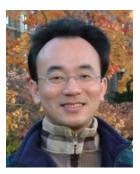
Artificial Intelligence for Text Analytics

Text Classification and Sentiment Analysis

1121AITA05 MBA, IM, NTPU (M5265) (Fall 2023) Tue 2, 3, 4 (9:10-12:00) (B3F17)



Min-Yuh Day, Ph.D, Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

Syllabus

Week Date Subject/Topics

- 1 2023/09/13 Introduction to Artificial Intelligence for Text Analytics
- 2 2023/09/20 Foundations of Text Analytics:
 - Natural Language Processing (NLP)
- 3 2023/09/27 Python for Natural Language Processing
- 4 2023/10/04 Natural Language Processing with Transformers
- 5 2023/10/11 Case Study on Artificial Intelligence for Text Analytics I
- 6 2023/10/18 Text Classification and Sentiment Analysis

Syllabus

Week Date Subject/Topics

- 7 2023/10/25 Multilingual Named Entity Recognition (NER)
- 8 2023/11/01 Midterm Project Report
- 9 2023/11/08 Text Similarity and Clustering
- 10 2023/11/15 Text Summarization and Topic Models
- 11 2023/11/22 Text Generation with Large Language Models (LLMs)
- 12 2023/11/29 Case Study on Artificial Intelligence for Text Analytics II

Syllabus

Week Date Subject/Topics

- 13 2023/12/06 Question Answering and Dialogue Systems
- 14 2023/12/13 Deep Learning, Generative AI, Transfer Learning, Zero-Shot, and Few-Shot Learning for Text Analytics
- 15 2023/12/20 Final Project Report I
- 16 2023/12/27 Final Project Report II

Text Classification and Sentiment Analysis

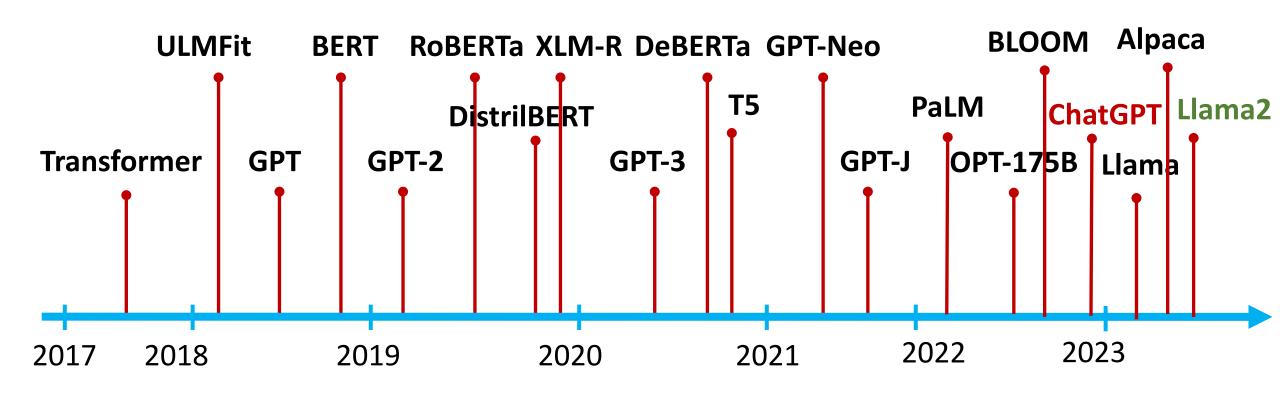
Outline

- Text Classification and Sentiment Analysis
 - Dataset
 - Tokenizer
 - Training a Text Classifier
 - Fine-Tuning Transformers

Text Classification (TC) Tasks

- Sentiment Analysis
- News Categorization
- Product Categorization
- Topic Analysis
 - Topic Classification: "customer support" or "ease of use"
- Natural language inference (NLI)
 - recognizing textual entailment (RTE)
 - entailment, contradiction, and neutral

The Transformers Timeline



Text Classification Datasets

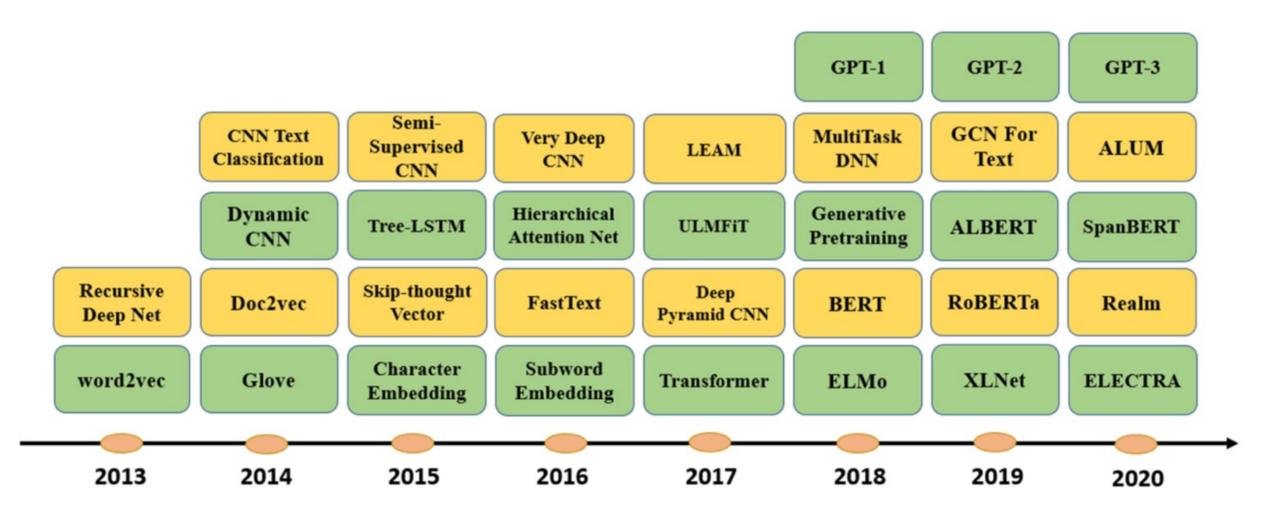
Task	Dataset	Size	Dim.	# Classes	Minor	Median	Mean	Major	Density	Skewness
	DBLP	38,128	28,131	10	1,414	3,590	3,812	9,746	141	Imbalanced
	Books	33,594	46,382	8	1,226	4,534	4,199	4,934	269	Imbalanced
	ACM	24,897	48,867	11	63	2,041	2,263	6,562	65	Imbalanced
	20NG	18,846	97,401	20	628	984	942	999	96	Balanced
Topic	OHSUMED	18,302	31,951	23	56	592	795	2,876	154	Imbalanced
Tol	Reuters90	13,327	27,302	90	2	29	148	3,964	171	Extremely imbalanced
-	WOS-11967	11,967	25,567	33	262	371	362	449	195	Balanced
	WebKB	8,199	23,047	7	137	926	1,171	3,705	209	Imbalanced
	TREC	5,952	3,032	6	95	1,148	992	1,344	10	Imbalanced
	WOS-5736	5,736	18,031	11	380	426	521	750	201	Balanced
	SST1	11,855	9,015	5	1,510	2,242	2,371	3,140	19	Balanced
	pang_movie	10,662	17,290	2	5,331	5,331	5,331	5,331	21	Balanced
+	MR	10,662	9,070	2	5,331	5,331	5,331	5,331	21	Balanced
len	vader_movie	10,568	16,827	2	5,242	5,284	5,284	5,326	19	Balanced
tim	MPQA	10,606	2,643	2	3,312	5,303	5,303	7,294	3	Imbalanced
Sentiment	Subj	10,000	10,151	2	5,000	5,000	5,000	5,000	24	Balanced
S	SST2	9,613	7,866	2	4,650	4,806	4,806	4,963	19	Balanced
	yelp_reviews	5,000	23,631	2	2,500	2,500	2,500	2,500	132	Balanced
	vader_nyt	4,946	12,004	2	2,204	2,473	2,473	2,742	18	Balanced

Text Classification Evaluation Metric MacroF1

Task	Dataset	RoBERTa	BART	XLNet	BERT	DistilBERT	ALBERT	MF+SVM	GPT2	TFIDF
	DBLP	81.4(0.5)	81.1(0.5)	81.4(0.6)	81.7(0.5) •	81.0(0.6)	77.3(1.0)	80.5(0.7)	78.9(0.8)	79.3(0.7)
	Books	87.2(0.6)	86.9(0.5)	87.3(0.4)	89.5(0.2)	87.5(0.5)	84.6(0.8)	88.3(0.3)	85.4(0.7)	84.1(0.4)
	ACM	70.3(1.4)	70.8(0.7)	69.9(0.9)	71.8(1.0) •	70.1(1.0)	66.2(1.9)	70.3(1.0)	67.6(1.2)	68.0(0.7)
	20NG	86.8(0.7)	87.4(0.9)	87.4(0.8)	85.4(0.5)	86.7(0.6)	76.9(1.2)	90.7(0.6)	82.3(0.9)	89.1(0.7)
Topic	OHSUMED	77.8(1.2) •	77.6(0.7)	77.6(1.0)	76.4(1.2)	76.2(0.7)	66.1(4.8)	71.8(1.0)	74.5(0.8)	71.2(1.1)
To	Reuters90	41.9(2.2)	42.2(2.1)	41.3(2.6)	40.2(2.8)	40.7(2.5)	41.0(2.6)	48.4(2.6)	37.2(2.3)	31.9(3.2)
	WOS-11967	86.8(0.4)	86.9(0.8)	87.0(0.7) •	85.5(0.7)	86.0(0.7)	76.8(1.1)	82.0(0.9)	81.5(0.9)	84.5(0.6)
	WebKB	83.0(2.0)	83.0(1.7)	81.9(2.5)	83.2(2.1) •	82.3(2.1)	80.3(1.4)	71.6(2.4)	79.0(1.9)	72.9(2.1)
	TREC	95.5(0.5) •	95.5(0.8)	94.3(1.1)	87.6(1.4)	95.5(1.1)	93.5(1.4)	67.4(1.5)	92.0(1.0)	68.3(2.0)
	WOS-5736	90.5(0.9)	89.6(1.7)	90.2(0.9)	89.7(1.3)	89.2(0.9)	86.7(1.3)	87.2(0.8)	83.8(0.5)	90.4(0.7)
	SST1	53.8(1.3) •	52.8(1.0)	51.4(1.7)	51.6(1.2)	48.9(1.1)	49.2(1.2)	28.2(0.7)	45.4(1.1)	29.6(0.8)
	pang_movie	89.0(0.4)	88.1(0.5)	88.2(0.6)	87.4(0.4)	85.2(0.6)	82.9(4.2)	33.4(0.1)	81.7(0.8)	77.0(1.0)
	MR	89.0(0.7) •	88.2(0.6)	86.4(3.3)	87.7(0.5)	85.2(1.1)	84.9(1.2)	33.5(0.2)	81.6(0.8)	75.8(0.9)
+	vader_movie	91.3(0.5) •	90.4(0.6)	90.5(0.4)	88.2(0.7)	86.6(0.7)	85.4(1.6)	33.6(0.1)	85.0(0.5)	78.0(0.9)
Sentiment	MPQA	90.2(0.8)	90.1(0.7)	88.6(0.5)	89.1(0.7)	88.5(0.6)	87.9(0.6)	76.9(0.6)	86.5(0.6)	78.3(0.7)
enti	Subj	96.9(0.4)	96.8(0.4)	96.1(0.5)	97.0(0.3)	96.0(0.4)	95.5(0.7)	90.0(0.7)	94.6(0.4)	89.1(0.6)
S	SST2	93.2(0.6)	92.8(0.5)	92.1(0.4)	91.5(0.6)	89.6(0.5)	88.6(2.1)	79.2(0.8)	86.9(0.6)	79.0(0.7)
	yelp_reviews	97.9(0.4)	97.5(0.4)	97.3(0.4)	95.6(0.6)	95.6(0.6)	93.9(0.9)	33.5(0.2)	93.5(0.7)	94.7(0.8)
	vader_nyt	85.3(0.6)	85.5(0.8)	82.7(1.1)	80.7(0.9)	79.9(1.2)	76.9(1.8)	37.8(0.9)	74.9(1.8)	64.5(1.8)

(a) ▲: the classification approach is superior to *all others*; (b) •: the classification approach presents the highest result in terms of absolute values, but there are statistical ties with *other approaches*; (c) •: the classification approach is statistically equivalent to the best approach (marked with •) in the dataset (line) considered.

