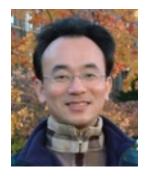
Artificial Intelligence in Finance and Quantitative Analysis

Algorithmic Trading, Risk Management, **Trading Bot and Event-Based Backtesting**

1111AIFQA10 MBA, IM, NTPU (M6132) (Fall 2022) Tue 2, 3, 4 (9:10-12:00) (B8F40)



Min-Yuh Day, Ph.D, **Associate Professor**

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

Syllabus

Week Date Subject/Topics

- 1 2022/09/13 Introduction to Artificial Intelligence in Finance and Quantitative Analysis
- 2 2022/09/20 Al in FinTech: Metaverse, Web3, DeFi, NFT, Financial Services Innovation and Applications
- 3 2022/09/27 Investing Psychology and Behavioral Finance
- 4 2022/10/04 Event Studies in Finance
- 5 2022/10/11 Case Study on AI in Finance and Quantitative Analysis I
- 6 2022/10/18 Finance Theory

Syllabus

Week Date Subject/Topics

- 7 2022/10/25 Data-Driven Finance
- 8 2022/11/01 Midterm Project Report
- 9 2022/11/08 Financial Econometrics and Machine Learning
- 10 2022/11/15 Al-First Finance
- 11 2022/11/22 Deep Learning in Finance;
 Reinforcement Learning in Finance
- 12 2022/11/29 Case Study on AI in Finance and Quantitative Analysis II

Syllabus

Week Date Subject/Topics

- 13 2022/12/06 Industry Practices of AI in Finance and Quantitative Analysis
- 14 2022/12/13 Algorithmic Trading; Risk Management;
 Trading Bot and Event-Based Backtesting
- 15 2022/12/20 Final Project Report I
- 16 2022/12/27 Final Project Report II
- 17 2023/01/03 Self-learning
- 18 2023/01/10 Self-learning

Algorithmic Trading Risk Management **Trading Bot Event-Based Backtesting**

Outline

- Algorithmic Trading
- Risk Management
- Trading Bot
- Event-Based Backtesting

Deep learning for financial applications: **A survey Applied Soft Computing (2020)**

Source:

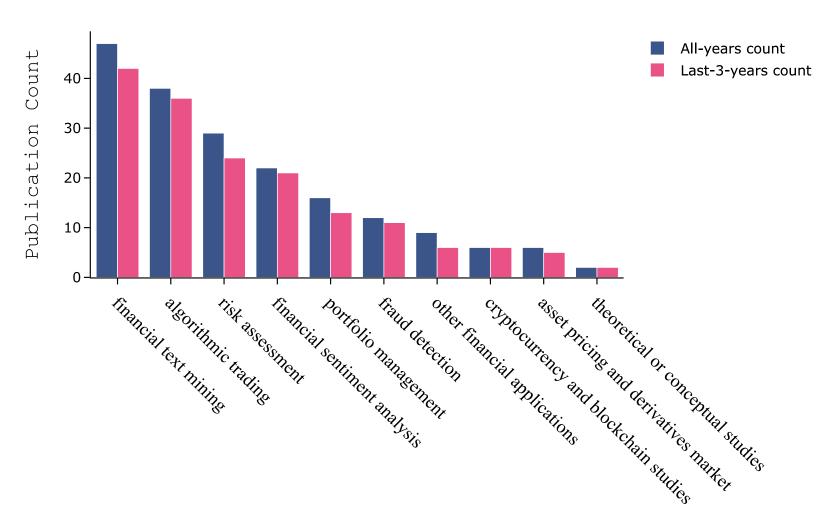
Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey."

Applied Soft Computing (2020): 106384.

Financial time series forecasting with deep learning: A systematic literature review: 2005-2019 **Applied Soft Computing (2020)**

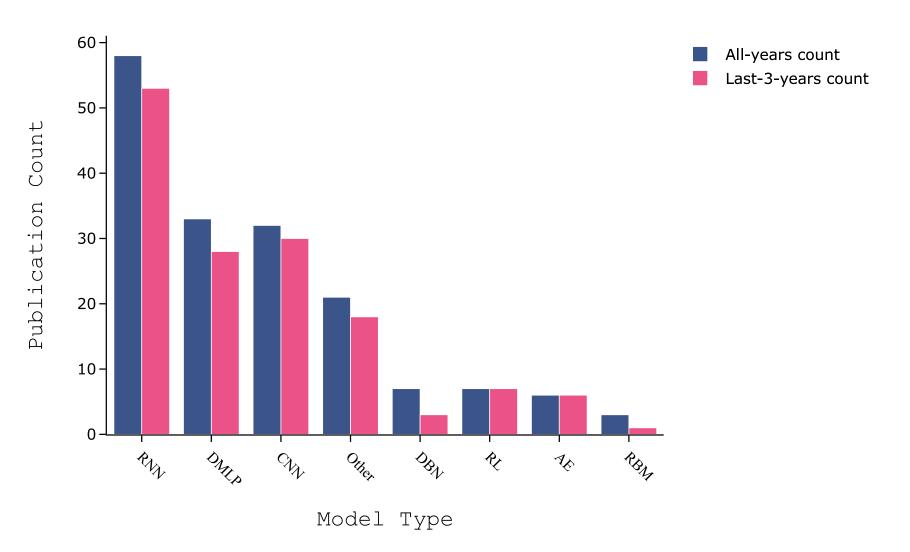
Source:

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

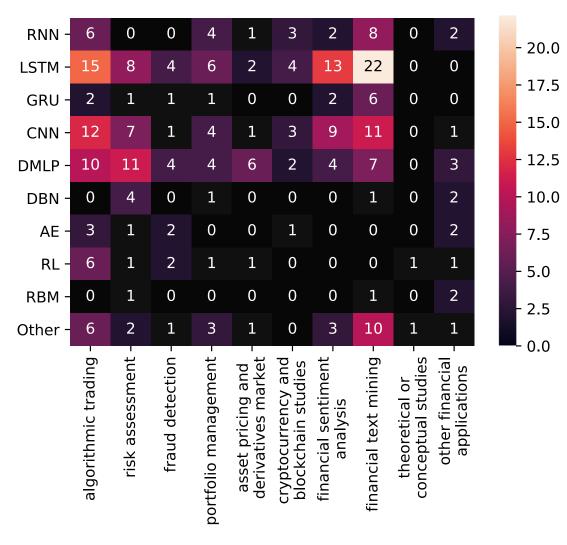


Topic Name

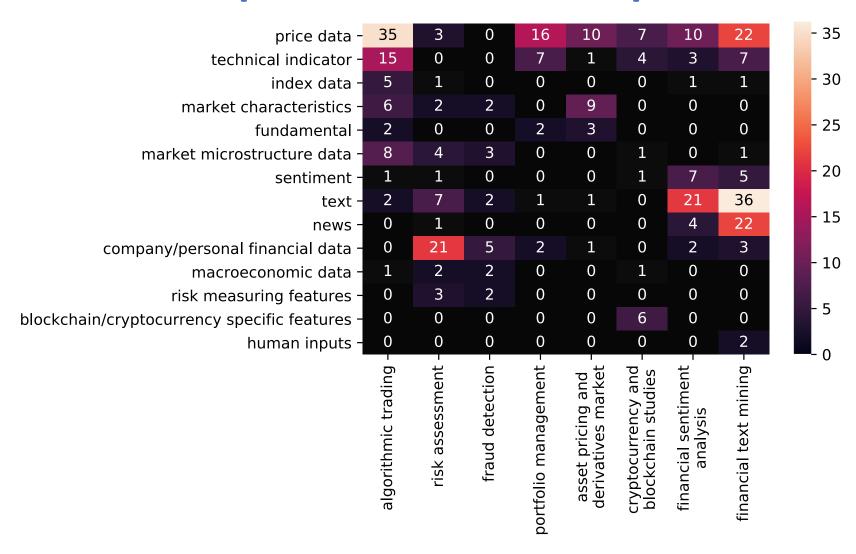
Deep learning for financial applications: Deep Learning Models



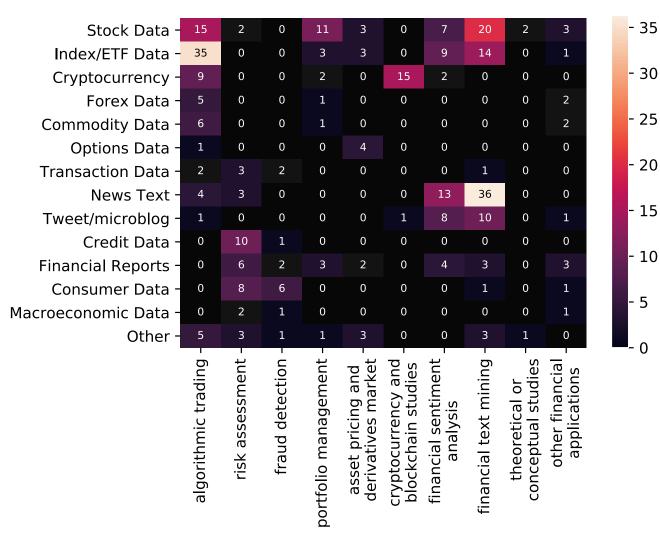
Deep learning for financial applications: Topic-Model Heatmap



Deep learning for financial applications: Topic-Feature Heatmap



Deep learning for financia applications: Topic-Dataset Heatmap



Algo-trading applications embedded with time series forecasting models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[33]	GarantiBank in BIST, Turkey	2016	OCHLV, Spread, Volatility, Turnover, etc.	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, Correlation R-square	Spark
[34]	CSI300, Nifty50, HSI, Nikkei 225, S&P500, DJIA	2010–2016	OCHLV, Technical Indicators	WT, Stacked autoencoders, LSTM	MAPE, Correlation coefficient, THEIL-U	-
[35]	Chinese Stocks	2007–2017	OCHLV	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[36]	50 stocks from NYSE	2007–2016	Price data	SFM	MSE	=
[37]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[38]	300 stocks from SZSE, Commodity	2014–2015	Price data	FDDR, DMLP+RL	Profit, return, SR, profit-loss curves	Keras
[39]	S&P500 Index	1989–2005	Price data, Volume	LSTM	Return, STD, SR, Accuracy	Python, TensorFlow, Keras, R, H2O
[40]	Stock of National Bank of Greece (ETE).	2009–2014	FTSE100, DJIA, GDAX, NIKKEI225, EUR/USD, Gold	GASVR, LSTM	Return, volatility, SR, Accuracy	Tensorflow
[41]	Chinese stock-IF-IH-IC contract	2016–2017	Decisions for price change	MODRL+LSTM	Profit and loss, SR	-
[42]	Singapore Stock Market Index	2010–2017	OCHL of last 10 days of Index	DMLP	RMSE, MAPE, Profit, SR	-
[43]	GBP/USD	2017	Price data	Reinforcement Learning + LSTM + NES	SR, downside deviation ratio, total profit	Python, Keras, Tensorflow
[44]	Commodity, FX future, ETF	1991–2014	Price Data	DMLP	SR, capability ratio, return	C++, Python
[45]	USD/GBP, S&P500, FTSE100, oil, gold	2016	Price data	AE + CNN	SR, % volatility, avg return/trans, rate of return	H2O

Algo-trading applications embedded with time series forecasting models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX returns, Euribor interest rates, OCHLV	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[47]	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning, DMLP	Total profit, Correlation	-
[48]	Stocks in the S&P500	1990–2015	Price data	DMLP, GBT, RF	Mean return, MDD, Calmar ratio	H20
[49]	Fundamental and Technical Data, Economic Data	-	Fundamental , technical and market information	CNN	_	_

Classification (buy-sell signal, or trend detection) based algo-trading models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[51]	Stocks in Dow30	1997–2017	RSI	DMLP with genetic algorithm	Annualized return	Spark MLlib, Java
[52]	SPY ETF, 10 stocks from S&P500	2014–2016	Price data	FFNN	Cumulative gain	MatConvNet, Matlab
[53]	Dow30 stocks	2012–2016	Close data and several technical indicators	LSTM	Accuracy	Python, Keras, Tensorflow, TALIE
[54]	High-frequency record of all orders	2014–2017	Price data, record of all orders, transactions	LSTM	Accuracy	-
[55]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price and volume data in LOB	LSTM	Precision, Recall, F1-score, Cohen's k	-
[56]	17 ETFs	2000-2016	Price data, technical indicators	CNN	Accuracy, MSE, Profit, AUROC	Keras, Tensorflow
[57]	Stocks in Dow30 and 9 Top Volume ETFs	1997-2017	Price data, technical indicators	CNN with feature imaging	Recall, precision, F1-score, annualized return	Python, Keras, Tensorflow, Java
[58]	FTSE100	2000-2017	Price data	CAE	TR, SR, MDD, mean return	-
[59]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price, Volume data, 10 orders of the LOB	CNN	Precision, Recall, F1-score, Cohen's k	Theano, Scikit learn, Python
[60]	Borsa Istanbul 100 Stocks	2011–2015	75 technical indicators and OCHLV	CNN	Accuracy	Keras
[61]	ETFs and Dow30	1997-2007	Price data	CNN with feature imaging	Annualized return	Keras, Tensorflow
[62]	8 experimental assets from bond/derivative market	-	Asset prices data	RL, DMLP, Genetic Algorithm	Learning and genetic algorithm error	-
[63]	10 stocks from S&P500	-	Stock Prices	TDNN, RNN, PNN	Missed opportunities, false alarms ratio	-
[64]	London Stock Exchange	2007–2008	Limit order book state, trades, buy/sell orders, order deletions	CNN	Accuracy, kappa	Caffe
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-

Deep learning for financial applications: Stand-alone and/or other algorithmic models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[66]	DAX, FTSE100, call/put options	1991–1998	Price data	Markov model, RNN	Ewa-measure, iv, daily profits' mean and std	-
[67]	Taiwan Stock Index Futures, Mini Index Futures	2012–2014	Price data to image	Visualization method + CNN	Accumulated profits, accuracy	-
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015–2016	Text and Price data	LSTM, RNN, GRU	Return, SR, precision, recall, accuracy	Python, Tweepy API
[69]	CME FIX message	2016	Limit order book, time-stamp, price data	RNN	Precision, recall, F1-measure	Python, TensorFlow, R
[70]	Taiwan stock index futures (TAIFEX)	2017	Price data	Agent based RL with CNN pre-trained	Accuracy	-
[71]	Stocks from S&P500	2010–2016	OCHLV	DCNL	PCC, DTW, VWL	Pytorch
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013–2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[73]	489 stocks from S&P500 and NASDAQ-100	2014–2015	Limit Order Book	Spatial neural network	Cross entropy error	NVIDIA's cuDNN
[74]	Experimental dataset	-	Price data	DRL with CNN, LSTM, GRU, DMLP	Mean profit	Python

Deep learning for financial applications: Credit scoring or classification studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[77]	The XR 14 CDS contracts	2016	Recovery rate, spreads, sector and region	DBN+RBM	AUROC, FN, FP, Accuracy	WEKA
[78]	German, Japanese credit datasets	-	Personal financial variables	SVM + DBN	Weighted- accuracy, TP, TN	-
[79]	Credit data from Kaggle	-	Personal financial variables	DMLP	Accuracy, TP, TN, G-mean	_
[80]	Australian, German credit data	-	Personal financial variables	GP + AE as Boosted DMLP	FP	Python, Scikit-learn
[81]	German, Australian credit dataset	-	Personal financial variables	DCNN, DMLP	Accuracy, False/Missed alarm	_
[82]	Consumer credit data from Chinese finance company	-	Relief algorithm chose the 50 most important features	CNN + Relief	AUROC, K-s statistic, Accuracy	Keras
[83]	Credit approval dataset by UCI Machine Learning repo	-	UCI credit approval dataset	Rectifier, Tanh, Maxout DL	-	AWS EC2, H2O, R

Financial distress, bankruptcy, bank risk, mortgage risk, crisis forecasting studies.

