Artificial Intelligence for Text Analytics

Multilingual Named Entity Recognition (NER)

1121AITA06 MBA, IM, NTPU (M5265) (Fall 2023) Tue 2, 3, 4 (9:10-12:00) (B3F17)

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2023-10-25

Week Date Subject/Topics

- **1 2023/09/13 Introduction to Artificial Intelligence for Text Analytics**
- 2 2023/09/20 Foundations of Text Analytics: Natural Language Processing (NLP)
- **3 2023/09/27** Python for Natural Language Processing
- 4 2023/10/04 Natural Language Processing with Transformers
- 5 2023/10/11 Case Study on Artificial Intelligence for Text Analytics I
- 6 2023/10/18 Text Classification and Sentiment Analysis

Week Date Subject/Topics

- 7 2023/10/25 Multilingual Named Entity Recognition (NER)
- 8 2023/11/01 Midterm Project Report
- 9 2023/11/08 Text Similarity and Clustering
- **10 2023/11/15** Text Summarization and Topic Models
- 11 2023/11/22 Text Generation with Large Language Models (LLMs)
- **12 2023/11/29** Case Study on Artificial Intelligence for Text Analytics II

Week Date Subject/Topics

- 13 2023/12/06 Question Answering and Dialogue Systems
- 14 2023/12/13 Deep Learning, Generative AI, Transfer Learning, Zero-Shot, and Few-Shot Learning for Text Analytics
- 15 2023/12/20 Final Project Report I
- 16 2023/12/27 Final Project Report II

Multilingual Named Entity Recognition (NER)

Outline

- Named Entities (NE)
 - represent real-world objects
 - people, places, organizations
 - proper names
- Named Entity Recognition (NER)
 - Entity chunking
 - Entity extraction
- Relation Extraction (RE)

Michael Jeffrey Jordan was born in Brooklyn, New York.

 $< w_1, w_3, \text{Person} >$ Michael Jeffrey Jordan

 $< w_7, w_7, Location > Brooklyn$

 $< w_9, w_{10}, Location > New York$

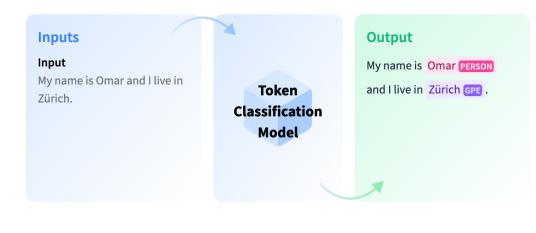
$$\bigcirc < I_s, I_e, t >$$

Named Entity Recognition

$$\bigcap s = \langle w_1, w_2, ..., w_N \rangle$$

Token Classification (NER)

😕 Hugging Face


 \bigcirc Search models, datasets, users...

Models = Datasets E Spaces Docs Solutions Pricing

 $\sim \equiv$

< Tasks Token Classification

Token classification is a natural language understanding task in which a label is assigned to some tokens in a text. Some popular token classification subtasks are Named Entity Recognition (NER) and Part-of-Speech (PoS) tagging. NER models could be trained to identify specific entities in a text, such as dates, individuals and places; and PoS tagging would identify, for example, which words in a text are verbs, nouns, and punctuation marks.

Available in **auto TRHIN Compatible libraries** S spaCy 🖉 Stanza Adapter Transformers 👌 Flair Transformers Foken Classification demo using dslim/bert-base-NER 🚟 Token Classification Example 3 \sim My name is Clara and I live in Berkeley, California. Compute Computation time on cpu: cached My name is Clara PER and I live in Berkeley LCC, California LCC. </> JSON Output Maximize