Deep learning models for text embedding and classification



Text Classification Models on Sentiment Analysis

Method	IMDB	SST-2	Amazon-2	Amazon-5	Yelp-2	Yelp-5
Naive Bayes [43]	-	81.80	-	-	-	_
LDA [214]	67.40	-	-	-	-	_
BoW+SVM [31]	87.80	-	-	-	-	_
$tf.\Delta idf[215]$	88.10	-	-	-	-	_
Char-level CNN [50]	-	-	94.49	59.46	95.12	62.05
Deep Pyramid CNN [49]	-	84.46	96.68	65.82	97.36	69.40
ULMFiT [216]	95.40	-	-	-	97.84	70.02
BLSTM-2DCNN [40]	-	89.50	-	-	-	_
Neural Semantic Encoder [95]	-	89.70	-	-	-	-
BCN+Char+CoVe [217]	91.80	90.30	-	-	-	_
GLUE ELMo baseline [22]	-	90.40	-	-	-	-
BERT ELMo baseline [7]	-	90.40	-	-	-	-
CCCapsNet [76]	-	-	94.96	60.95	96.48	65.85
Virtual adversarial training [173]	94.10	-	-	-	-	-
Block-sparse LSTM [218]	94.99	93.20	-	-	96.73	
BERT-base [7, 154]	95.63	93.50	96.04	61.60	98.08	70.58
BERT-large [7, 154]	95.79	94.9	96.07	62.20	98.19	71.38
ALBERT [147]	-	95.20	-	-	-	-
Multi-Task DNN [23]	83.20	95.60	-	-	-	-
Snorkel MeTaL [219]	-	96.20	-	-	-	-
BERT Finetune + UDA [220]	95.80		96.50	62.88	97.95	62.92
RoBERTa (+additional data) [146]	-	96.40	-	-	-	-
XLNet-Large (ensemble) [156]	96.21	96.80	97.60	67.74	98.45	72.20

Classification Models on News Categorization, and Topic Classification

	Nev	vs Categori	zation	Topic Classification			
Method	AG News	20NEWS	Sogou News	DBpedia	Ohsumed		
Hierarchical	-	-	-	-	52		
Log-bilinear Model							
[221]							
Text GCN [107]	67.61	86.34	-	-	68.36		
Simplfied GCN [108]	-	88.50	-	-	68.50		
Char-level CNN [50]	90.49	-	95.12	98.45	-		
CCCapsNet [76]	92.39	-	97.25	98.72	-		
LEAM [84]	92.45	81.91	-	99.02	58.58		
fastText [30]	92.50	-	96.80	98.60	55.70		
CapsuleNet B [71]	92.60	-	-	-	-		
Deep Pyramid CNN	93.13	-	98.16	99.12	-		
[49]							
ULMFiT [216]	94.99	-	-	99.20	-		
L MIXED [174]	95.05	-	-	99.30	-		
BERT-large [220]	-	-	-	99.32	-		
XLNet [156]	95.51	-	-	99.38	-		

Classification Models on Natural Language Inference (NLI)

	SNLI	Mu	ıltiNLI
Method	Accuracy	Matched	Mismatched
Unigrams Features [208]	71.6	_	_
Lexicalized [208]	78.2	_	_
LSTM encoders (100D) [208]	77.6	_	_
Tree-based CNN [61]	82.1	_	_
biLSTM Encoder [209]	81.5	67.5	67.1
Neural Semantic Encoders (300D) [95]	84.6	_	_
RNN-based Sentence Encoder [224]	85.5	73.2	73.6
DiSAN (300D) [81]	85.6	_	_
Decomposable Attention Model [92]	86.3	_	_
Reinforced Self-Attention (300D) [177]	86.3	_	_
Generalized Pooling (600D) [93]	86.6	73.8	74.0
Bilateral multi-perspective matching [41]	87.5	_	_
Multiway Attention Network [87]	88.3	78.5	77.7
ESIM + ELMo [4]	88.7	72.9	73.4
DMAN with Reinforcement Learning [225]	88.8	88.8	78.9
BiLSTM + ELMo + Attn [22]	_	74.1	74.5
Fine-Tuned LM-Pretrained Transformer [6]	89.9	82.1	81.4
Multi-Task DNN [23]	91.6	86.7	86.0
SemBERT [155]	91.9	84.4	84.0
RoBERTa [146]	92.6	90.8	90.2
XLNet [156]	_	90.2	89.8

General Language Understanding Evaluation (GLUE) benchmark GLUE Test results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

MNLI: Multi-Genre Natural Language Inference

QQP: Quora Question Pairs

QNLI: Question Natural Language Inference

SST-2: The Stanford Sentiment Treebank

CoLA: The Corpus of Linguistic Acceptability

STS-B:The Semantic Textual Similarity Benchmark

MRPC: Microsoft Research Paraphrase Corpus

RTE: Recognizing Textual Entailment

ChatGPT and fine-tuned BERT-style models on GLUE benchmark

Method	CoLA	SST-2	MF	RPC	ST	S-B		QQP		MNLI		RTE	GLUE
Wiemod	Mcc.	Acc.	Acc.	F1	Pear.	Spea.	Acc.	<i>F1</i>	m.	mm.	Acc.	Acc.	avg.
BERT-base	56.4	88.0	90.0	89.8	83.0	81.9	80.0	80.0	82.7	82.7	84.0	70.0	79.2
BERT-large	62.4	96.0	92.0	91.7	88.3	86.8	88.0	88.5	82.7	88.0	90.0	82.0	<u>85.4</u>
RoBERTa-base	61.8	96.0	90.0	90.6	90.2	89.1	84.0	84.0	84.0	88.0	92.0	78.0	84.7
RoBERTa-large	65.3	96.0	92.0	92.0	92.9	91.1	90.0	89.4	88.0	90.7	94.0	84.0	<u>87.8</u>
ChatGPT	56.0	92.0	66.0*	72.1*	80.9	72.4*	78.0	79.3	89.3*	81.3	84.0	88.0*	<u>78.7</u>

MNLI: Multi-Genre Natural Language Inference

QQP: Quora Question Pairs

QNLI: Question Natural Language Inference

SST-2: The Stanford Sentiment Treebank

CoLA: The Corpus of Linguistic Acceptability

STS-B:The Semantic Textual Similarity Benchmark

MRPC: Microsoft Research Paraphrase Corpus

RTE: Recognizing Textual Entailment

ChatGPT with Advanced Prompting Strategies

Method	CoLA	SST-2	MR	PC	ST	S-B	Q	QP	Mì	NLI	QNLI	RTE	GLUE
	Мсс.	Acc.	Acc.	F1	Pear.	Spea.	Acc.	<i>F1</i>	m.	mm.	Acc.	Acc.	avg.
BERT-base	56.4	88.0	90.0	89.8	83.0	81.9	80.0	80.0	82.7	82.7	84.0	70.0	79.2
RoBERTa-large	65.3	96.0	92.0	92.0	92.9	91.1	90.0	89.4	88.0	90.7	94.0	84.0	<u>87.8</u>
ChatGPT	56.0	92.0	66.0	72.1	80.9	72.4	78.0	79.3	89.3	81.3	84.0	88.0	78.7
Standard few-shot pro	mpting (I	Brown et	āl., 202	20)									
-w/ 1-shot	52.0	96.0	66.0	65.3	87.4	87.0	84.0	83.3	80.0	78.7	84.0	80.0	<u>78.5</u>
-w/ 5-shot	60.2	98.0	76.0	77.8	89.0	86.9	90.0	89.8	82.7	84.0	88.0	86.0	<u>83.8</u>
Zero-shot CoT (Kojim	a et al., 2	2022)			. – – –	. – – –					. – – – .		
-w/ zero-shot CoT	64.5	96.0	78.0	76.6	87.1	87.8	80.0	80.8	86.7	89.3	86.0	90.0	<u>83.7</u>
Manual few-shot CoT)												
-w/ 1-shot CoT	60.8	94.0	82.0	83.2	89.1	88.7	84.0	82.6	85.3	84.0	88.0	92.0	<u>84.3</u>
-w/ 5-shot CoT	68.2	96.0	82.0	81.6	90.0	90.2	86.0	85.1	85.3	86.7	90.0	92.0	86.2

Emotions

Love

Anger

Joy

Sadness

Surprise

Fear

Example of Opinion: review segment on iPhone

"I bought an iPhone a few days ago.

It was such a nice phone.

The touch screen was really cool.

The voice quality was clear too.

However, my mother was mad with me as I did not tell her before I bought it.

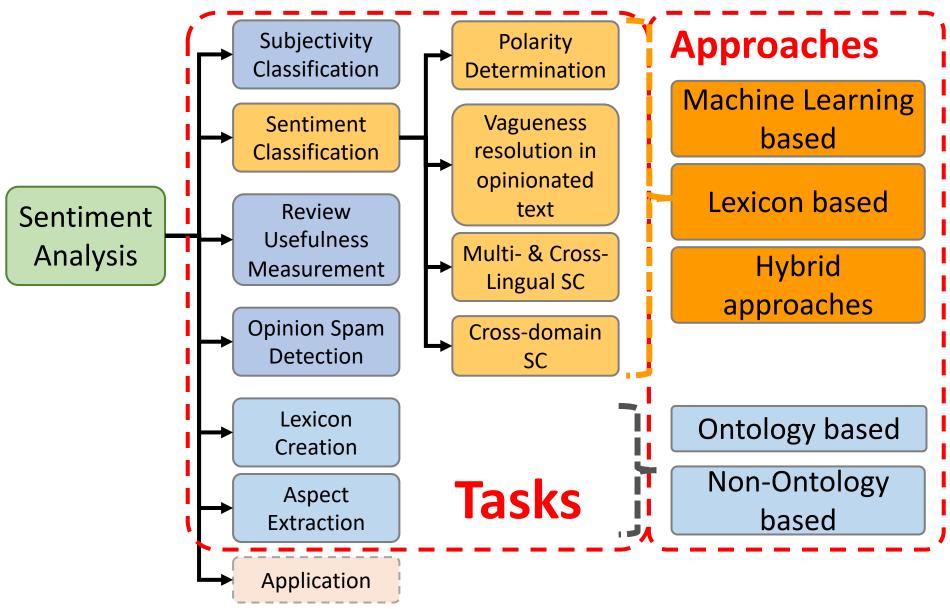
She also thought the phone was too expensive, and wanted me to return it to the shop. ... "

Example of Opinion: review segment on iPhone

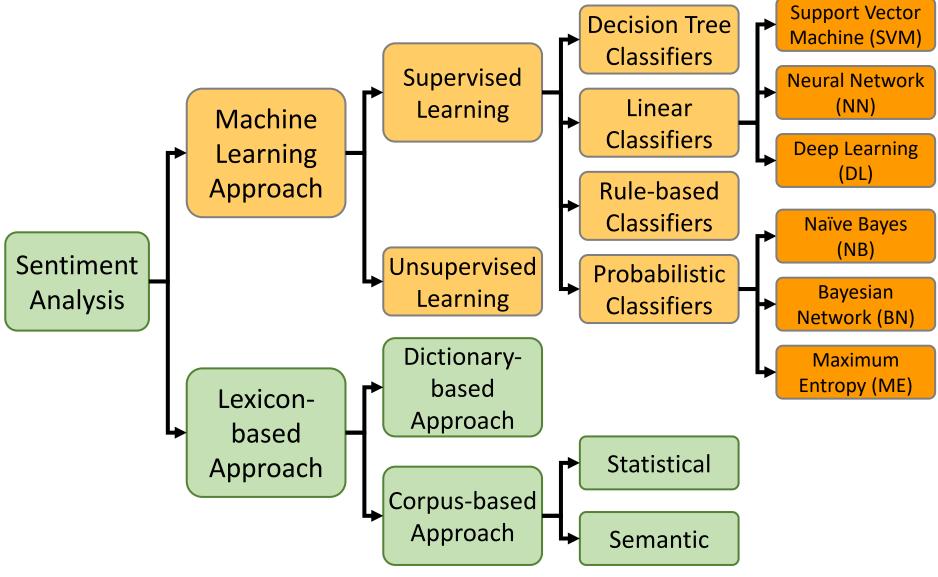
- "(1) I bought an iPhone a few days ago.
- (2) It was such a nice phone.
- (3) The touch screen was really cool.
- (4) The voice quality was clear too.
- (5) However, my mother was mad with me as I did not tell her before I bought it.
- (6) She also thought the phone was too <u>expensive</u>, and wanted me to return it to the shop. ... "

