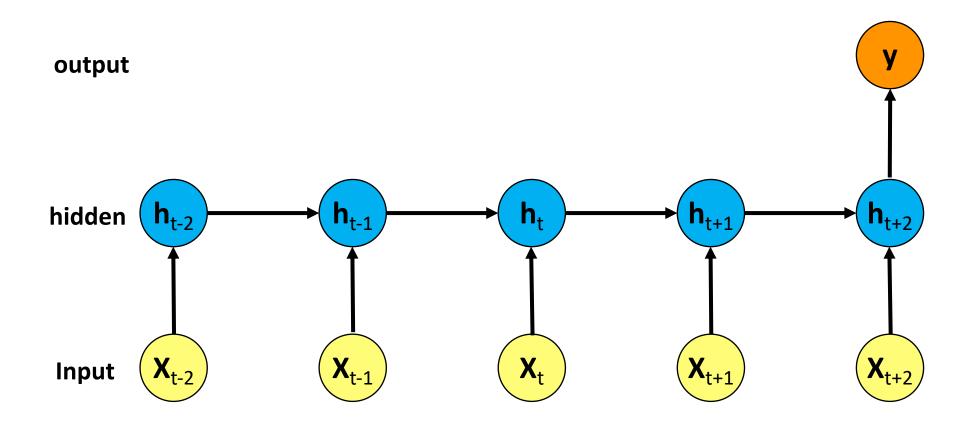
Recurrent Neural Networks (RNN)



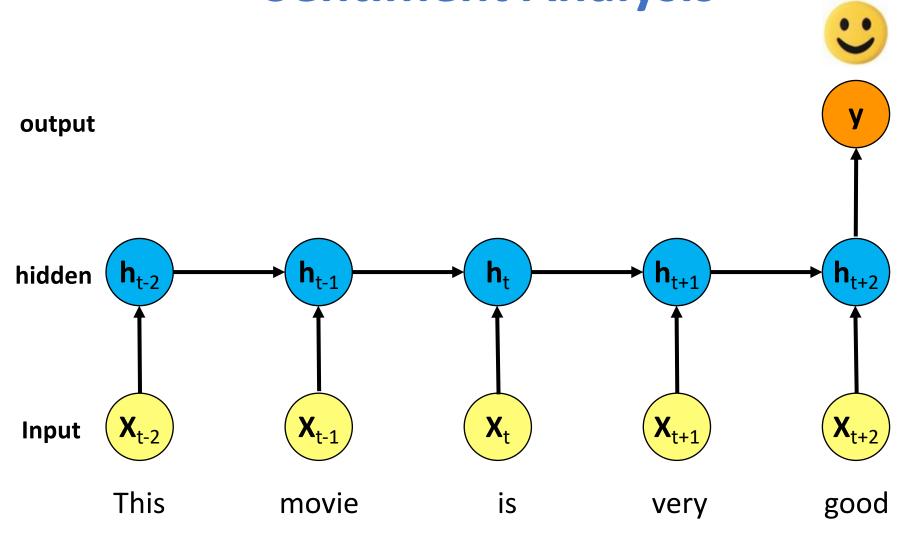
Recurrent Neural Networks (RNN) Time Series Forecasting



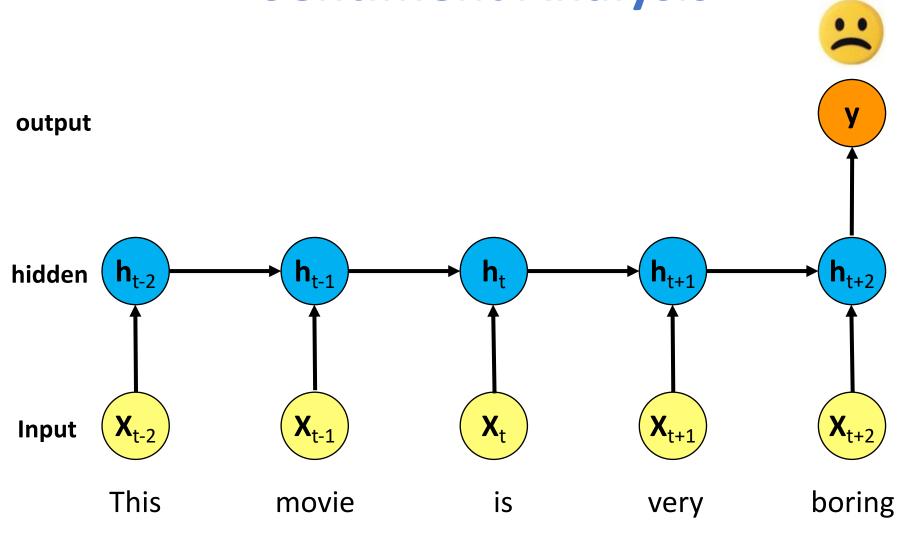
Recurrent Neural Networks (RNN)



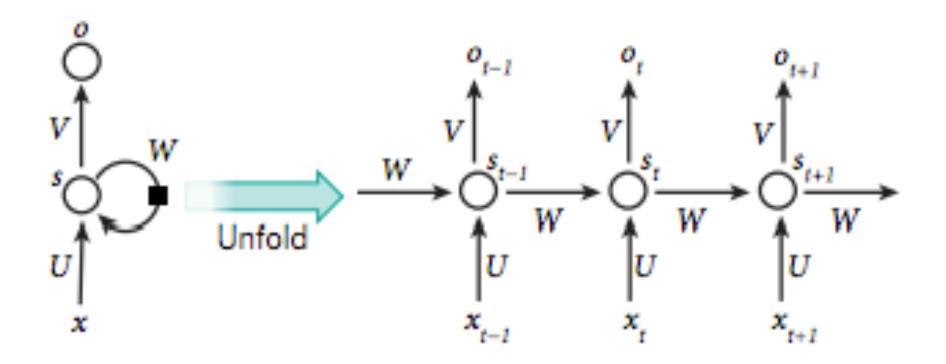
Recurrent Neural Networks (RNN) Sentiment Analysis

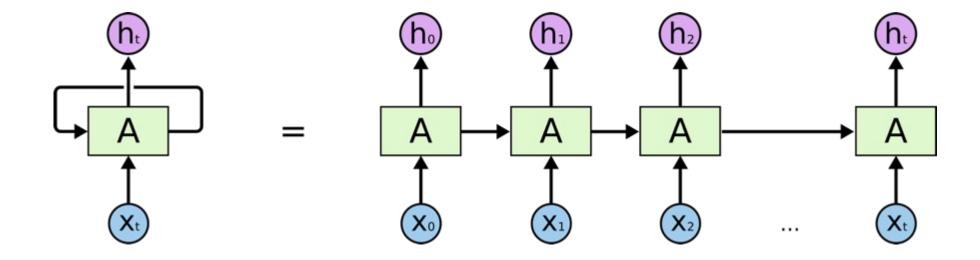


Recurrent Neural Networks (RNN) Sentiment Analysis

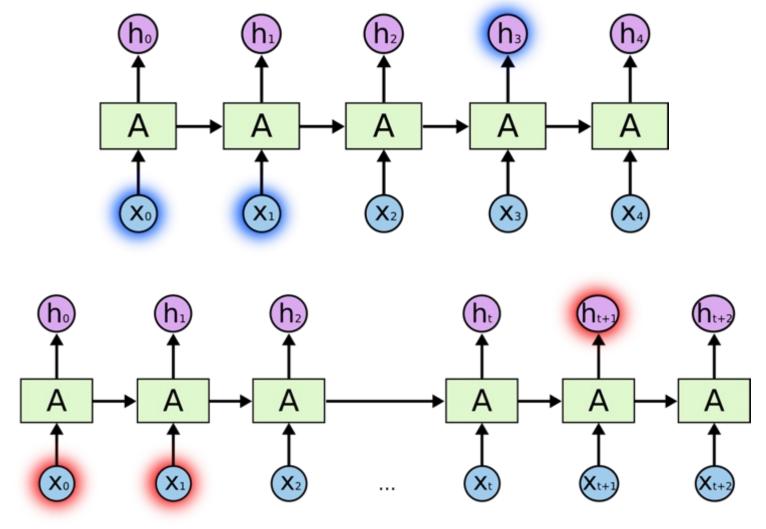


Recurrent Neural Network (RNN)



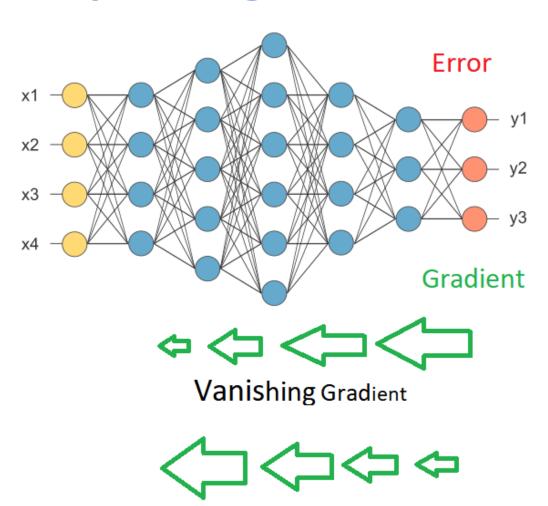


RNN long-term dependencies

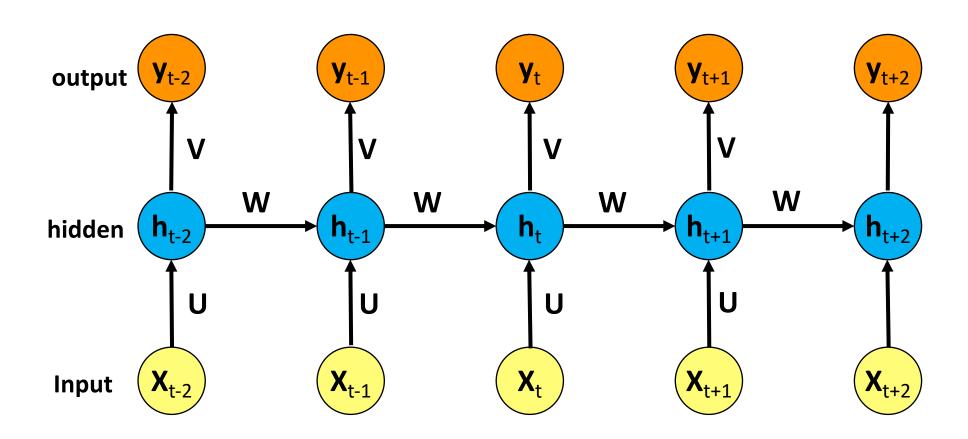


I grew up in France... I speak fluent French.

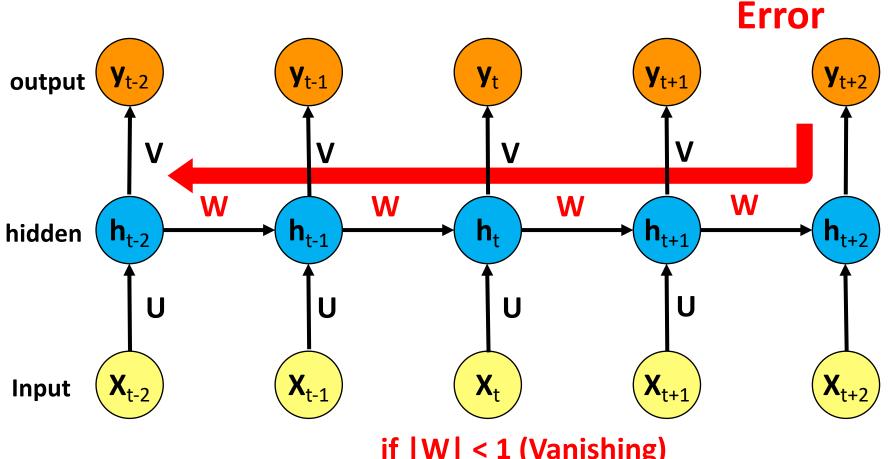
Vanishing Gradient Exploding Gradient



Recurrent Neural Networks (RNN)



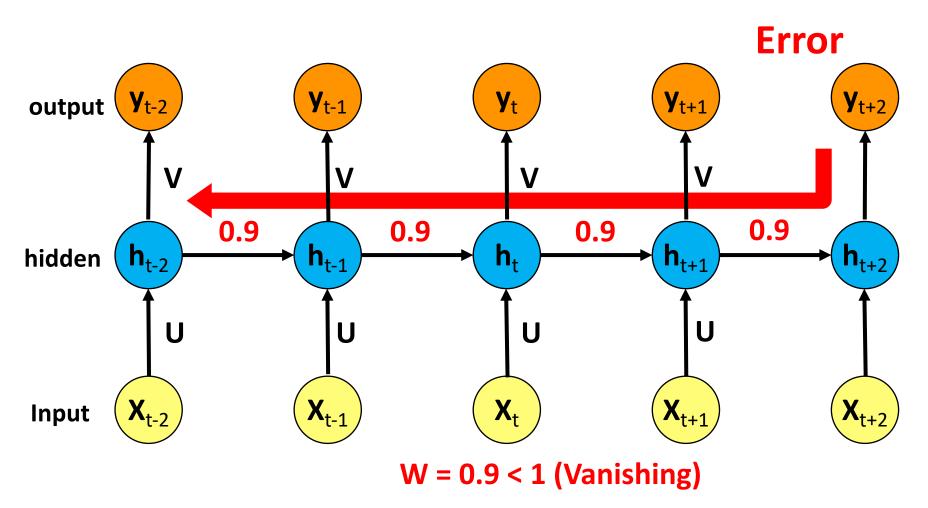
Vanishing Gradient problem Exploding Gradient problem



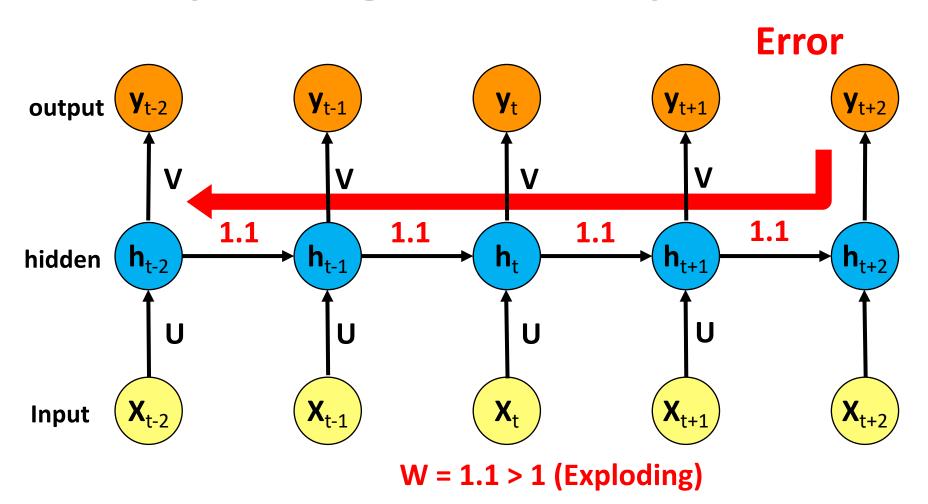
if |W| < 1 (Vanishing)

if |W| > 1 (Exploding)