Models for Token Classification Browse Models (1908)

dslim/bert-base-NER Greater Classification → Updated Sep 5, 2021 → ↓ 262k → ♡ 42

About Token Classification

https://huggingface.co/tasks/token-classification

```
from transformers import pipeline
import pandas as pd
classifier = pipeline("ner")
text = "My name is Michael and I live in Berkeley, California."
outputs = classifier(text)
pd.DataFrame(outputs)
```

	entity	score	index	word	start	end
0	I-PER	0.998874	4	Michael	11	18
1	I-LOC	0.997050	9	Berkeley	33	41
2	I-LOC	0.999170	11	California	43	53

https://tinyurl.com/aintpupython101

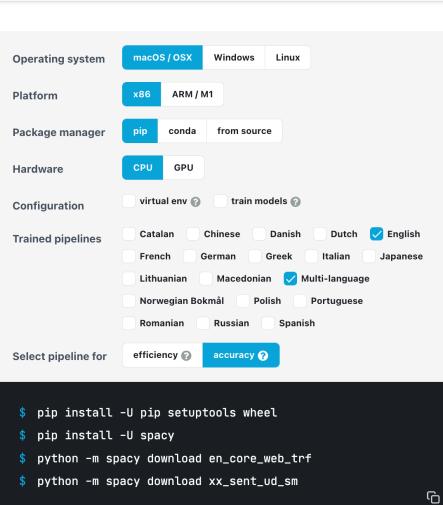
Multilingual Named Entity Recognition (NER)

```
#!pip install transformers
from transformers import pipeline
import pandas as pd
nlp = pipeline('ner', model="Babelscape/wikineural-multilingual-ner")
outputs = nlp("My name is Alan and I live in Taipei.")
pd.DataFrame(outputs)
```

	entity	score	index	word	start	end
0	B-PER	0.860065	4	Alan	11	15
1	B-LOC	0.999816	9	Taipei	30	36

Multilingual Named Entity Recognition (NER)

```
#!pip install transformers
from transformers import pipeline
import pandas as pd
nlp = pipeline('ner', model="Babelscape/wikineural-multilingual-ner")
outputs = nlp("My name is Alan and I live in Taipei. 他是王小明,他住在台南")
pd.DataFrame(outputs)
```


	entity	score	index	word	start	end
0	B-PER	0.912095	4	Alan	11	15
1	B-LOC	0.999747	9	Taipei	30	36
2	B-PER	0.994766	13	Ŧ.	40	41
3	I-PER	0.992879	14	/]\	41	42
4	I-PER	0.982183	15	明	42	43
5	B-LOC	0.999288	20	台	47	48
6	I-LOC	0.993408	21	南	48	49

https://tinyurl.com/aintpupython101

spaCy

$\leftarrow \rightarrow$ C \triangleq spacy.io/usage

spaCy **X Out now:** spaCy v3.2 **GET STARTED** Installation **Operating system** Quickstart Instructions Platform x86 Troubleshooting Changelog Package manager Models & Languages Facts & Figures CPU Hardware spaCy 101 Configuration New in v3.0 New in v3.1 **Trained pipelines** New in v3.2 French GUIDES Linguistic Features Rule-based Matching **Processing Pipelines** Select pipeline for Embeddings & Transformers **NEW** Training Models **NEW** Layers & Model Architectures **NEW** spaCy Projects NEW Saving & Loading Visualizers

USAGE

MODELS

API

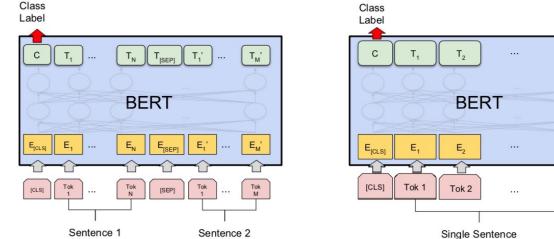
https://spacy.io/usage

NER: OntoNotes 5 Named Entities (18)