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[84]	966 french firms	-	Financial ratios	RBM+SVM	Precision, Recall	-
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, RF	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[86]	The event data set for large European banks, news articles from Reuters	2007–2014	Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	-
[87]	Event dataset on European banks, news from Reuters	2007–2014	Text, sentence	Sentence vector + DFFN	Usefulness, F1-score, AUROC	-
[88]	News from Reuters, fundamental data	2007-2014	Financial ratios and news text	doc2vec + NN	Relative usefulness	Doc2vec
[89]	Macro/Micro economic variables, Bank charac- teristics/performance variables from BHC	1976-2017	Macro economic variables and bank performances	CGAN, MVN, MV-t, LSTM, VAR, FE-QAR	RMSE, Log likelihood, Loan loss rate	-
[90]	Financial statements of French companies	2002–2006	Financial ratios	DBN	Recall, Precision, F1-score, FP, FN	-
[91]	Stock returns of American publicly-traded companies from CRSP	2001–2011	Price data	DBN	Accuracy	Python, Theano
[92]	Financial statements of several companies from Japanese stock market	2002–2016	Financial ratios	CNN	F1-score, AUROC	-
[93]	Mortgage dataset with local and national economic factors	1995–2014	Mortgage related features	DMLP	Negative average log-likelihood	AWS
[94]	Mortgage data from Norwegian financial service group, DNB	2012–2016	Personal financial variables	CNN	Accuracy, Sensitivity, Specificity, AUROC	-
[95]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	CNN, LSTM	F1-Score	Keras, Tensorflow
[96]	Several datasets combined to create a new one	1996-2017	Index data, 10-year Bond yield, exchange rates,	Logit, CART, RF, SVM, NN, XGBoost, DMLP	AUROC, KS, G-mean, likelihood ratio, DP, BA, WBA	R

Deep learning for financial applications: Fraud detection studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[114]	Debit card transactions by a local Indonesia bank	2016–2017	Financial transaction amount on several time periods	CNN, Stacked-LSTM, CNN-LSTM	AUROC	-
[115]	Credit card transactions from retail banking	2017	Transaction variables and several derived features	LSTM, GRU	Accuracy	Keras
[116]	Card purchases' transactions	2014–2015	Probability of fraud per currency/origin country, other fraud related features	DMLP	AUROC	-
[117]	Transactions made with credit cards by European cardholders	2013	Personal financial variables to PCA	DMLP, RF	Recall, Precision, Accuracy	-
[118]	Credit-card transactions	2015	Transaction and bank features	LSTM	AUROC	Keras, Scikit-learn
[119]	Databases of foreign trade of the Secretariat of Federal Revenue of Brazil	2014	8 Features: Foreign Trade, Tax, Transactions, Employees, Invoices, etc	AE	MSE	H2O, R
[120]	Chamber of Deputies open data, Companies data from Secretariat of Federal Revenue of Brazil	2009–2017	21 features: Brazilian State expense, party name, Type of expense, etc.	Deep Autoencoders	MSE, RMSE	H2O, R
[121]	Real-world data for automobile insurance company labeled as fradulent	-	Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	-
[122]	Transactions from a giant online payment platform	2006	Personal financial variables	GBDT+DMLP	AUROC	-
[123]	Financial transactions	_	Transaction data	LSTM	t-SNE	-
[124]	Empirical data from Greek firms	-	-	DQL	Revenue	Torch

Deep learning for financial applications: Portfolio management studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-
[127]	Stocks from NYSE, AMEX, NASDAQ	1965–2009	Price data	Autoencoder + RBM	Accuracy, confusion matrix	-
[128]	20 stocks from S&P500	2012–2015	Technical indicators	DMLP	Accuracy	Python, Scikit Learn, Keras, Theano
[129]	Chinese stock data	2012-2013	Technical, fundamental data	Logistic Regression, RF, DMLP	AUC, accuracy, precision, recall, f1, tpr, fpr	Keras, Tensorflow, Python, Scikit Iearn
[130]	Top 5 companies in S&P500	-	Price data and Financial ratios	LSTM, Auto-encoding, Smart indexing	CAGR	-
[131]	IBB biotechnology index, stocks	2012-2016	Price data	Auto-encoding, Calibrating, Validating, Verifying	Returns	-
[132]	Taiwans stock market	-	Price data	Elman RNN	MSE, return	_
[133]	FOREX (EUR/USD, etc.), Gold	2013	Price data	Evolino RNN	Return	Python
[134]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	LSTM+DMLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[135]	S&P500	1985–2006	monthly and daily log-returns	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[136]	10 stocks in S&P500	1997–2016	OCHLV, Price data	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[137]	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[138]	Stocks from Chinese/American stock market	2015–2018	OCHLV, Fundamental data	DDPG, PPO	SR, MDD	-
[139]	Hedge fund monthly return data	1996–2015	Return, SR, STD, Skewness, Kurtosis, Omega ratio, Fund alpha	DMLP	Sharpe ratio, Annual return, Cum. return	-
[140]	12 most-volumed cryptocurrency	2015-2016	Price data	CNN + RL	SR, portfolio value, MDD	-

Deep learning for financial applications: Asset pricing and derivatives market studies

Art.	Der. type	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Asset pricing	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[142]	Options	Simulated a range of call option prices	-	Price data, option strike/maturity, dividend/risk free rates, volatility	DMLP	RMSE, the average percentage pricing error	Tensorflow
[143]	Futures, Options	TAIEX Options	2017	OCHLV, fundamental analysis, option price	DMLP, DMLP with Black scholes	RMSE, MAE, MAPE	-
[144]	Equity returns	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	Fama-French n-factor model DL	R ² ,RMSE	Tensorflow

Deep learning for financial applications: Cryptocurrency and blockchain studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX daily returns, Euribor interest rates, OCHLV of EURO/UK, EURO/USD, US/JPY	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN	Accumulative portfolio value, MDD, SR	-
[140]	12 most-volumed cryptocurrency	2015–2016	Price data	CNN + RL	SR, portfolio value, MDD	
[145]	Bitcoin data	2010–2017	Hash value, bitcoin address, public/private key, digital signature, etc.	Takagi–Sugeno Fuzzy cognitive maps	Analytical hierarchy process	-
[146]	Bitcoin data	2012, 2013, 2016	TransactionId, input/output Addresses, timestamp	Graph embedding using heuristic, laplacian eigen-map, deep AE	F1-score	-
[147]	Bitcoin, Litecoin, StockTwits	2015–2018	OCHLV, technical indicators, sentiment analysis	CNN, LSTM, State Frequency Model	MSE	Keras, Tensorflow
[148]	Bitcoin	2013–2016	Price data	Bayesian optimized RNN, LSTM	Sensitivity, specificity, precision, accuracy, RMSE	Keras, Python, Hyperas

Financial sentiment studies coupled with text mining for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[150]	Sina Weibo, Stock market records	2012–2015	Technical indicators, sentences	DRSE	F1-score, precision, recall, accuracy, AUROC	Python
[151]	News from Reuters and Bloomberg for S&P500 stocks	2006–2015	Financial news, price data	DeepClue	Accuracy	Dynet software
[152]	News from Reuters and Bloomberg, Historical stock security data	2006–2013	News, price data	DMLP	Accuracy	_
[153]	SCI prices	2008–2015	OCHL of change rate, price	Emotional Analysis + LSTM	MSE	-
[154]	SCI prices	2013–2016	Text data and Price data	LSTM	Accuracy, F1-Measure	Python, Keras
[155]	Stocks of Google, Microsoft and Apple	2016–2017	Twitter sentiment and stock prices	RNN	-	Spark, Flume,Twitter API,
[156]	30 DJIA stocks, S&P500, DJI, news from Reuters	2002–2016	Price data and features from news articles	LSTM, NN, CNN and word2vec	Accuracy	VADER
[157]	Stocks of CSI300 index, OCHLV of CSI300 index	2009–2014	Sentiment Posts, Price data	Naive Bayes + LSTM	Precision, Recall, F1-score, Accuracy	Python, Keras
[158]	S&P500, NYSE Composite, DJIA, NASDAQ Composite	2009–2011	Twitter moods, index data	DNN, CNN	Error rate	Keras, Theano

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015–2016	Text and Price data	RNN, KNN, SVR, LinR	Return, SR, precision, recall, accuracy	Python, Tweepy API
[165]	News from Reuters, Bloomberg	2006–2013	Financial news, price data	Bi-GRU	Accuracy	Python, Keras
[166]	News from Sina.com, ACE2005 Chinese corpus	2012–2016	A set of news text	Their unique algorithm	Precision, Recall, F1-score	-
[167]	CDAX stock market data	2010–2013	Financial news, stock market data	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Python, Scikit-Learn
[168]	Apple, Airbus, Amazon news from Reuters, Bloomberg, S&P500 stock prices	2006–2013	Price data, news, technical indicators	TGRU, stock2vec	Accuracy, precision, AUROC	Keras, Python
[169]	S&P500 Index, 15 stocks in S&P500	2006–2013	News from Reuters and Bloomberg	CNN	Accuracy, MCC	-
[170]	S&P500 index news from Reuters	2006–2013	Financial news titles, Technical indicators	SI-RCNN (LSTM + CNN)	Accuracy	-
[171]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	Paragraph Vector + LSTM	Profit	-
[172]	NIFTY50 Index, NIFTY Bank/Auto/IT/Energy Index, News	2013–2017	Index data, news	LSTM	MCC, Accuracy	-
[173]	Price data, index data, news, social media data	2015	Price data, news from articles and social media	Coupled matrix and tensor	Accuracy, MCC	Jieba
[174]	HS300	2015–2017	Social media news, price data	RNN-Boost with LDA	Accuracy, MAE, MAPE, RMSE	Python, Scikit-learn

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[175]	News and Chinese stock data	2014–2017	Selected words in a news	HAN	Accuracy, Annual return	
[176]	News, stock prices from 2001 Hong Kong Stock Exchange		Price data and TF-IDF from news	· · · · · · · · · · · · · · · · · · ·		Matlab
[177]	TWSE index, 4 stocks in 2001–2 TWSE		Technical CNN + LSTM indicators, Price data, News		RMSE, Profit	Keras, Python, TALIB
[178]	Stock of Tsugami 2013 Corporation		Price data LSTM		RMSE	Keras, Tensorflow
[179]	News, Nikkei Stock 1999–2008 Average and 10-Nikkei companies		news, MACD RNN, RBM+DBN		Accuracy, P-value	-
[180]	ISMIS 2017 Data Mining Competition dataset	-	Expert identifier, LSTM + GRU + classes FFNN		Accuracy	-
[181]	Reuters, Bloomberg News, S&P500 price	2006–2013	News and LSTM sentences		Accuracy	-
[182]	APPL from S&P500 and 2011–2017 news from Reuters		Input news, CNN + LSTM, OCHLV, Technical CNN+SVM indicators		Accuracy, F1-score	Tensorflow
[183]	Nikkei225, S&P500, news 2001–2013 from Reuters and Bloomberg		Stock price data and news			-
[184]	Stocks from S&P500	2006–2013	Text (news) and Price data	LAR+News, RF+News	MAPE, RMSE	-

Financial sentiment studies coupled with text mining without forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, Random Forest	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[185]	SemEval-2017 dataset, financial text, news, stock market data	nancial text, news, Tweets, I		entiments in Ensemble SVR, weets, News CNN, LSTM, GRU eadlines		Python, Keras, Scikit Learn
[186]	Financial news from Reuters			Targeted dependency tree LSTM	Cumulative abnormal return	-
[187]	Stock sentiment analysis 2015 from StockTwits		StockTwits messages	LSTM, Doc2Vec, CNN	Accuracy, precision, recall, f-measure, AUC	-
[188]	Sina Weibo, Stock market records			Technical DRSE indicators, sentences		Python
[189]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	AppleDaily, LTN,		Text, Sentiment LSTM, CNN		Python, Tensorflow
[190]	StockTwits			Sentences, CNN, LSTM, GRU StockTwits messages		Keras, Tensorflow
[191]	Financial statements of Japan companies	-	Sentences, text	DMLP	Precision, recall, f-score	-
[192]	Twitter posts, news – headlines		Sentences, text Deep-FASP		Accuracy, MSE, R ²	-
[193]	Forums data	2004–2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
[194]	News from Financial Times related US stocks	-	Sentiment of news headlines	SVR, Bidirectional LSTM	Cosine similarity	Python, Scikit Learn, Keras, Tensorflow

Deep learning for financial applications: Other text mining studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013–2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[86]	The event data set for 2007-2014 Word, so large European banks, news articles from Reuters		Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	-
[87]	Event dataset on 2007-2014 European banks, news from Reuters		Text, sentence Sentence vector + DFFN		Usefulness, F1-score, AUROC	-
[88]	News from Reuters, 2007–2014 fundamental data		Financial ratios doc2vec + NN and news text		Relative usefulness	Doc2vec
[121]	Real-world data for – automobile insurance company labeled as fradulent		Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	-
[123]	Financial transactions	_	Transaction data	LSTM	t-SNE	_
[195]	Taiwan's National 2008–2014 Pension Insurance		Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
[196]	StockTwits	2015–2016	Sentences, StockTwits messages	Doc2vec, CNN	Accuracy, precision, recall, f-measure, AUC	Python, Tensorflow

Deep learning for financial applications: Other theoretical or conceptual studies