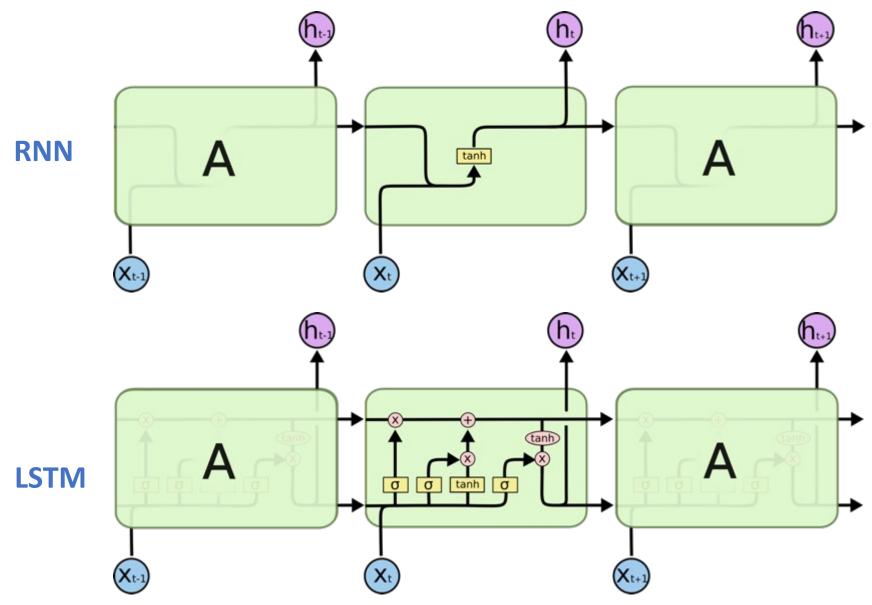
Vanishing Gradient problem



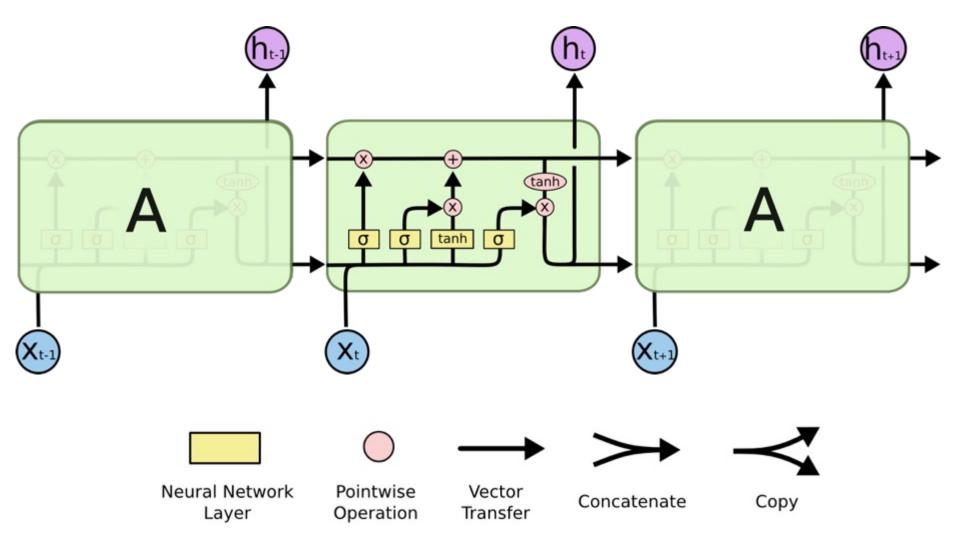
Exploding Gradient problem



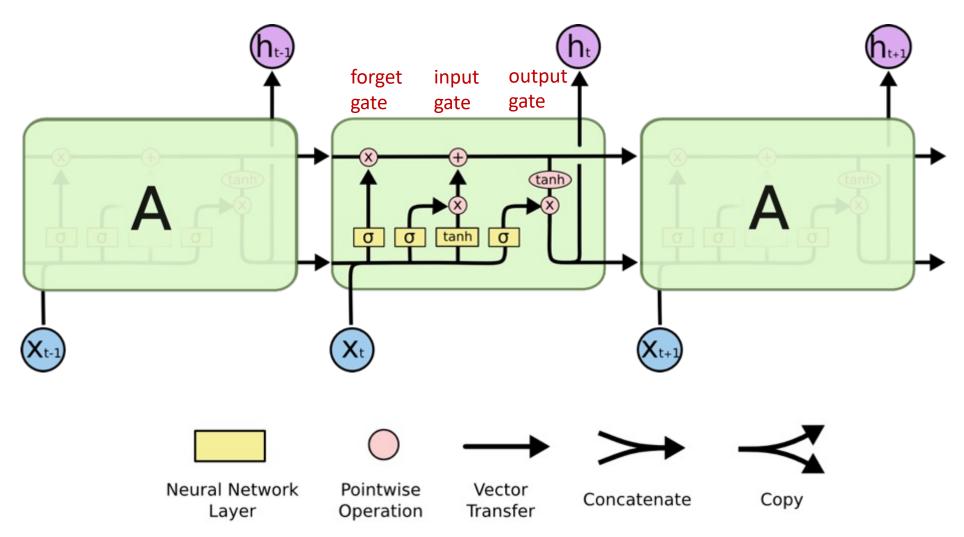
RNN LSTM



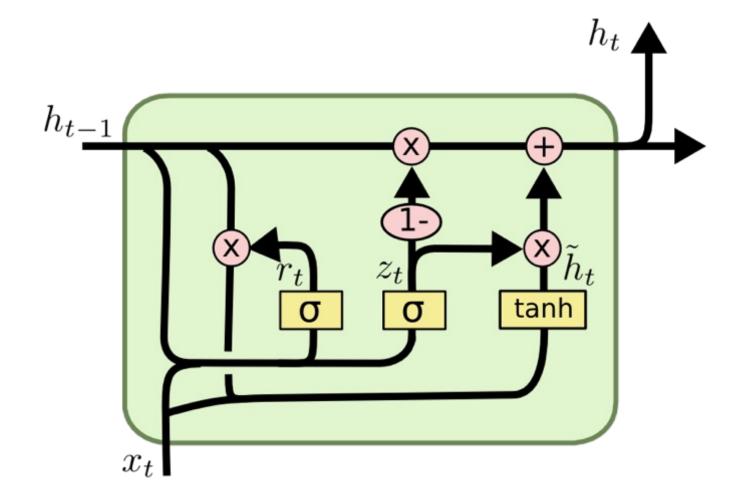
Long Short Term Memory (LSTM)



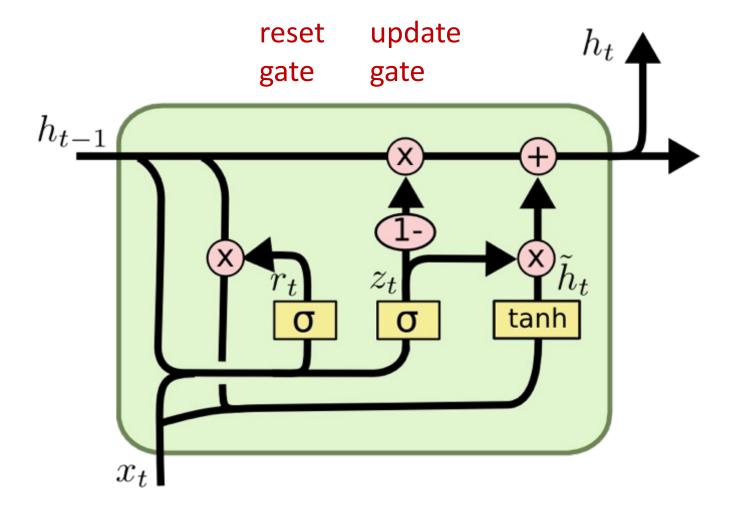
Long Short Term Memory (LSTM)



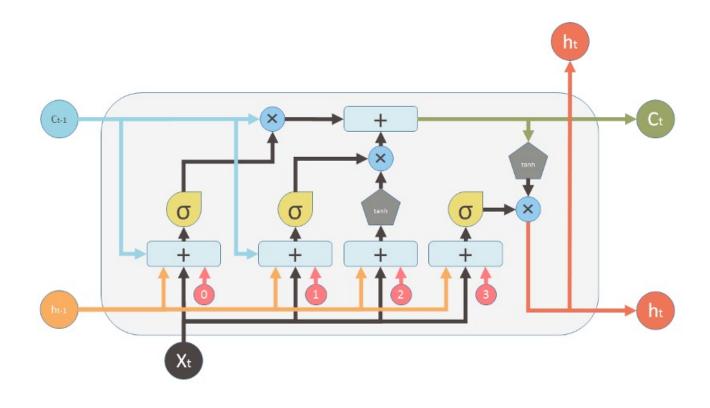
Gated Recurrent Unit (GRU)

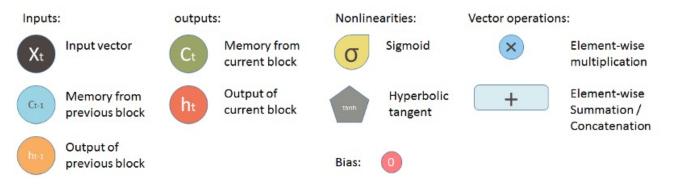


Gated Recurrent Unit (GRU)

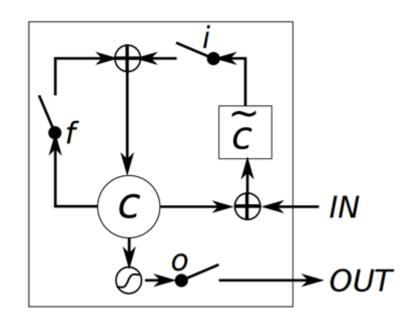


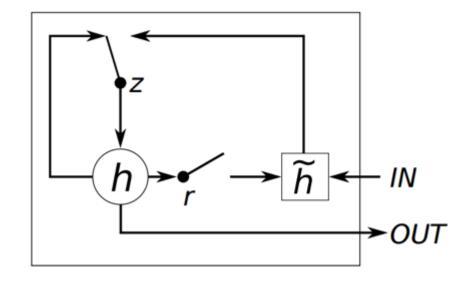
LSTM





LSTM vs GRU





LSTM

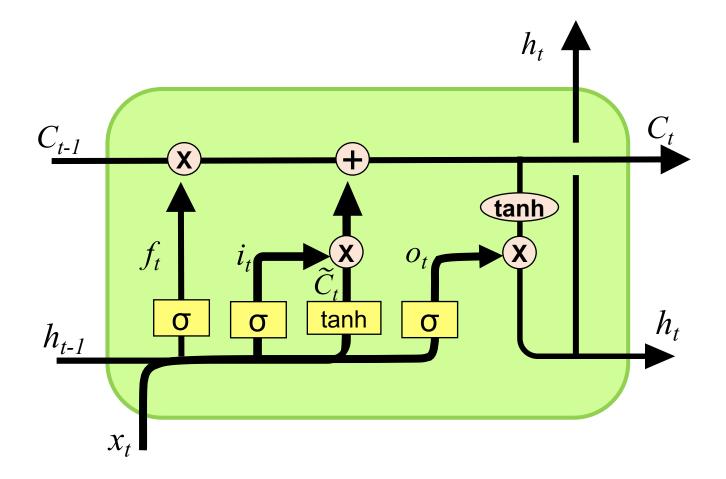
i, f and o are the input, forget and output gates, respectively.

c and c~ denote the memory cell and the new memory cell content.

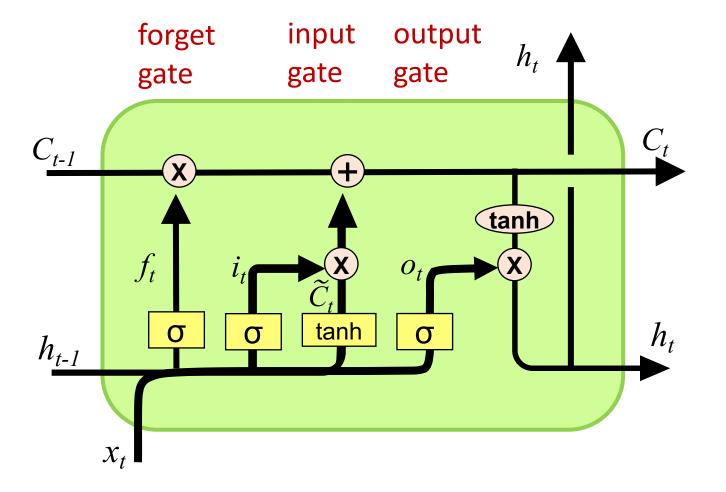
GRU

r and z are the reset and update gates, and h and h are the activation and the candidate activation.

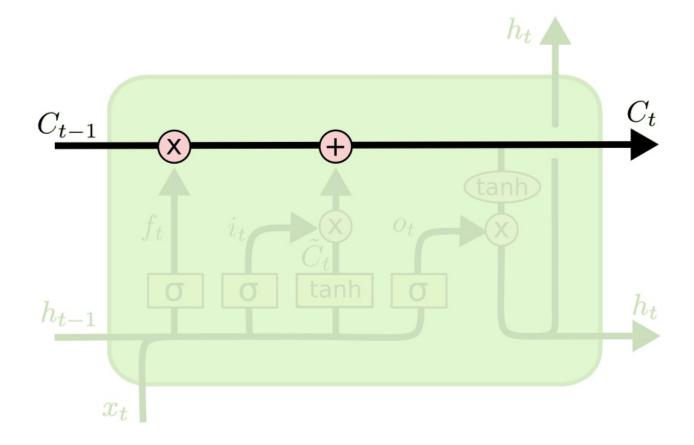
Long Short Term Memory (LSTM)



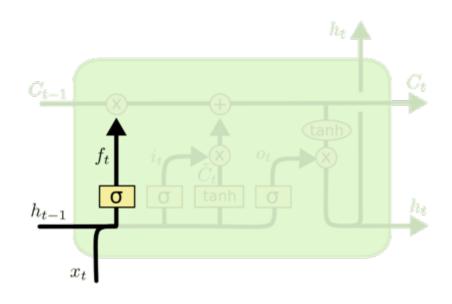
Long Short Term Memory (LSTM)



LSTM Memory state (C)

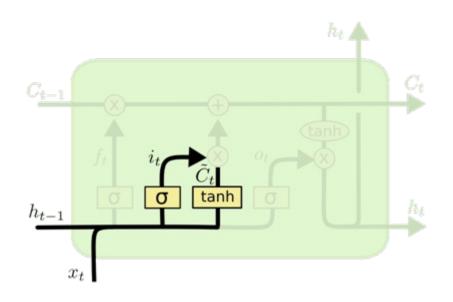


LSTM forget gate (f)



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

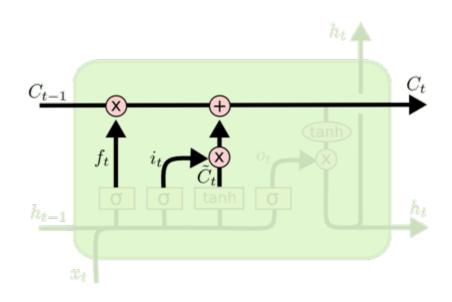
LSTM input gate (i)



$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

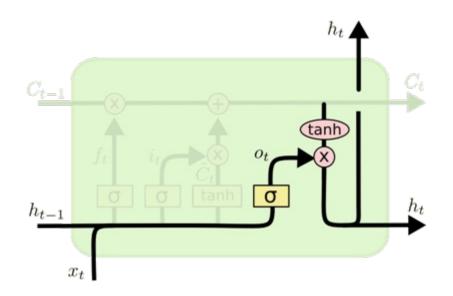
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

LSTM Memory state (C)



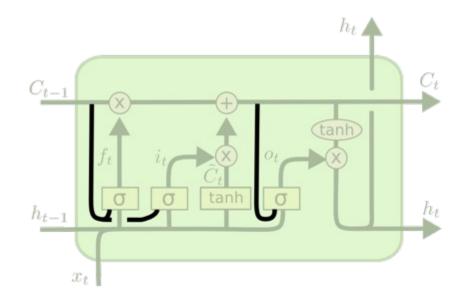
$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTM output gate (o)



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

LSTM forget (f), input (i), output (o) gates

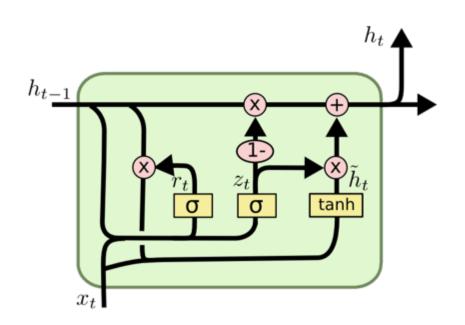


$$f_t = \sigma \left(W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

Gated Recurrent Unit (GRU) update (z), reset (r) gates



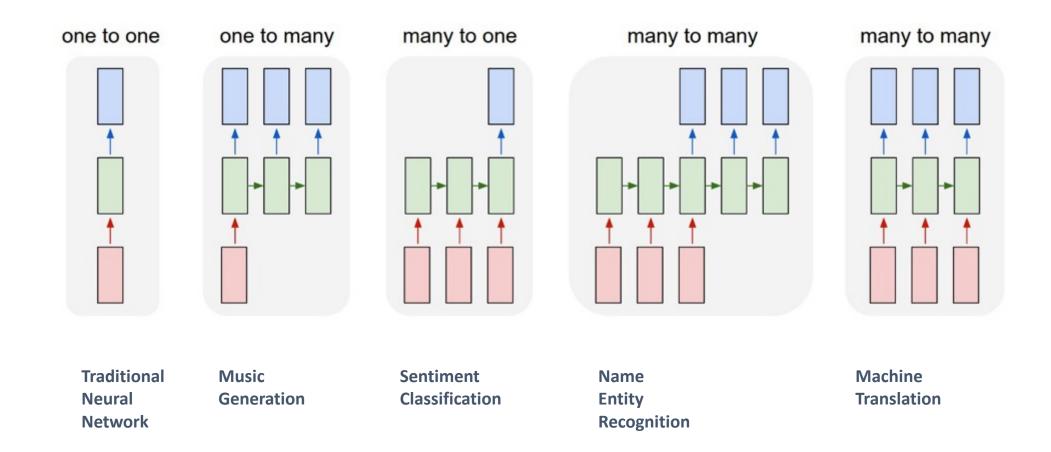
$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

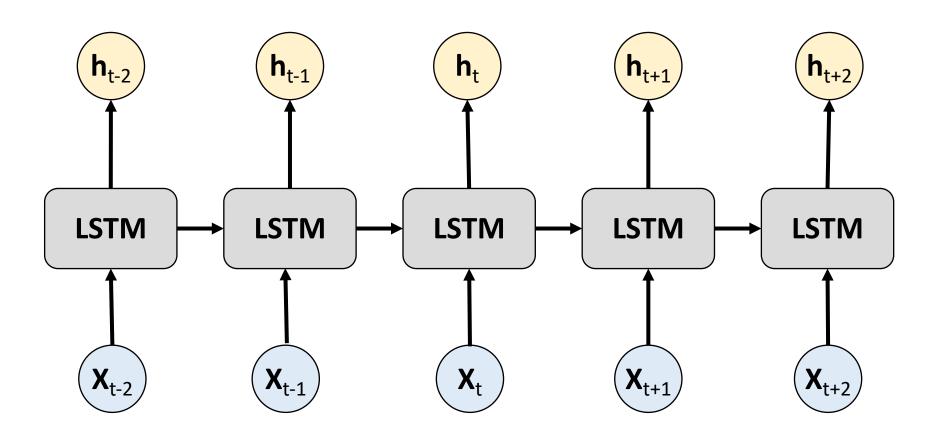
$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

