Artificial Intelligence in Finance and Quantitative Analysis

Data-Driven Finance

1111AIFQA06 MBA, IM, NTPU (M6132) (Fall 2022) Tue 2, 3, 4 (9:10-12:00) (B8F40)

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2022-10-25

https://meet.google.com/ paj-zhhj-mya

Week Date Subject/Topics

- 1 2022/09/13 Introduction to Artificial Intelligence in Finance and Quantitative Analysis
- 2 2022/09/20 AI in FinTech: Metaverse, Web3, DeFi, NFT, Financial Services Innovation and Applications
- 3 2022/09/27 Investing Psychology and Behavioral Finance
- 4 2022/10/04 Event Studies in Finance
- 5 2022/10/11 Case Study on AI in Finance and Quantitative Analysis I
- 6 2022/10/18 Finance Theory

Week Date Subject/Topics

- 7 2022/10/25 Data-Driven Finance
- 8 2022/11/01 Midterm Project Report
- 9 2022/11/08 Financial Econometrics
- 10 2022/11/15 AI-First Finance
- 11 2022/11/22 Industry Practices of AI in Finance and Quantitative Analysis
- **12 2022/11/29 Case Study on AI in Finance and Quantitative Analysis II**

- Week Date Subject/Topics
- 13 2022/12/06 Deep Learning in Finance; Reinforcement Learning in Finance
- 14 2022/12/13 Algorithmic Trading; Risk Management; Trading Bot and Event-Based Backtesting
- 15 2022/12/20 Final Project Report I
- 16 2022/12/27 Final Project Report II
- 17 2023/01/03 Self-learning
- 18 2023/01/10 Self-learning

Data-Driven Finance

Data-Driven Finance

- Scientific Method
- Financial Econometrics and Regression
- Data Availability
- Normative Theories Revisited
- Debunking Central Assumptions in Finance

Data-driven finance

• Financial context (theory, model, application) that is primarily driven by and based on insights gained from data.

Data-driven finance

Robin Wigglesworth (2019)

 Nowadays, analysts sift through non-traditional information such as satellite imagery and credit card data, or use artificial intelligence techniques such as machine learning and natural language processing to glean fresh insights from traditional sources such as economic data and earnings-call transcripts.

Scientific Method

- Generally accepted principles that should guide scientific effort
- The scientific method is an empirical method of acquiring knowledge that has characterized the development of science
- It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation.

Scientific Method

 It involves formulating hypotheses, via induction, based on such observations; experimental and measurement-based testing of deductions drawn from the hypotheses; and refinement (or elimination) of the hypotheses based on the experimental findings

Normative Finance and Scientific Method

- Normative financial theories mostly rely on assumptions and axioms in combination with deduction as the major analytical method to arrive at their central results.
 - Expected utility theory (EUT) assumes that agents have the same utility function no matter what state of the world unfolds and that they maximize expected utility under conditions of uncertainty.
 - Mean-variance portfolio (MVP) theory describes how investors should invest under conditions of uncertainty assuming that only the expected return and the expected volatility of a portfolio over one period count.

Normative Finance and Scientific Method

- The capital asset pricing model (CAPM) assumes that only the nondiversifiable market risk explains the expected return and the expected volatility of a stock over one period.
- Arbitrage pricing theory (APT) assumes that a number of identifiable risk factors explains the expected return and the expected volatility of a stock over time; admittedly, compared to the other theories, the formulation of APT is rather broad and allows for wide-ranging interpretations.

Financial Econometrics and Regression

- [Financial] econometrics is the quantitative application of statistical and mathematical models using [financial] data to develop financial theories or test existing hypotheses in finance and to forecast future trends from historical data.
- It subjects real-world [financial] data to statistical trials and then compares and contrasts the results against the [financial] theory or theories being tested.