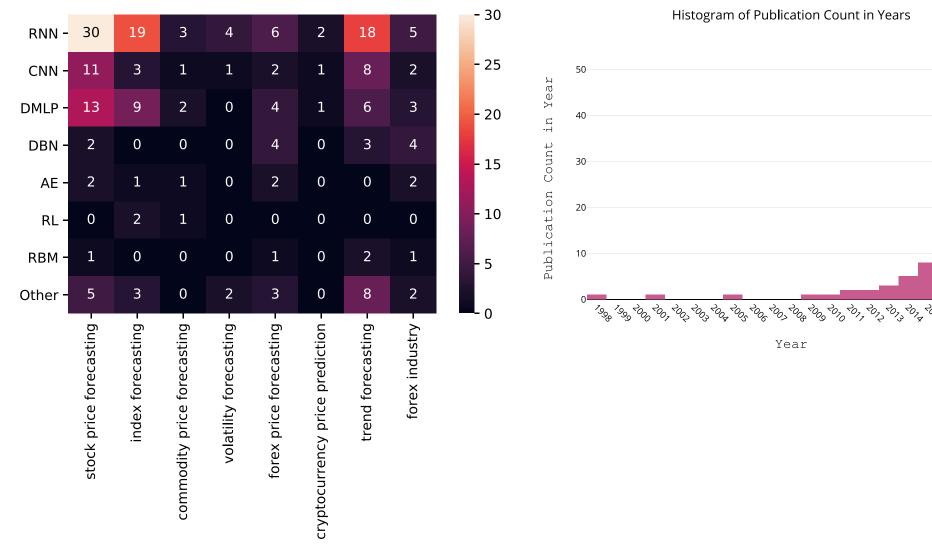
Art.	SubTopic	IsTimeSeries?	Data set	Period	Feature set	Method
[197]	Analysis of AE, SVD	Yes	Selected stocks from the IBB index and stock of Amgen Inc.	2012–2014	Price data	AE, SVD
[198]	Fraud Detection in Banking	No	Risk Management / Fraud Detection	-	-	DRL

Deep learning for financial applications: Other financial applications

Art.	Subtopic	Data set	Period	Feature set	Method	Performance criteria	Env.
[47]	Improving trading decisions	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning and DMLP	Total profit, Correlation	-
[193]	Identifying Top Sellers In Underground Economy	Forums data	2004–2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
[195]	Predicting Social Ins. Payment Behavior	Taiwan's National Pension Insurance	2008–2014	Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
[199]	Speedup	45 CME listed commodity and FX futures	1991–2014	Price data	DNN	-	-
[200]	Forecasting Fundamentals	Stocks in NYSE, NASDAQ or AMEX exchanges	1970–2017	16 fundamental features from balance sheet	DMLP, LFM	MSE, Compound annual return, SR	-
[201]	Predicting Bank Telemarketing	Phone calls of bank marketing data	2008–2010	16 finance-related attributes	CNN	Accuracy	-
[202]	Corporate Performance Prediction	22 pharmaceutical companies data in US stock market	2000–2015	11 financial and 4 patent indicator	RBM, DBN	RMSE, profit	-

All-vears count

Financial time series forecasting with deep learning: Topic-model heatmap



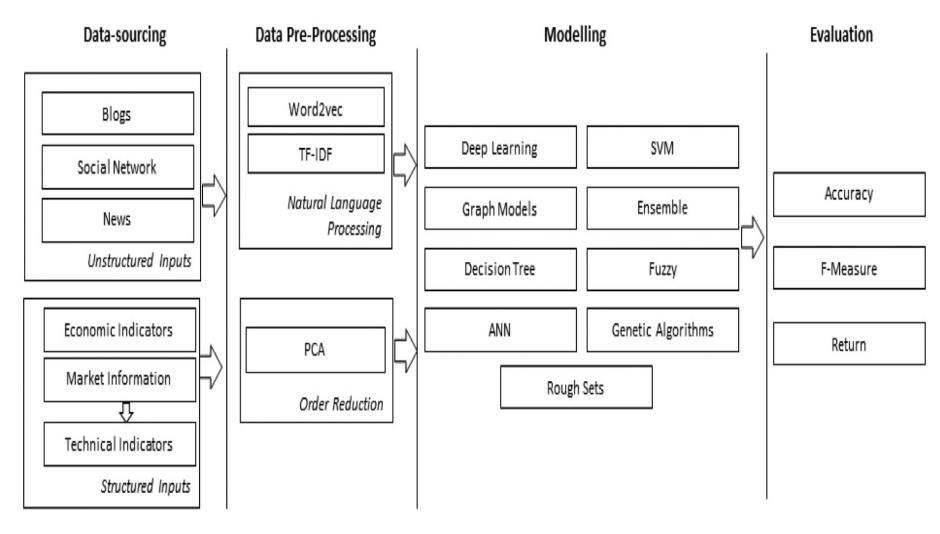
Stock price forecasting using only raw time series data

Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[80]	38 stocks in KOSPI	2010-2014	Lagged stock returns	50 min	5 min	DNN	NMSE, RMSE, MAE, MI	-
[81]	China stock market, 3049 Stocks	1990–2015	OCHLV	30 d	3 d	LSTM	Accuracy	Theano, Keras
[82]	Daily returns of 'BRD' stock in Romanian Market	2001–2016	OCHLV	-	1 d	LSTM	RMSE, MAE	Python, Theano
[83]	297 listed companies of CSE	2012–2013	OCHLV	2 d	1 d	LSTM, SRNN, GRU	MAD, MAPE	Keras
[84]	5 stock in NSE	1997–2016	OCHLV, Price data, turnover and number of trades.	200 d	110 d	LSTM, RNN, CNN, MLP	MAPE	-
[85]	Stocks of Infosys, TCS and CIPLA from NSE	2014	Price data	-	-	RNN, LSTM and CNN	Accuracy	-
[86]	10 stocks in S&P500	1997-2016	OCHLV, Price data	36 m	1 m	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[87]	Stocks data from S&P500	2011–2016	OCHLV	1 d	1 d	DBN	MSE, norm-RMSE, MAE	-
[88]	High-frequency transaction data of the CSI300 futures	2017	Price data	-	1 min	DNN, ELM, RBF	RMSE, MAPE, Accuracy	Matlab
[89]	Stocks in the S&P500	1990-2015	Price data	240 d	1 d	DNN, GBT, RF	Mean return, MDD, Calmar ratio	H20
[90]	ACI Worldwide, Staples, and Seagate in NASDAQ	2006–2010	Daily closing prices	17 d	1 d	RNN, ANN	RMSE	-
[91]	Chinese Stocks	2007–2017	OCHLV	30 d	15 d	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[92]	20 stocks in S&P500	2010–2015	Price data	-	-	AE + LSTM	Weekly Returns	-
[93]	S&P500	1985–2006	Monthly and daily log-returns	*	1 d	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[94]	12 stocks from SSE Composite Index	2000–2017	OCHLV	60 d	17 d	DWNN	MSE	Tensorflow
[95]	50 stocks from NYSE	2007–2016	Price data	-	1d, 3 d, 5 d	SFM	MSE	_

Stock price forecasting using various data

Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[96]	Japan Index constituents from WorldScope	1990–2016	25 Fundamental Features	10 d	1 d	DNN	Correlation, Accuracy, MSE	Tensorflow
[97]	Return of S&P500	1926-2016	Fundamental Features:	_	1 s	DNN	MSPE	Tensorflow
[98]	U.S. low-level disaggregated macroeconomic time series	1959–2008	GDP, Unemployment rate, Inventories, etc.	-	-	DNN	\mathbb{R}^2	-
[99]	CDAX stock market data	2010-2013	Financial news, stock market data	20 d	1 d	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Python, Scikit-Learn
[100]	Stock of Tsugami Corporation	2013	Price data	_	-	LSTM	RMSE	Keras, Tensorflow
[101]	Stocks in China's A-share	2006–2007	11 technical indicators	_	1 d	LSTM	AR, IR, IC	-
[102]	SCI prices	2008-2015	OCHL of change rate, price	7 d	-	EmotionalAnalysis + LSTM	MSE	-
[103]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	10 d	-	Paragraph Vector + LSTM	Profit	-
[104]	TKC stock in NYSE and QQQQ ETF	1999–2006	Technical indicators, Price	50 d	1 d	RNN (Jordan-Elman)	Profit, MSE	Java
[105]	10 Stocks in NYSE	_	Price data, Technical indicators	20 min	1 min	LSTM, MLP	RMSE	-
[106]	42 stocks in China's SSE	2016	OCHLV, Technical Indicators	242 min	1 min	GAN (LSTM, CNN)	RMSRE, DPA, GAN-F, GAN-D	-
[107]	Google's daily stock data	2004–2015	OCHLV, Technical indicators	20 d	1 d	$(2D)^2$ PCA + DNN	SMAPE, PCD, MAPE, RMSE, HR, TR, R ²	R, Matlab
[108]	GarantiBank in BIST, Turkey	2016	OCHLV, Volatility, etc.	-	-	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, R ²	Spark
[109]	Stocks in NYSE, AMEX, NASDAQ, TAO intraday trade	1993–2017	Price, 15 firm characteristics	80 d	1 d	LSTM+MLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[110]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	-	_	CNN, LSTM	F1-Score	Keras, Tensorflow
[111]	Fundamental and Technical Data, Economic Data	-	Fundamental , technical and market information	-	-	CNN	-	-
[112]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	-	*	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[113]	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	*	-	Fama-French n-factor model DL	R ² , RMSE	Tensorflow

Stock Market Movement Forecast: Phases of the stock market modeling

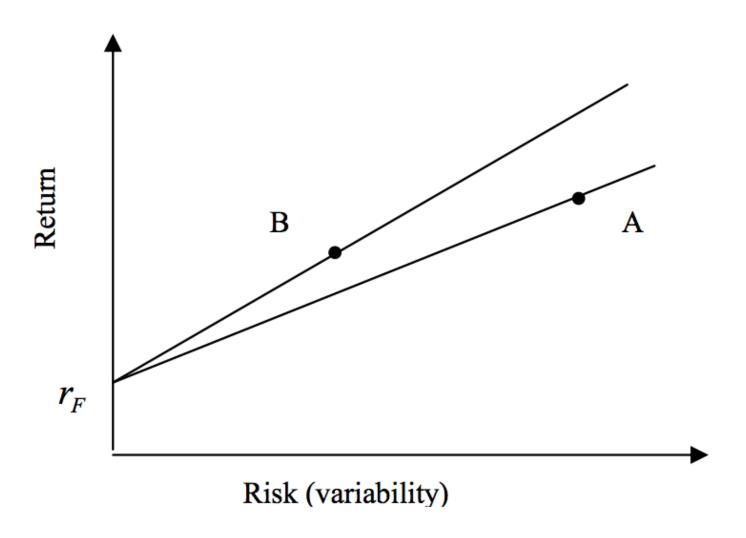


Algorithmic Trading

Algorithmic Trading



Risk and Return



Sharpe Ratio

Sharpe Ratio

Portofolio Return — Risk Free Return

Portofolio Risk

Sharpe Ratio

Sharpe Ratio
$$SR = \frac{r_P - r_F}{\sigma_P}$$

Where

 r_P = portfolio return

 r_F = risk free rate

 σ_P = portfolio risk (variability, standard deviation of return)

Sortino Ratio

Sortino Ratio =
$$\frac{r_P - r_T}{\sigma_D}$$

Where

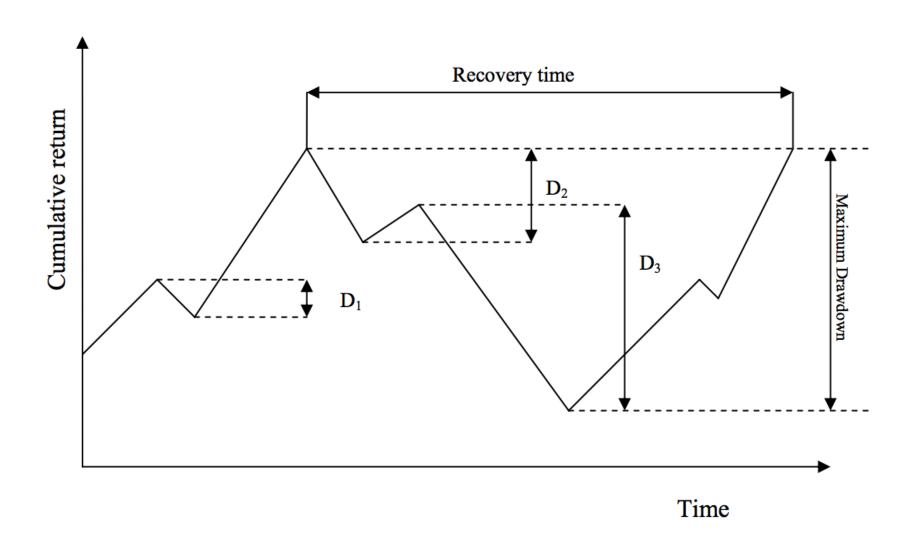
 r_P = portfolio return

 r_T = Minimum Target Return

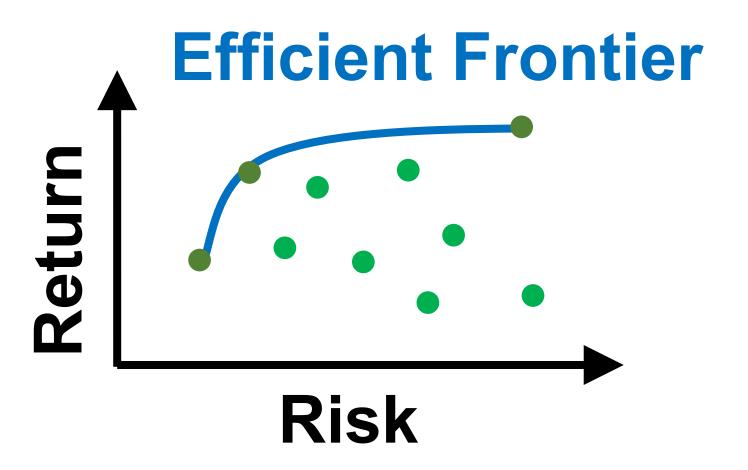
 σ_D = Downside Risk

Downside Risk
$$\sigma_D = \sqrt{\sum_{i=1}^n \frac{\min[(r_i - rT), 0]^2}{n}}$$

Max Drawdown



Portfolio Optimization Efficient Frontier



- Financial Functions (ffn)
 - https://pmorissette.github.io/ffn/
- backtesting.py
 - https://kernc.github.io/backtesting.py/
- Visualization
 - Plotly Express (px)
 - https://plotly.com/python/plotly-express/
 - Bokeh
 - https://bokeh.org/

```
!pip install ffn
import ffn
import plotly.express as px
%pylab inline
#BTC-USD Bitcoin USD
df = ffn.get('btc-usd', start='2016-01-01', end='2021-12-31')
print('df')
print(df.head())
print(df.tail())
print(df.describe())
df.plot(figsize=(14,10))
returns = df.to returns().dropna()
print('returns')
print(returns.head())
print(returns.tail())
print(returns.describe())
\#ax = df.plot(figsize=(12,9))
perf = df.calc stats()
perf.plot(figsize=(14, 10))
print(perf.display())
fig = px.line(df, x=df.index, y="btcusd", title='btcusd')
fig.update layout(title='btcusd price', xaxis title='Date', yaxis title='Price')
#fig.update traces(mode='markers+lines')
fig.show()
fig = px.line(returns, x=returns.index, y="btcusd", title='btcusd')
fig.update layout(title='btcusd returns', xaxis title='Date', yaxis title='Returns')
fig.show()
fig = px.histogram(returns, x='btcusd', nbins=40, histnorm='probability', width=800, height=400)
fig.update layout(title='btcusd returns histogram')
fig.show()
fig = px.box(returns, y='btcusd', points = 'all')
fig.update layout(title='btcusd returns box')
fig.update traces(boxmean='sd')
fig.show()
```

```
# Upgrade pandas-datareader
!pip install --upgrade pandas
!pip install --upgrade pandas-datareader
!pip install ffn
import ffn
import plotly.express as px
%pylab inline
#BTC-USD Bitcoin USD
df = ffn.get('btc-usd', start='2016-01-01', end='2021-12-31')
print('df')
print(df.head())
print(df.tail())
print(df.describe())
df.plot(figsize=(14,10))
```

```
returns = df.to_returns().dropna()
print('returns')
print(returns.head())
print(returns.tail())
print(returns.describe())
#ax = df.plot(figsize=(12,9))
```

```
perf = df.calc stats()
perf.plot(figsize=(14, 10))
print(perf.display())
fig = px.line(df, x=df.index, y="btcusd", title='btcusd')
fig.update layout(title='btcusd price', xaxis title='Date',
yaxis title='Price')
#fig.update traces(mode='markers+lines')
fig.show()
fig = px.line(returns, x=returns.index, y="btcusd", title='btcusd')
fig.update layout(title='btcusd returns', xaxis title='Date',
yaxis title='Returns')
fig.show()
```

```
fig = px.histogram(returns, x='btcusd', nbins=40,
histnorm='probability', width=800, height=400)
fig.update layout(title='btcusd returns histogram')
fig.show()
fig = px.box(returns, y='btcusd', points = 'all')
fig.update layout(title='btcusd returns box')
fig.update traces(boxmean='sd')
fig.show()
```