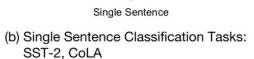
SID	ТҮРЕ	DESCRIPTION
1	PERSON	People, including fictional.
2	NORP	Nationalities or religious or political groups.
3	FAC	Buildings, airports, highways, bridges, etc.
4	ORG	Companies, agencies, institutions, etc.
5	GPE	Countries, cities, states.
6	LOC	Non-GPE locations, mountain ranges, bodies of water.
7	PRODUCT	Objects, vehicles, foods, etc. (Not services.)
8	EVENT	Named hurricanes, battles, wars, sports events, etc.
9	WORK_OF_ART	Titles of books, songs, etc.
10	LAW	Named documents made into laws.
11	LANGUAGE	Any named language.
12	DATE	Absolute or relative dates or periods.
13	TIME	Times smaller than a day.
14	PERCENT	Percentage, including "%".
15	MONEY	Monetary values, including unit.
16	QUANTITY	Measurements, as of weight or distance.
17	ORDINAL	"first", "second", etc.
18	CARDINAL	Numerals that do not fall under another type.

NER: Wikipedia Named Entities

SID	TYPE	DESCRIPTION
1	PER	Named person or family.
2	LOC	Name of politically or geographically defined location (cities, provinces, countries, international regions, bodies of water, mountains).
3	ORG	Named corporate, governmental, or other organizational entity.
4	MISC	Miscellaneous entities, e.g. events, nationalities, products or works of art.


NER IOB Scheme

TAG	ID	DESCRIPTION
" "	1	Token is inside an entity.
"O"	2	Token is outside an entity.
"B"	3	Token begins an entity.
	0	No entity tag is set (missing value).


NER BILUO Scheme

TAG	AG DESCRIPTION	
BEGIN	The first token of a multi-token entity.	
IN	An inner token of a multi-token entity.	
LAST	The final token of a multi-token entity.	
UNIT	A single-token entity.	
OUT	A non-entity token.	