-Negative Opinion

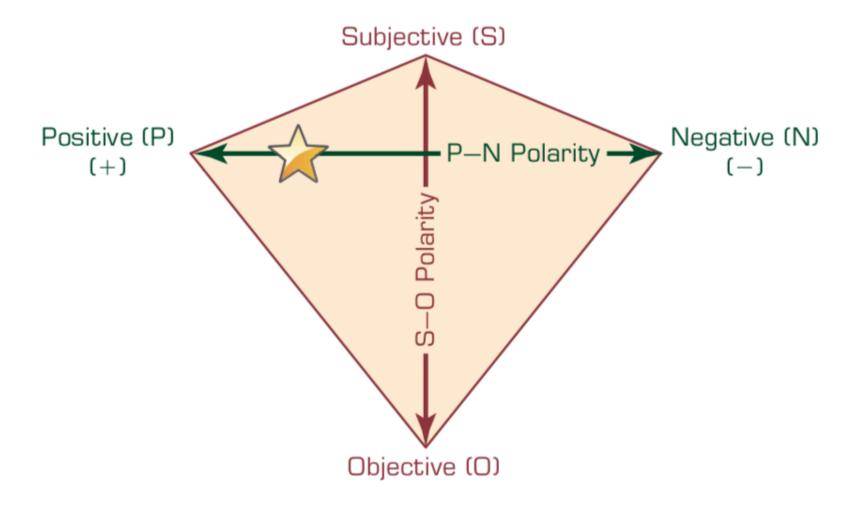
Sentiment Analysis



Sentiment Classification Techniques

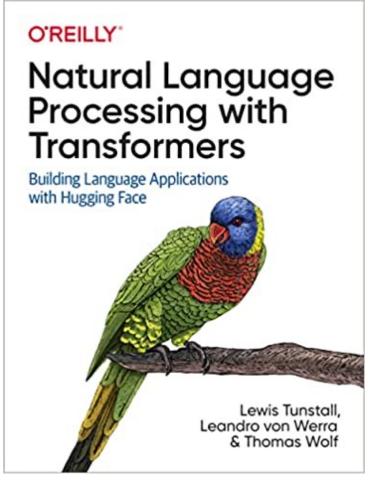


P-N Polarity and S-O Polarity Relationship

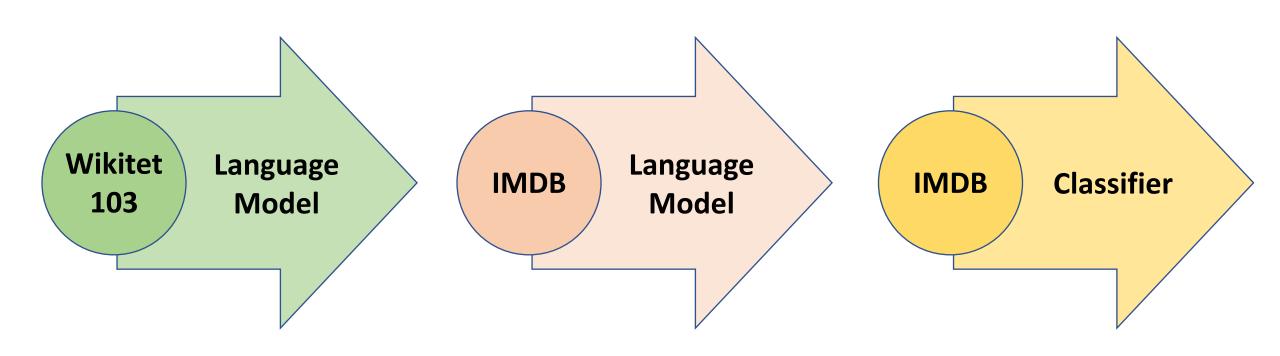


Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers:

Building Language Applications with Hugging Face, O'Reilly Media.



ULMFiT: 3 Steps Transfer Learning in NLP

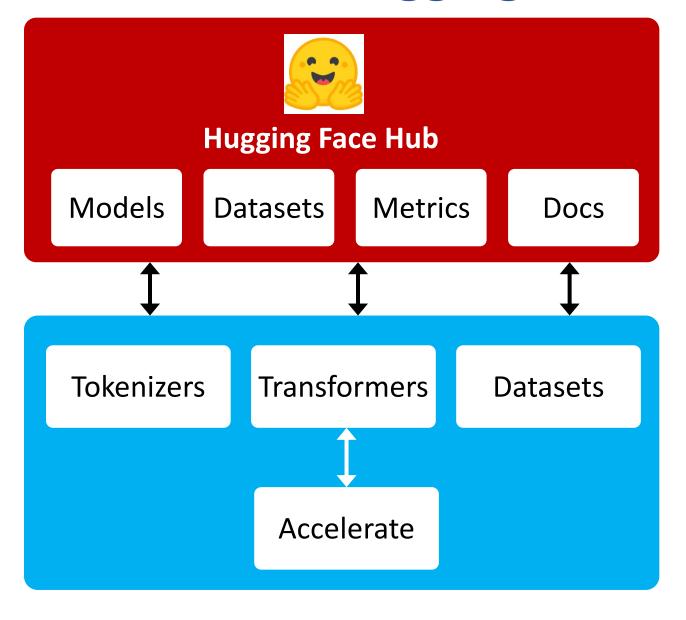


1. Pretraining

2. Domain adaptation

3. Fine-tuning

An overview of the Hugging Face Ecosystem



A typical pipeline for training transformer models

with the Datasets, Tokenizers, and Transformers libraries

Datasets

Tokenizers

Transformers

Datasets

Load and process datasets

Tokenize input texts

Load models, train and infer

Load metrics evaluate models

NLP with Transformers

```
!git clone https://github.com/nlp-with-transformers/notebooks.git
%cd notebooks
from install import *
install_requirements()
```

```
from utils import *
setup chapter()
```

Text Classification

text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
from your online store in Germany. Unfortunately, when I opened the package, \
I discovered to my horror that I had been sent an action figure of Megatron \
instead! As a lifelong enemy of the Deceptions, I hope you can understand my \
dilemma. To resolve the issue, I demand an exchange of Megatron for the \
Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""

Text Classification

```
text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
from your online store in Germany. Unfortunately, when I opened the package, \
I discovered to my horror that I had been sent an action figure of Megatron \
instead! As a lifelong enemy of the Deceptions, I hope you can understand my \
dilemma. To resolve the issue, I demand an exchange of Megatron for the \
Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""
```

```
from transformers import pipeline
classifier = pipeline("text-classification")
```

```
import pandas as pd
outputs = classifier(text)
pd.DataFrame(outputs)
```

label score
NEGATIVE 0.901546

Text Classification

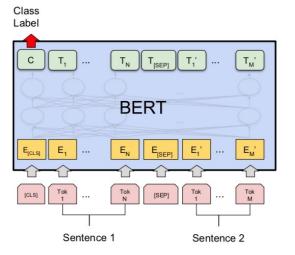
```
from transformers import pipeline
classifier = pipeline("text-classification")
```

```
import pandas as pd
outputs = classifier(text)
pd.DataFrame(outputs)
```

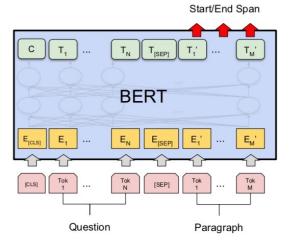
label score

0 NEGATIVE 0.901546

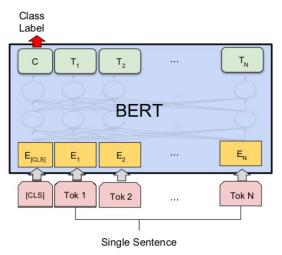
Fine-tuning BERT on NLP Tasks



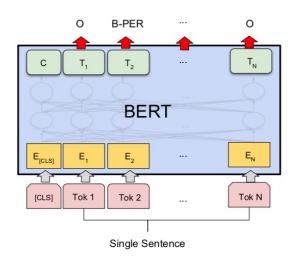
(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(c) Question Answering Tasks: SQuAD v1.1

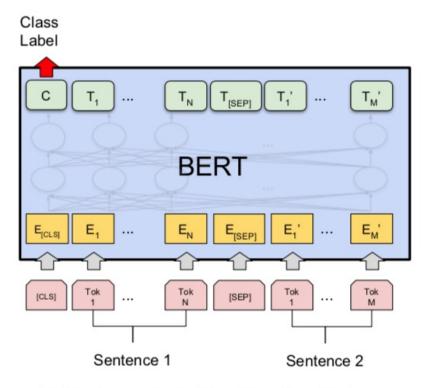


(b) Single Sentence Classification Tasks: SST-2, CoLA

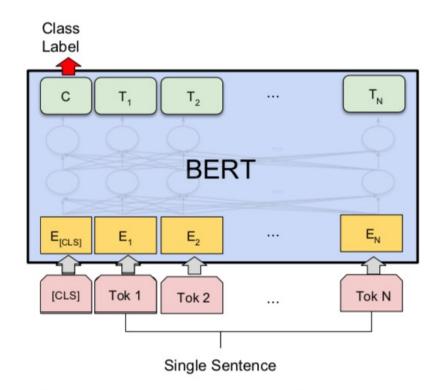


(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

BERT Sequence-level tasks

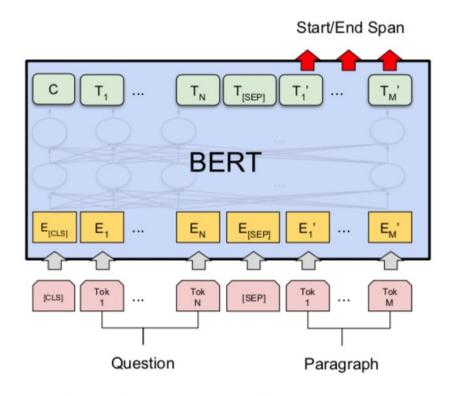


(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

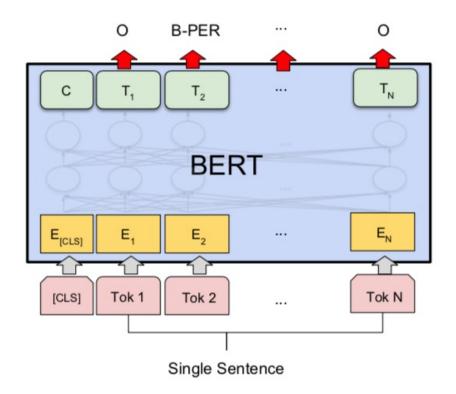


(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT Token-level tasks

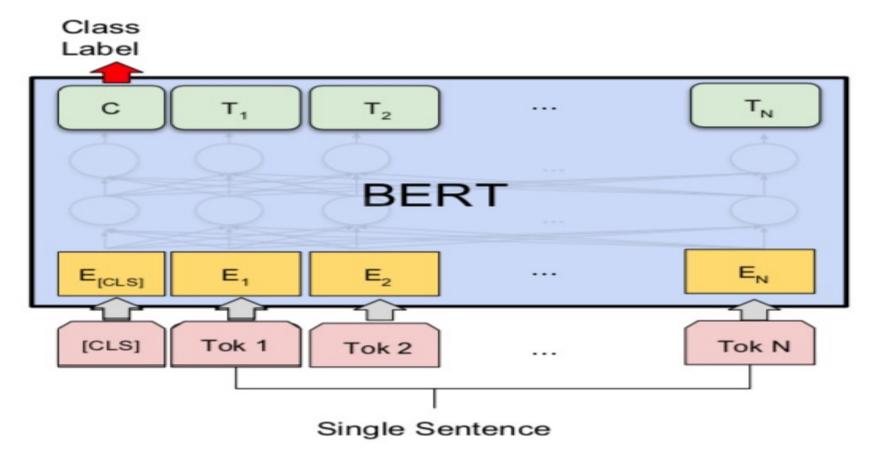


(c) Question Answering Tasks: SQuAD v1.1



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Sentiment Analysis: Single Sentence Classification