Financial Functions (ffn)

```
btcusd
Date
2016-01-01
            434.334015
2016-01-02
            433.437988
2016-01-03
            430.010986
2016-01-04 433.091003
2016-01-05
            431.959991
                  btcusd
Date
2021-12-28
            47588.855469
2021-12-29 46444.710938
2021-12-30 47178.125000
2021-12-31 46306.445312
2022-01-01
            47686.812500
             btcusd
        2193.000000
count
       13025.164562
mean
std
       16489.530523
min
         364.330994
25%
        2589.409912
50%
        7397.796875
75%
       11358.662109
       67566.828125
max
```

Stat	btcusd		
Start	2016-01-01		
End	2022-01-01		
Risk-free rate	0.00%		
Total Return	10879.29%		
Daily Sharpe	1.18		
Daily Sortino	1.95		
CAGR	118.79%		
Max Drawdown	-83.40%		
Calmar Ratio	1.42		

```
2.98%
MTD
3m
                      -0.89%
6m
                      42.04%
                      2.98%
YTD
1Y
                      62.34%
                      131.46%
3Y (ann.)
                      116.71%
5Y (ann.)
10Y (ann.)
Since Incep. (ann.) 118.79%
```

```
Daily Sharpe 1.18
Daily Sortino 1.95
Daily Mean (ann.) 74.04%
Daily Vol (ann.) 62.94%
Daily Skew -0.10
Daily Kurt 7.30
Best Day 25.25%
Worst Day -37.17%
```

```
Monthly Sharpe 1.38
Monthly Sortino 3.75
Monthly Mean (ann.) 114.20%
Monthly Vol (ann.) 82.59%
Monthly Skew 0.43
Monthly Kurt -0.16
Best Month 69.63%
Worst Month -36.41%
```

Yearly Sharpe 0.54 Yearly Sortino 9.73 292.22% Yearly Mean 542.38% Yearly Vol Yearly Skew 2.17 4.86 Yearly Kurt 1368.90% Best Year -73.56% Worst Year

```
Avg. Drawdown -10.25%
Avg. Drawdown Days 36.55
Avg. Up Month 25.13%
Avg. Down Month -12.35%
Win Year % 83.33%
Win 12m % 85.48%
```

Visualization plotly.express (px)

Backtesting Output

backtesing output					
Start	2016-01-01 00:00:00				
End	2022-01-01 00:00:00				
Duration	2192 days 00:00:00				
Exposure Time [%]	97.993616				
Equity Final [\$]	4237449.058157				
Equity Peak [\$]	6165339.439633				
Return [%]	4137.449058				
Buy & Hold Return [%]	10879.294935				
Return (Ann.) [%]	86.557668				
Volatility (Ann.) [%]	144.748975				
Sharpe Ratio	0.597985				
Sortino Ratio	1.946086				
Calmar Ratio	1.362652				
Max. Drawdown [%]	-63.521467				
Avg. Drawdown [%]	-12.142095				
Max. Drawdown Duration	557 days 00:00:00				
Avg. Drawdown Duration	44 days 00:00:00				
# Trades	116				
Win Rate [%]	35.344828				
Best Trade [%]	119.026467				
Worst Trade [%]	-23.393531				
Avg. Trade [%]	3.291328				
Max. Trade Duration	74 days 00:00:00				
Avg. Trade Duration	19 days 00:00:00				
Profit Factor	2.293983				
Expectancy [%]	5.036865				
SQN	1.236071				
_strategy	SmaCross				
_equity_curve	• • •				
_trades	Size Entry				

describe()

High	Low	Open	Close	Vol		
count	2193.00	2193.00	2193.00	2193.00	2.193000e+03	2193.00
mean	13363.00	12616.08	13005.79	13025.16	1.757591e+10	13025.16
std	16935.24	15960.65	16480.00	16489.53	2.085247e+10	16489.53
min	374.95	354.91	365.07	364.33	2.851400e+07	364.33
25%	2682.26	2510.48	2577.77	2589.41	1.182870e+09	2589.41
50%	7535.72	7233.40	7397.13	7397.80	9.175292e+09	7397.80
75%	11570.79	11018.13	11354.30	11358.66	2.886756e+10	11358.66
max	68789.62	66382.06	67549.73	67566.83	3.509679e+11	67566.83

```
# Upgrade pandas-datareader
                                                         Backtesting
!pip install --upgrade pandas
!pip install --upgrade pandas-datareader
!pip install backtesting
from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.test import SMA
import pandas as pd
import pandas datareader.data as web
df = web.DataReader("BTC-USD", 'yahoo', '2016-01-01', '2021-12-31')
df.to csv('BTC-USD.csv')
print(df.head().round(2))
print(df.tail().round(2))
print(df.describe().round(2))
class SmaCross(Strategy):
     n1 = 5
     n2 = 20
     def init(self):
           close = self.data.Close
           self.sma1 = self.I(SMA, close, self.n1)
           self.sma2 = self.I(SMA, close, self.n2)
     def next(self):
           if crossover(self.sma1, self.sma2):
               self.buv()
           elif crossover(self.sma2, self.sma1):
               self.sell()
bt = Backtest(df, SmaCross, cash=100000, commission=.002, exclusive orders=True)
output = bt.run()
print('backtesing output')
print(output)
bt.plot()
```

```
#!pip install backtesting
from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.lib import plot heatmaps
from backtesting.test import SMA
import pandas as pd
import pandas datareader.data as web
from google.colab import files
import time
#BTC-USD ETH-USD
v symbol = 'BTC-USD'
v time start = '2016-01-01'
v time end = '2021-12-31'
v to csv filename = v symbol + ' ' + v time start + ' ' + v time end + '.csv'
df = web.DataReader(v symbol, 'yahoo', v time start, v time end)
df.to csv(v to csv filename)
print(df.head().round(2))
print(df.tail().round(2))
print(df.describe().round(2))
v n1 = 5 #5 #20 #60 #120
v n2 = 200 #20 #60 #120 #240
```

```
class SmaCross(Strategy):
   n1 = v n1 #5
   n2 = v n2 #60
   def init(self):
      close = self.data.Close
      self.sma1 = self.I(SMA, close, self.n1)
       self.sma2 = self.I(SMA, close, self.n2)
   def next(self):
      if crossover(self.sma1, self.sma2):
             self.buy()
      elif crossover(self.sma2, self.sma1):
             self.sell()
bt = Backtest(df, SmaCross, cash=100000, commission=.002, exclusive orders=True)
stats = bt.run()
```

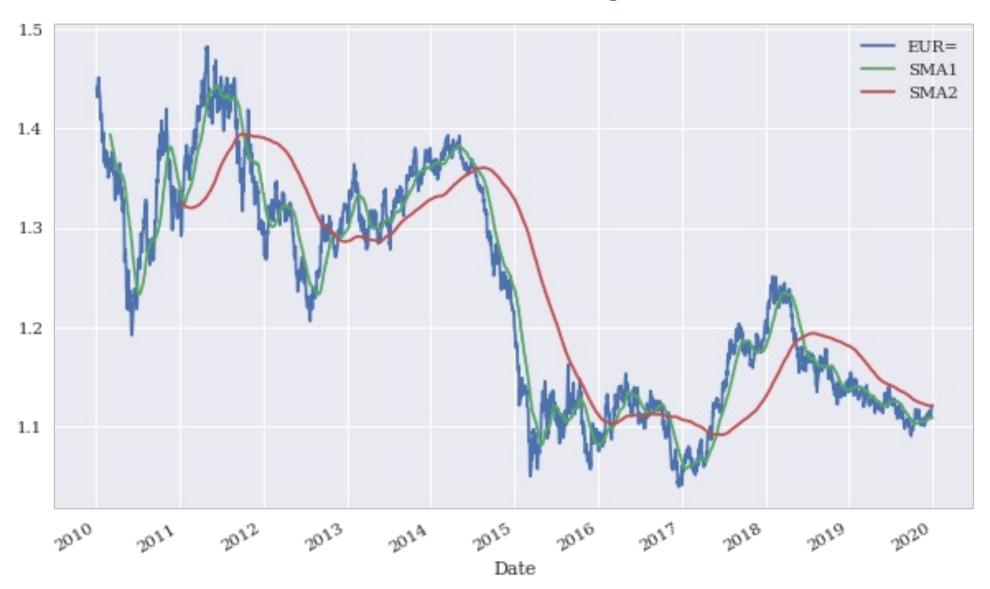
```
filename = v symbol + ' ' + v time start + ' ' + v time end + ' ' + 'MA ' +
str(v n1) + ' ' + str(v n2) + '.csv'
print('filename:', filename)
stats.to csv(filename)
print('backtesing stats')
print(stats)
bt.plot()
print('filename:\t', filename)
print("stats. strategy:\t", stats. strategy)
print("# Trades:\t", stats['# Trades'])
print("stats['Equity Final [$]']:\t", round(stats['Equity Final [$]'], 4))
print("stats['Avg. Trade [%]']:\t", round(stats['Avg. Trade [%]'], 4))
print("Sharpe Ratio:\t", round(stats['Sharpe Ratio'], 4))
#download file
time.sleep(1) # time sleep 1 second
files.download(filename)
print('file downloaded:', filename)
```

```
print('*****bt.optimize*****')
stats, heatmap = bt.optimize(
  n1 = range(5, 65, 5),
  n2 = range(10, 205, 5),
  constraint = lambda param: param.n1 <param.n2,
  maximize = 'Avg. Trade [%]',
  max tries = 600,
  random state = 0,
  return heatmap = True)
#'Equity Final [$]' 'Avg. Trade [8]'
optimize strategy = stats. strategy
```

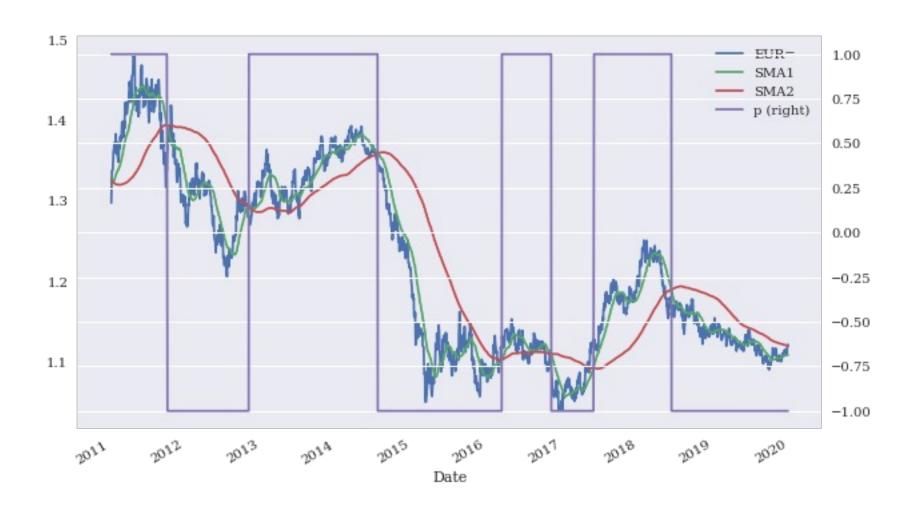
```
optimize filename = v symbol + ' ' + v time start + ' ' + v time end + ' ' +
'bt optimize strategy' + str(optimize strategy) + '.csv'
print('optimize filename:', optimize filename)
print('backtesing optimize strategy stats')
print(stats)
stats.to csv(optimize filename)
plot heatmaps (heatmap, agg='mean', plot width = 1800)
print('backtesting optimize strategy heatmap')
print(heatmap)
print('backtesting optimize strategy heatmap Top 10')
print(heatmap.sort values().iloc[-10:])
hm = heatmap.groupby(['n1', 'n2']).mean().unstack()
print('backtesting optimize strategy heatmap mean')
print(hm)
hm_filename = v_symbol + '_' + v time start + ' ' + v time end + ' ' +
'hm heatmap.csv'
hm.to csv(hm filename)
```

```
print("filename:\t", optimize filename)
print("stats. strategy:\t", stats. strategy)
print("# Trades:\t", stats['# Trades'])
print("stats['Equity Final [$]']:\t", round(stats['Equity Final [$]'], 4))
print("stats['Avg. Trade [%]']:\t", round(stats['Avg. Trade [%]'], 4))
print ("Sharpe Ratio: \t", round (stats ['Sharpe Ratio'], 4))
#download file
time.sleep(1) # time sleep 1 second
files.download(hm filename)
print('file downloaded:', hm filename)
files.download(optimize filename)
print('file downloaded:', optimize filename)
```