Fine-tuning BERT on NLP Tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

T_N

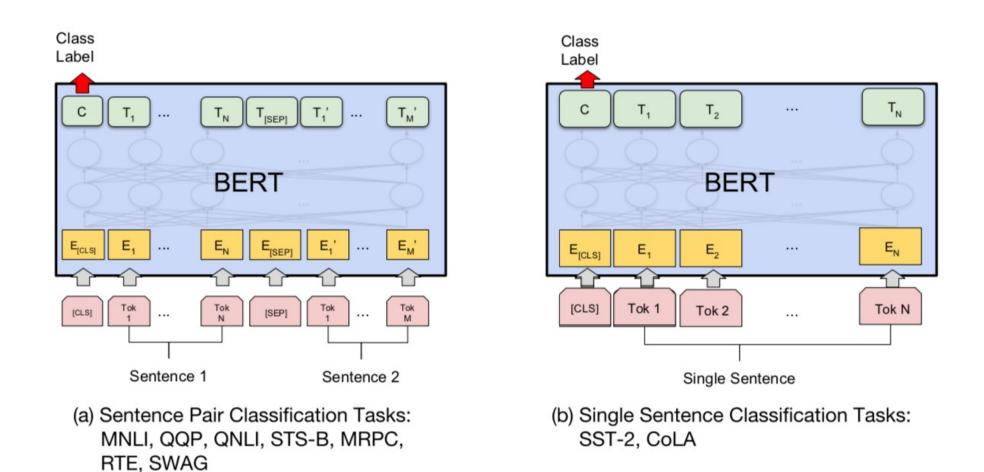
EN

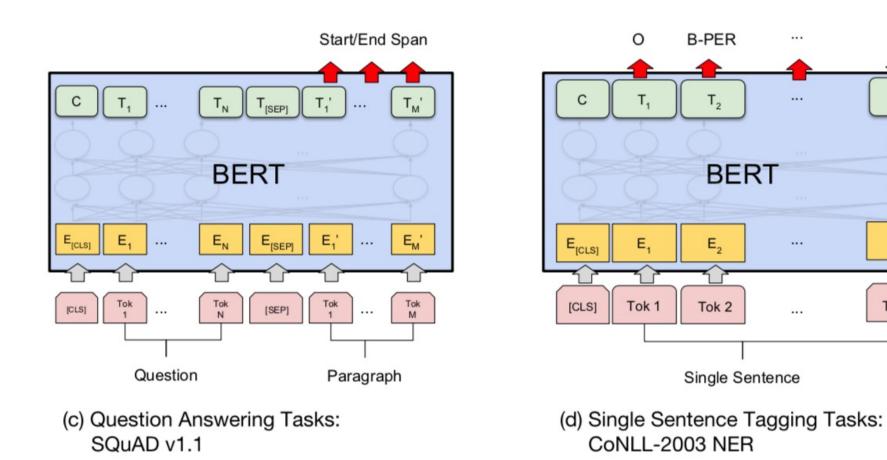
Tok N

0

T_N

EN

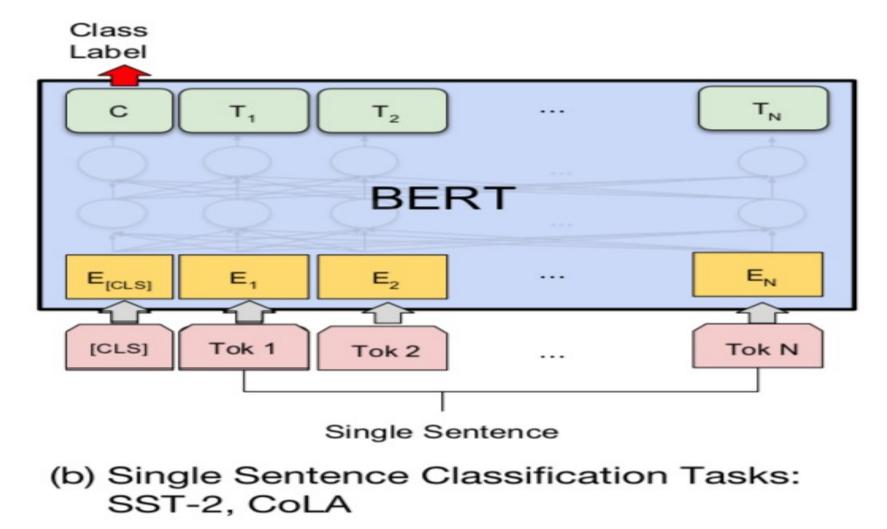

Tok N


(c) Question Answering Tasks: SQuAD v1.1 (d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