(b) Single Sentence Classification Tasks: SST-2, CoLA

Character Tokenization

```
text = "Tokenizing text is a core task of NLP."
tokenized text = list(text)
print(tokenized text)
['T', 'o', 'k', 'e', 'n', 'i', 'z', 'i', 'n', 'g', ' ', 't', 'e', 'x', 't', ' ',
'i', 's', ' ', 'a', ' ', 'c', 'o', 'r', 'e', ' ', 't', 'a', 's', 'k', ' ', 'o',
'f', ' ', 'N', 'L', 'P', '.']
token2idx = {ch: idx for idx, ch in enumerate(sorted(set(tokenized_text)))}
print(token2idx)
{' ': 0, '.': 1, 'L': 2, 'N': 3, 'P': 4, 'T': 5, 'a': 6, 'c': 7, 'e': 8, 'f': 9,
'g': 10, 'i': 11, 'k': 12, 'n': 13, 'o': 14, 'r': 15, 's': 16, 't': 17, 'x': 18,
'z': 19}
input ids = [token2idx[token] for token in tokenized text]
print(input ids)
[5, 14, 12, 8, 13, 11, 19, 11, 13, 10, 0, 17, 8, 18, 17, 0, 11, 16, 0, 6, 0, 7,
```

14, 15, 8, 0, 17, 6, 16, 12, 0, 14, 9, 0, 3, 2, 4, 1]

Word Tokenization

```
text = "Tokenizing text is a core task of NLP."
tokenized_text = text.split()
print(tokenized_text)
```

```
['Tokenizing', 'text', 'is', 'a', 'core', 'task', 'of', 'NLP.']
```

Subword Tokenization

```
from transformers import AutoTokenizer
model ckpt = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from pretrained(model ckpt)
text = "Tokenizing text is a core task of NLP."
encoded text = tokenizer(text)
print(encoded text)
{'input ids': [101, 19204, 6026, 3793, 2003, 1037, 4563, 4708, 1997, 17953, 2361,
1012, 102], 'attention mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
tokens = tokenizer.convert ids to tokens(encoded text.input ids)
print(tokens)
['[CLS]', 'token', '##izing', 'text', 'is', 'a', 'core', 'task', 'of', 'nl',
```

'##p', '.', '[SEP]']

Subword Tokenization

print(tokenizer.convert_tokens_to_string(tokens))

[CLS] tokenizing text is a core task of nlp. [SEP]

tokenizer.vocab size

30522

tokenizer.model_max_length

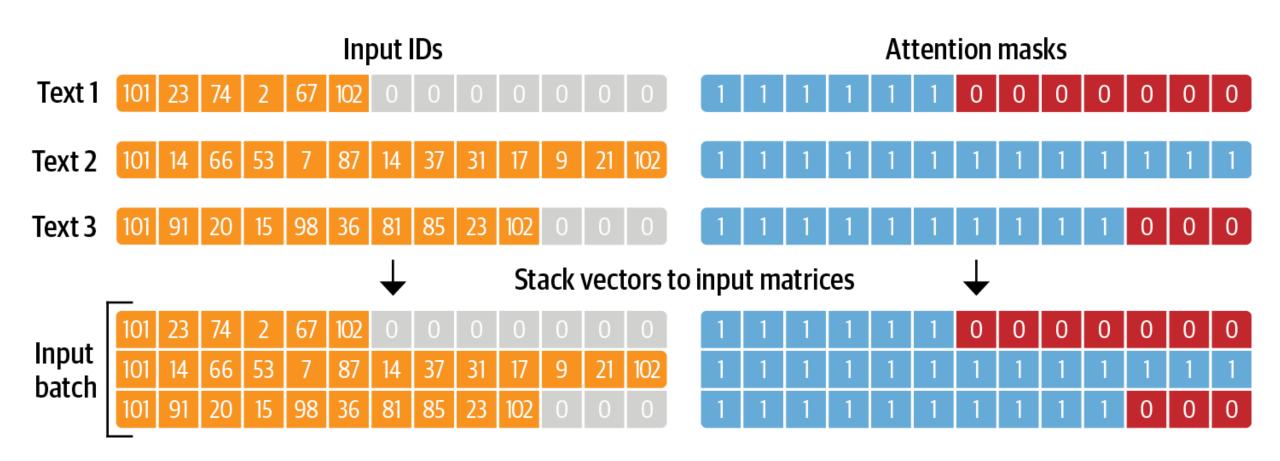
512

Tokenizing the Whole Dataset

```
def tokenize(batch):
      return tokenizer(batch["text"], padding=True, truncation=True)
print(tokenize(emotions["train"][:2]))
{'input ids': [[101, 1045, 2134, 2102, 2514, 26608, 102, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1045, 2064, 2175, 2013, 3110, 2061,
20625, 2000, 2061, 9636, 17772, 2074, 2013, 2108, 2105, 2619, 2040, 14977,
1998, 2003, 8300, 102]], 'attention mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
tokens2ids = list(zip(tokenizer.all special tokens,
tokenizer.all special ids))
data = sorted(tokens2ids, key=lambda x : x[-1])
df = pd.DataFrame(data, columns=["Special Token", "Special Token ID"])
df.T
```

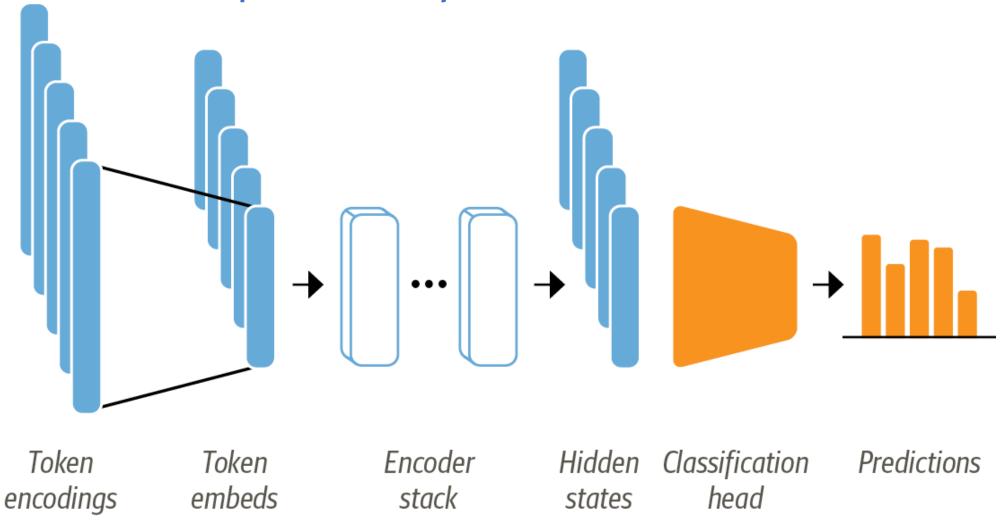
From Text to Tokens

For each batch, the input sequences are padded to the maximum sequence length in the batch; the attention mask is used in the model to ignore the padded areas of the input tensors



Training a Text Classifier

The architecture used for sequence classification with an encoder-based transformer; it consists of the model's pretrained body combined with a custom classification head

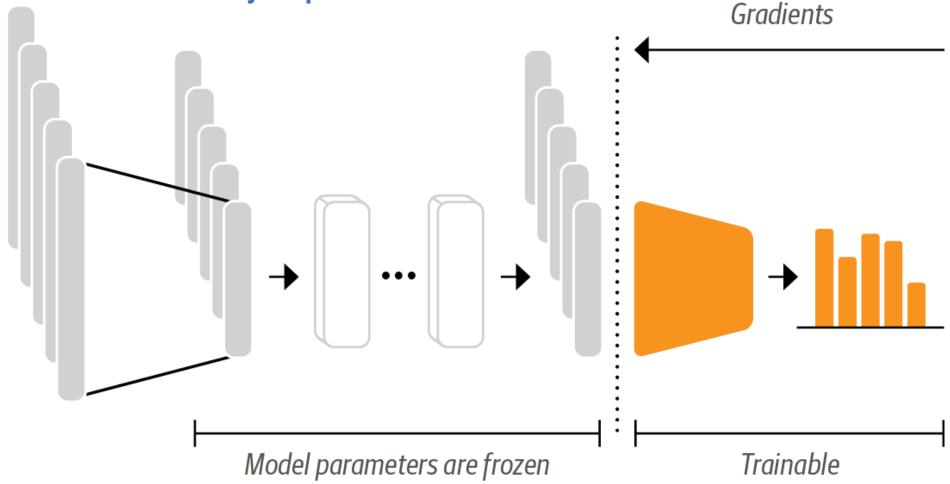


Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

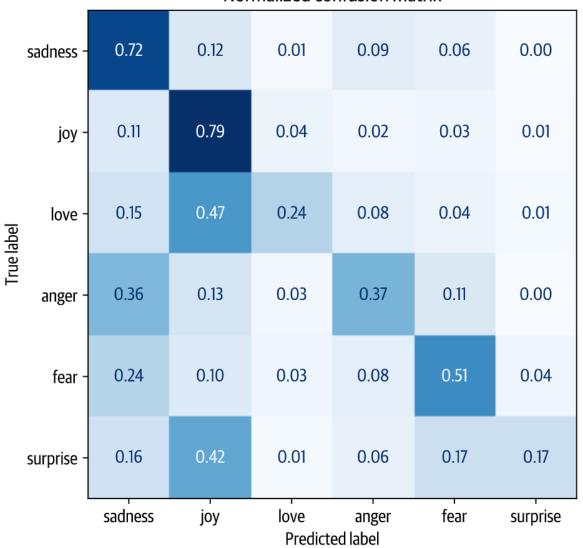
https://github.com/nlp-with-transformers/notebooks

Transformers as Feature Extractors

In the feature-based approach, the DistilBERT model is frozen and just provides features for a classifier

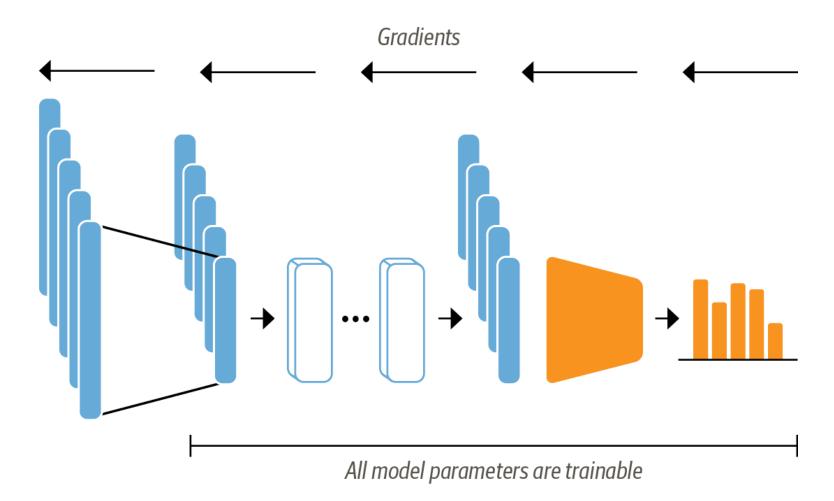


Training a Simple Classifier



Fine-Tuning Transformers

When using the fine-tuning approach the whole DistilBERT model is trained along with the classification head



Fine-Tuning Transformers Loading a pretrained model

Defining the performance metrics

```
from sklearn.metrics import accuracy_score, f1_score

def compute_metrics(pred):
    labels = pred.label_ids
    preds = pred.predictions.argmax(-1)
    f1 = f1_score(labels, preds, average="weighted")
    acc = accuracy_score(labels, preds)
    return {"accuracy": acc, "f1": f1}
```

```
from huggingface_hub import notebook_login
notebook_login()
```

```
from transformers import Trainer, TrainingArguments
batch size = 64
logging_steps = len(emotions_encoded["train"]) // batch_size
model_name = f"{model_ckpt}-finetuned-emotion"
training args = TrainingArguments(output dir=model name,
                    num train epochs=2,
                    learning rate=2e-5,
                    per device train batch size=batch size,
                    per device eval batch size=batch size,
                    weight decay=0.01,
                    evaluation strategy="epoch",
                    disable tqdm=False,
                    logging steps=logging steps,
                    push to hub=True,
                    log level="error")
```

		[500/500 01:48, Epoch 2/2]		
Epoch	Training Loss	Validation Loss	Accuracy	F1
1	0.840900	0.327445	0.896500	0.892285
2	0.255000	0.220472	0.922500	0.922550

```
preds_output =
trainer.predict(emotions_encoded["validation"])
```