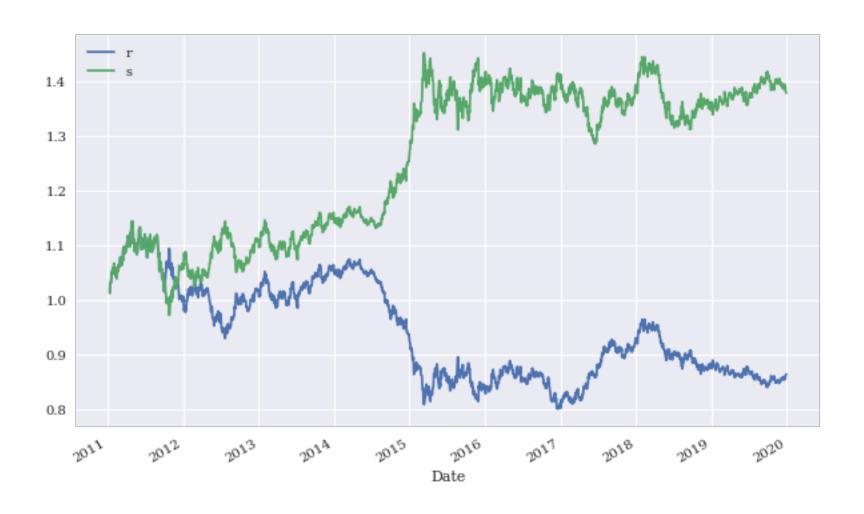

Time series data for EUR/USD and SMAs



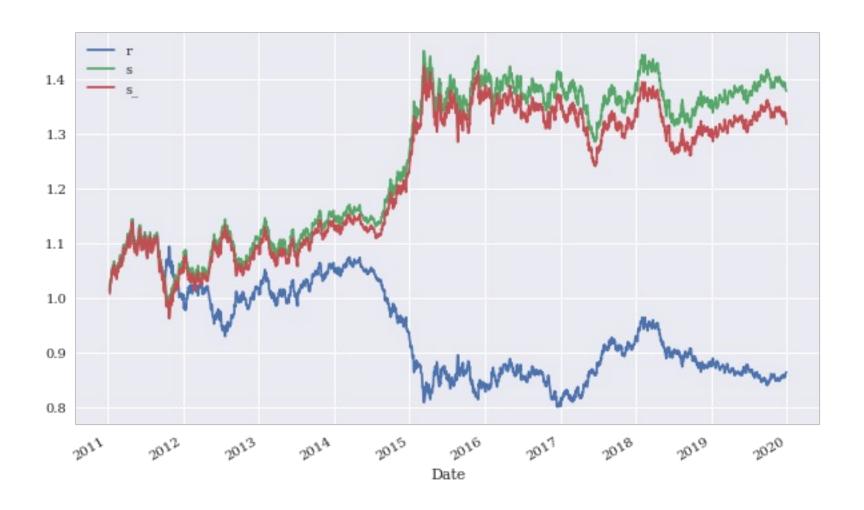
Time series data for EUR/USD, SMAs, and resulting positions



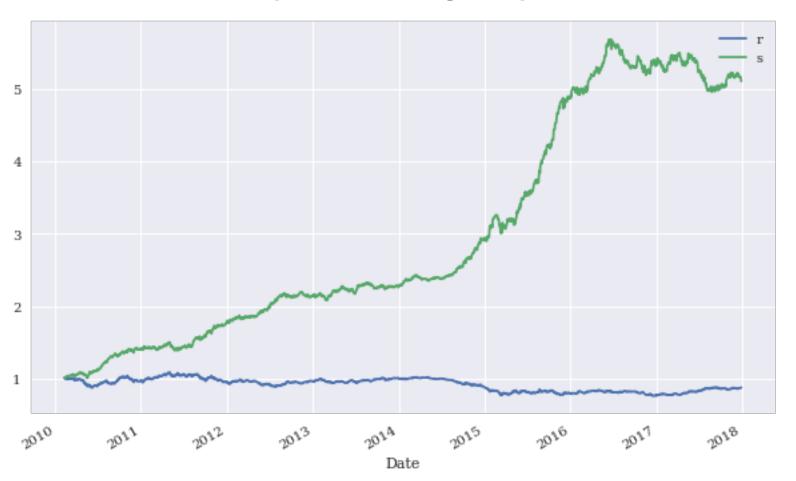
Gross performance of passive benchmark investment and SMA strategy



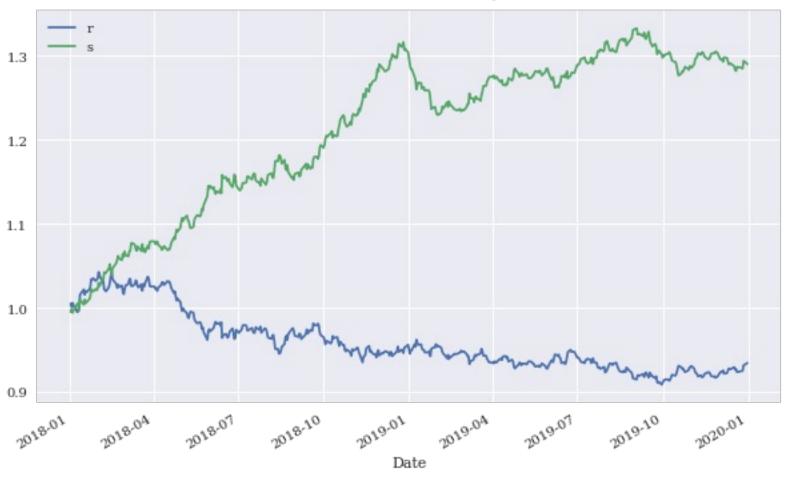
Gross performance of the SMA strategy before and after transaction costs



Gross performance of the passive benchmark investment and the daily DNN strategy (in-sample)



Gross performance of the passive benchmark investment and the daily DNN strategy (out-of-sample)

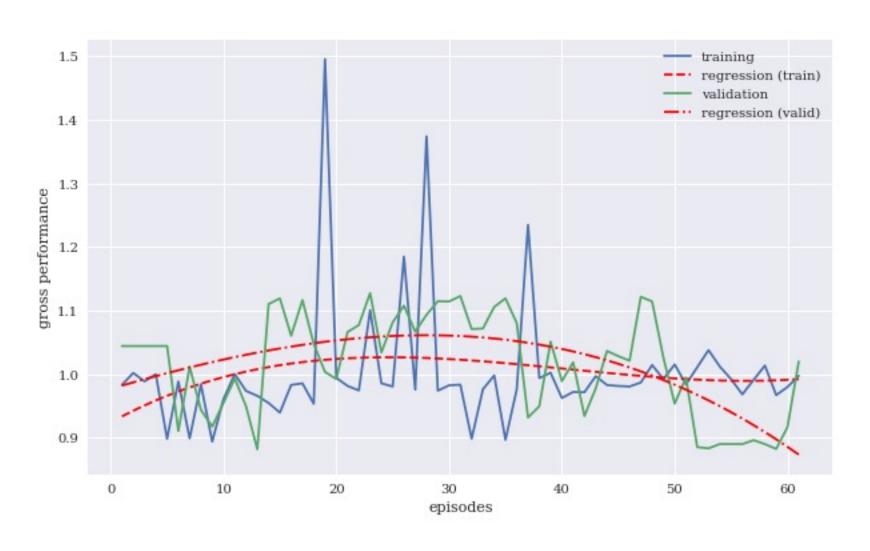


Gross performance of the daily DNN strategy before and after transaction costs (out-of-sample)

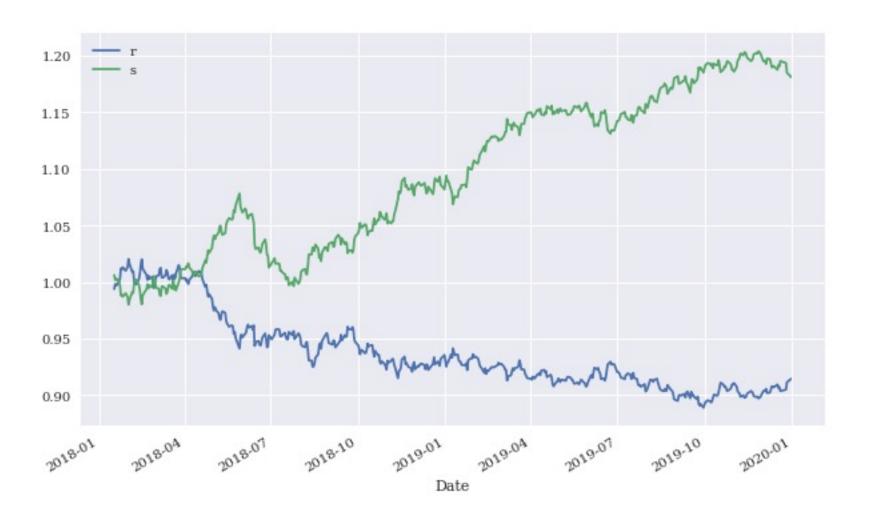
Gross performance of the passive benchmark investment and the DNN intraday strategy (out-of-sample)

Gross performance of the DNN intraday strategy before and after higher/lower transaction costs (out-of-sample)

Gross performance on training and validation data set

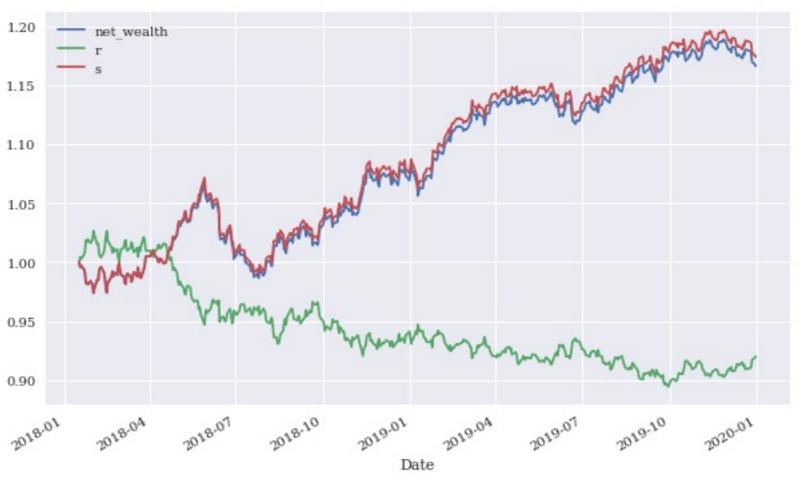


Gross performance of the passive benchmark investment and the trading bot (out-of-sample)

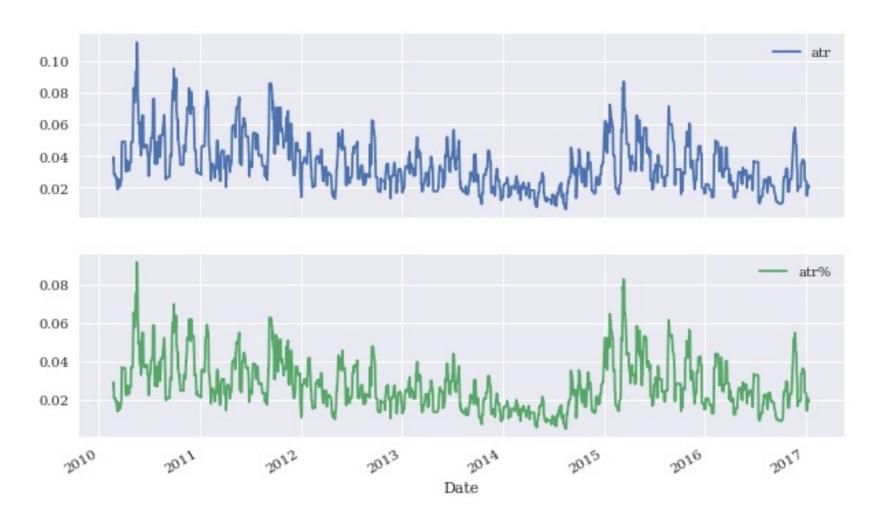


Gross performance of the trading bot before and after transaction costs (in-sample)

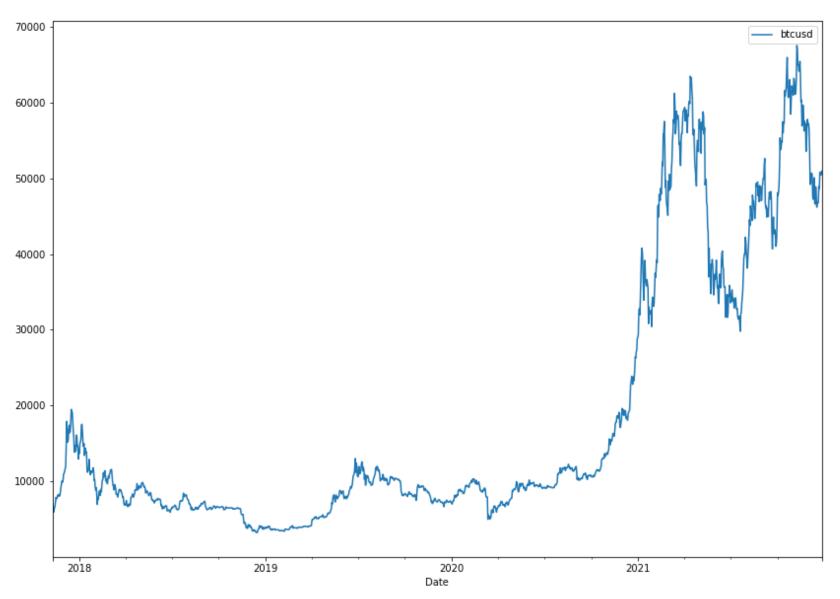
Gross performance of the passive benchmark investment and the trading bot (vectorized and event-based backtesting)