Financial Econometrics and Regression

- One of the major tools in financial econometrics is regression, in both its univariate and multivariate forms
- Regression is also a central tool in statistical learning in general

Data Availability

- Types of (financial) data
 - Financial econometrics is driven by statistical methods, such as regression, and the availability of financial data
 - Theoretical and empirical financial research was mainly driven by relatively small data sets and was mostly comprised of end-of-day (EOD) data
 - Types of financial and other data available in ever increasing granularity, quantity, and velocity.
- Quality and quantity via programmatic APIs
 - Finance professionals have relied on data terminals from Refinitiv or Bloomberg
 - Major breakthrough in data-driven finance via programmatic APIs

Relevant types of financial data

Time	Structured data	Unstructured data	Alternative data
Historical	Prices, fundamentals	News, texts	Web, social media, satellites
Streaming	Prices, volumes	News, filings	Web, social media, satellites, Internet of Things

Yahoo Finance World Indices

https://finance.yahoo.com/world-indices/

World Indices

```
import io
import requests
import pandas as pd
response = requests.get('https://finance.yahoo.com/world-indices/')
df = pd.read_html(io.StringIO(response.text))
worldidx = df[0]
worldidx.to_csv('world_indices.csv')
worldidx
```

Symbol	Name	Last Price	Change	% Change	Volume
^GSPC	S&P 500	3,797.34	+44.59	+1.19%	2.589B
^DJI	Dow Jones Industrial Average	31,499.62	+417.06	+1.34%	345.036M
^IXIC	NASDAQ Composite	10,952.61	+92.90	+0.86%	4.063B
^NYA	NYSE COMPOSITE (DJ)	14,226.11	+82.05	+0.58%	0
^XAX	NYSE AMEX COMPOSITE INDEX	4,295.57	-106.83	-2.43%	0
^BUK100P	Cboe UK 100	701.69	+5.39	+0.77%	0
^RUT	Russell 2000	1,748.40	+6.16	+0.35%	0
^VIX	Vix	29.85	+0.16	+0.54%	0

ffn: Financial Functions for Python

```
#^GSPC S&P 500
#^DJI Dow 30
#^IXIC Nasdaq
!pip install ffn
import ffn
%pylab inline
df = ffn.get('^gspc, ^dji, ^ixic', start='2010-01-01', end='2022-01-01')
print(df.head())
print(df.tail())
print(df.tail())
ax = df.plot(figsize=(12,9))
```

<u></u>	-20	1/00.000		30370.210	J J U	101010111016	1
2021-12	-29	4793.060	059	36488.628	906	15766.21972	7
2021-12	-30	4778.729	9980	36398.078	125	15741.55957	0
2021-12	-31	4766.180	0176	36338.300	781	15644.96972	7
		gspc		dji		ixic	
count	3021.	000000	3021	.000000	3021	.000000	
mean	2260.	488112	19756	.317518	6004	.283709	
std	890.	501675	6927	.100147	3438	.840186	
min	1022.	580017	9686	.480469	2091	.790039	
25%	1461.	400024	13557	.000000	3131	.489990	
50%	2088.	479980	17851	.509766	4984	.620117	
75%	2798.	360107	25332	.179688	7669	.169922	
max	4793.	060059	36488	.628906	16057	.440430	

^GSPC: S&P 500, ^DJI: Dow 30, ^IXIC: Nasdaq

df = ffn.get('^gspc, ^dji, ^ixic', start='2010-01-01', end='2022-01-01')
ax = df.plot(figsize=(12,9))

ffn: Financial Functions for Python

```
!pip install ffn
import ffn
%pylab inline
df = ffn.get('^gspc, ^dji, ^ixic', start='2010-01-01', end='2022-01-01')
print(df.head())
print(df.tail())
print(df.tail())
print(df.describe())
ax = df.plot(figsize=(12,9))
```

```
returns = df.to_returns().dropna()
ax = returns.hist(figsize=(14, 10))
returns.corr().as_format('.2f')
returns.plot_corr_heatmap()
ax = df.plot(figsize=(14,10))
```

```
perf = df.calc_stats()
perf.plot(figsize=(14, 10))
```

```
print(perf.display())
```