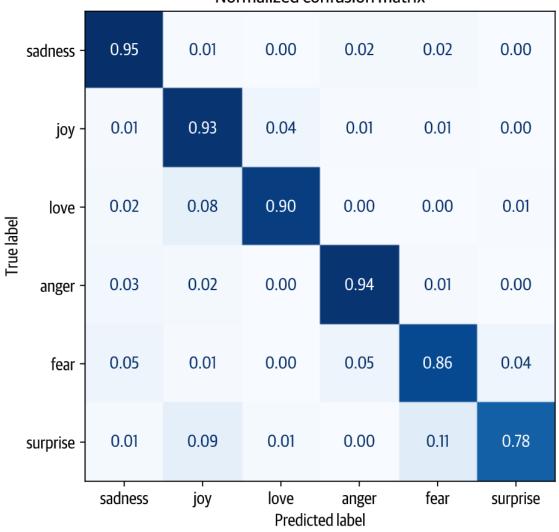
preds_output.metrics

```
{'test_loss': 0.22047173976898193, 'test_accuracy': 0.9225, 'test_f1':
0.9225500751072866, 'test_runtime': 1.6357, 'test_samples_per_second':
1222.725, 'test steps per second': 19.564}
```

```
y_preds = np.argmax(preds_output.predictions, axis=1)
```

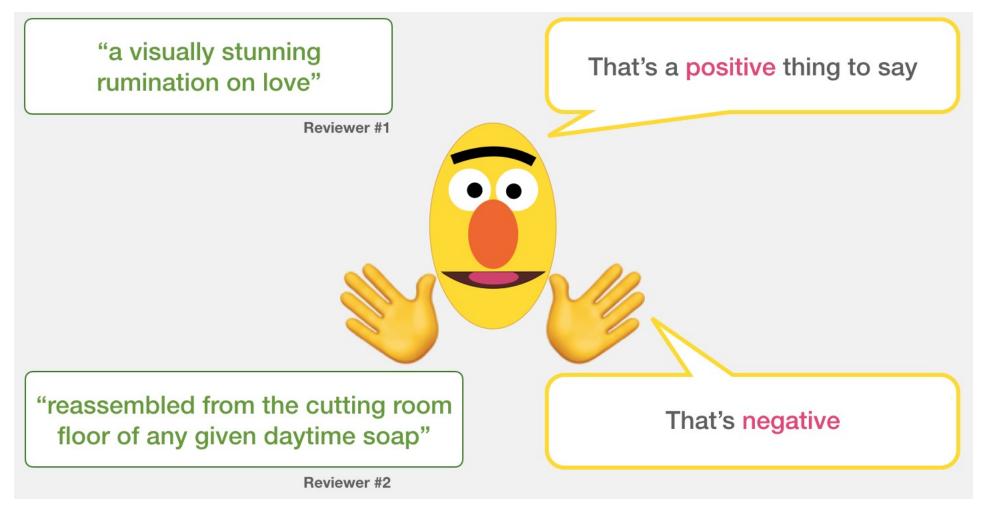
```
plot_confusion_matrix(y_preds, y_valid, labels)
```

Fine-Tuning Transformers



A Visual Guide to Using BERT for the First Time

(Jay Alammar, 2019)

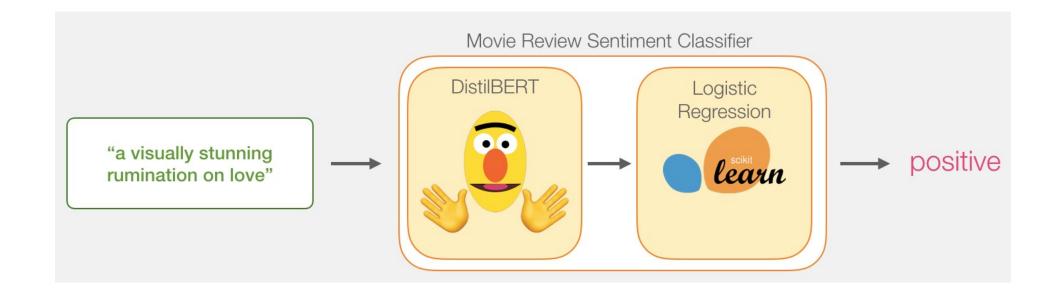


Sentiment Classification: SST2 Sentences from movie reviews

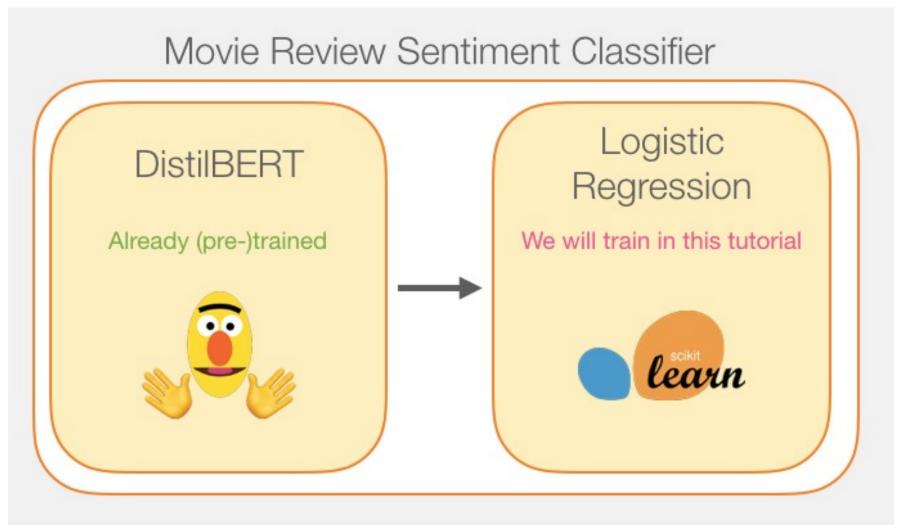
sentence	label	
a stirring , funny and finally transporting re imagining of beauty and the beast and 1930s horror films	1	
apparently reassembled from the cutting room floor of any given daytime soap	0	
they presume their audience won't sit still for a sociology lesson		
this is a visually stunning rumination on love , memory , history and the war between art and commerce	1	
jonathan parker 's bartleby should have been the be all end all of the modern office anomie films	1	

Movie Review Sentiment Classifier

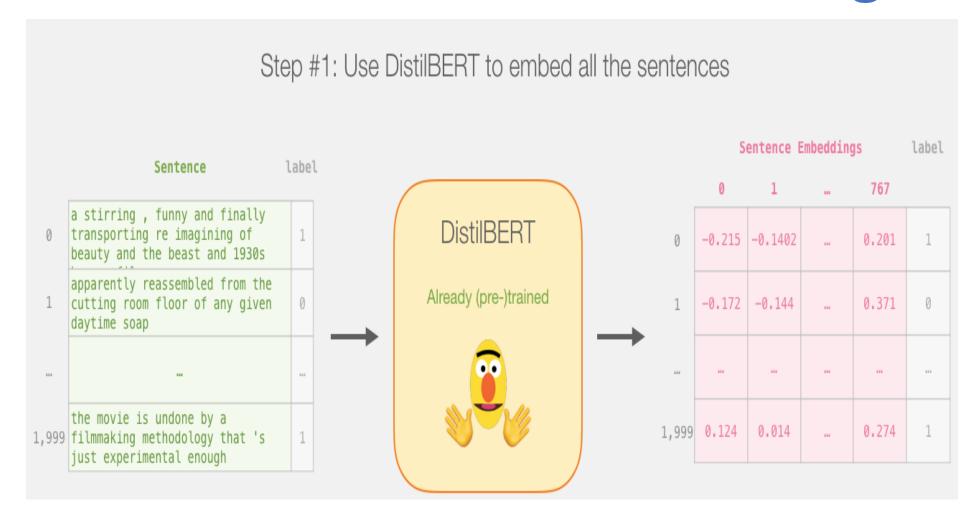
Movie Review Sentiment Classifier



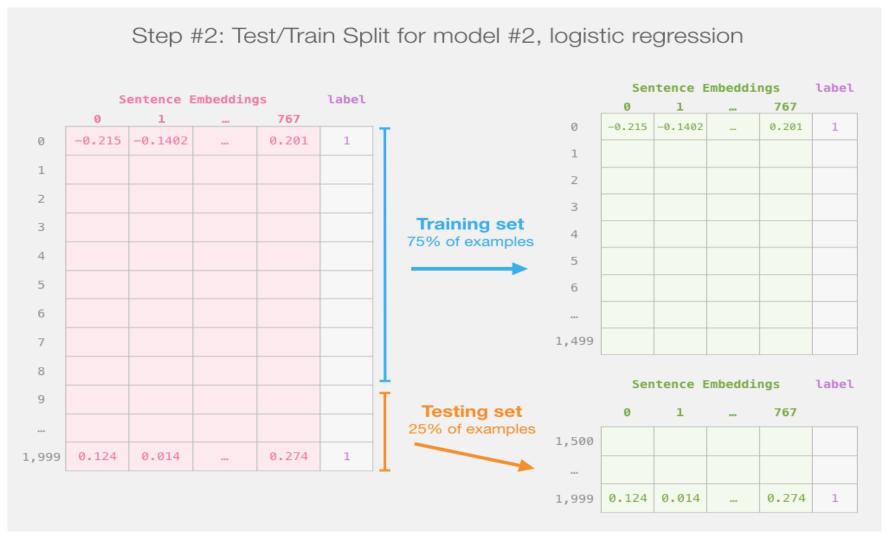
Movie Review Sentiment Classifier Model Training



Step # 1 Use distilBERT to Generate Sentence Embeddings

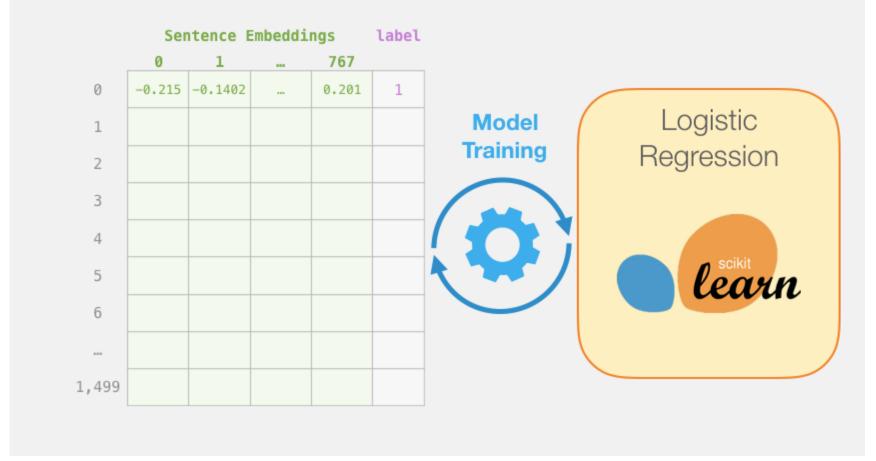


Step #2:Test/Train Split for Model #2, Logistic Regression



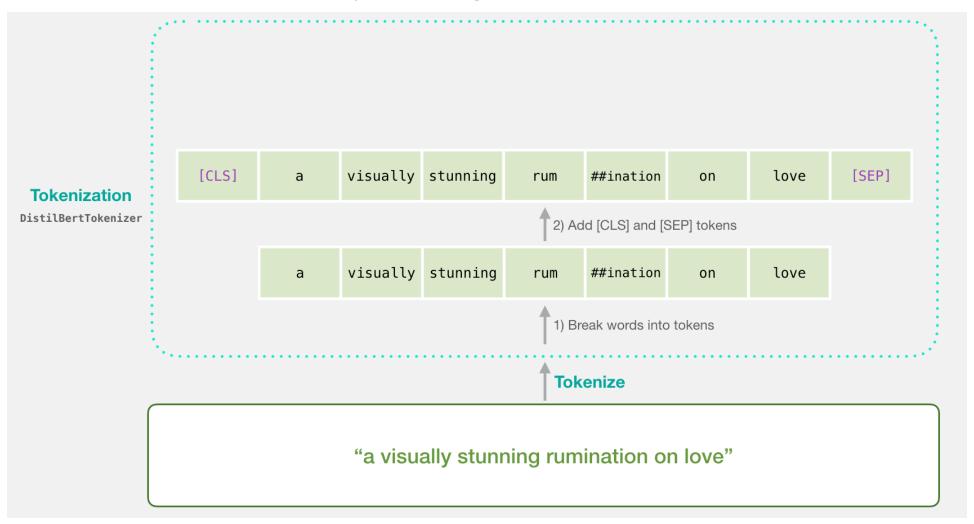
Step #3 Train the logistic regression model using the training set