LSTM Recurrent Neural Network

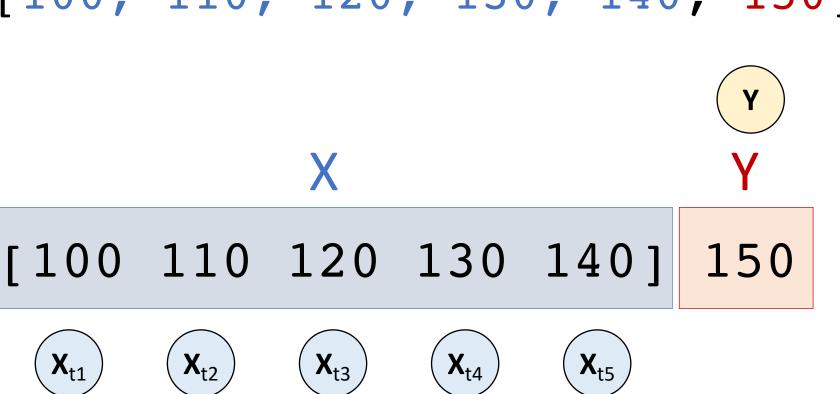


Long Short Term Memory (LSTM) for Time Series Forecasting

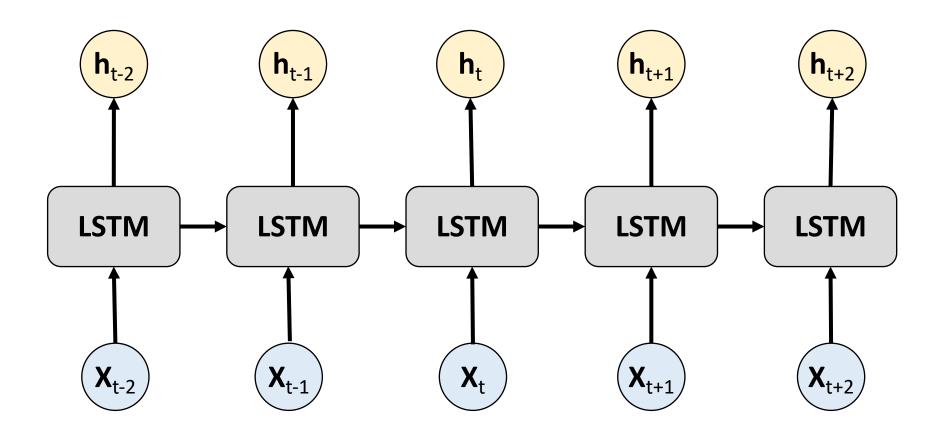


Time Series Data

[100, 110, 120, 130, 140, 150]



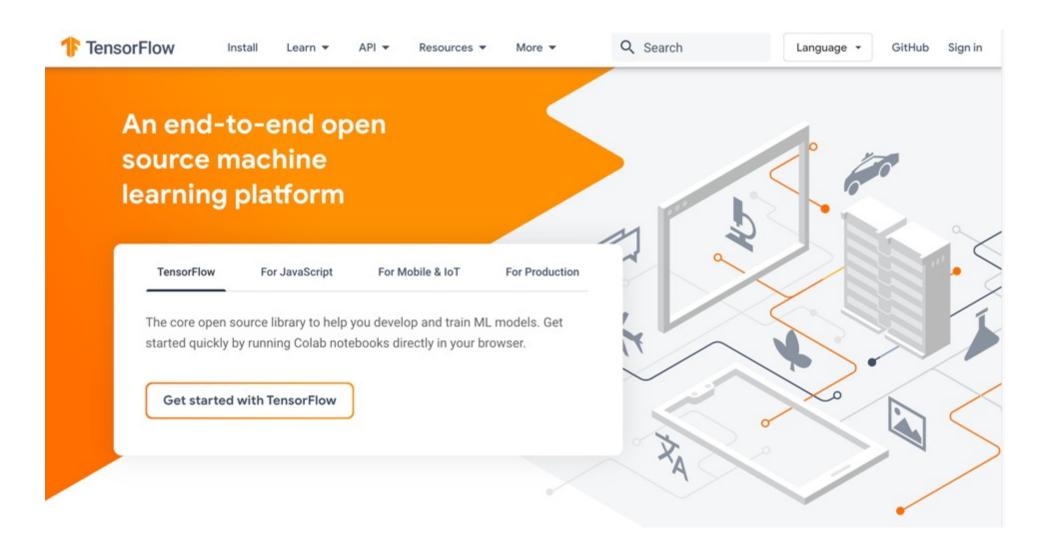
Long Short Term Memory (LSTM) for Time Series Forecasting



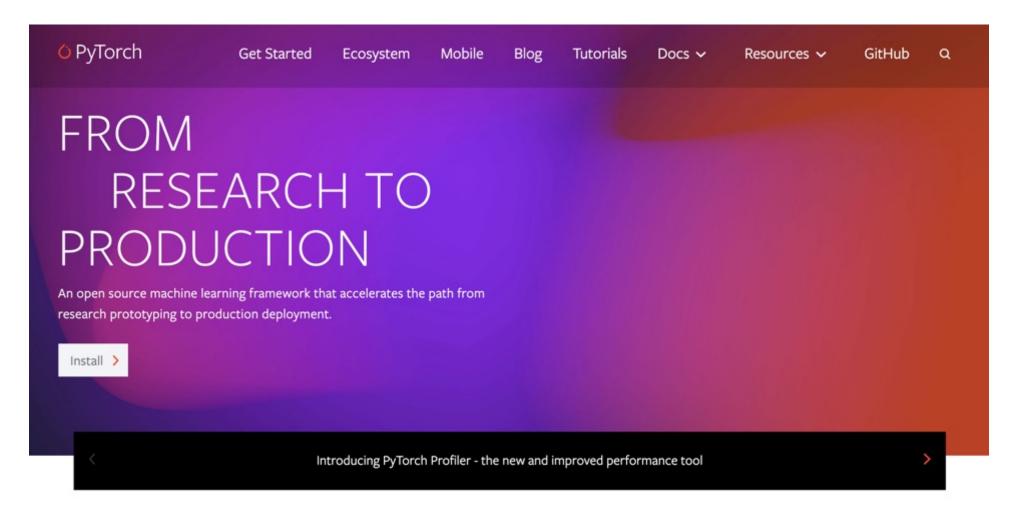
Time Series Data

```
[10, 20, 30, 40, 50, 60, 70, 80, 90]
      [10 20 30] 40
      [20 30 40] 50
      [30 40 50] 60
      [40 50 60] 70
      [50 60 70] <mark>80</mark>
       [60 70 80] 90
```


TensorFlow



PyTorch



KEY FEATURES &

See all Features >

TensorFlow

- An end-to-end open source machine learning platform.
- The core open source library to help you develop and train ML models.
- Get started quickly by running
 Colab notebooks directly in your browser.

Why TensorFlow 2.0

Why TensorFlow

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications.

About →

Easy model building

Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging.

Robust ML production anywhere

Easily train and deploy models in the cloud, on-prem, in the browser, or ondevice no matter what language you use.

Powerful experimentation for research

A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster.

TensorFlow 2.0 vs. 1.X

```
# TensorFlow 2.0
outputs = f(input)

# TensorFlow 1.X
outputs = session.run(f(placeholder), feed_dict={placeholder: input})
```

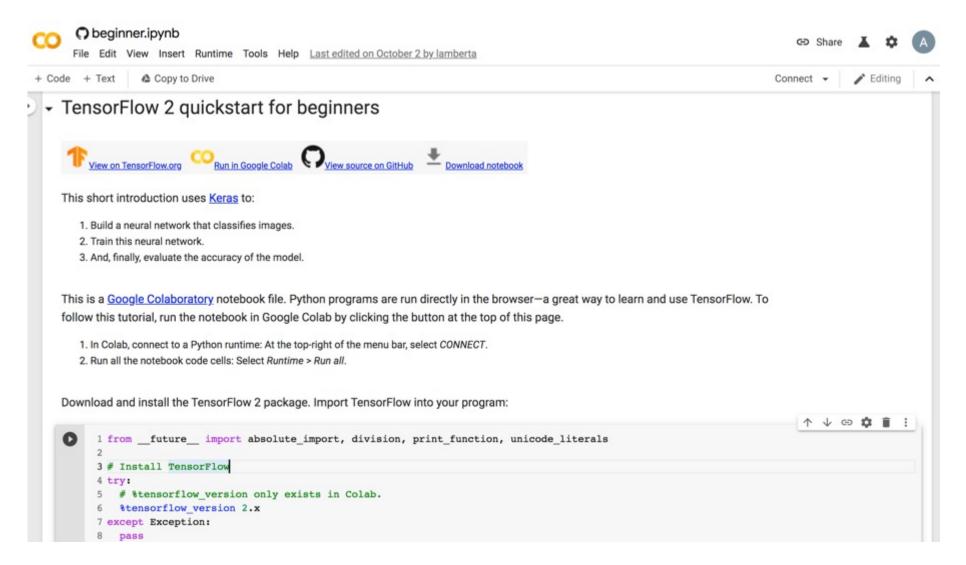
Source: https://www.tensorflow.org/guide/effective_tf2