Normative Theories Revisited

- Revisits the normative theories and analyzes them based on real financial time series data
- Expected Utility and Reality
- Mean-Variance Portfolio Theory (MVPT)
- Capital Asset Pricing Model (CAPM)
- Arbitrage Pricing Theory (APT)

Normalized financial time series data

Simulated portfolio volatilities, returns, and Sharpe ratios

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Expected versus realized portfolio volatilities

Expected versus realized portfolio returns

Expected versus realized portfolio Sharpe ratios

CAPM-predicted versus realized stock returns for a single stock

Average CAPM-predicted versus average realized stock returns for multiple stocks

Arbitrage Pricing Theory (APT) Relevant types of financial data

Factor	Description
Market	MSCI World Gross Return Daily USD (PUS = Price Return)
Size	MSCI World Equal Weight Price Net Index EOD
Volatility	MSCI World Minimum Volatility Net Return
Value	MSCI World Value Weighted Gross (NUS for Net)
Risk	MSCI World Risk Weighted Gross USD EOD
Growth	MSCI World Quality Net Return USD
Momentum	MSCI World Momentum Gross Index USD EOD
<pre>factors = pd.read_csv(</pre>	<pre>'http://hilpisch.com/aiif_eikon_eod_factors.csv', index_col=0, parse_dates=True)</pre>

APT-predicted versus realized stock returns for a stock

Average APT-predicted versus average realized stock returns for multiple stocks

Normalized factors time series data

APT-predicted returns based on typical factors compared to realized returns

APT-predicted performance and real performance over time (gross)

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Debunking Central Assumptions in Finance

- Debunks two of the most commonly found assumptions in financial models and theories
 - Normality of returns
 - Linear relationships

Standard normally distributed random numbers

Distribution with first and second moment of 0.0 and 1.0, respectively

Histogram and PDF for standard normally distributed numbers

Histogram and normal PDF for discrete numbers

Q-Q plot for standard normally distributed numbers

Q-Q plot for discrete numbers

Frequency distribution and normal PDF for S&P 500 log returns

Q-Q for S&P 500 log returns

Expected CAPM return versus beta (including linear regression)

Expected CAPM return versus beta (including linear regression)

Theory-First to Data-Driven Finance

- Finance used to be characterized by normative theories based on simplified mathematical models of the financial markets, relying on assumptions such as normality of returns and linear relationships.
- The almost universal and comprehensive availability of (financial) data has led to a shift in focus from a theory-first approach to data-driven finance.
- Several examples based on real financial data illustrate that many popular financial models and theories cannot survive a confrontation with financial market realities.
- Although elegant, they might be too simplistic to capture the complexities, changing nature, and nonlinearities of financial markets.

The Quant Finance PyData Stack

Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#/5

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide,

O'Reilly O'REILLY" Artificial Intelligence in Finance A Python-Based Guide **Yves Hilpisch**

yhilpisch / aiif Public	https://github.co	om/yhilpisch/aiif	Notifications	98 % Fork 77
<> Code ⊙ Issues ĵ	ን Pull requests 🕞 Actions 🔟 Projects	🕮 Wiki 😟 Security 🗠 Insights		
양 main ▾ 양 1 branch	⊘ 0 tags	Go to file Code -	About	
yves Code updates for T	F 2.3.	e334251 on Dec 8, 2020 🕚 4 commits	Jupyter Notebooks an Artificial Intelligence in Yves Hilpisch	d code for the book Finance (O'Reilly) by
code	Code updates for TF 2.3.	11 months ago	a home the is/heeks/s	
🗅 .gitignore	Code updates for TF 2.3.	11 months ago	C none.tpq.to/books/a	
LICENSE.txt	Code updates.	11 months ago	View license	O'REILLY'
B README.md	Code updates.	11 months ago	Ja view license	Artificial
E README.md			Releases	Intelligence
			No releases published	in Finance
Artificial Inte	Iligence in Finance			(Ser
		Packages		
About this Repos	sitory	No packages published		
This repository provides Finance book published	Python code and Jupyter Notebooks accomp by O'Reilly.	Languages	Yves Hill	
O'REILLY °			Jupyter Notebook 97.49	% • Python 2.6%