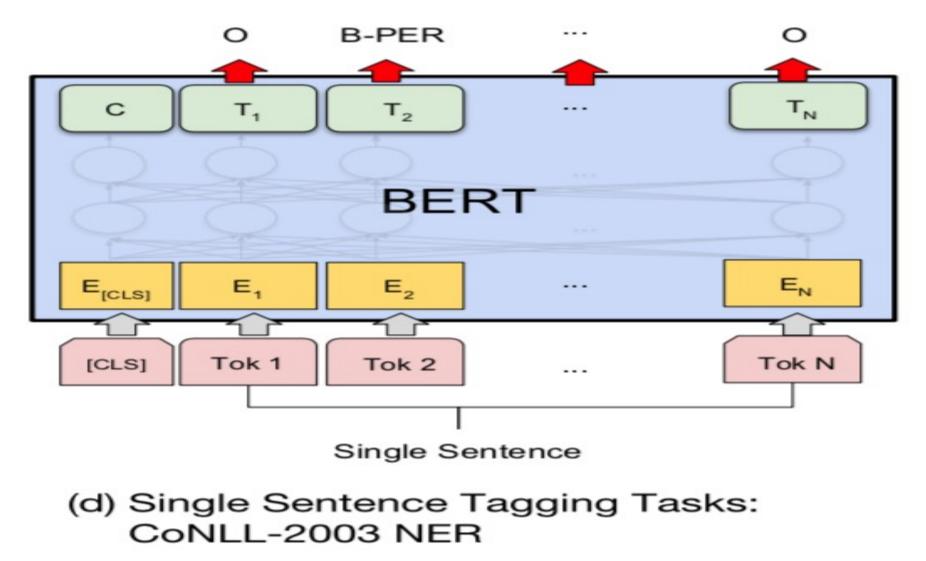
BERT Sequence-level tasks

BERT Token-level tasks

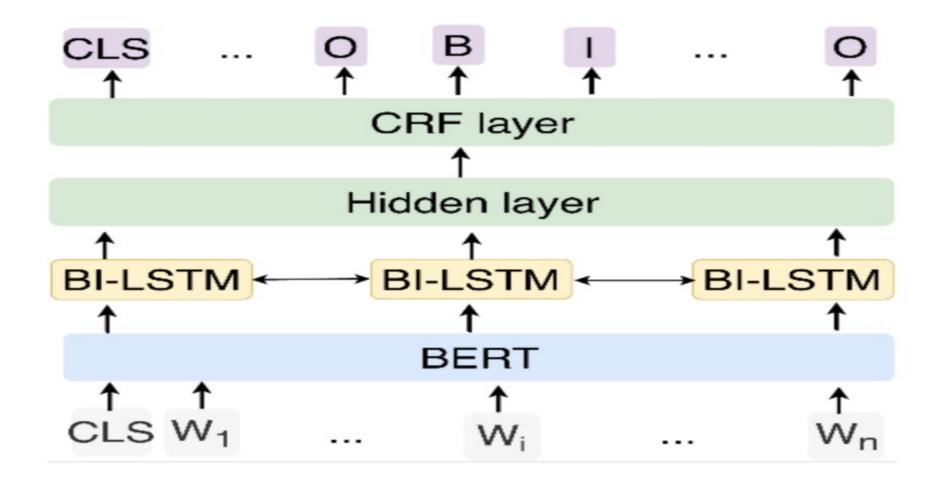

0

TN

EN


Tok N

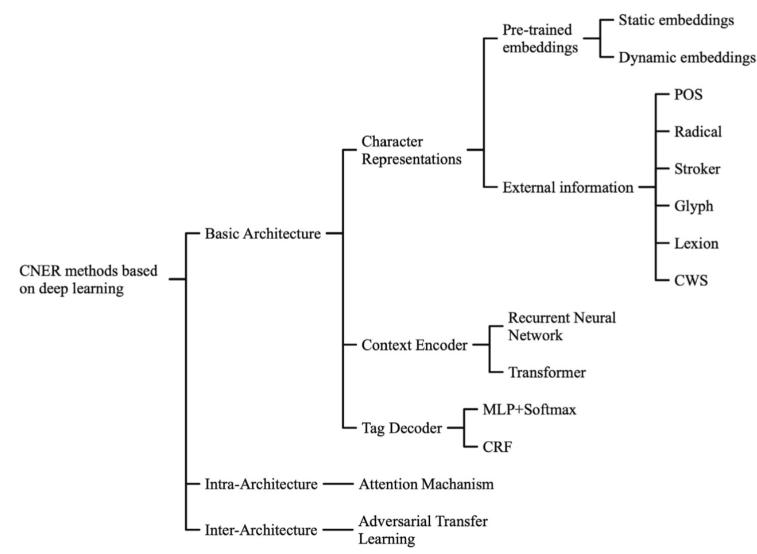
Sentiment Analysis: Single Sentence Classification


Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

NER: Single Sentence Tagging

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

NER: Fine-tuning BERT with Bi-LSTM CRF



Source: Zhang, Xiaohui, Yaoyun Zhang, Qin Zhang, Yuankai Ren, Tinglin Qiu, Jianhui Ma, and Qiang Sun. "Extracting comprehensive clinical information for breast cancer using deep learning methods." International Journal of Medical Informatics 132 (2019): 103985.