TensorFlow 2.0

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_{train}, x_{test} = x_{train} / 255.0, x_{test} / 255.0
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
```

https://www.tensorflow.org/overview/

TensorFlow 2 Quick Start



TensorFlow Image Classification

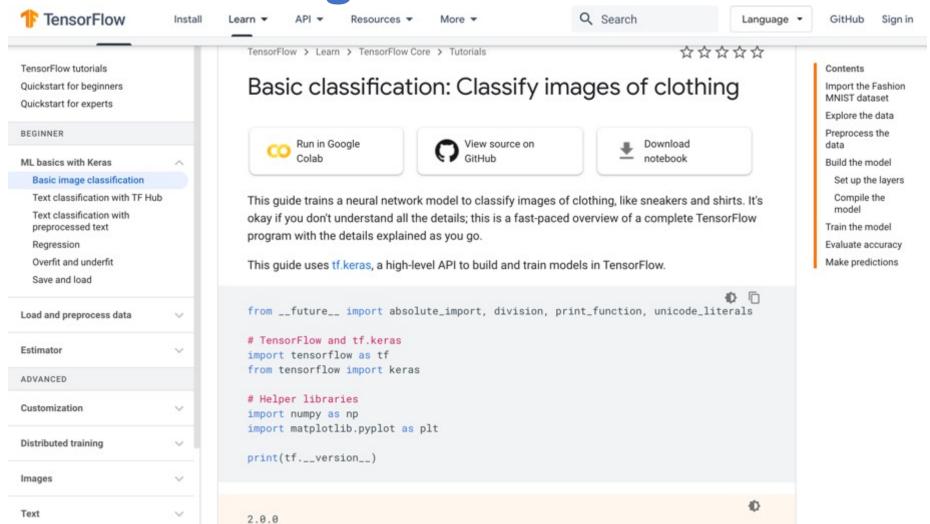
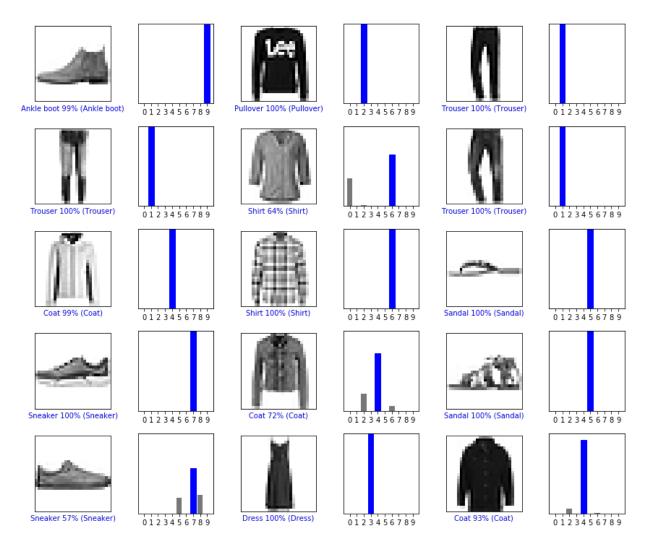
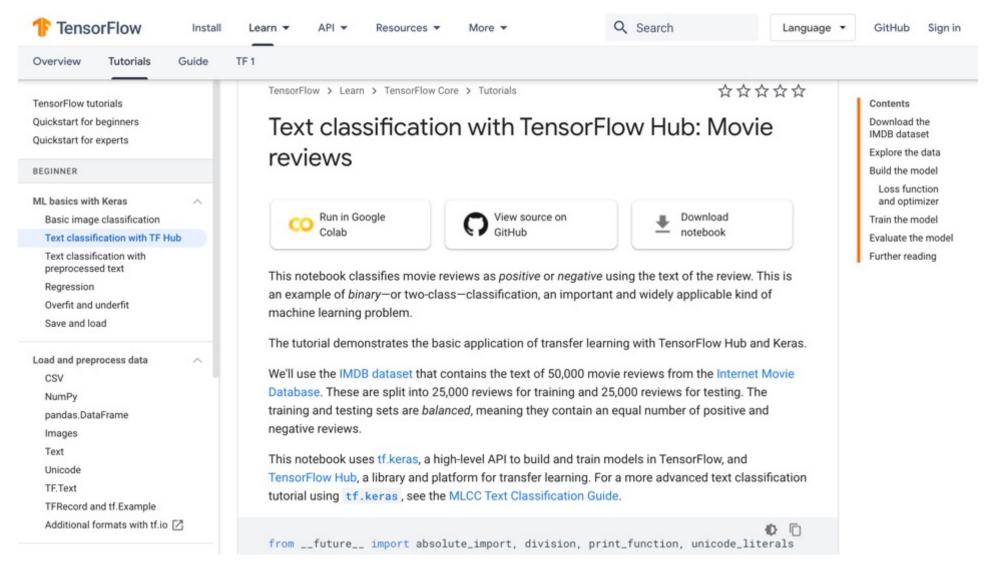


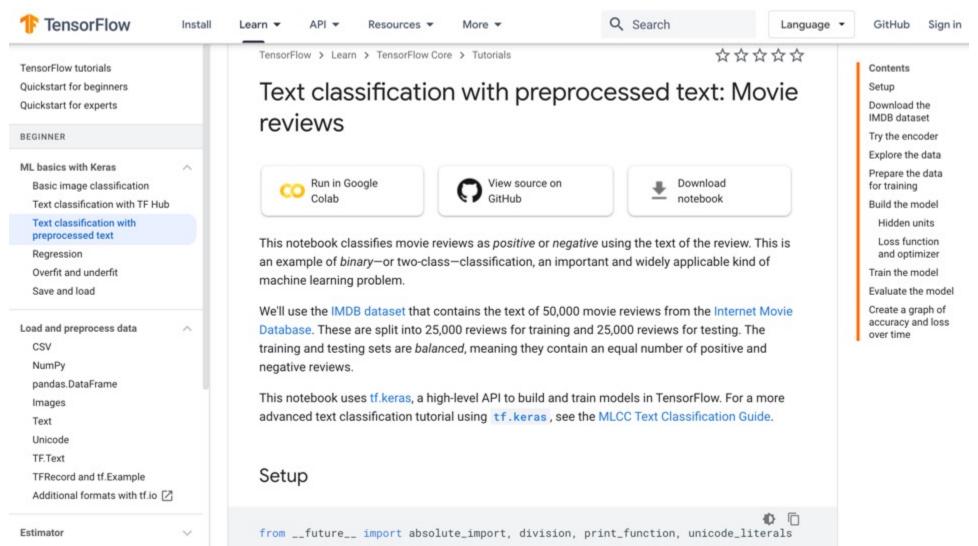
Image Classification Fashion MNIST dataset



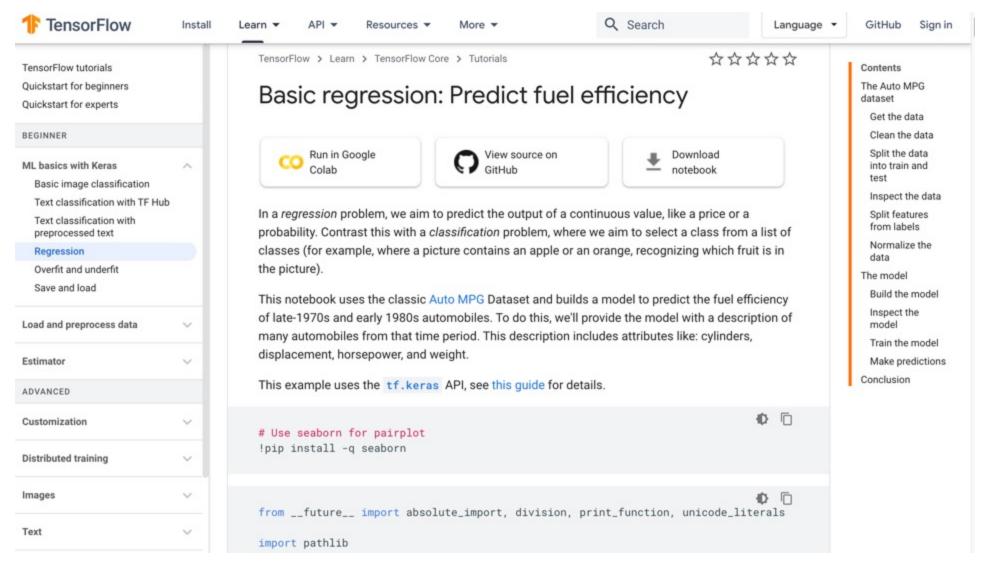
Text Classification with TF Hub



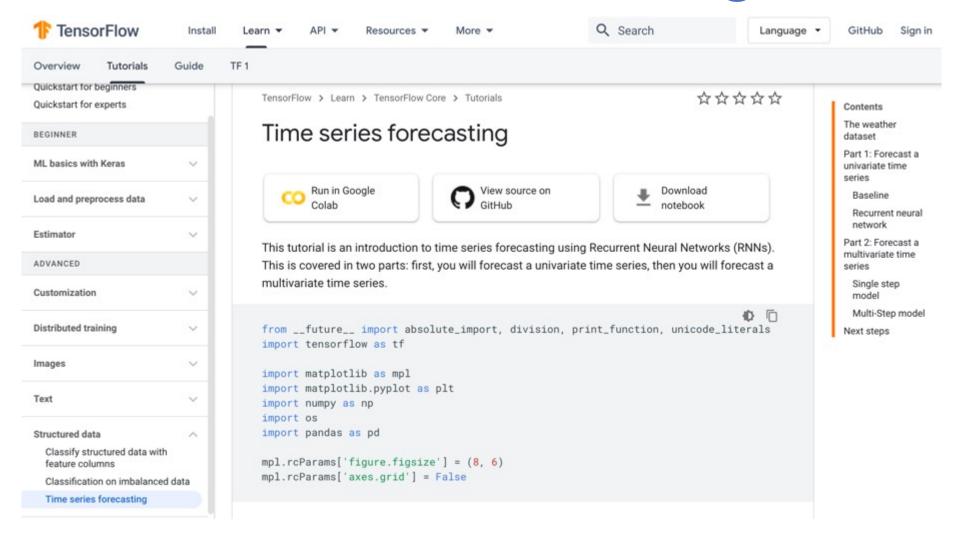
Text Classification with Pre Text



Regression



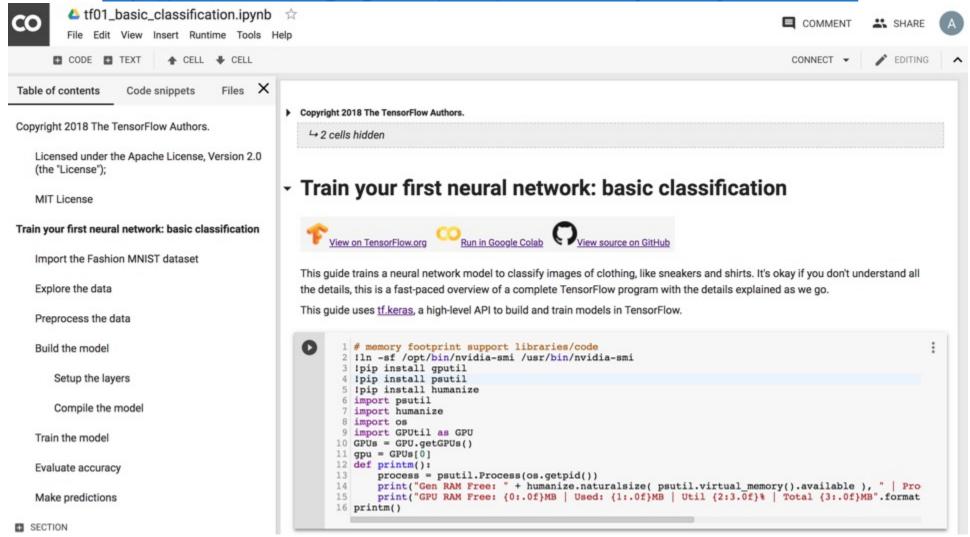
TensorFlow 2.0 Time Series Forecasting



Basic Classification

Fashion MNIST Image Classification

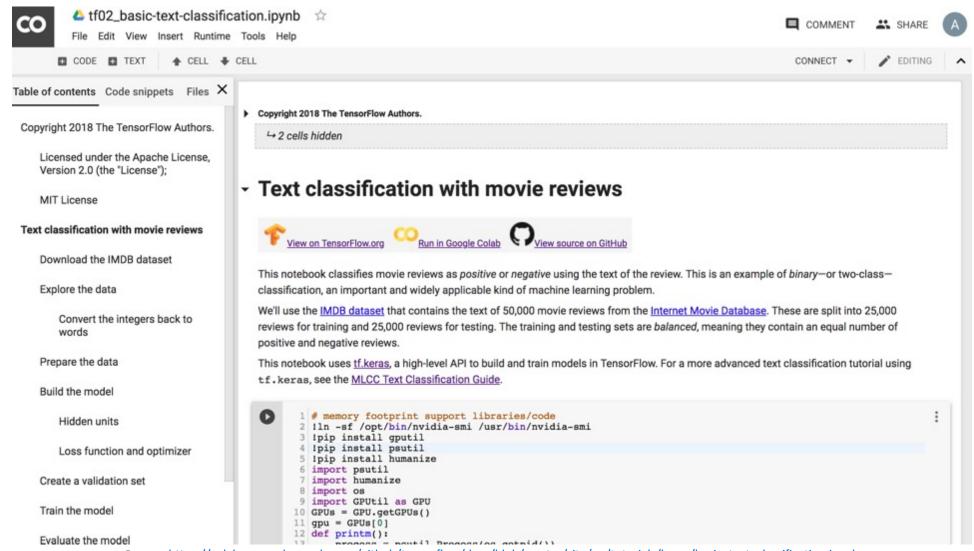
https://colab.research.google.com/drive/19PJOJi1vn1kjcutlzNHjRSLbeVl4kd5z



Text Classification

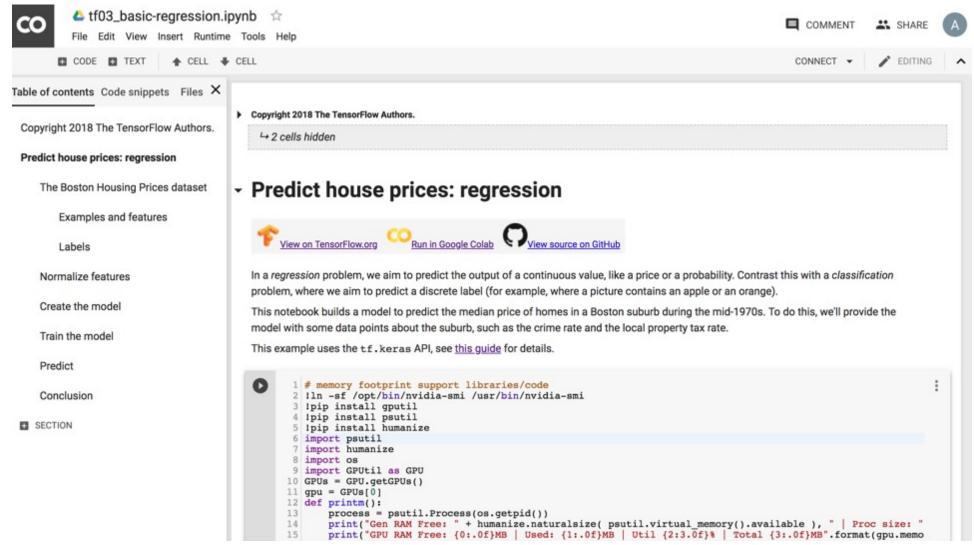
IMDB Movie Reviews

https://colab.research.google.com/drive/1x16h1GhHsLlrLYtPCvCHaoO1W-i gror



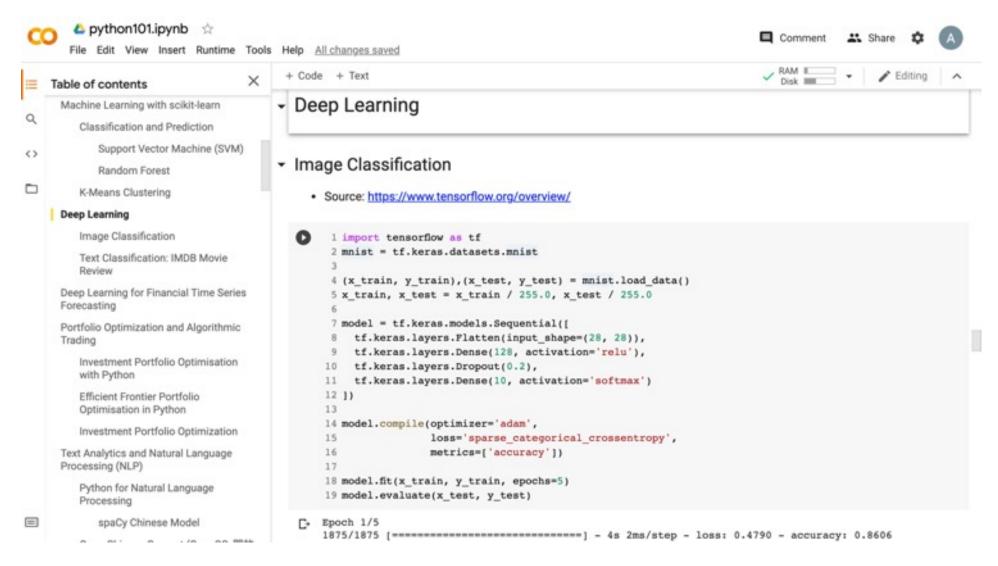
Basic Regression Predict House Prices

https://colab.research.google.com/drive/1v4c8ZHTnRtgd2 25K AURjR6SCVBRdlj



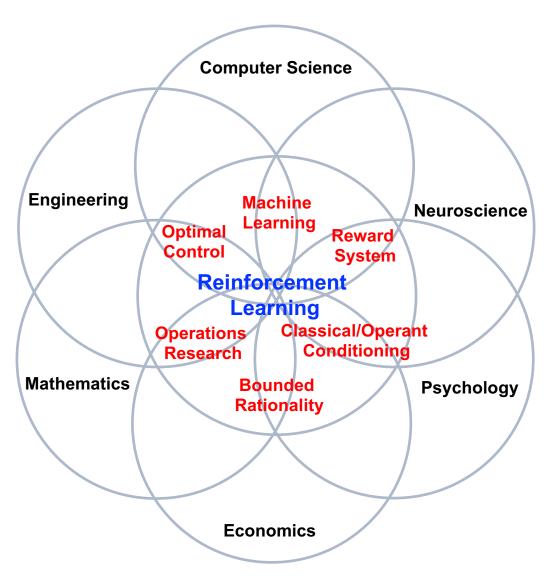
Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

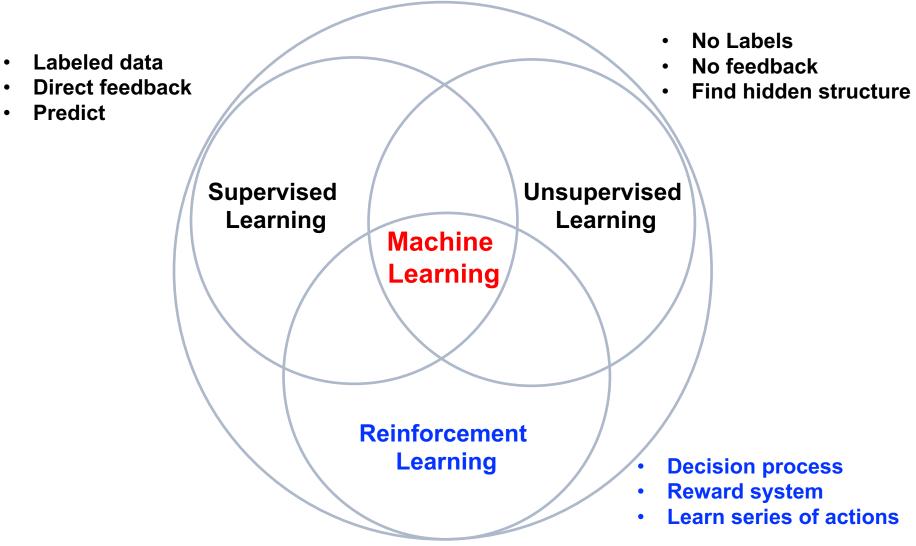


Reinforcement Learning

Reinforcement Learning (RL)



Branches of Machine Learning (ML) Reinforcement Learning (RL)



David Silver (2015), Introduction to reinforcement learning

- Elementary Reinforcement Learning
 - 1: Introduction to Reinforcement Learning
 - 2: Markov Decision Processes
 - 3: Planning by Dynamic Programming
 - 4: Model-Free Prediction
 - 5: Model-Free Control
- Reinforcement Learning in Practice
 - 6: Value Function Approximation
 - 7: Policy Gradient Methods
 - 8: Integrating Learning and Planning
 - 9: Exploration and Exploitation
 - 10: Case Study: RL in Classic Games

AlphaZero (AZ) and AlphaGo Zero (AZO)

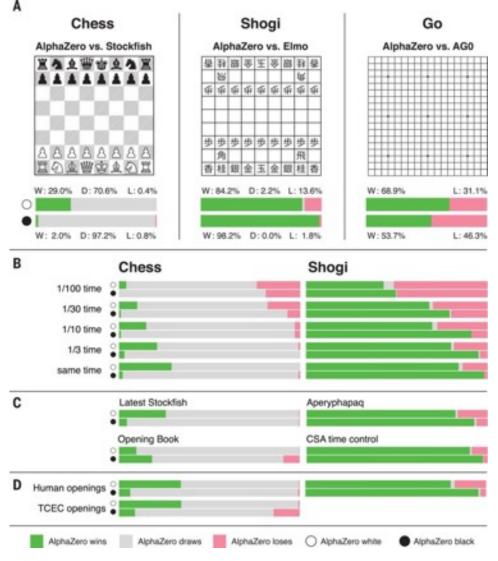
- AlphaZero (Silver et al., 2018)
 - A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. (Science)
- AlphaGo Zero (Silver et al., 2017)
 - Mastering the game of Go without human knowledge (Nature)

Alphazero.

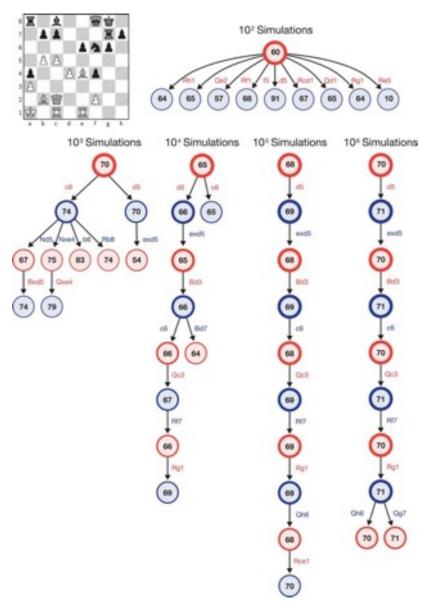
Shedding new light on the grand games of chess, shogi

AlphaZero

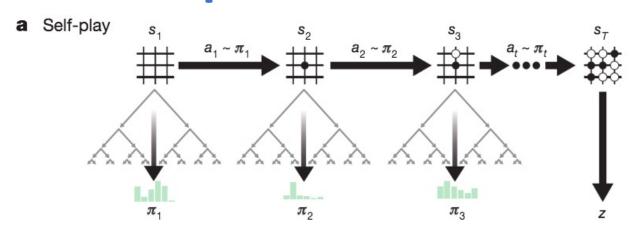
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play



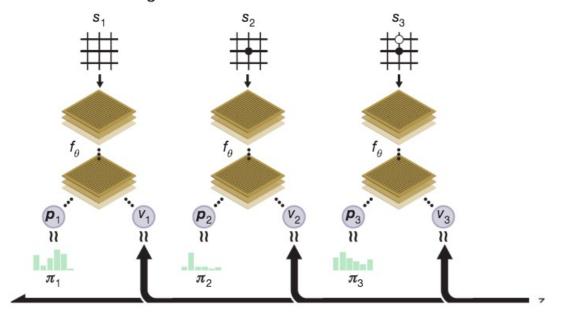
AlphaZero's search procedure



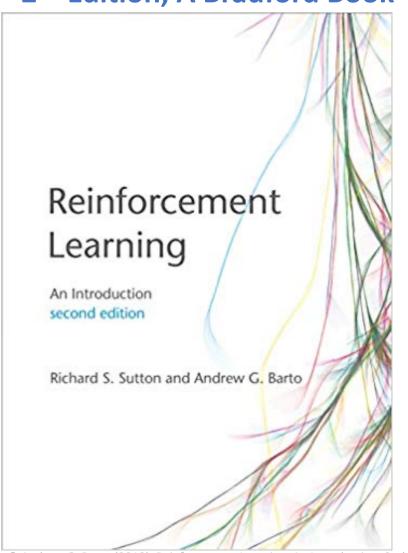
Self-play reinforcement learning in AlphaGo Zero



b Neural network training



Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book



Reinforcement learning

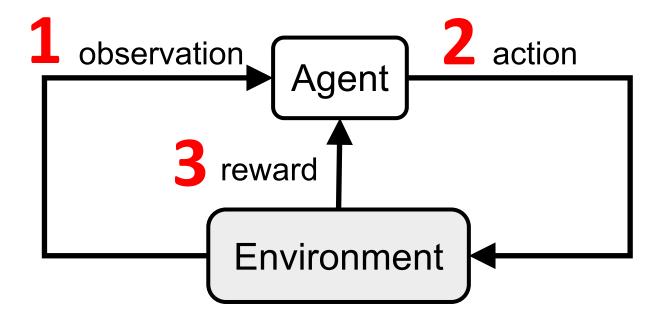
- Reinforcement learning is learning what to do
 - —how to map situations to actions
 - —so as to maximize a numerical reward signal.

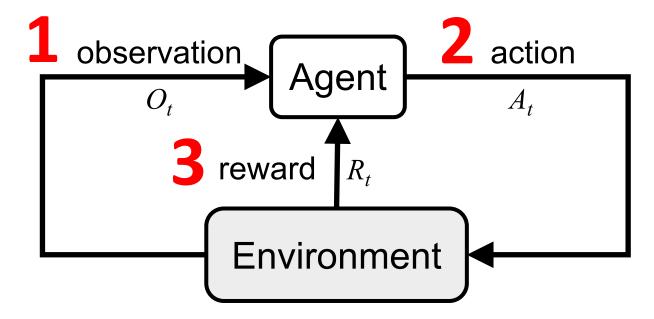
Two most important distinguishing features of reinforcement learning

- trial-and-error search
- delayed reward

Agent

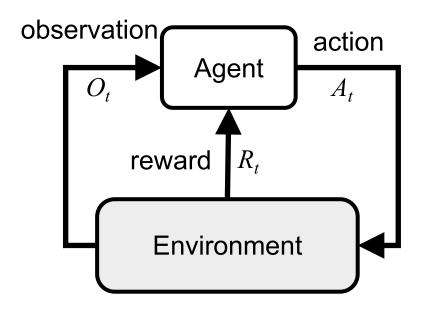
Environment





Agent and Environment

- At each step t the agent:
 - Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at env. step



History and State

The history is the sequence of observations, actions, rewards

$$H_t = O_1, A_1, R_1, ..., A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

Information State

- An information state (a.k.a. Markov state) contains all useful information from the history.
- Definition

A state S_t is Markov if and only if

$$P[S_{t+1} \mid S_t] = P[S_{t+1} \mid S_1, ..., S_t]$$

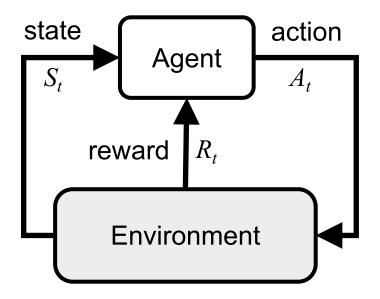
"The future is independent of the past given the present"

$$H_{1:t} \rightarrow S_t \rightarrow H_{t+1:\infty}$$

- Once the state is known, the history may be thrown away i.e. The state is a sufficient statistic of the future
- The environment state S_t^e is Markov
- The history H_t is Markov

Fully Observable Environments

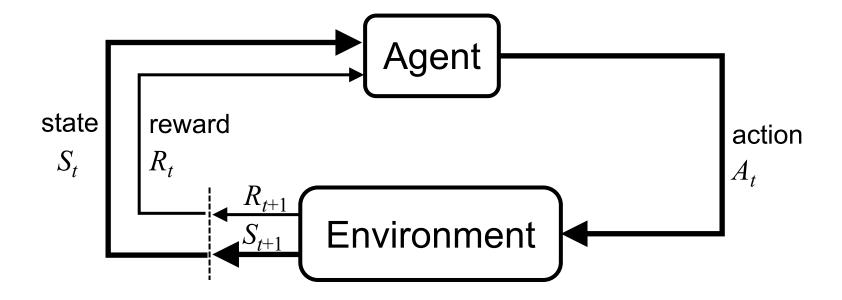
- Full observability:
 - agent directly observes environment state
 - Agent state =
 environment state =
 information state
 - Formally, this is a Markov decision process (MDP)



Partially Observable Environments

- Partial observability: agent indirectly observes environment
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state ≠ environment state
- Formally this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation $S^a_{\ \mu}$ e.g.
 - Complete history: $S_t^a = H_t$
 - Beliefs of environment state: $S_t^a = (P[S_t^e = s_1],...,P[S_t^e = s_n])$
 - Recurrent neural network: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

The Agent-Environment Interaction in a Markov Decision Process (MDP)



Characteristics of Reinforcement Learning

- No supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it receives

Examples of Reinforcement Learning

- Make a humanoid robot walk
- Play may different Atari games better than humans
- Manage an investment portfolio

Examples of Rewards

- Make a humanoid robot walk
 - +ve reward for forward motion
 - -ve reward for falling over
- Play may different Atari games better than humans
 - +/-ve reward for increasing/decreasing score
- Manage an investment portfolio
 - +ve reward for each \$ in bank