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly

Source: https://github.com/yhilpisch/aiif/tree/main/code

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

C	> A python101.ipynb	Tools	Help	All changes saved	Comm	ent 🚢	Share	٠	A
≔	Table of contents	\times	+ 0	ode + Text	✓ RAM Disk	•	🎤 Ec	liting	^
0	Data Driven Finance		- D	ata Driven Finance					
\sim	Financial Econometrics and Regression								
	Data Availability		▼ F	inancial Econometrics and Regression					
{ <i>x</i> }	Normative Theories Revisited								
	Mean-Variance Portfolio Theor	у	<u>ر</u> [1	3] 1 import numpy as np					
	Capital Asset Pricing Model			2 3 def f(x):					
	Arbitrage-Pricing Theory			4 return $2 + 1 / 2 * x$					
	Debunking Central Assumptions			5 $6x = np.arange(-4, 5)$					
	Normality			7 x					
	Sample Data Sets			array([-4, -3, -2, -1, 0, 1, 2, 3, 4])					-
	Real Financial Returns								
	Linear Relationships		<u>,</u> C	1 y = f(x)					
	Deep Learning for Financial Time Series Forecasting	es	00	2 y					
				array([0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00	1)				
	Portfolio Optimization and Algorithmic Trading				\uparrow	- ↓ ⊕	9 \$, î	:
	Investment Portfolio Optimisation with Python		os C	<pre>1 print('x', x) 2 3 print('y', y)</pre>					
	Efficient Frontier Portfolio Optimisation in Python			4 5 beta = np.cov(x, y, ddof=0)[0, 1] / x.var()					
	Investment Portfolio Optimization			6 print('beta', beta)					

```
python101.ipynb
                             17
CO
                                                                                                                    Comment
                                                                                                                                  Share
       File Edit View Insert Runtime Tools Help All changes saved
                                                                                                                    V RAM Disk
                                                                                                                                       Editing
                                           + Code + Text
                                 :=
    Table of contents
      Data Driven Finance

    Normative Theories Revisited

Q
         Financial Econometrics and
         Regression
\{x\}
         Data Availability

    Mean-Variance Portfolio Theory

         Normative Theories Revisited
Mean-Variance Portfolio Theory
                                            O
                                                  1 import numpy as np
                                                  2 import pandas as pd
            Capital Asset Pricing Model
                                                  3 from pylab import plt, mpl
            Arbitrage-Pricing Theory
                                                  4 from scipy.optimize import minimize
                                                  5 plt.style.use('seaborn')
         Debunking Central Assumptions
                                                  6 mpl.rcParams['savefig.dpi'] = 300
         Normality
                                                  7 mpl.rcParams['font.family'] = 'serif'
                                                  8 np.set_printoptions(precision=5, suppress=True,
            Sample Data Sets
                                                                        formatter={'float': lambda x: f'{x:6.3f}'})
                                                  9
            Real Financial Returns
                                                 10
                                                 11 url = 'http://hilpisch.com/aiif eikon eod data.csv'
        Linear Relationships
                                                 12
      Financial Econometrics and Machine
                                                 13 raw = pd.read csv(url, index col=0, parse dates=True).dropna()
      Learning
                                                 14 raw.info()
                                                 15
         Machine Learning
                                                 16 symbols = ['AAPL.O', 'MSFT.O', 'INTC.O', 'AMZN.O', 'GLD']
                                                 17
         Data
<>
                                                 18 rets = np.log(raw[symbols] / raw[symbols].shift(1)).dropna()
         Success
                                                 19
=
                                                 20 (raw[symbols[:]] / raw[symbols[:]].iloc[0]).plot(figsize=(10, 6));
         Capacity
                                                 21
>_
         Evaluation
                                                 22 weights = len(rets.columns) * [1 / len(rets.columns)]
                                                 22 moights
Bias & Variance
                                                  https://tinyurl.com/aintpupython101
```