Statistical-based methods and Deep learning-based methods

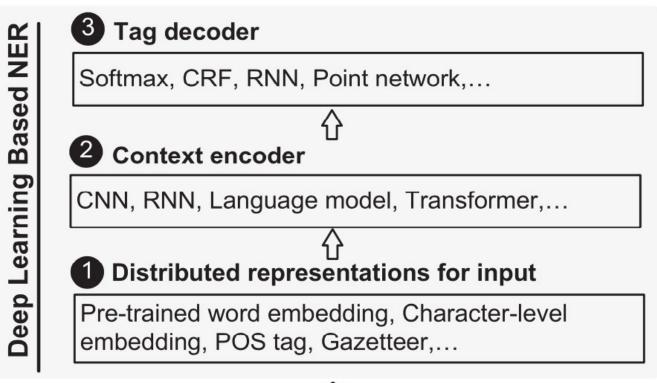
	Statistical-based methods	Deep learning-based methods
Character Representations	Handcrafted features (orthographic, prefixes, suffixes, etc.)	Distributed representations (Word2vec, RNN, ELMo, BERT, etc.)
Machine learning models	Statistical-based models (HMM, ME, CRF, SVM, etc.)	Encoder (LSTM, GRU, Transformer, etc.) Decoder (CRF, Transformer, etc.)

The taxonomy of CNER methods based on deep learning

List of Annotated Datasets for English NER

Corpus	Year	Text Source	#Tags	URL
MUC-6	1995	Wall Street Journal	7	https://catalog.ldc.upenn.edu/LDC2003T13 🛛
MUC-6 Plus	1995	Additional news to MUC-6	7	https://catalog.ldc.upenn.edu/LDC96T10
MUC-7	1997	New York Times news	7	https://catalog.ldc.upenn.edu/LDC2001T02
CoNLL03	2003	Reuters news	4	https://www.clips.uantwerpen.be/conll2003/ner/
ACE	2000 - 2008	Transcripts, news	7	https://www.ldc.upenn.edu/collaborations/past-projects/ace
OntoNotes	2007 - 2012	Magazine, news, web, etc.	18	https://catalog.ldc.upenn.edu/LDC2013T19
W-NUT	2015 - 2018	User-generated text	6/10	http://noisy-text.github.io
BBN	2005	Wall Street Journal	64	https://catalog.ldc.upenn.edu/LDC2005T33
WikiGold	2009	Wikipedia	4	https://figshare.com/articles/Learning_multilingual_named_entity_
		-		recognition_from_Wikipedia/5462500
WiNER	2012	Wikipedia	4	http://rali.iro.umontreal.ca/rali/en/winer-wikipedia-for-ner
WikiFiger	2012	Wikipedia	112	https://github.com/xiaoling/figer
HYENĂ	2012	Wikipedia	505	https://www.mpi-inf.mpg.de/departments/databases-and-
				information-systems/research/yago-naga/hyena/
N^3	2014	News	3	http://aksw.org/Projects/N3NERNEDNIF.html
Gillick	2016	Magazine, news, web, etc.	89	https://arxiv.org/e-print/1412.1820v2
FG-NER	2018	Various	200	https://fgner.alt.ai/
NNE	2019	Newswire	114	https://github.com/nickyringland/nested_named_entities
GENIA	2004	Biology and clinical text	36	http://www.geniaproject.org/home
GENETAG	2005	MEDLINE	2	https://sourceforge.net/projects/bioc/files/
FSU-PRGE	2010	PubMed and MEDLINE	5	https://julielab.de/Resources/FSU_PRGE.html
NCBI-Disease	2014	PubMed	1	https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
BC5CDR	2015	PubMed	3	http://bioc.sourceforge.net/
DFKI	2018	Business news and social media	7	https://dfki-lt-re-group.bitbucket.io/product-corpus/

"#Tags" refers to the number of entity types.


Source: Jing Li, Aixin Sun, Jianglei Han, and Chenliang LI (2022). "A survey on deep learning for named entity recognition." IEEE Transactions on Knowledge and Data Engineering 34, no. 1 (2022): 50-70.