Sequential Decision Making

- Goal: select actions to maximize total future reward
- Actions may have long term consequence
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Blocking opponent moves (might help winning chances many moves from now)

Elements of Reinforcement Learning

- Agent
- Environment
- Policy
- Reward signal
- Value function
- Model

Elements of Reinforcement Learning

- Policy
 - Agent's behavior
 - It is a map from state to action
- Reward signal
 - The goal of a reinforcement learning problem
- Value function
 - How good is each state and/or action
 - A prediction of future reward
- Model
 - Agent's representation of the environment

Major Components of an RL Agent

- 1. Policy: agent's behaviour function
- 2. Value function: how good is each state and/or action
- 3. Model: agent's representation of the environment

Policy

- A policy is the agent's behaviour
- It is a map from state to action, e.g.
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a|s) = P[A_t = a|S_t = s]$

Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions, e.g.

$$v_{\pi}(s) = E_{\pi} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

Model

- A model predicts what the environment will do next
- P predicts the next state
- R predicts the next (immediate) reward, e.g.

$$P^{a}_{ss'} = P[S_{t+1} = s' | S_{t+1} = s, A_{t} = a]$$

 $R^{a}_{s} = E[R_{t+1} | S_{t} = s, A_{t} = a]$

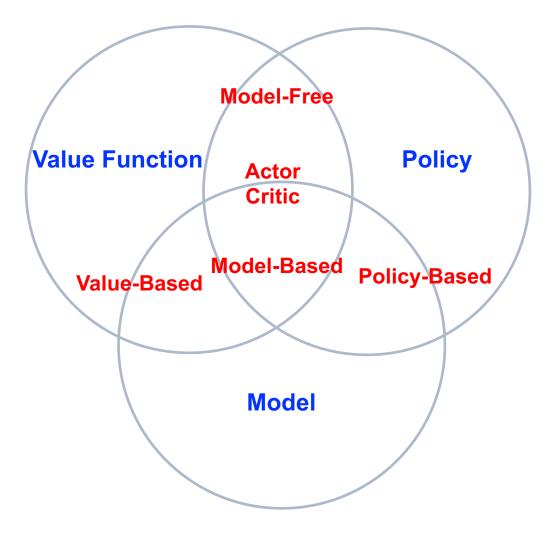
Reinforcement Learning

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function
- Actor Critic
 - Policy
 - Value Function

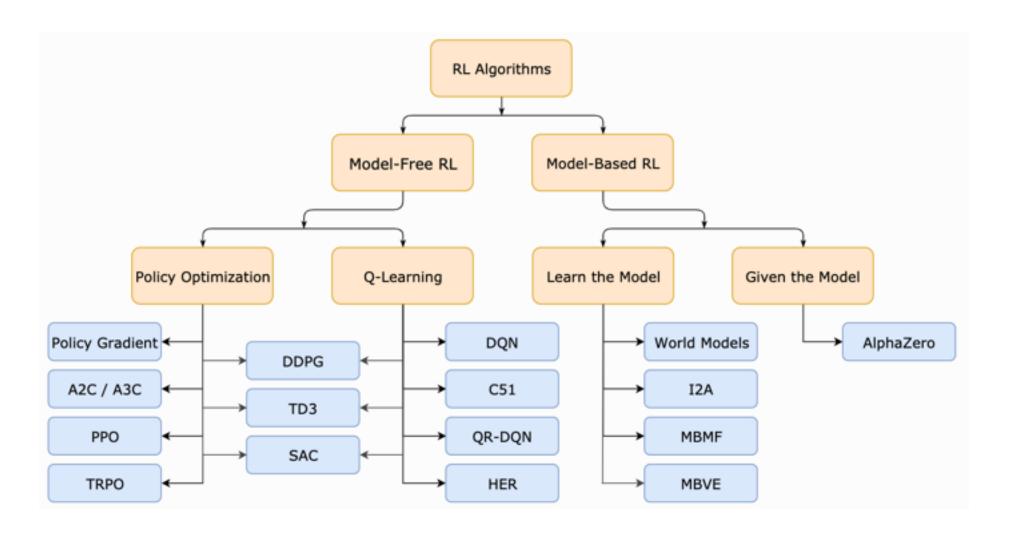
Reinforcement Learning

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Policy and/or Value Function
 - Model

Reinforcement Learning (RL) Taxonomy



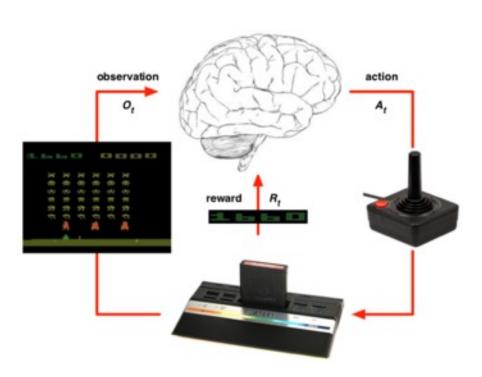
Reinforcement Learning (RL) A Taxonomy of RL Algorithms



Learning and Planning

- Two fundamental problems in sequential decision making
 - Reinforcement Learning
 - The environment is initially unknown
 - The agent interacts with environment
 - The agent improves its policy
 - Planning
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - a.k.a deliberation, reasoning, introspection, pondering, thought, search

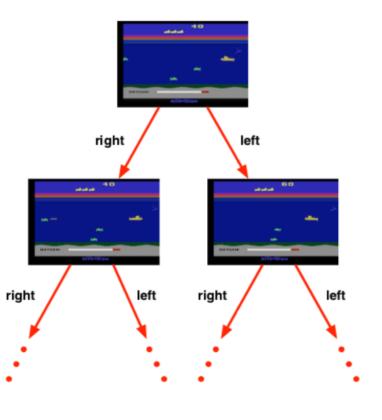
Atari Example: Reinforcement Learning



- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

Atari Example: Planning

- Rules of the game are known
- Can query emulator
 - perfect model inside agent's brain
- If I take action a from state s:
 - what would the next state be?
 - what would the score be?
- Plan ahead to find optimal policy
 - e.g. tree search



Exploration and Exploitation

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way
- Exploration finds more information about the environment
- Exploitation exploits known information to maximise reward
- It is usually important to explore as well as exploit

Exploration and Exploitation Examples

- Restaurant Selection
 - Exploitation: Go to your favorite restaurant
 - Exploration: Try a new restaurant
- Online Banner Advertisements
 - Exploitation: Show the most successful advert
 - Exploration: Show a different advert

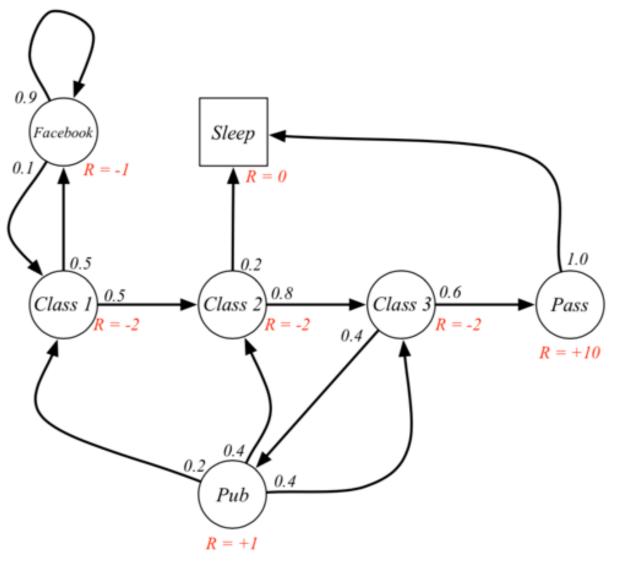
Exploration and Exploitation Examples

- Oil Drilling
 - Exploitation: Drill at the best known location
 - Exploration: Drill at a new location
- Game Playing
 - Exploitation: Play the move you believe is best
 - Exploration: Play an experimental move

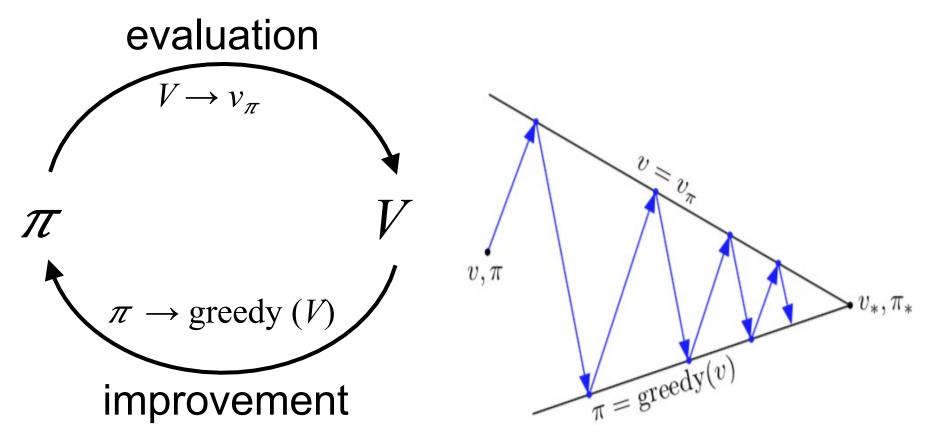
Prediction and Control

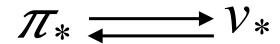
- Prediction: evaluate the future
 - Given a policy
- Control: optimize the future
 - Find the best policy

Markov Decision Processes (MDP) Example: Student MDP



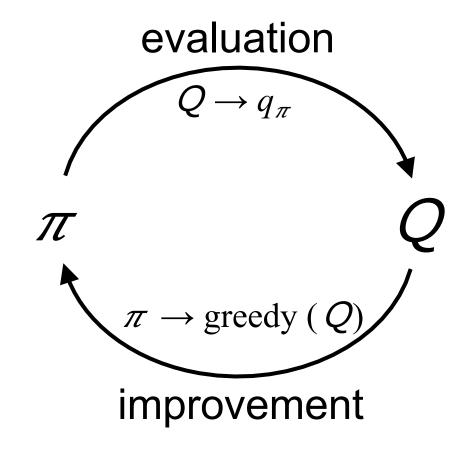
Generalized Policy Iteration (GPI)





Generalized Policy Iteration

Any iteration of policy evaluation and policy improvement, independent of their granularity.



Temporal-Difference (TD) Learning

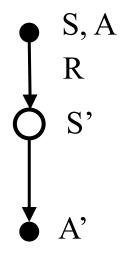
- Sarsa: On-policy TD Control
- Q-learning: Off-policy TD Control

SAKSA

(state-action-reward-state-action)

On-policy TD Control

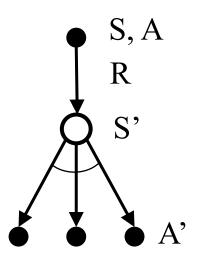
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \ Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$



SARSA

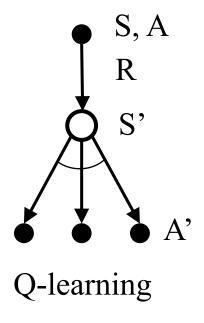
Q-learning (Watkins, 1989) Off-policy TD Control

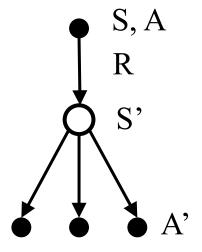
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \max Q(S_{t+1}, a) - Q(S_t, A_t)]$$



Q-learning

Q-learning and Expected SARSA





Expected SARSA

Q-learning and Double Q-learning

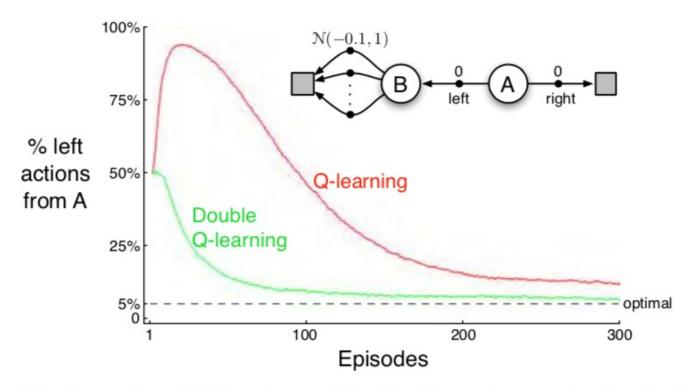


Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown inset). Q-learning initially learns to take the left action much more often than the right action, and always takes it significantly more often than the 5% minimum probability enforced by ε -greedy action selection with $\varepsilon = 0.1$. In contrast, Double Q-learning is essentially unaffected by maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates were zero. Any ties in ε -greedy action selection were broken randomly.

n-step methods for sate-action value

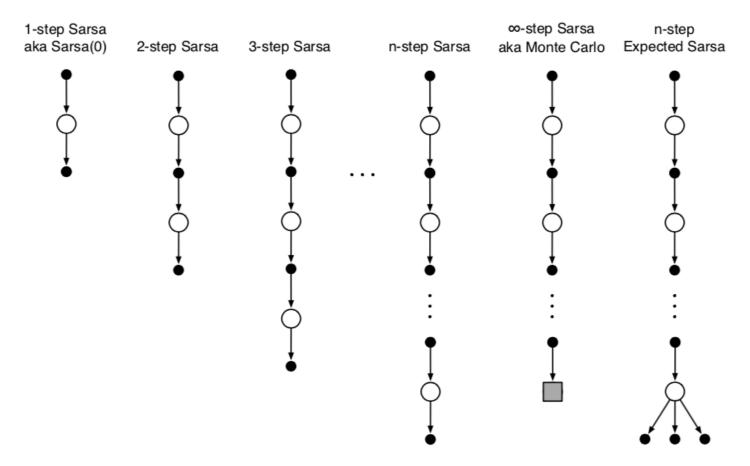
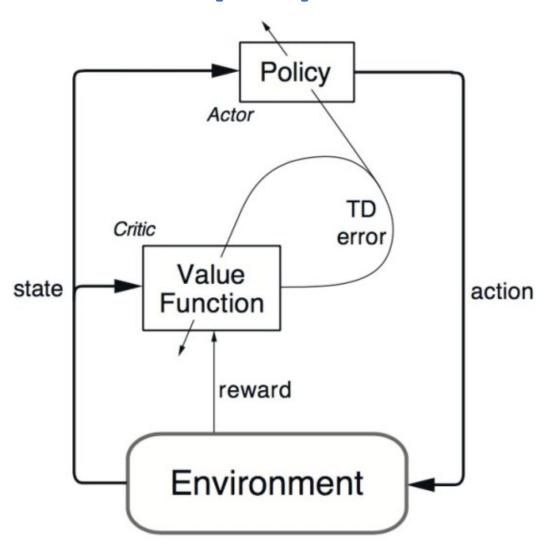
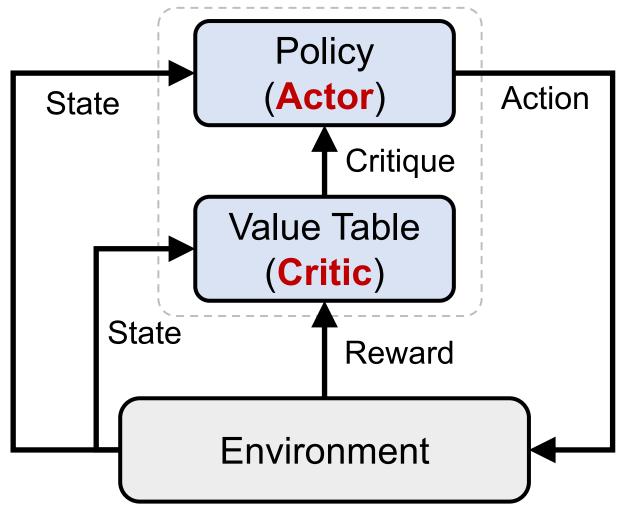