Step #3: Train the logistic regression model using the training set



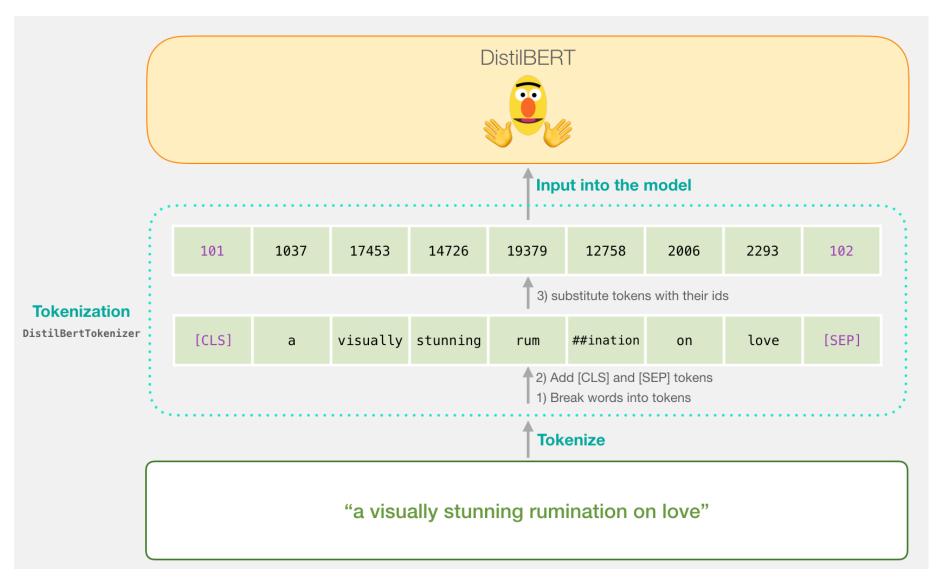
Tokenization

[CLS] a visually stunning rum ##ination on love [SEP] a visually stunning rumination on love

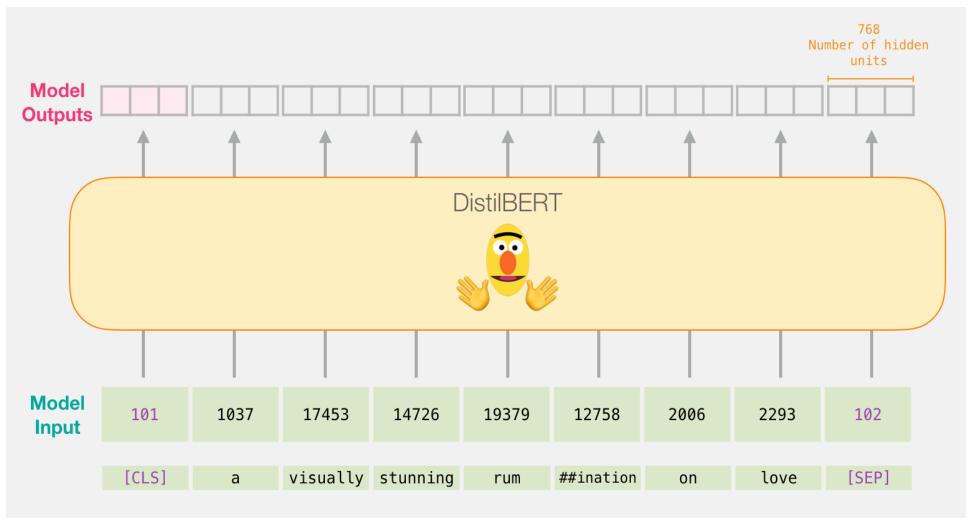


Tokenization

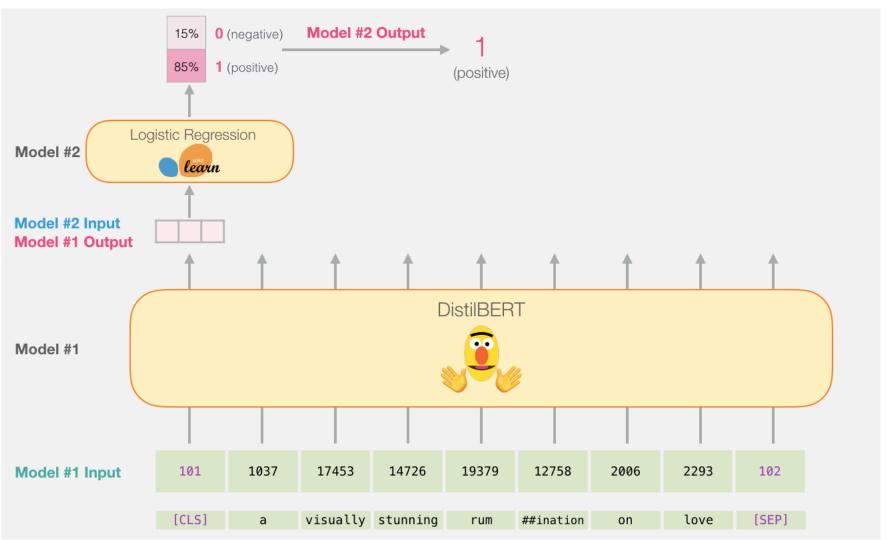
Tokenization for BERT Model



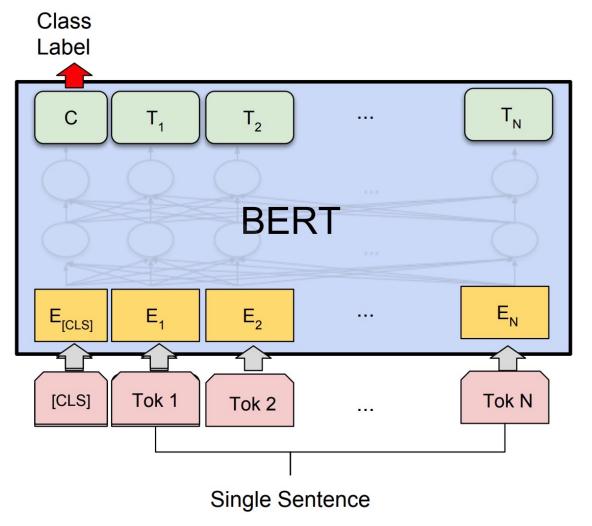
Flowing Through DistilBERT (768 features)



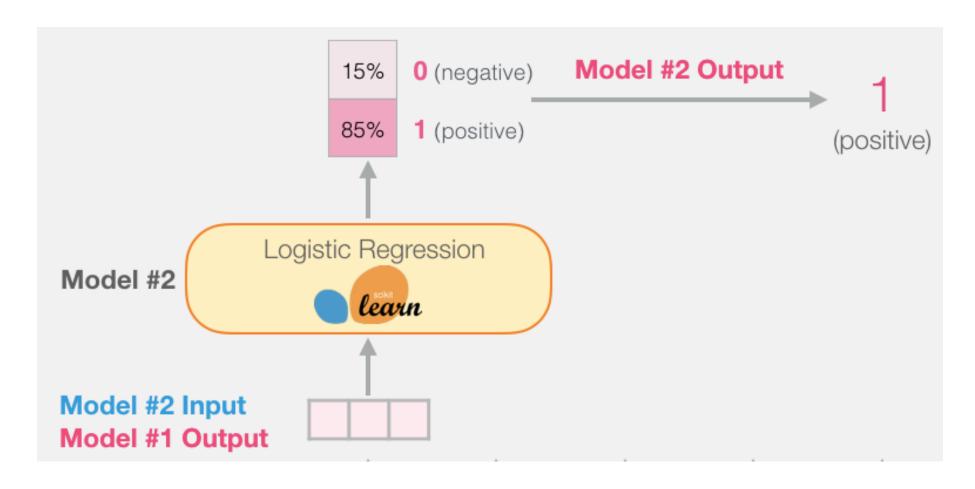
Model #1 Output Class vector as Model #2 Input



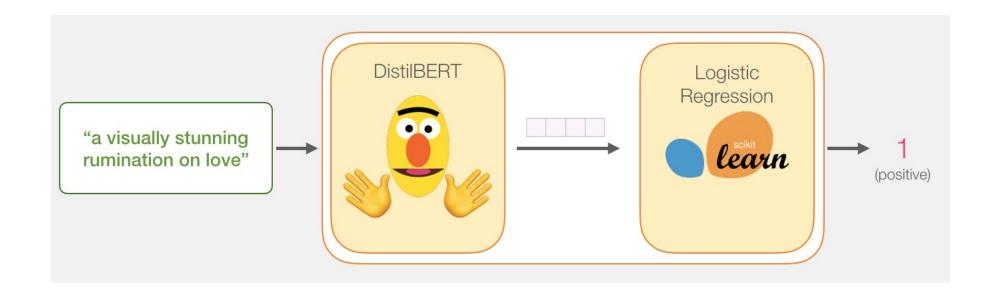
Fine-tuning BERT on Single Sentence Classification Tasks



Model #1 Output Class vector as Model #2 Input



Logistic Regression Model to classify Class vector

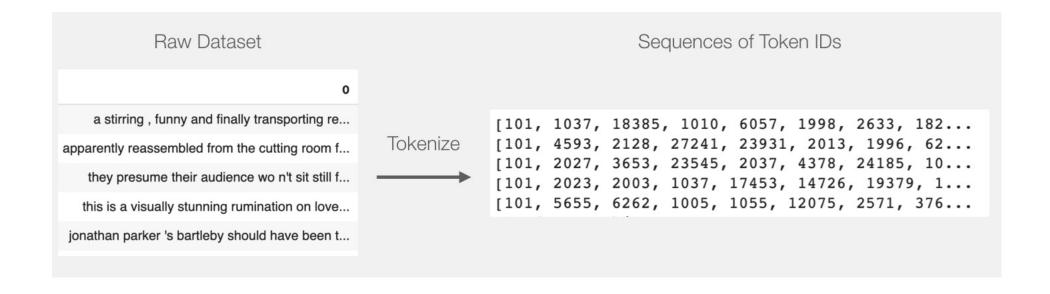


```
df = pd.read_csv('https://github.com/clairett/pytorch-
sentiment-classification/raw/master/data/SST2/train.tsv',
delimiter='\t', header=None)
df.head()
```

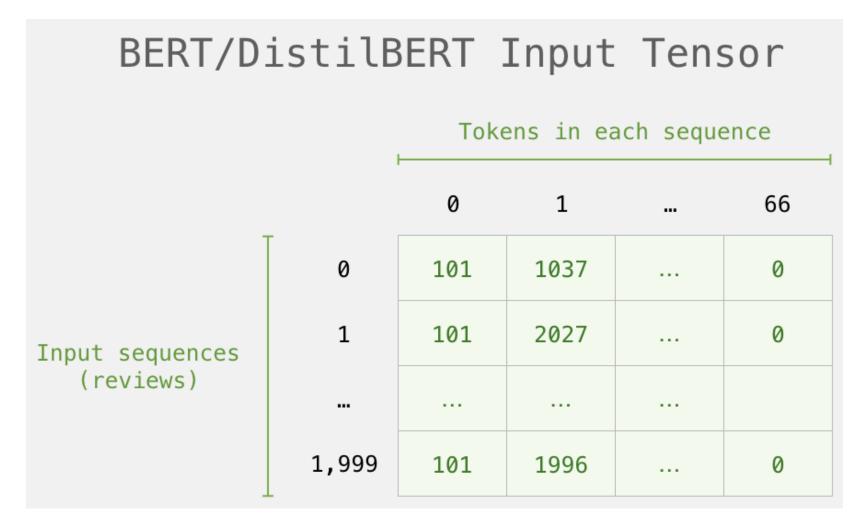
a stirring, funny and finally transporting re... apparently reassembled from the cutting room f... 0 they presume their audience wo n't sit still f... 0 3 this is a visually stunning rumination on love... 1 jonathan parker 's bartleby should have been t...