NER System	URL
StanfordCoreNLP OSU Twitter NLP Illinois NLP	https://stanfordnlp.github.io/CoreNLP/ https://github.com/aritter/twitter_nlp http://cogcomp.org/page/software/
NeuroNER	http://neuroner.com/
NERsuite	http://nersuite.nlplab.org/
Polyglot Gimli	https://polyglot.readthedocs.io http://bioinformatics.ua.pt/gimli

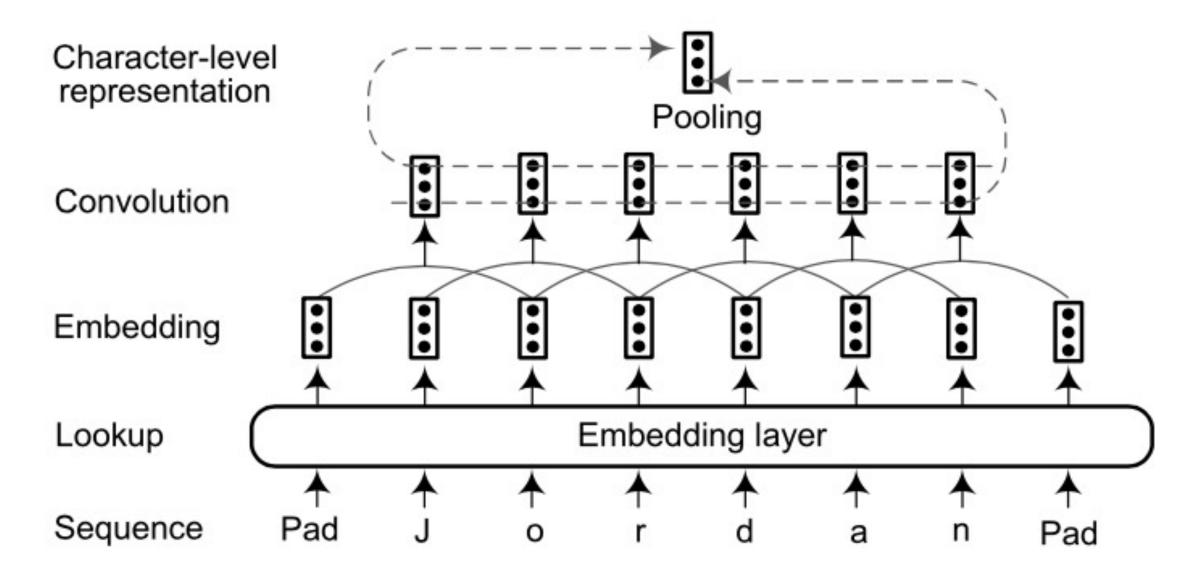
NER System	URL
spaCy	https://spacy.io/api/entityrecognizer
ŃLTK	https://www.nltk.org
OpenNLP	https://opennlp.apache.org/
LingPipe	http://alias-i.com/lingpipe-3.9.3/
AllenNLP	https://demo.allennlp.org/
IBM Watson	https://natural-language-understanding-demo. ng.bluemix.net/
FG-NER	https://fgner.alt.ai/extractor/
Intellexer	http://demo.intellexer.com/
Repustate	https://repustate.com/named-entity-recognition- api-demo/
AYLIEN	https://developer.aylien.com/text-api-demo
Dandelion API	https://dandelion.eu/semantic-text/entity- extraction-demo/
displaCy	https://explosion.ai/demos/displacy-ent
ParallelDots	https://www.paralleldots.com/named-entity- recognition
TextRazor	https://www.textrazor.com/
	named_entity_recognition