Figure 7.3: The backup diagrams for the spectrum of n-step methods for state—action values. They range from the one-step update of Sarsa(0) to the up-until-termination update of the Monte Carlo method. In between are the n-step updates, based on n steps of real rewards and the estimated value of the nth next state—action pair, all appropriately discounted. On the far right is the backup diagram for n-step Expected Sarsa.

Reinforcement Learning Actor-Critic (AC) Architecture



Reinforcement Learning Actor-Critic (AC) Learning Methods



Reinforcement Learning Methods

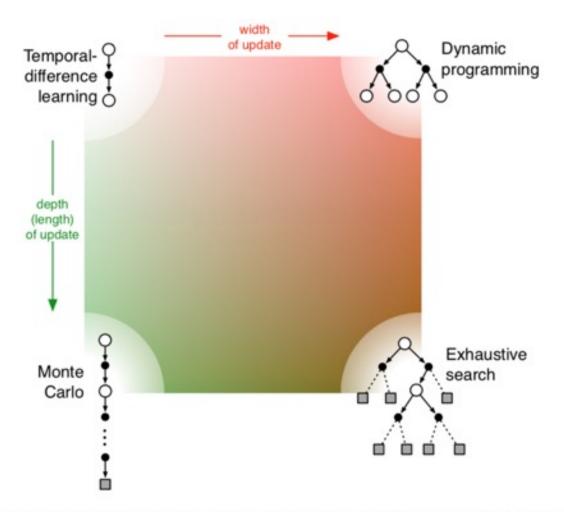


Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the two of the most important dimensions explored in Part I of this book: the depth and width of the updates.

Monte Carlo Tree Search (MCTS)

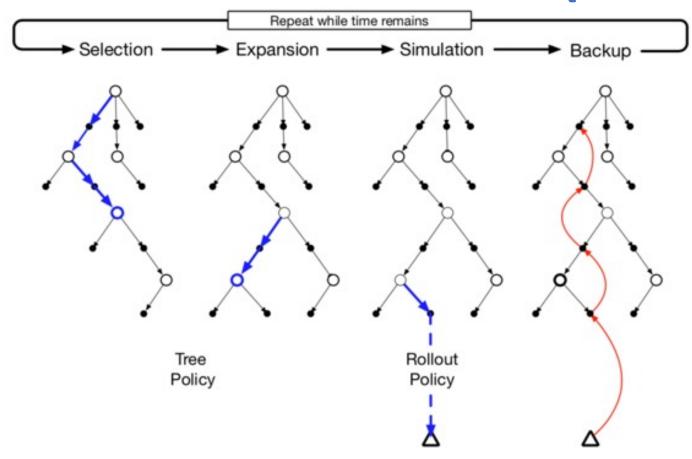
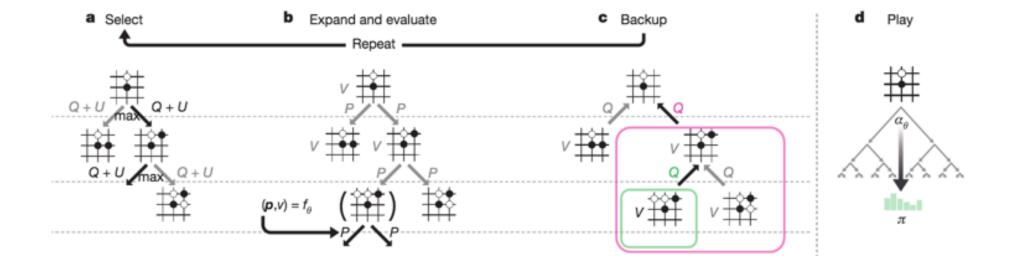
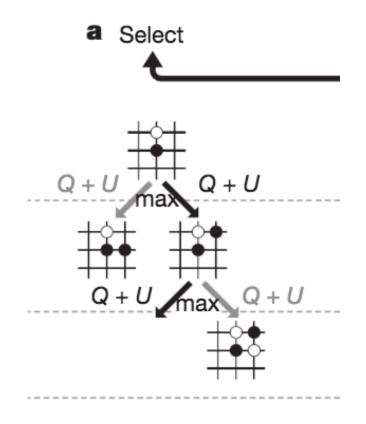


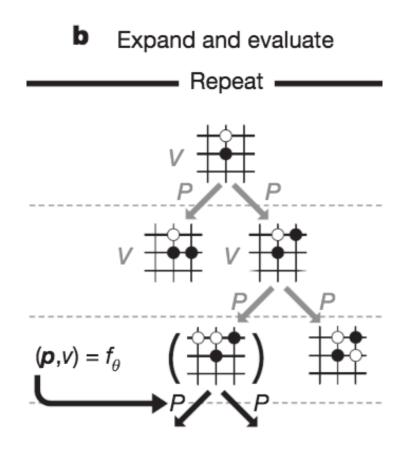
Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS executes as many iterations as possible before an action needs to be selected, incrementally building a tree whose root node represents the current state. Each iteration consists of the four operations Selection, Expansion (though possibly skipped on some iterations), Simulation, and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted from Chaslot, Bakkes, Szita, and Spronck (2008).

Monte Carlo Tree Search (MCTS) MCTS in AlphaGo Zero

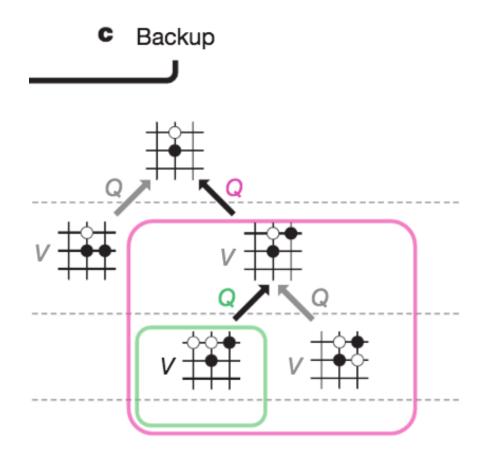




a: Each simulation traverses the tree by selecting the edge with maximum action value Q, plus an upper confidence bound U that depends on a stored prior probability P and visit count N for that edge (which is incremented once traversed).

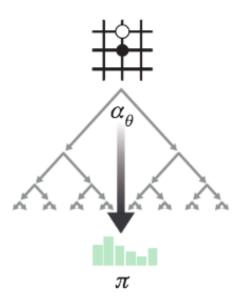


b: The leaf node is expanded and the associated position s is evaluated by the neural network $(P(s, \cdot), V(s)) = f_{\theta}(s)$; the vector of P values are stored in the outgoing edges from s.



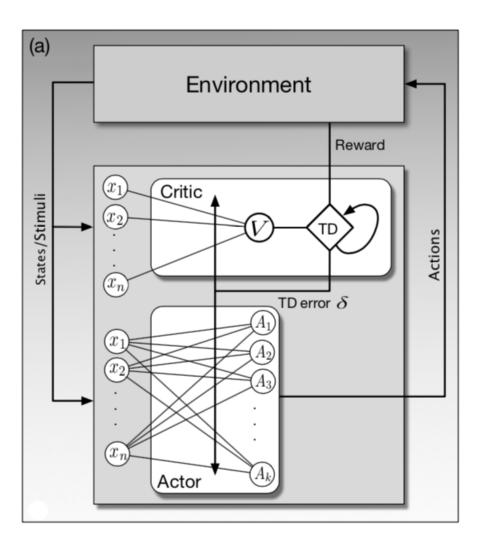
c: Action value Q is updated to track the mean of all evaluations V in the subtree below that action

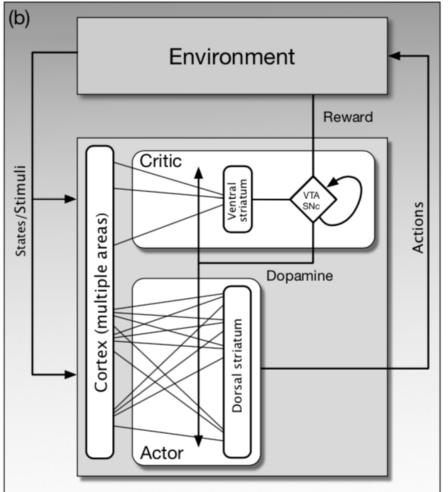
d Play



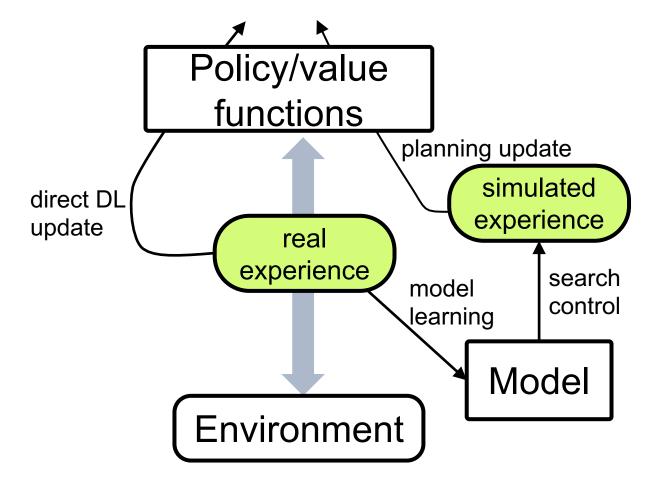
d: Once the search is complete, search probabilities π are returned, proportional to $N^{1/\tau}$, where N is the visit count of each move from the root state and τ is a parameter controlling temperature.

Reinforcement Learning Actor Critic ANN



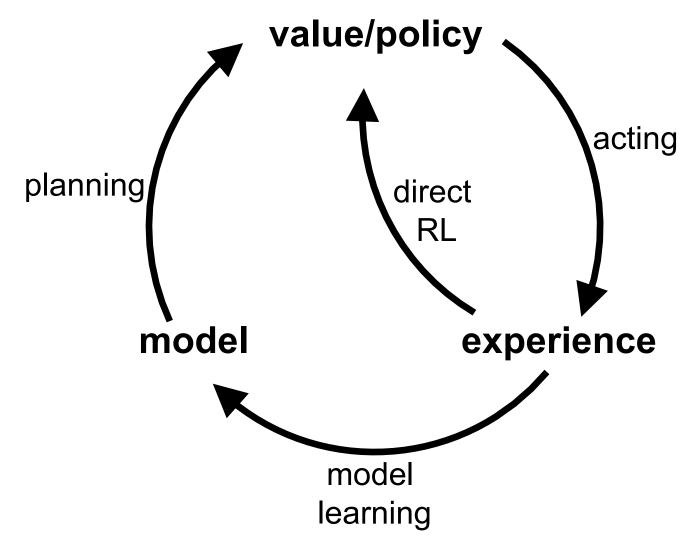


Reinforcement Learning General Dyna Architecture

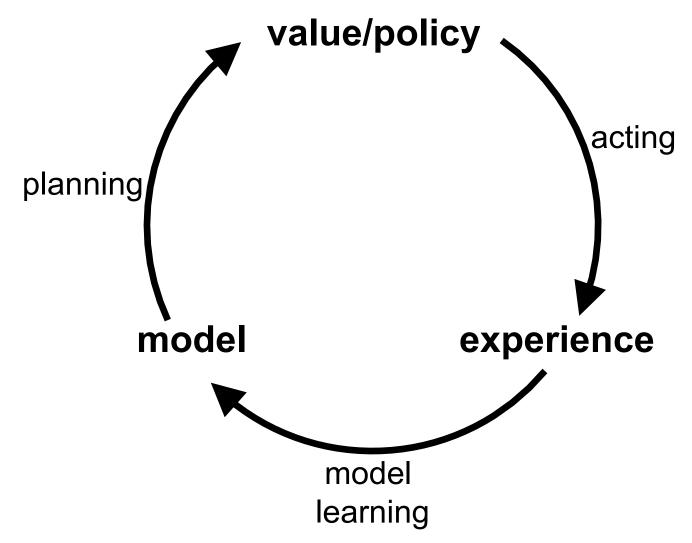


Dyna:

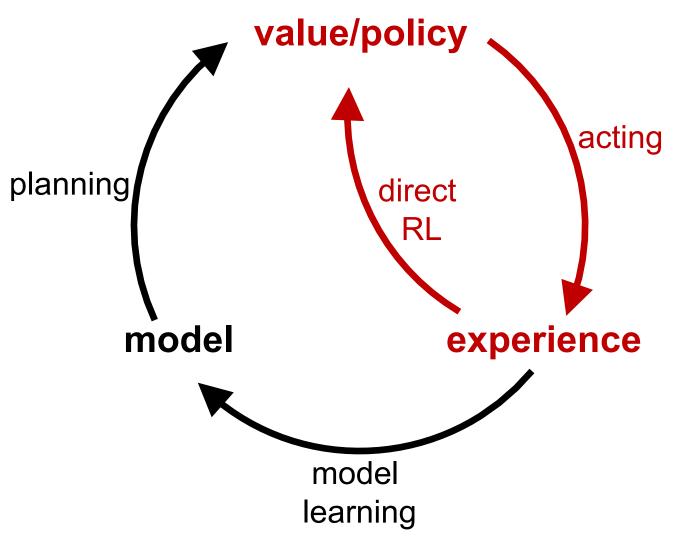
Integrated Planning, Acting, and Learning



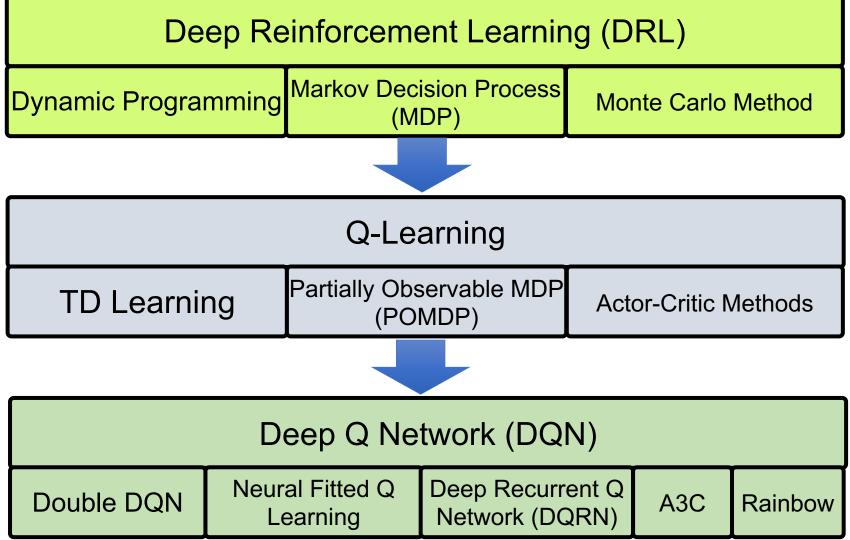
Model-Based RL



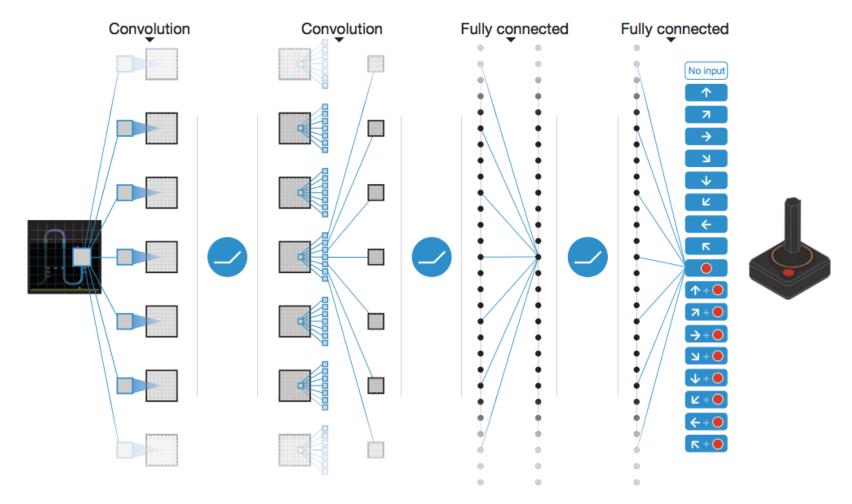
Model-Free RL (DQN, A3C)



Reinforcement Learning Algorithms

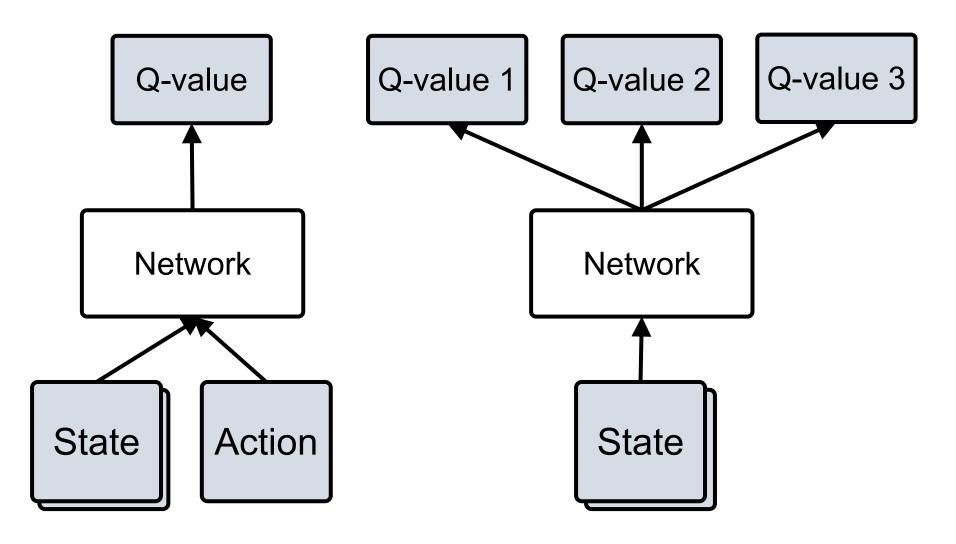


Human-level control through deep reinforcement learning (DQN)

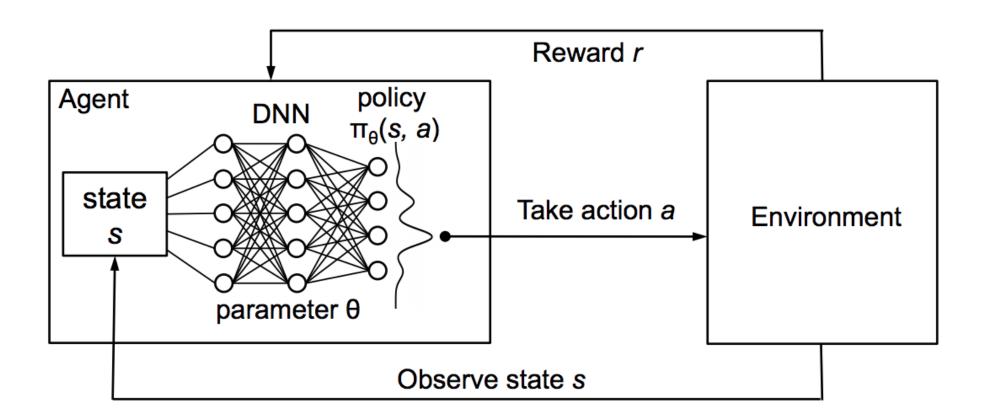


Schematic illustration of the convolutional neural network

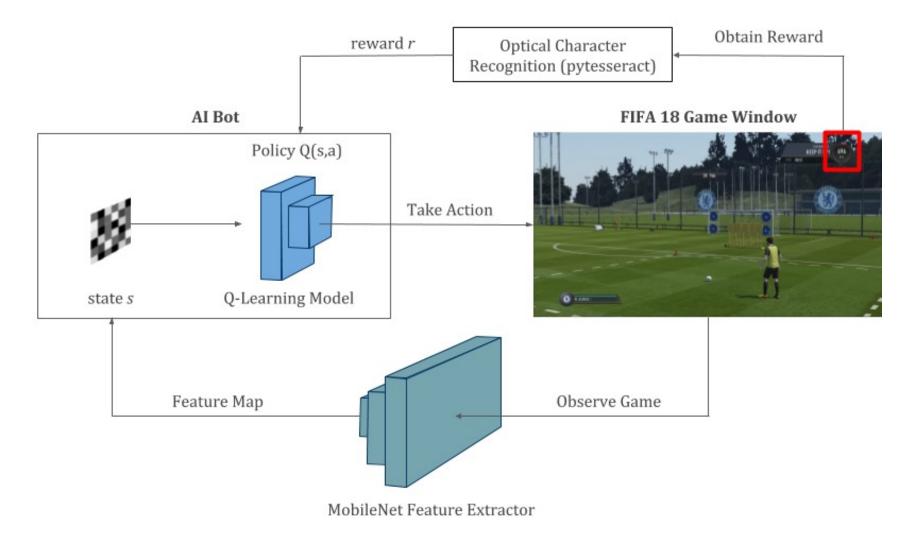
Deep Q-Network (DQN)



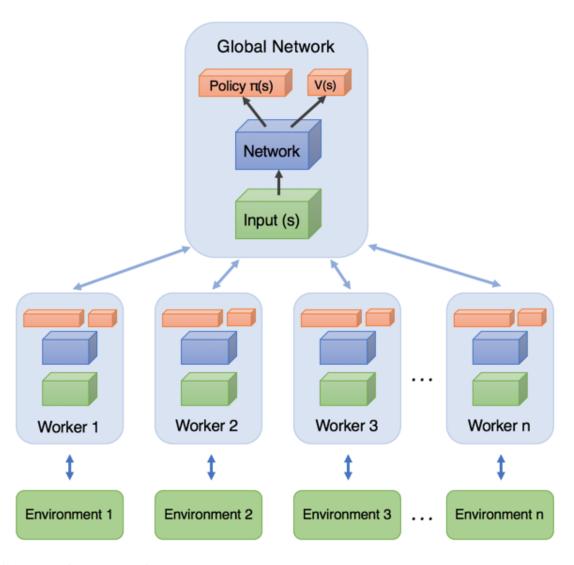
Reinforcement Learning with policy represented via DNN



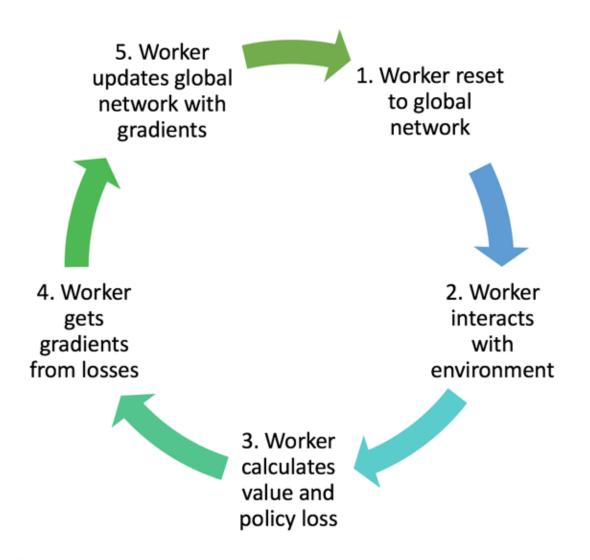
Reinforcement Learning Deep Q-Learning in FIFA 18



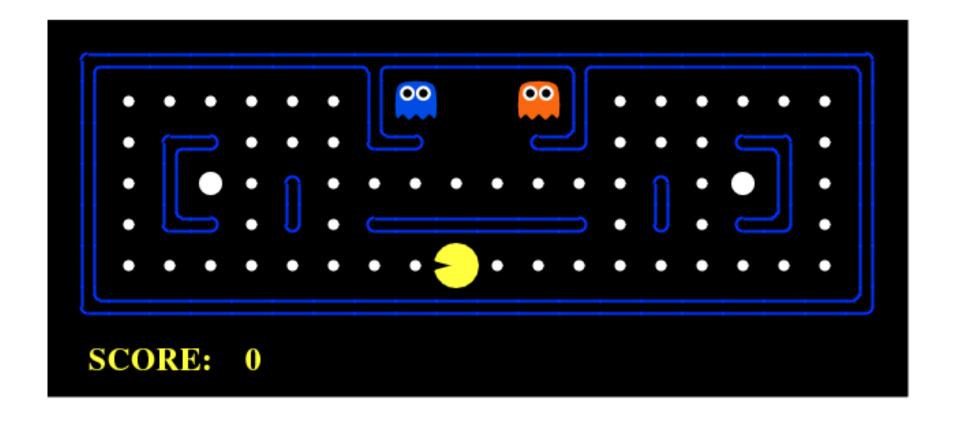
Asynchronous Advantage Actor-Critic (A3C)



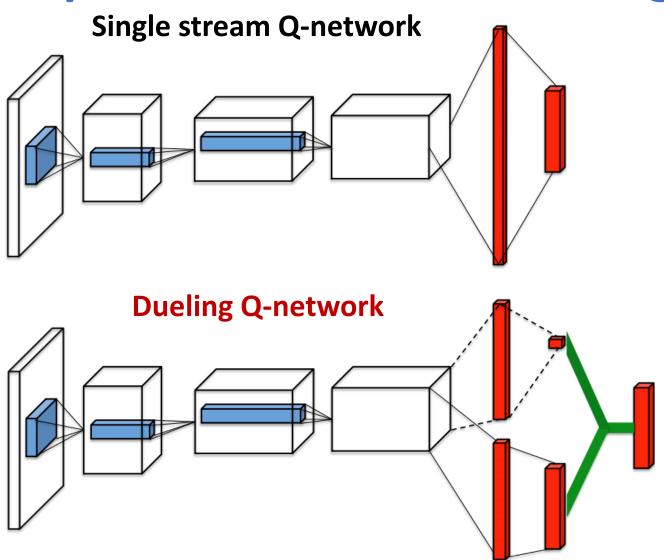
Training workflow of each worker agent in A3C



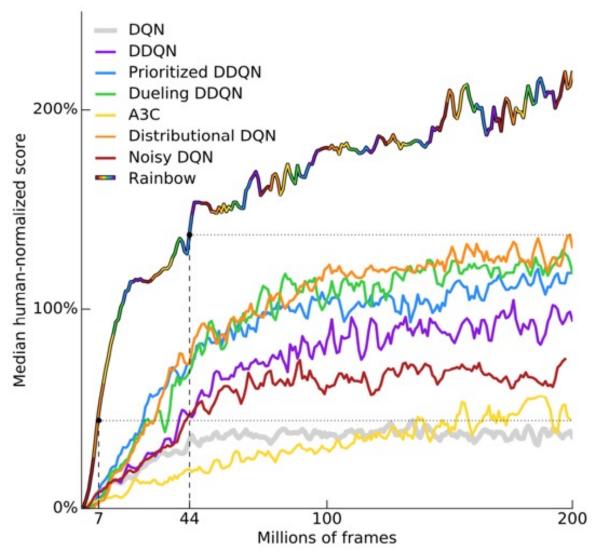
Reinforcement Learning Example: PCMAN



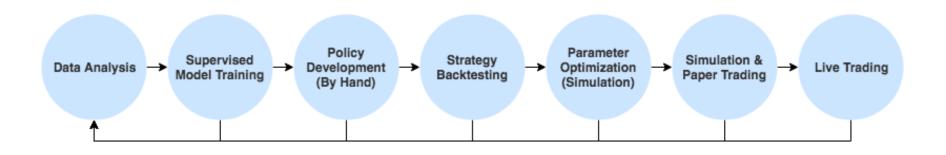
Dueling Network Architectures for Deep Reinforcement Learning



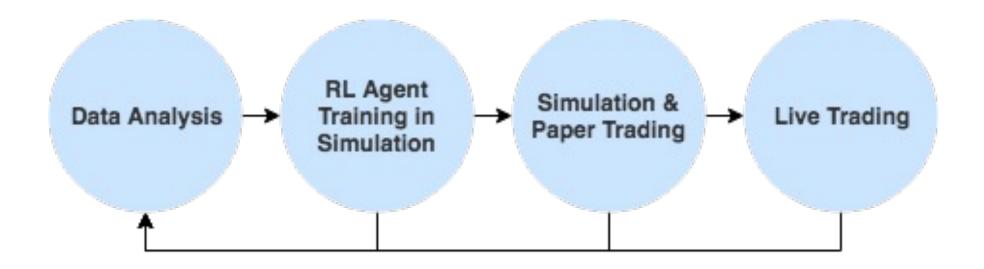
Rainbow: Combining improvements in deep reinforcement learning



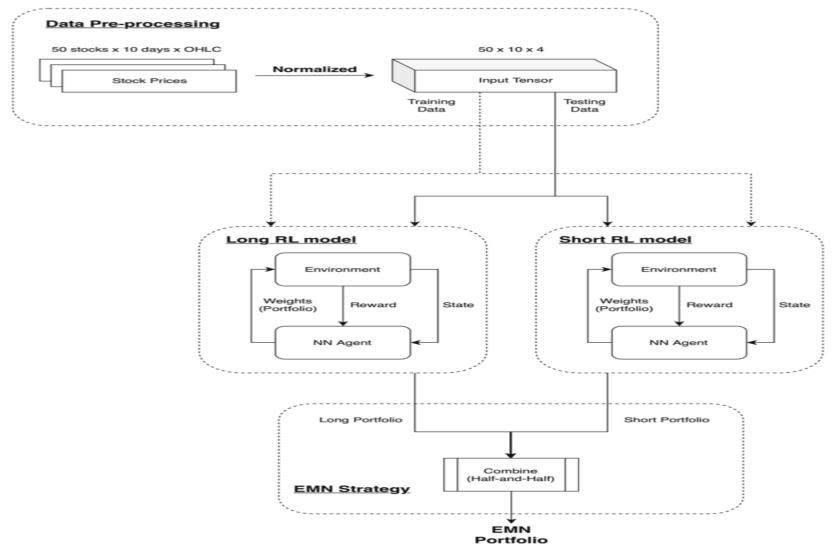
A Typical Strategy Development Workflow



Reinforcement Learning (RL) in Trading Strategies

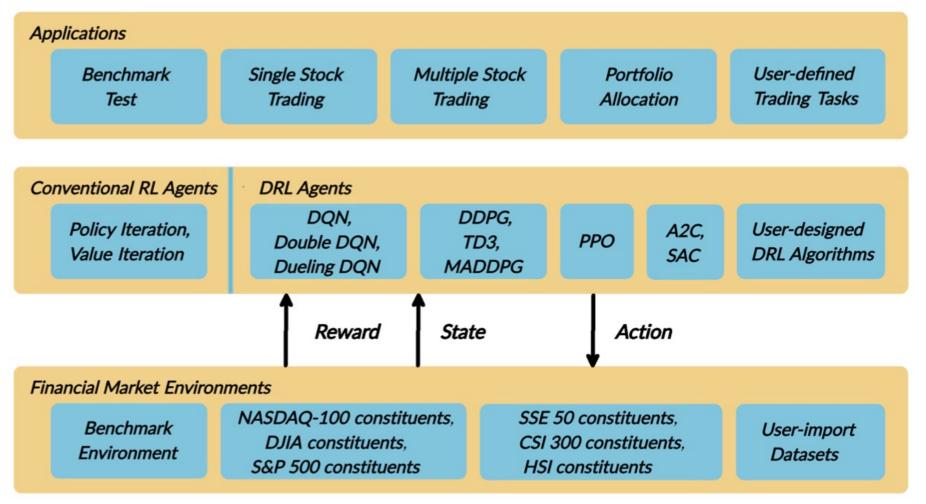


Portfolio management system in equity market neutral using reinforcement learning (Wu et al., 2021)



FinRL:

A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance

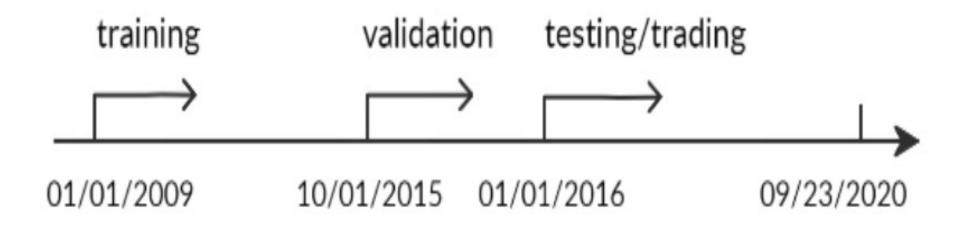


Deep Reinforcement Learning Algorithms

Algorithms	Input	Output	Type	State-action spaces support	Finance use cases support	Features and Improvements	Advantages	
DQN	States	Q-value	Value based	Discrete only	Single stock trading	Target network, experience replay	Simple and easy to use	
Double DQN	States	Q-value	Value based	Discrete only	Single stock trading	Use two identical neural network models to learn	Reduce overestimations	
Dueling DQN	States	Q-value	Value based	Discrete only	Single stock trading	Add a specialized dueling Q head	Better differentiate actions, improves the learning	
DDPG	State action pair	Q-value	Actor-critic based	Continuous only	Multiple stock trading, portfolio allocation	Being deep Q-learning for continuous action spaces	Better at handling high-dimensional continuous action spaces	
A2C	State action pair	Q-value	Actor-critic based	Discrete and continuous	All use cases	Advantage function, parallel gradients updating	Stable, cost-effective, faster and works better with large batch sizes	
PPO	State action pair	Q-value	Actor-critic based	Discrete and continuous	All use cases	Clipped surrogate objective function	Improve stability, less variance, simply to implement	