Average true range (ATR) in absolute (price) and relative (%) terms

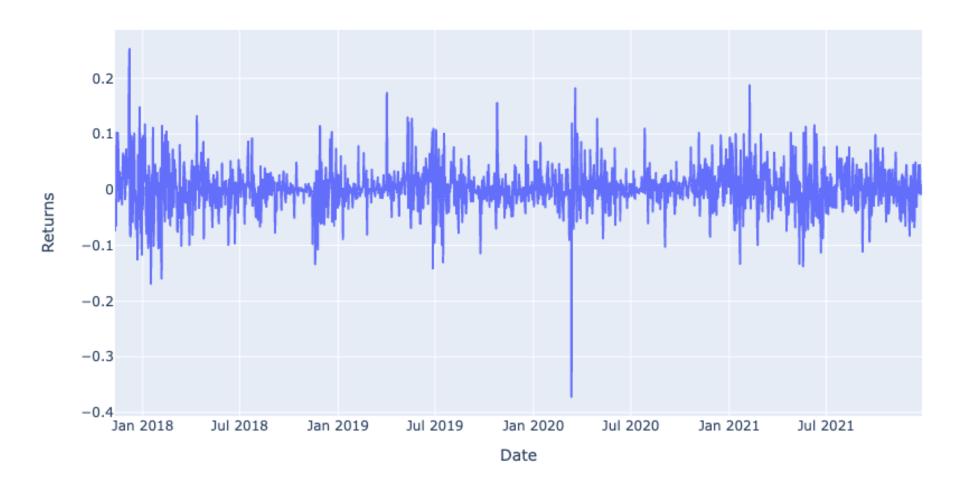


BTC-USD



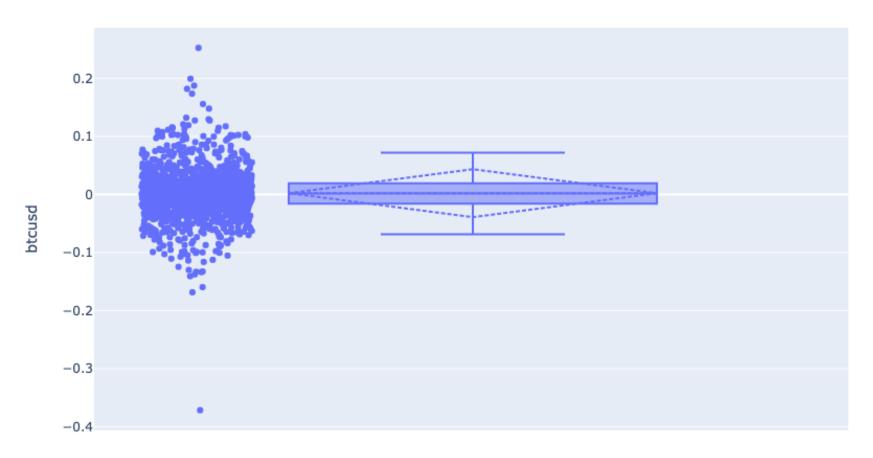
BTC-USD Returns

btcusd returns

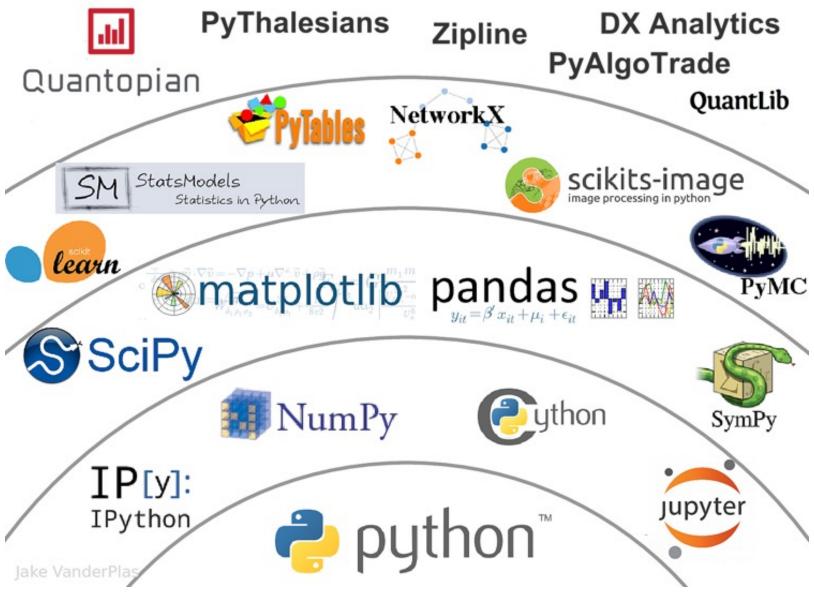


BTC-USD Returns Box

btcusd returns box



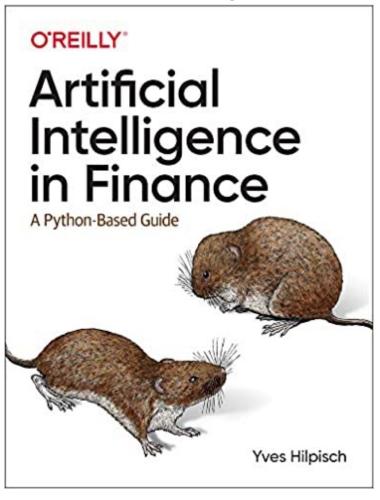
The Quant Finance PyData Stack



Yves Hilpisch (2020),

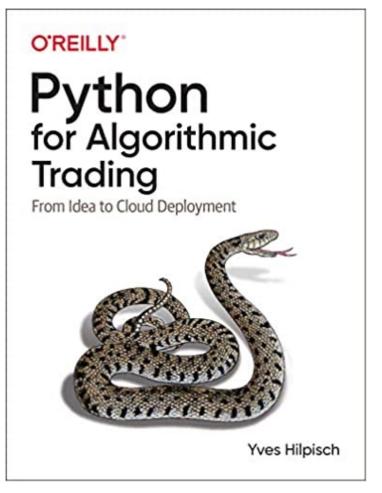
Artificial Intelligence in Finance: A Python-Based Guide,

O'Reilly



Yves Hilpisch (2020), Python for Algorithmic Trading:

From Idea to Cloud Deployment,
O'Reilly

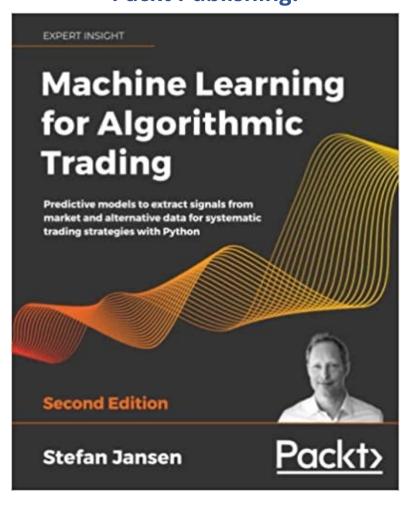


Stefan Jansen (2020),

Machine Learning for Algorithmic Trading:

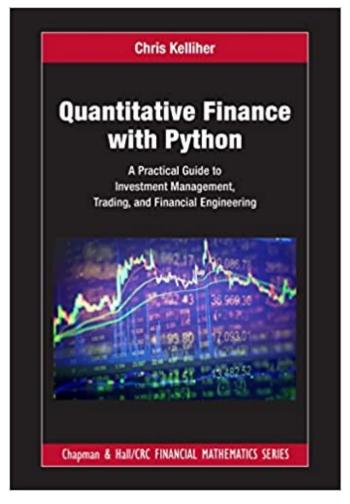
Predictive models to extract signals from market and alternative data for systematic trading strategies with Python, 2nd Edition,

Packt Publishing.

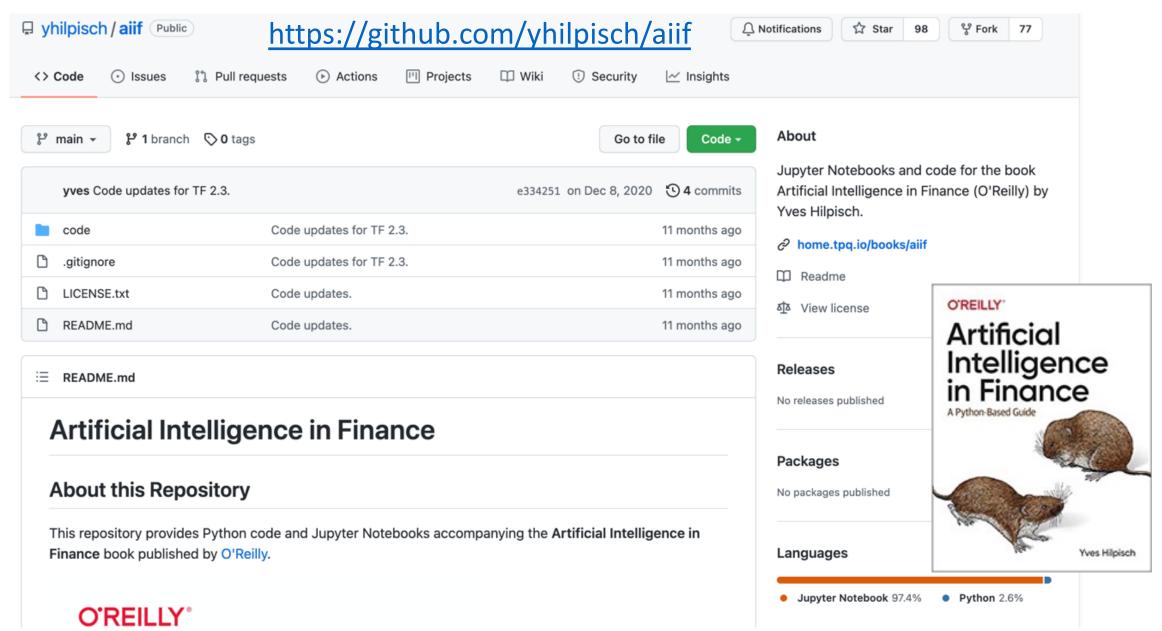


Chris Kelliher (2022), Quantitative Finance With Python:

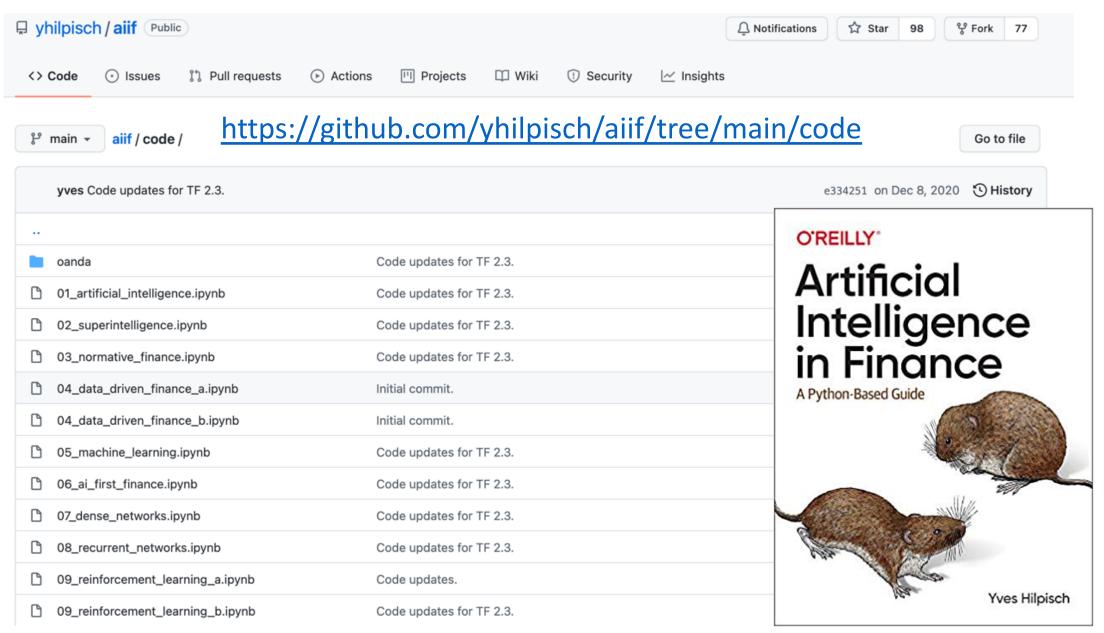
A Practical Guide to Investment Management, Trading, and Financial Engineering, Chapman and Hall/CRC.



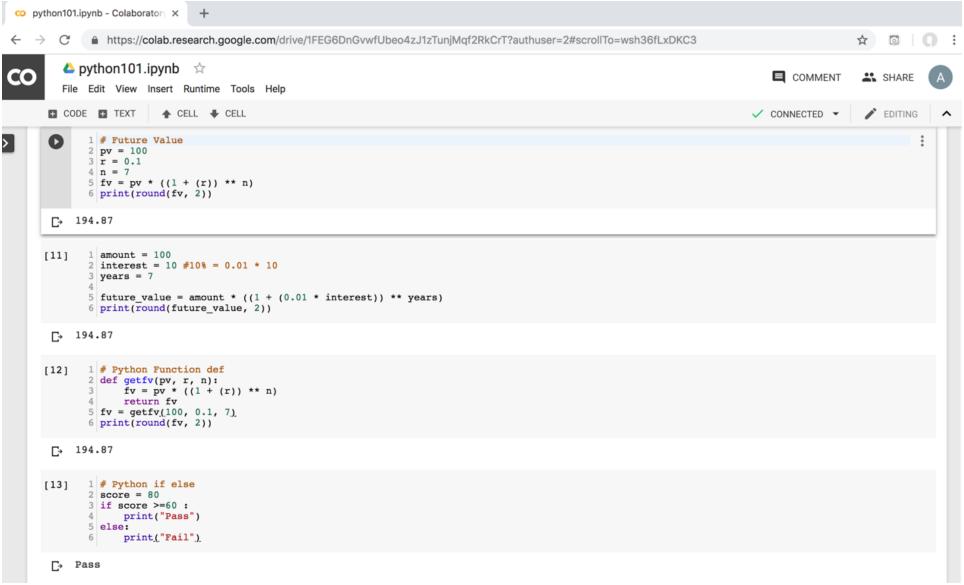
Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly



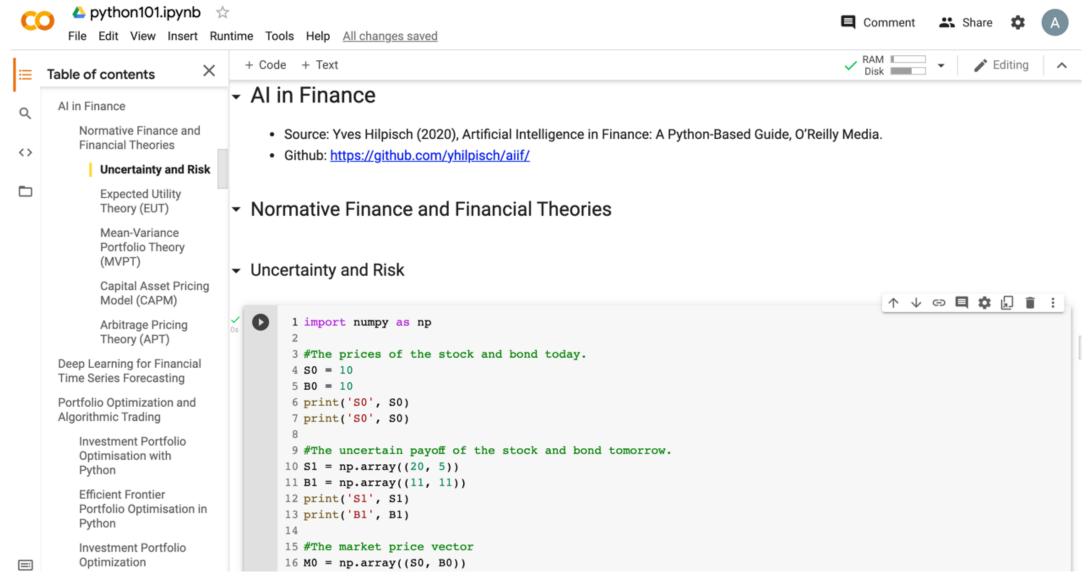
Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly

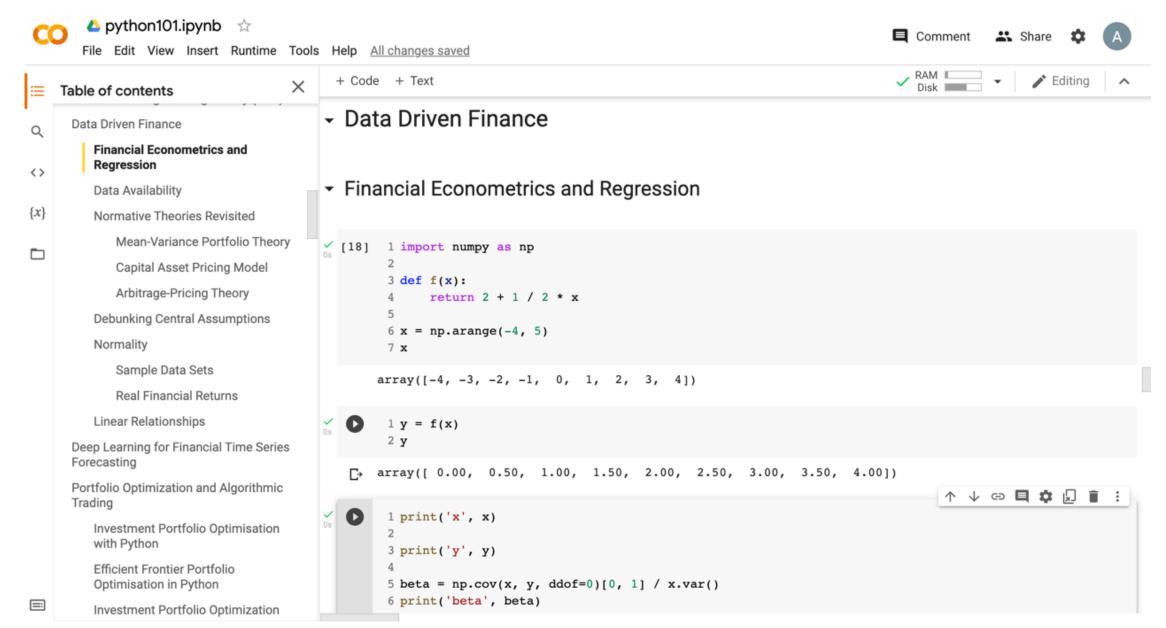


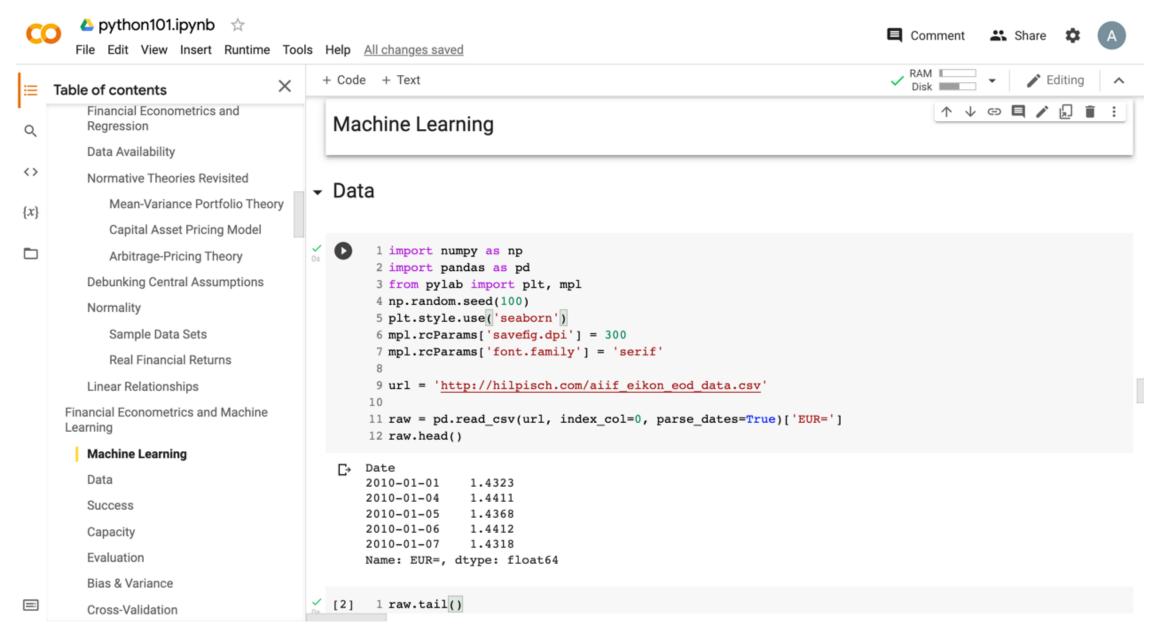
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

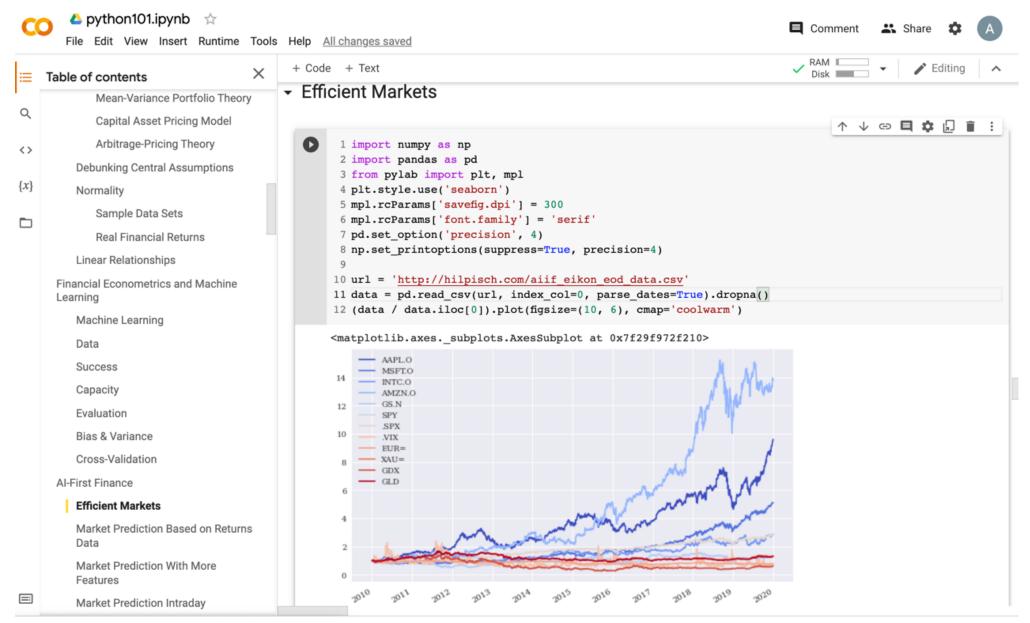


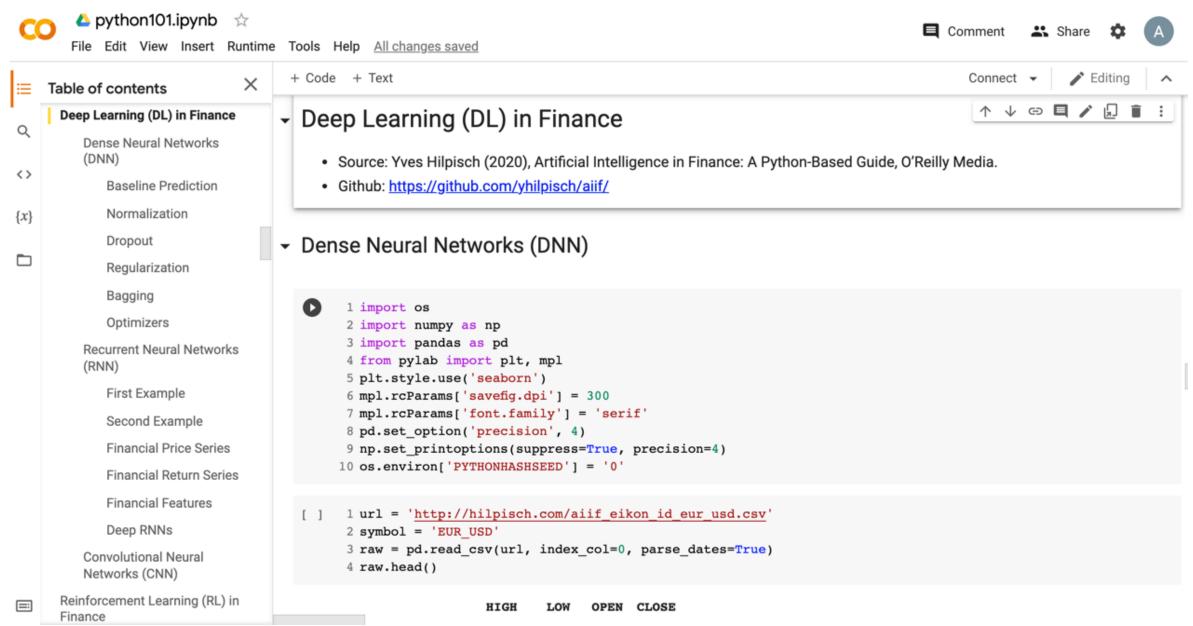
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