C	O ▲ python101.ipynb ☆ File Edit View Insert Runtime	Tools	Help All chang	<u>ges save</u>	d							Comment	** \$	Share 🇯	A
=	Table of contents	×	+ Code + T	ext							~	RAM Disk	•	🖍 Editin	g ^
Q	Data Driven Finance		AMZN.	0											
$\langle \rangle$	Financial Econometrics and Regression		2011 2012	beta:	1.102	mu_capm: mu_capm:	-0.001	mu_real mu_real	: -0.039 : 0.374						
	Data Availability	1	2013	beta:	1.116	mu_capm:	0.289	mu_real	: 0.464 : -0.251						- 1
$\{x\}$	Normative Theories Revisited		2015	beta	1.473	mu_capm:	-0.013	mu_real	: 0.778						- 1
_	Mean-Variance Portfolio Theor	y	2010	beta	1.118	mu_capm:	0.199	mu_real	: 0.446						- 1
	Capital Asset Pricing Model		2018 2019	beta: beta:	1.300	mu_capm:	-0.086 0.408	mu_real mu_real	: 0.251 : 0.207						- 1
	Arbitrage-Pricing Theory		0.8				AM	ZN.O							- 1
	Debunking Central Assumptions		0.0							m	u_capm u_real				- 1
	Normality														- 1
	Sample Data Sets		0.6												
	Real Financial Returns										_				
	Linear Relationships		0.4												
	Deep Learning for Financial Time Serie Forecasting	S	0.2						- 4		Ŀ.				
	Portfolio Optimization and Algorithmic Trading		0.0							. Л.					
	Investment Portfolio Optimisation with Python														
	Efficient Frontier Portfolio Optimisation in Python		-0.2				•								
=	Investment Portfolio Optimization			11	12	13	14	15	17	18	19				

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

C	Pile Edit View Insert Runtime Tools	Help All changes saved	🗳 Comment 🛛 😫 Share 🌼 🔥
=	Table of contents ×	+ Code + Text	✓ RAM L ✓ Editing ∧
Q	Data Driven Finance	GLD ====================================	
$\langle \rangle$	Financial Econometrics and Regression	Skew of Sample Log Returns -0.581025 Skew Normal Test p-value 0.000000	
	Data Availability		
$\{x\}$	Normative Theories Revisited	Kurt of Sample Log Returns 5.899701 Kurt Normal Test p-value 0.000000	
-	Mean-Variance Portfolio Theory	Normal Test p-value 0.000000	
	Capital Asset Pricing Model		
	Arbitrage-Pricing Theory	.SPX	
	Debunking Central Assumptions	70	PDF frequency
	Normality		
	Sample Data Sets	60	
	Real Financial Returns	Ati 50	
	Linear Relationships	de la companya de la company	
	Deep Learning for Financial Time Series Forecasting	Rency/p	
	Portfolio Optimization and Algorithmic Trading	20	
	Investment Portfolio Optimisation with Python	10	
	Efficient Frontier Portfolio Optimisation in Python	0 -0.06 -0.04 -0.02 0.00	0.02 0.04
=	Investment Portfolio Optimization	log returns	

https://tinyurl.com/aintpupython101

Summary

- Data-Driven Finance
- Scientific Method
- Financial Econometrics and Regression
- Data Availability
- Normative Theories Revisited
- Debunking Central Assumptions in Finance

References

- Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media, <u>https://github.com/yhilpisch/aiif</u>.
- Fishburn, P. C. (1968). Utility theory. Management science, 14(5), 335-378.
- Fama, E. F., & French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of economic perspectives, 18(3), 25-46.
- Markowitz, H. (1952). PORTFOLIO SELECTION. The Journal of Finance, 7(1), 77-91.
- Pratt, J. W. (1964). Risk aversion in the small and in the large, econometrics 32, jan.
- Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341-60.
- Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance, 19(3), 425-442.
- Min-Yuh Day (2022), Python 101, <u>https://tinyurl.com/aintpupython101</u>