Tokenization

```
tokenized = df[0].apply((lambda x: tokenizer.encode(x,
add_special_tokens=True)))
```

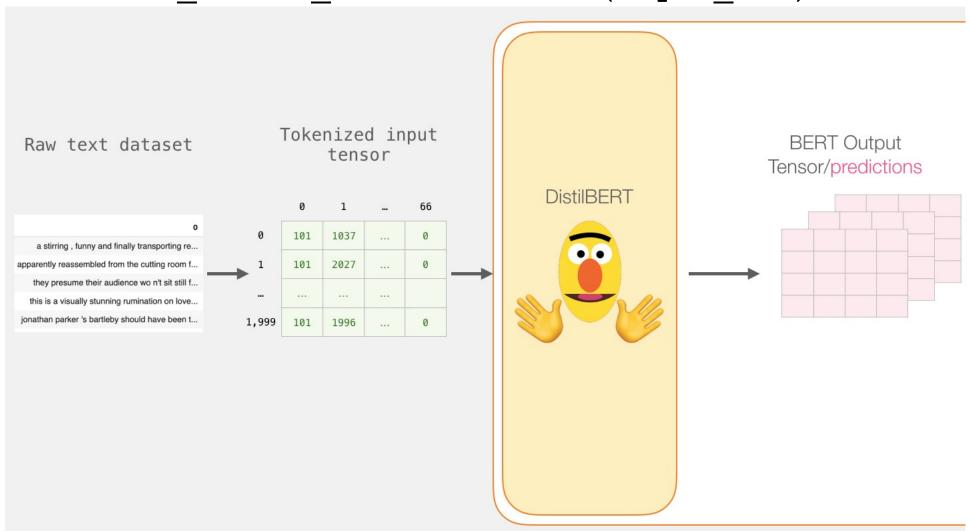


BERT Input Tensor

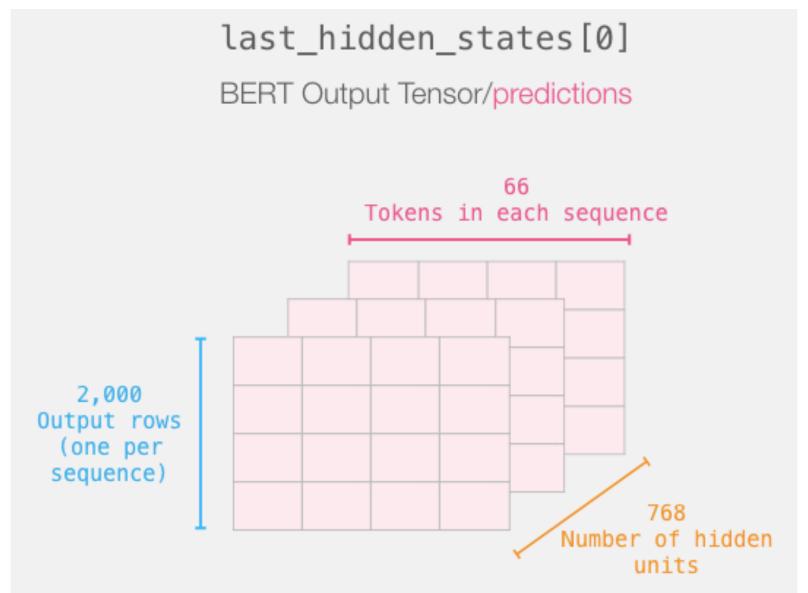


Processing with DistilBERT

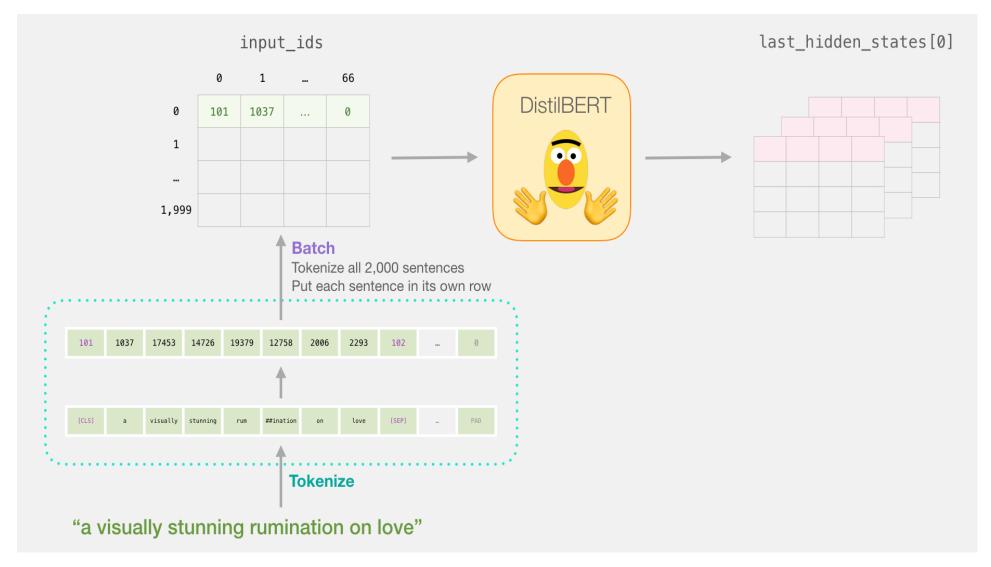
```
input_ids = torch.tensor(np.array(padded))
last_hidden_states = model(input_ids)
```



Unpacking the BERT output tensor

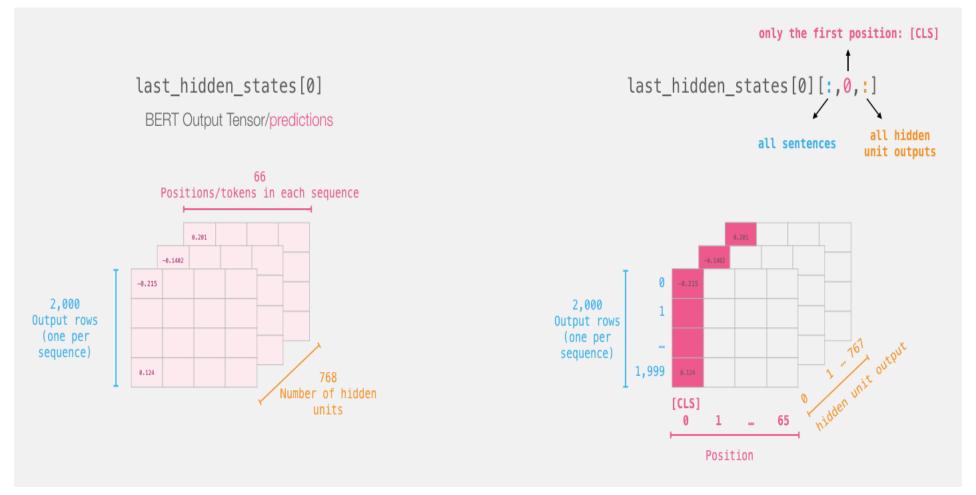


Sentence to last_hidden_state[0]

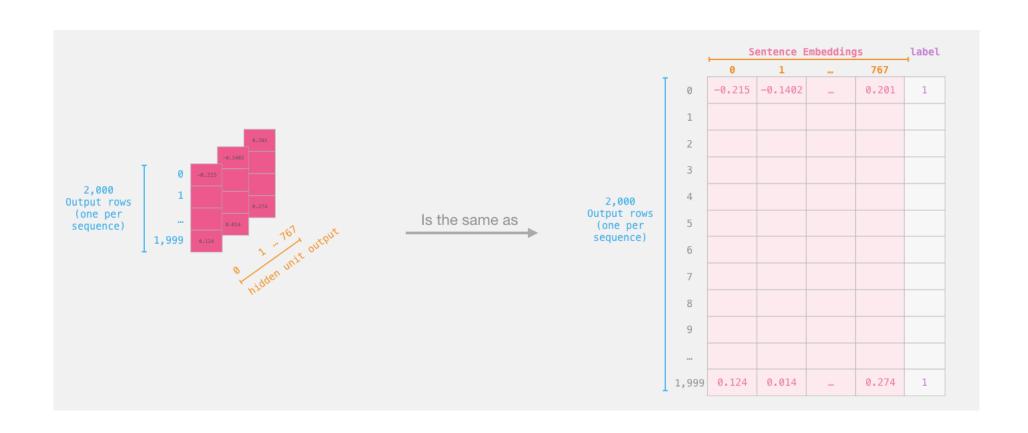


BERT's output for the [CLS] tokens

Slice the output for the first position for all the
sequences, take all hidden unit outputs
features = last_hidden_states[0][:,0,:].numpy()



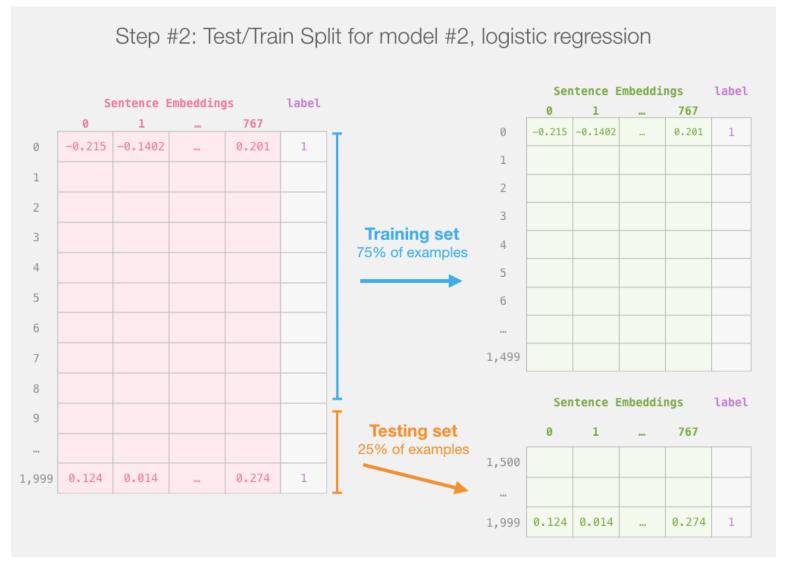
The tensor sliced from BERT's output Sentence Embeddings



Dataset for Logistic Regression (768 Features)

The features are the output vectors of BERT for the [CLS] token (position #0)

labels = df[1]
train_features, test_features, train_labels, test_labels =
train_test_split(features, labels)



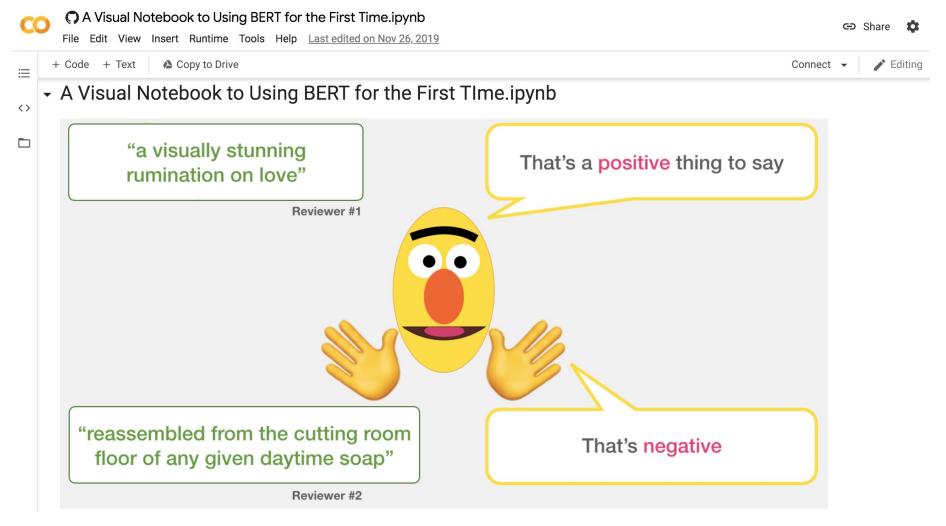
Score Benchmarks Logistic Regression Model on SST-2 Dataset

```
# Training
lr clf = LogisticRegression()
lr clf.fit(train features, train labels)
#Testing
lr clf.score(test features, test labels)
# Accuracy: 81%
# Highest accuracy: 96.8%
# Fine-tuned DistilBERT: 90.7%
# Full size BERT model: 94.9%
```