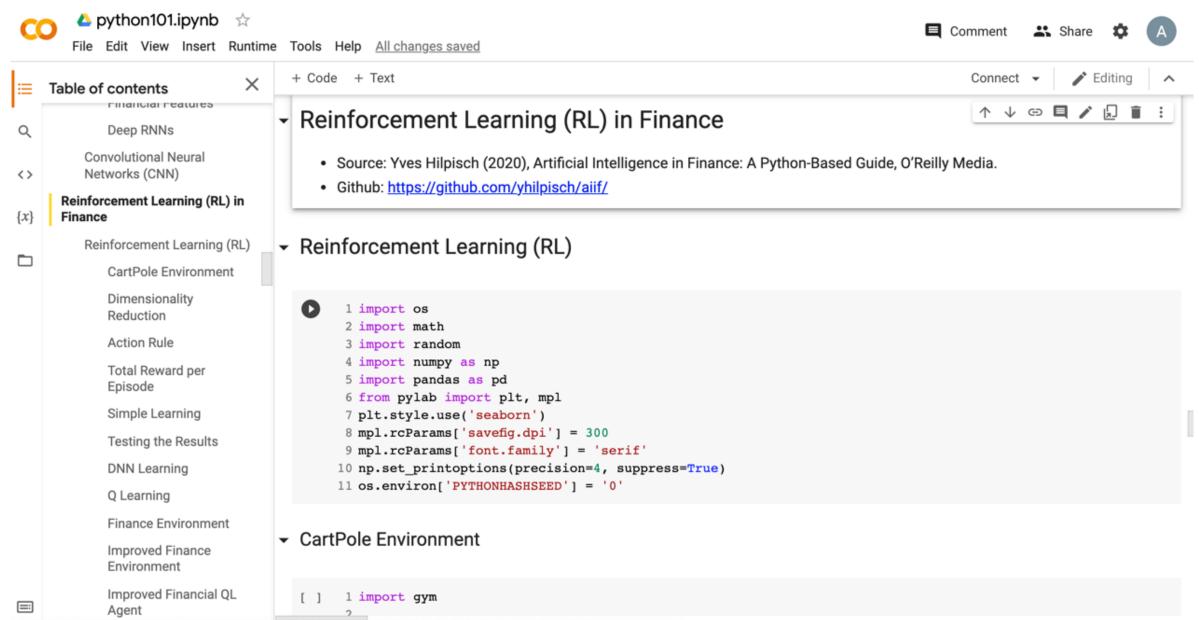


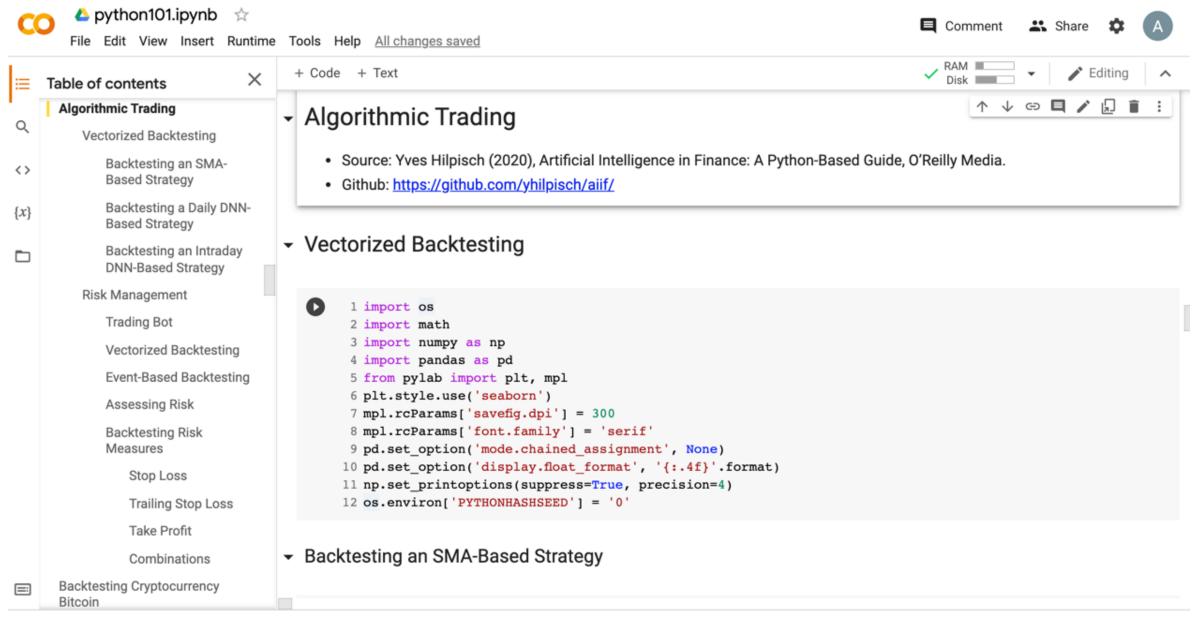


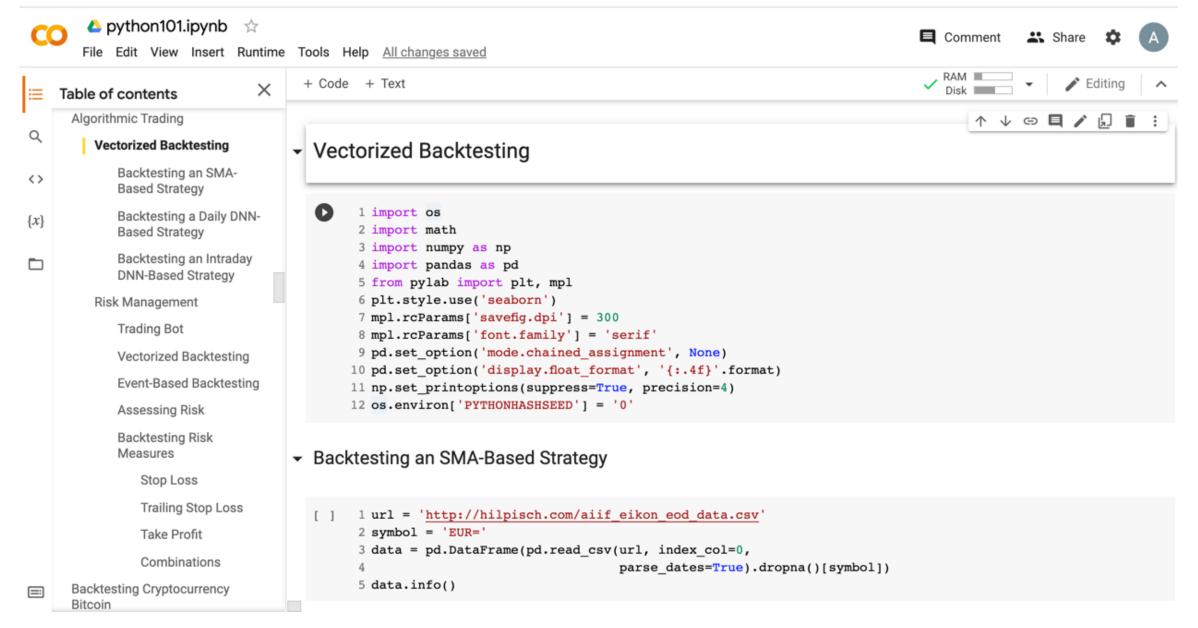


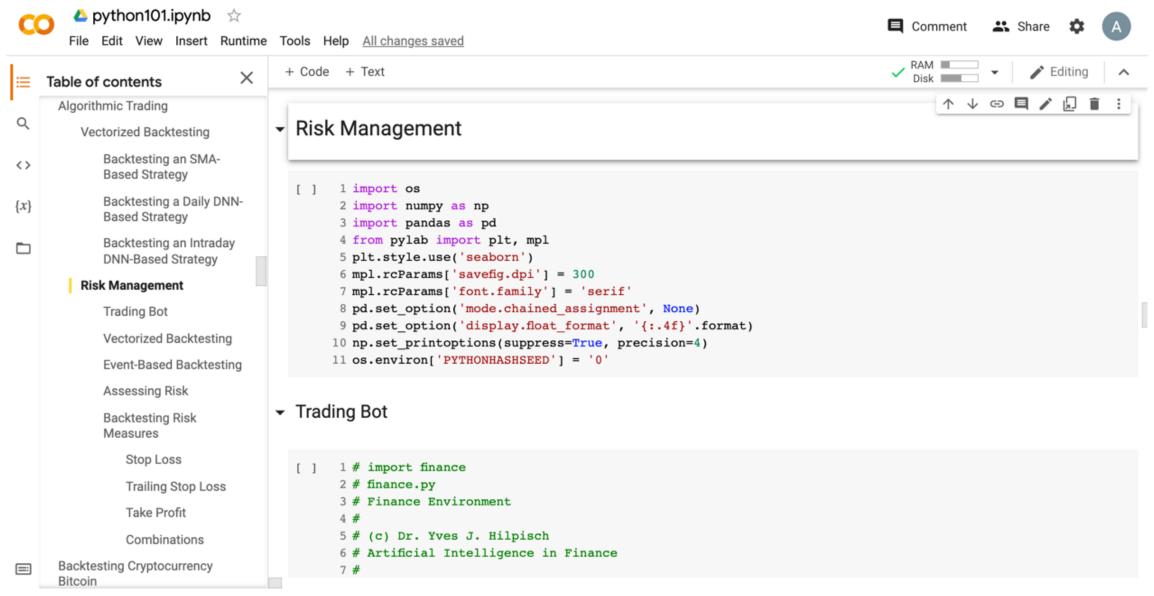


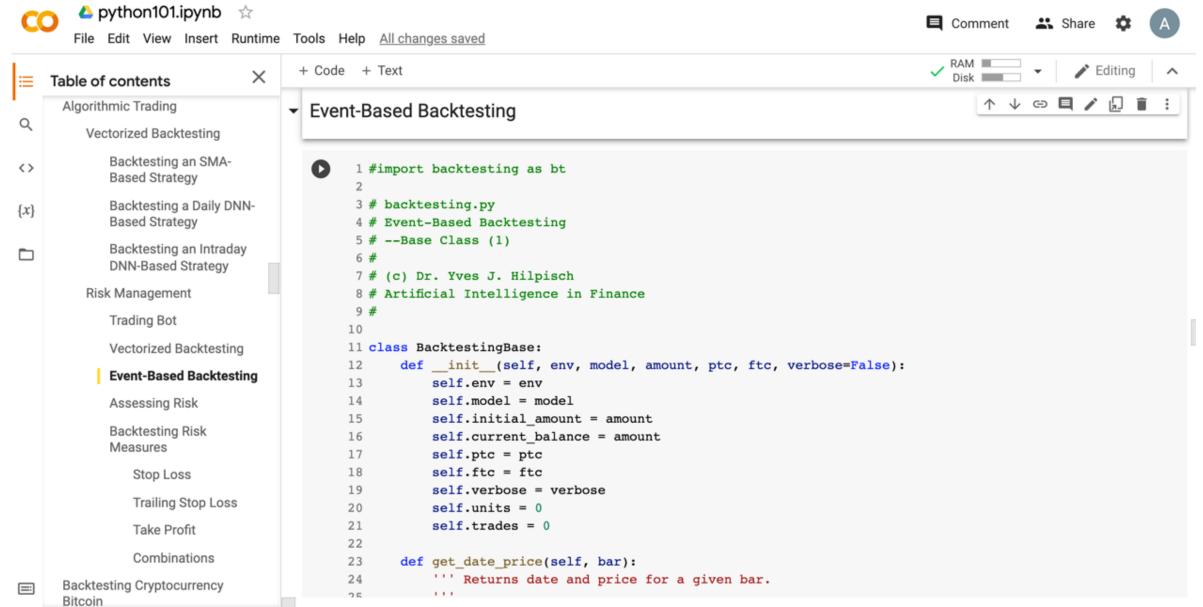


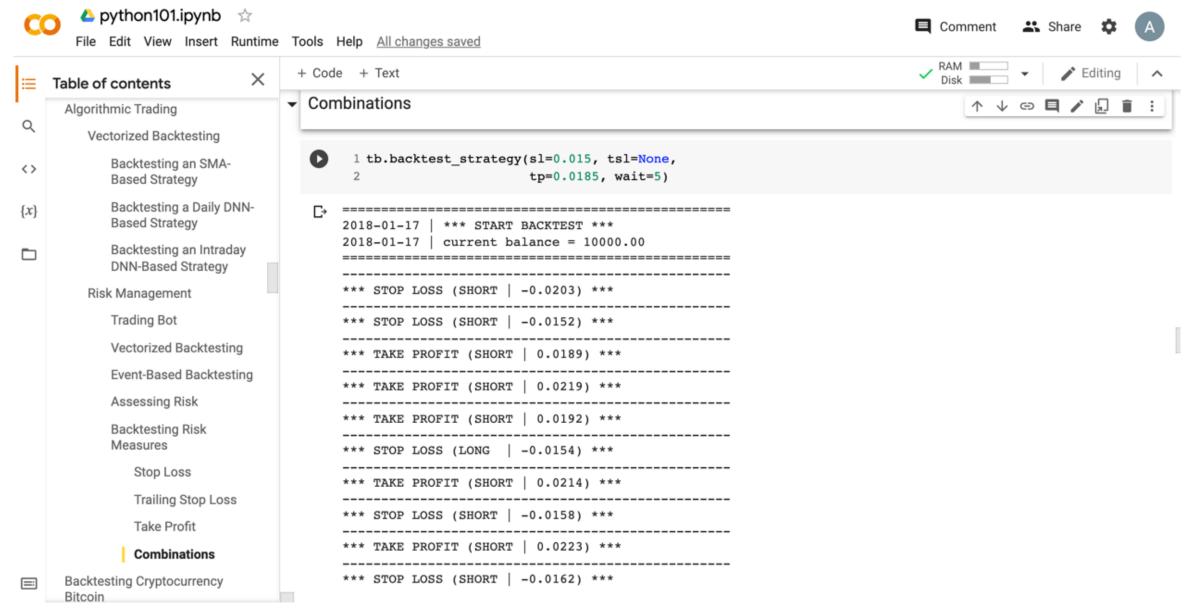


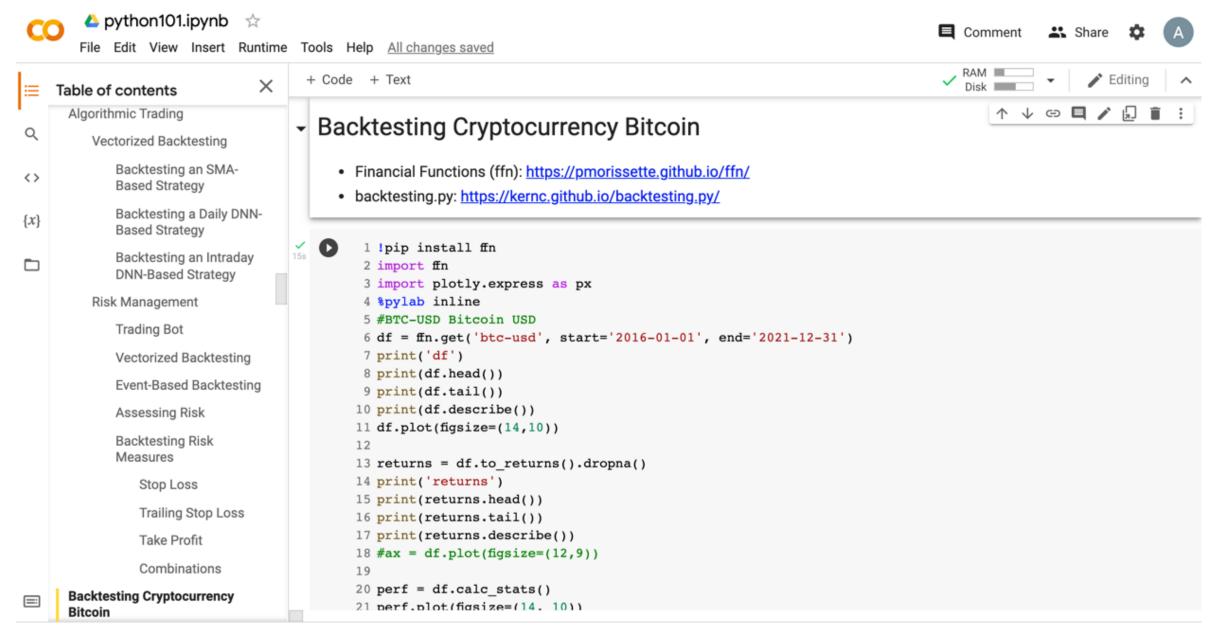


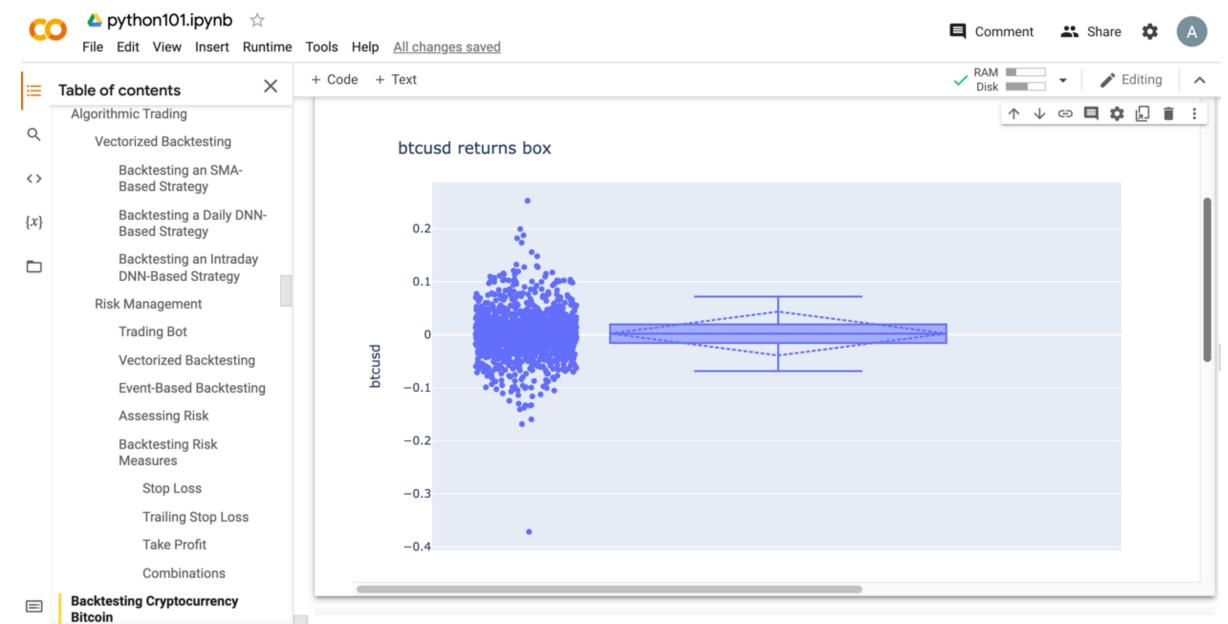


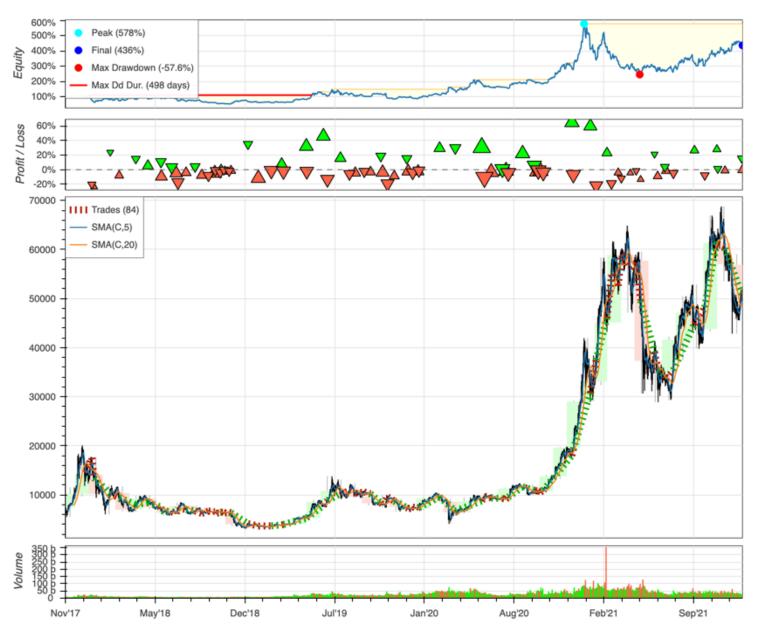












https://tinyurl.com/aintpupython101

Summary

- Algorithmic Trading
- Risk Management
- Trading Bot
- Event-Based Backtesting

References

- Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media, https://github.com/yhilpisch/aiif.
- Yves Hilpisch (2020), Python for Algorithmic Trading: From Idea to Cloud Deployment, O'Reilly Media.
- Stefan Jansen (2020), Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python, 2nd Edition, Packt Publishing.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Hariom Tatsat, Sahil Puri, Brad Lookabaugh (2020), Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python, O'Reilly Media
- Chris Kelliher (2022), Quantitative Finance With Python: A Practical Guide to Investment Management, Trading, and Financial Engineering, Chapman and Hall/CRC.
- Abdullah Karasan (2021), Machine Learning for Financial Risk Management with Python: Algorithms for Modeling Risk,
 O'Reilly Media.
- Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft Computing (2020): 106384.
- Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.
- Min-Yuh Day (2022), Python 101, https://tinyurl.com/aintpupython101