SAC	State action pair	Q-value	Actor-critic based	Continuous only	Multiple stock trading, portfolio allocation	Entropy regularization, exploration-exploitation trade-off	Improve stability	
TD3	State action pair	Q-value	Actor-critic based	Continuous only	Multiple stock trading, portfolio allocation	Clipped double Q-Learning, delayed policy update, target policy smoothing.	Improve DDPG performance	
MADDPG	State action pair	Q-value	Actor-critic based	Continuous only	Multiple stock trading, portfolio allocation	Handle multi-agent RL problem	Improve stability and performance	

FinRL:

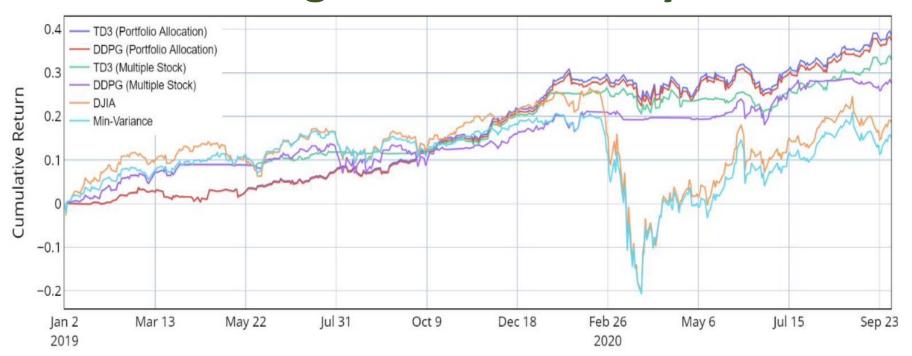
A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance Evaluation of Trading Performance Training-Validation-Testing Flow



Performance of single stock trading

using Proximal policy optimization (PPO) in the FinRL library

Performance of multiple stock trading and portfolio allocation using the FinRL library



Performance of single stock trading using Proximal policy optimization (PPO) in the FinRL library

2019/01/01-2020/09/23	SPY	QQQ	GOOGL	AMZN	AAPL	MSFT	S&P 500
Initial value	100,000	100,000	100,000	100,000	100,000	100,000	100,000
Final value	127,044	163,647	174,825	192,031	173,063	172,797	133,402
Annualized return	14.89%	32.33%	37.40%	44.94%	36.88%	36.49%	17.81%
Annualized Std	9.63%	27.51%	33.41%	29.62%	25.84%	33.41%	27.00%
Sharpe ratio	1.49	1.16	1.12	1.40	1.35	1.10	0.74
Max drawdown	20.93%	28.26%	27.76%	21.13%	22.47%	28.11%	33.92%

Performance of multiple stock trading and portfolio allocation

over the DJIA constituents stocks using the FinRL library

2019/01/01-2020/09/23	TD3	DDPG	Min-Var.	DJIA
Initial value	1,000,000	1,000,000	1,000,000	1,000,000
Final value	1,403,337; 1,381,120	1,396,607; 1,281,120	1,171,120	1,185,260
Annualized return	21.40%; 17.61%	20.34%; 15.81%	8.38%	10.61%
Annualized Std	14.60%; 17.01%	15.89%; 16.60%	26.21%	28.63%
Sharpe ratio	1.38; 1.03	1.28; 0.98	0.44	0.48
Max drawdown	11.52% 12.78%	13.72%; 13.68%	34.34%	37.01%

Deep Reinforcement Learning Library

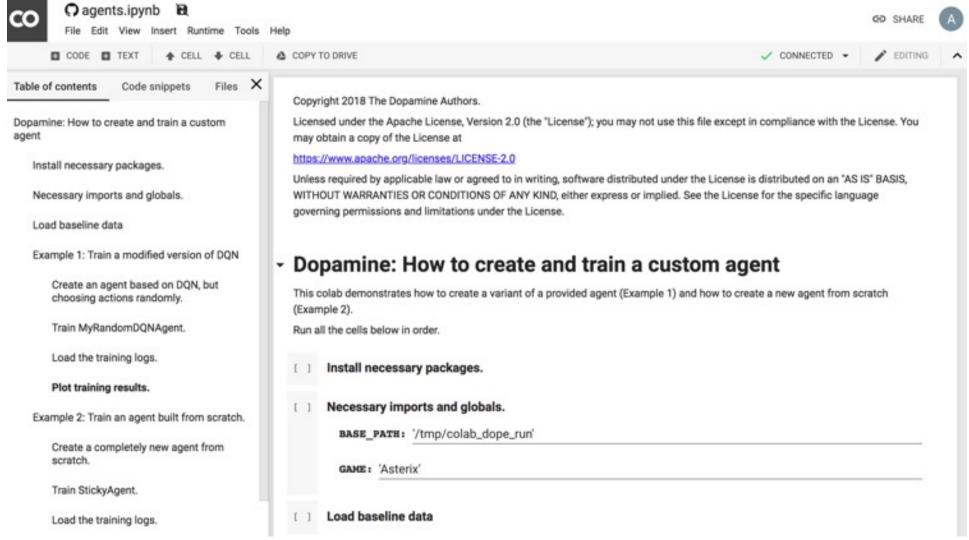
- OpenAl Gym
- Google Dopamine
- RLlib
- Horizon
- FinRL

Open Al Gym

Google Dopamine

Dopamine is a research framework for fast prototyping of reinforcement learning algorithms.

Deep Reinforcement Learning Dopamine Colab Examples DQN Rainbow



RLlib:

Scalable Reinforcement Learning

Tune API Reference

Contributing to Tune

RLLIB

RLlib: Scalable Reinforcement Learning

RLlib Table of Contents

RLlib Training APIs

RLlib Environments

RLlib Models, Preprocessors, and

Action Distributions

RLlib Algorithms

RLlib Sample Collection and

Trajectory Views

RLlib Offline Datasets

RLlib Concepts and Custom

Algorithms

RLlib Examples

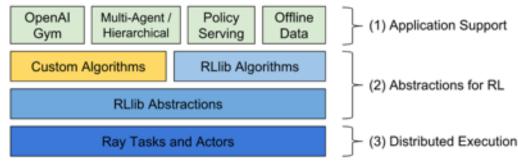
RLlib Package Reference

Contributing to RLlib

RAY SGD

RaySGD: Distributed Training

unified API for a variety of applications. RLlib natively supports TensorFlow, TensorFlow Eager, and PyTorch, but most of its internals are framework agnostic.



To get started, take a look over the custom env example and the API documentation. If you're looking to develop custom algorithms with RLlib, also check out concepts and custom algorithms.

RLlib in 60 seconds

The following is a whirlwind overview of RLlib. For a more in-depth guide, see also the full table of contents and RLlib blog posts. You may also want to skim the list of built-in algorithms. Look out for the 1 and () icons to see which algorithms are available for each framework.

RLlib in 60 seconds

Sample Batches

Customization

Application Support

Running RLlib

Policies

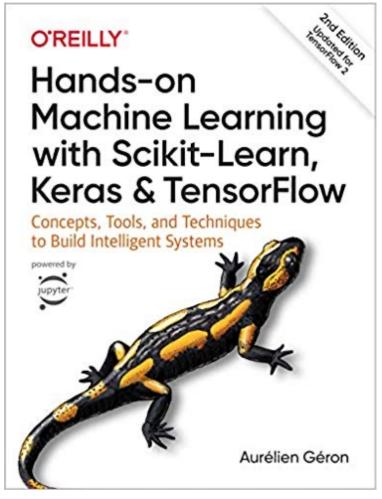
Training

RLlib: Scalable Reinforcement Learning

RLlib is an open-source library for reinforcement learning that offers both high scalability and a

Aurélien Géron (2019),

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition
O'Reilly Media, 2019



https://github.com/ageron/handson-ml2

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

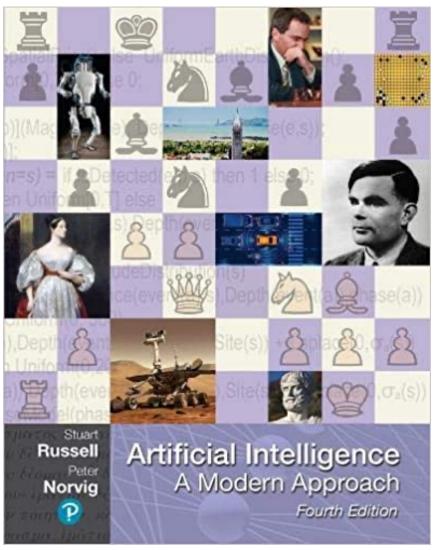
Notebooks

- 1. The Machine Learning landscape
- 2. End-to-end Machine Learning project
- 3. Classification
- 4. Training Models
- 5. Support Vector Machines
- 6. Decision Trees
- 7. Ensemble Learning and Random Forests
- 8. <u>Dimensionality Reduction</u>
- 9. Unsupervised Learning Techniques
- 10. Artificial Neural Nets with Keras
- 11. Training Deep Neural Networks
- 12. Custom Models and Training with TensorFlow
- 13. Loading and Preprocessing Data
- 14. Deep Computer Vision Using Convolutional Neural Networks
- 15. Processing Sequences Using RNNs and CNNs
- 16. Natural Language Processing with RNNs and Attention
- 17. Representation Learning Using Autoencoders
- 18. Reinforcement Learning
- 19. Training and Deploying TensorFlow Models at Scale

Stuart Russell and Peter Norvig (2020),

Artificial Intelligence: A Modern Approach,

4th Edition, Pearson



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: A Modern Approach (AIMA)

- Artificial Intelligence: A Modern Approach (AIMA)
 - http://aima.cs.berkeley.edu/
- AIMA Python
 - http://aima.cs.berkeley.edu/python/readme.html
 - https://github.com/aimacode/aima-python
- Learning
 - http://aima.cs.berkeley.edu/python/learning.html

Artificial Intelligence: A Modern Approach (AIMA)