Sentiment Classification: SST2 Sentences from movie reviews

sentence	label
a stirring , funny and finally transporting re imagining of beauty and the beast and 1930s horror films	1
apparently reassembled from the cutting room floor of any given daytime soap	0
they presume their audience won't sit still for a sociology lesson	0
this is a visually stunning rumination on love , memory , history and the war between art and commerce	1
jonathan parker 's bartleby should have been the be all end all of the modern office anomie films	1

A Visual Notebook to Using BERT for the First Time

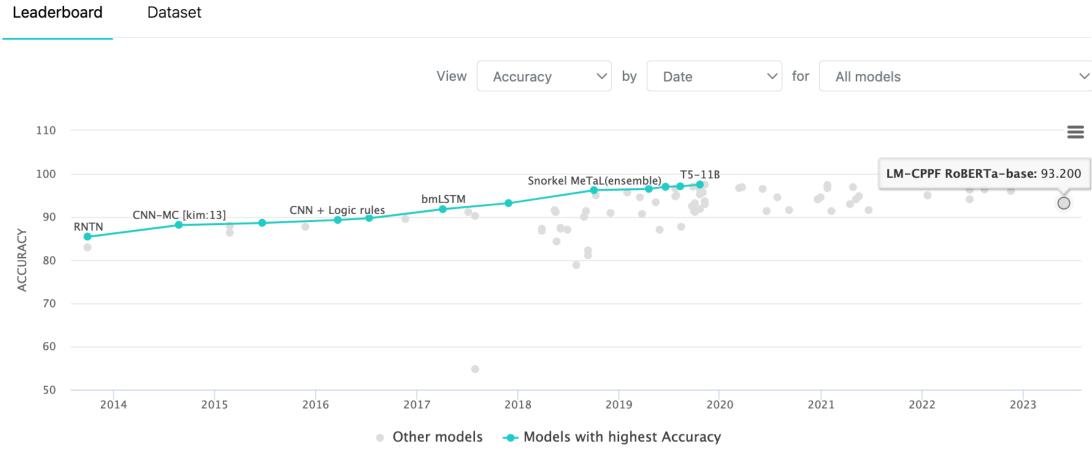


https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A Visual Notebook to

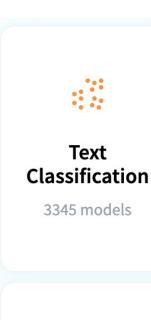
<u>Using BERT for the First Time.ipynb</u>

SOTA: Sentiment Analysis on SST-2 Binary classification

Sentiment Analysis on SST-2 Binary classification



Hugging Face Tasks Natural Language Processing



1492 models

Question Answering

1140 models

Translation

1467 models

Summarization

323 models

Text Generation

3959 models

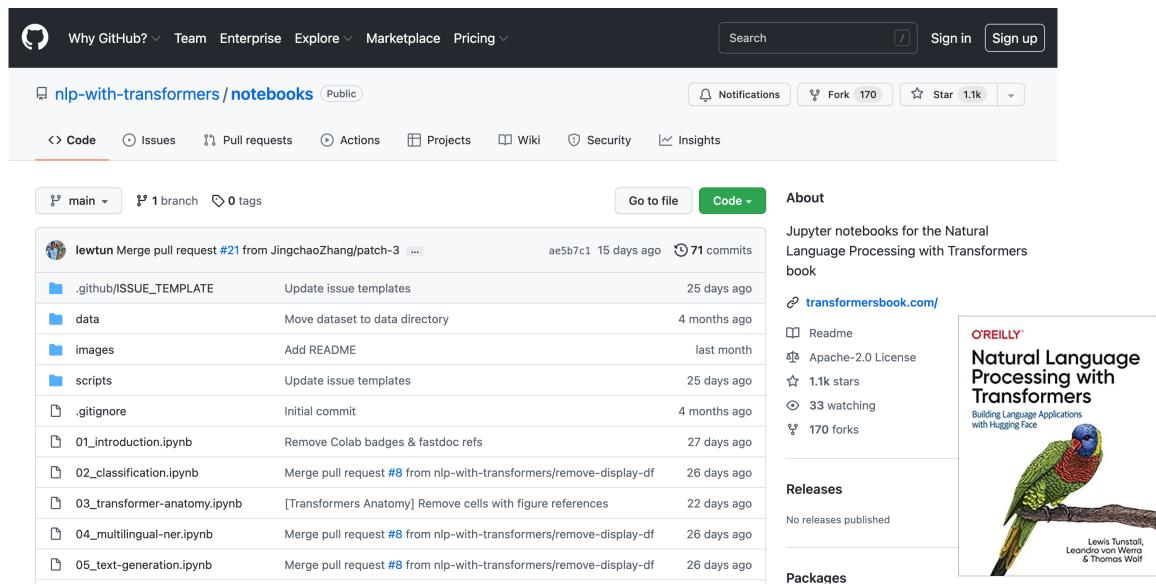
Fill-Mask

2453 models

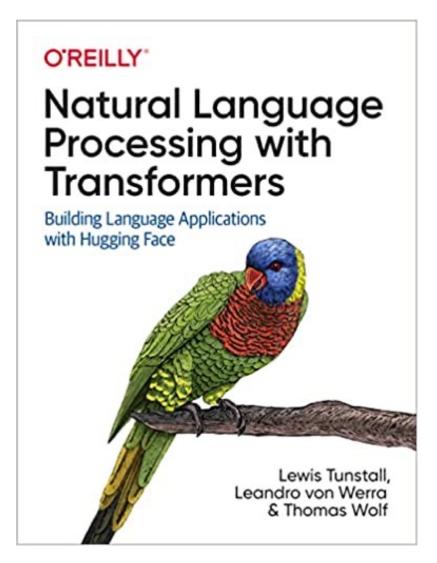
Sentence Similarity

352 models

NLP with Transformers Github



NLP with Transformers Github Notebooks



Running on a cloud platform

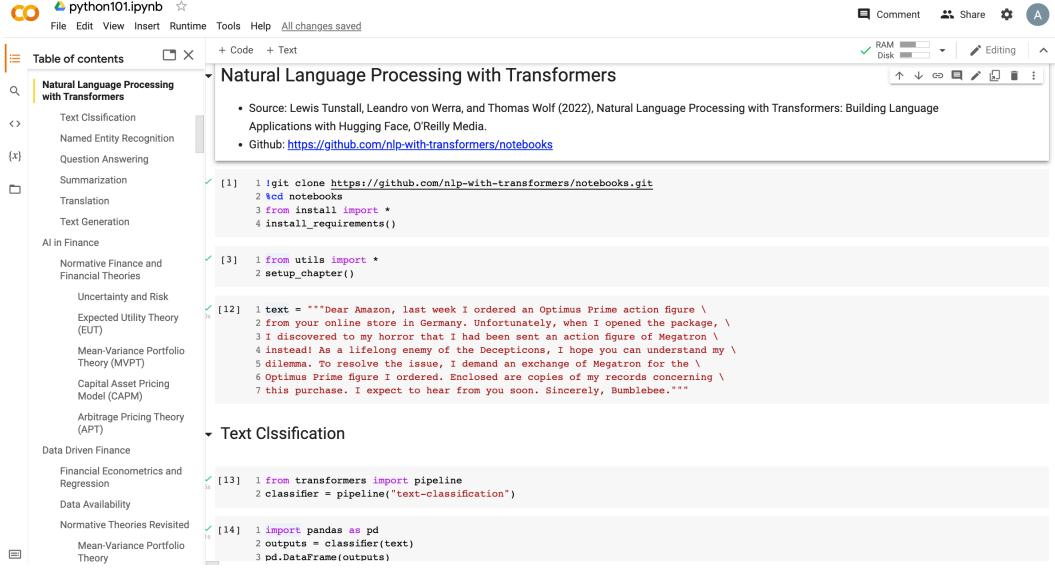
To run these notebooks on a cloud platform, just click on one of the badges in the table below:

Chapter	Colab	Kaggle	Gradient	Studio Lab
Introduction	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Text Classification	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Transformer Anatomy	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Multilingual Named Entity Recognition	Open in Colab	k Open in Kaggle	Run on Gradient	۩ Open Studio Lab
Text Generation	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Summarization	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Question Answering	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Making Transformers Efficient in Production	Open in Colab	k Open in Kaggle	Run on Gradient	۩ Open Studio Lab
Dealing with Few to No Labels	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Training Transformers from Scratch	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Future Directions	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab

Nowadays, the GPUs on Colab tend to be K80s (which have limited memory), so we recommend using Kaggle, Gradient, or SageMaker Studio Lab. These platforms tend to provide more performant GPUs like P100s, all for free!

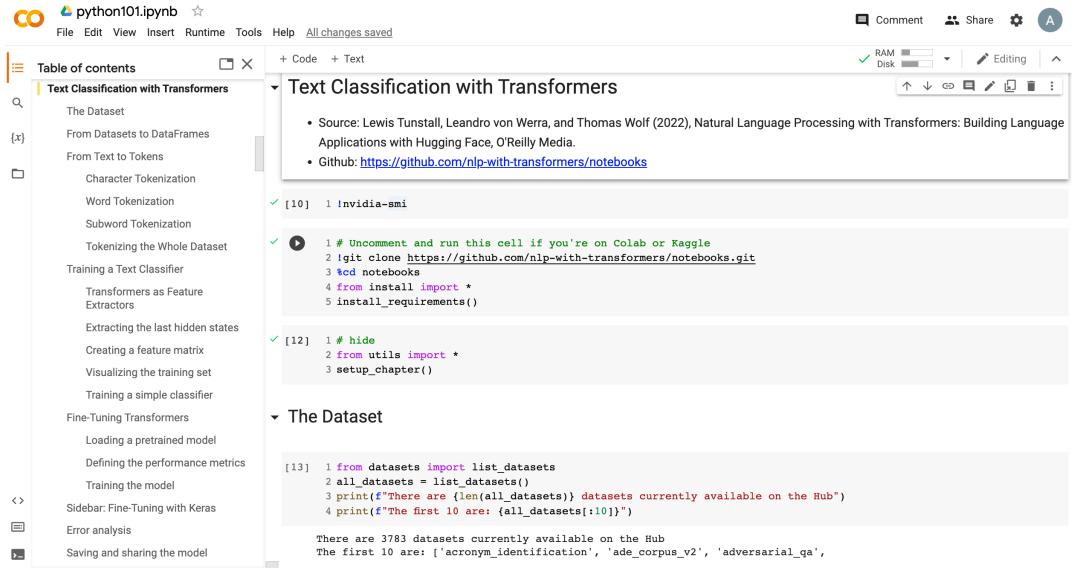
Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



Summary

- Text Classification and Sentiment Analysis
 - Dataset
 - Tokenizer
 - Training a Text Classifier
 - Fine-Tuning Transformers

References

- Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.
- Denis Rothman (2021), Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT,
 RoBERTa, and more, Packt Publishing.
- Savaş Yıldırım and Meysam Asgari-Chenaghlu (2021), Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques, Packt Publishing.
- Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu, and Jianfeng Gao (2021), "Deep learning--based text classification: a comprehensive review." ACM Computing Surveys (CSUR) 54, no. 3 (2021): 1-40.
- Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta (2020), Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems, O'Reilly Media.
- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.
- Dipanjan Sarkar (2019), Text Analytics with Python: A Practitioner's Guide to Natural Language Processing, Second Edition. APress.
- Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda (2018), Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning, O'Reilly.
- Charu C. Aggarwal (2018), Machine Learning for Text, Springer.
- Gabe Ignatow and Rada F. Mihalcea (2017), An Introduction to Text Mining: Research Design, Data Collection, and Analysis, SAGE Publications.
- Rajesh Arumugam (2018), Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications, Packt.
- Jake VanderPlas (2016), Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media.
- Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805.
- Washington Cunha, Felipe Viegas, Celso França, Thierson Rosa, Leonardo Rocha, and Marcos André Gonçalves (2023). "A Comparative Survey of Instance Selection Methods applied to NonNeural and Transformer-Based Text Classification." ACM Computing Surveys.
- Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and Dacheng Tao (2023). "Can chatgpt understand too? a comparative study on chatgpt and fine-tuned bert." arXiv preprint arXiv:2302.10198.
- The Super Duper NLP Repo, https://notebooks.quantumstat.com/
- Jay Alammar (2018), The Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/
- Jay Alammar (2019), A Visual Guide to Using BERT for the First Time, http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
- NLP with Transformer, https://github.com/nlp-with-transformers/notebooks
- Min-Yuh Day (2023), Python 101, https://tinyurl.com/aintpupython101