△ US Edition

△ Global Edition

Acknowledgements

Code

Courses

Editions

Errata

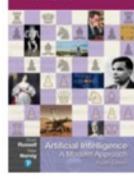
Exercises

Figures

Instructors Page

Pseudocode

Reviews



Artificial Intelligence: A Modern Approach, 4th US ed.

by Stuart Russell and Peter Norvig

The authoritative, most-used AI textbook, adopted by over 1500 schools.

Table of Contents for the US Edition (or see the Global Edition)

Preface (pdf); Contents with subsections

I Artificial Intelligence

- 1 Introduction ... 1
- 2 Intelligent Agents ... 36

II Problem-solving

- 3 Solving Problems by Searching ... 63
- 4 Search in Complex Environments ... 110
- 5 Adversarial Search and Games ... 146
- 6 Constraint Satisfaction Problems ... 180

III Knowledge, reasoning, and planning

- 7 Logical Agents ... 208
- 8 First-Order Logic ... 251
- 9 Inference in First-Order Logic ... 280
- 10 Knowledge Representation ... 314
- 11 Automated Planning ... 344

IV Uncertain knowledge and reasoning

- 12 Quantifying Uncertainty ... 385
- 13 Probabilistic Reasoning ... 412
- 14 Probabilistic Reasoning over Time ... 461
- 15 Probabilistic Programming ... 500
- 16 Making Simple Decisions ... 528
- 17 Making Complex Decisions ... 562
- 18 Multiagent Decision Making ... 599

V Machine Learning

- 19 Learning from Examples ... 651
- 20 Learning Probabilistic Models ... 721
- 21 Deep Learning ... 750
- 22 Reinforcement Learning ... 789

VI Communicating, perceiving, and acting

- 23 Natural Language Processing ... 823
- 24 Deep Learning for Natural Language Processing ... 856
- 25 Computer Vision ... 881
- 26 Robotics ... 925

VII Conclusions

- 27 Philosophy, Ethics, and Safety of AI ... 981
- 28 The Future of AI ... 1012
- Appendix A: Mathematical Background ... 1023
- Appendix B: Notes on Languages and Algorithms ... 1030
- Bibliography ... 1033 (pdf and LaTeX .bib file and bib data)
- Index ... 1069 (pdf)

Exercises (website)

Figures (pdf)

Code (website); Pseudocode (pdf)

Covers: US, Global

Papers with Code State-of-the-Art (SOTA)

Search for papers, code and tasks

Browse State-of-the-Art

Discuss

Trends

About

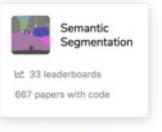
Log In/Register

Browse State-of-the-Art

± 1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

Follow on Y Twitter for updates

Computer Vision



▶ See all 707 tasks

Natural Language Processing

Summary

- Deep Learning
 - Neural Networks (NN)
 - Convolutional Neural Networks (CNN)
 - Recurrent Neural Networks (RNN)
- Reinforcement Learning (RL)
 - Markov Decision Processes (MDP)
- Deep Reinforcement Learning (DRL) Algorithms
 - SARSA
 - Q-Learning
 - DQN
 - A3C
 - Rainbow

References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Steven D'Ascoli (2022), Artificial Intelligence and Deep Learning with Python: Every Line of Code Explained For Readers New to AI and New to Python, Independently published.
- Nithin Buduma, Nikhil Buduma, Joe Papa (2022), Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 2nd Edition, O'Reilly Media.
- Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft Computing (2020): 106384.
- Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.
- Deep Learning Basics: Neural Networks Demystified, https://www.youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
- Deep Learning SIMPLIFIED, https://www.youtube.com/playlist?list=PLjJh1vlSEYgvGod9wWiydumYl8hOXixNu
- 3Blue1Brown (2017), But what *is* a Neural Network? | Chapter 1, deep learning, https://www.youtube.com/watch?v=aircAruvnKk
- 3Blue1Brown (2017), Gradient descent, how neural networks learn | Chapter 2, deep learning, https://www.youtube.com/watch?v=IHZwWFHWa-w
- 3Blue1Brown (2017), What is backpropagation really doing? | Chapter 3, deep learning, https://www.youtube.com/watch?v=llg3gGewQ5U
- Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
- David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
- David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis Hassabis (2018), "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play." Science 362, no. 6419 (2018): 1140-1144.
- David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis (2017), "Mastering the game of Go without human knowledge." Nature 550 (2017): 354–359.
- Hado Van Hasselt, Arthur Guez, and David Silver (2016). "Deep Reinforcement Learning with Double Q-Learning." In AAAI, vol. 2, p. 5. 2016.
- Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver (2017). "Rainbow: Combining improvements in deep reinforcement learning." arXiv preprint arXiv:1710.02298 (2017).
- Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves et al. (2015) "Human-level control through deep reinforcement learning." Nature 518, no. 7540 (2015): 529.
- Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas (2015). "Dueling network architectures for deep reinforcement learning." arXiv preprint arXiv:1511.06581 (2015).
- Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuqing Yang, Bowen Xiao, and Christina Dan Wang (2020). "FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance." arXiv preprint arXiv:2011.09607 (2020).
- Mu-En Wu, Jia-Hao Syu, Jerry Chun-Wei Lin, and Jan-Ming Ho. "Portfolio management system in equity market neutral using reinforcement learning." Applied Intelligence (2021): 1-13.
- Min-Yuh Day (2022), Python 101, https://tinyurl.com/aintpupython101