27

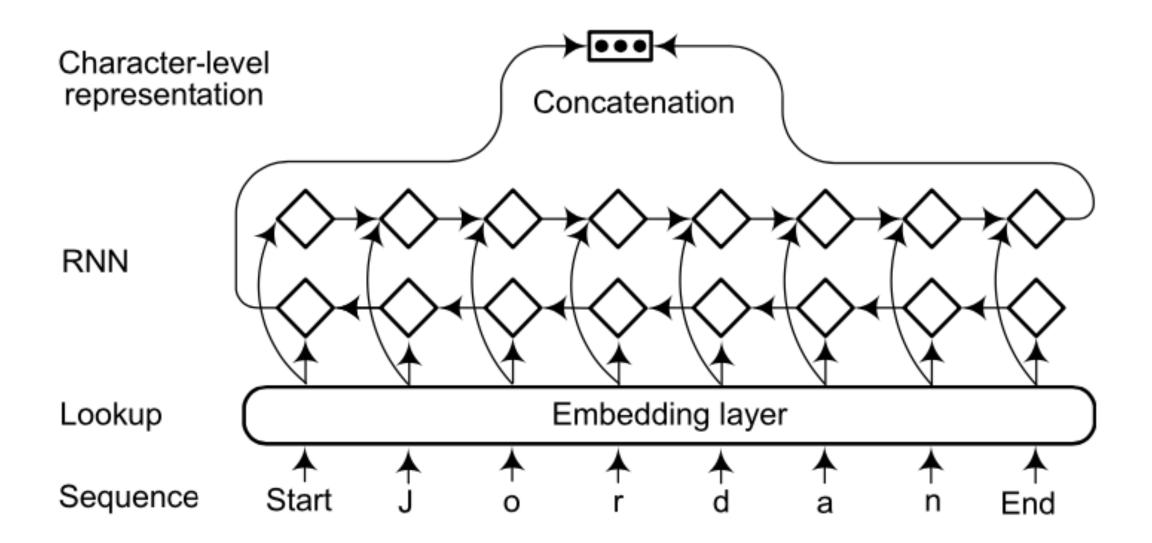
B-PER I-PER E-PER O O O S-LOC O B-LOC E-LOC O Michael Jeffrey Jordan was born in Brooklyn , New York .

Michael Jeffrey Jordan was born in Brooklyn, New York.

28

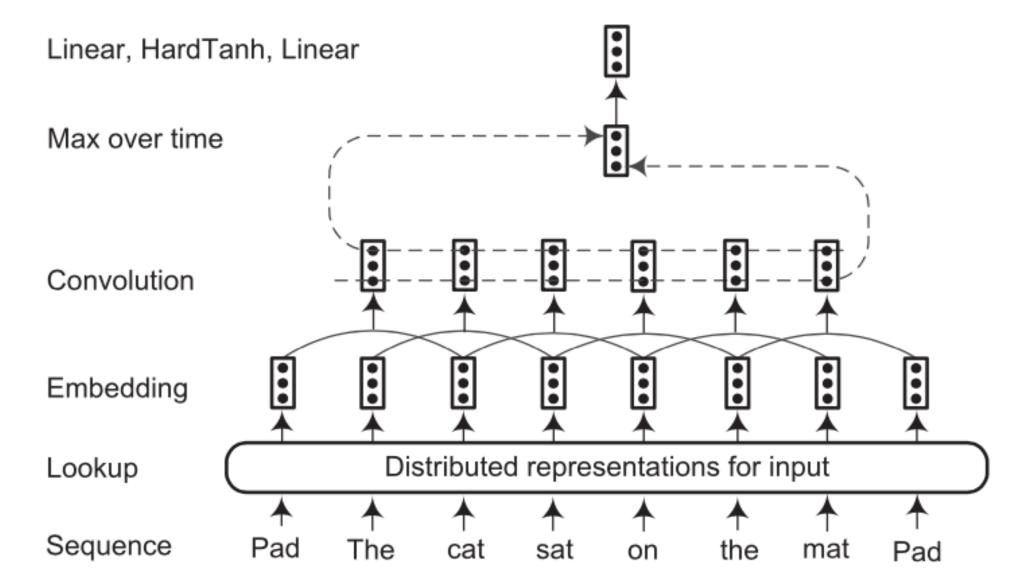

- Distributed Representations for Input
 - Hybrid Representation
- Context Encoder Architectures
 - Deep Transformer
- Tag Decoder Architectures
 - Conditional Random Fields (CRF)

- Distributed Representations for Input
 - Word-Level Representation
 - Character-Level Representation
 - Hybrid Representation

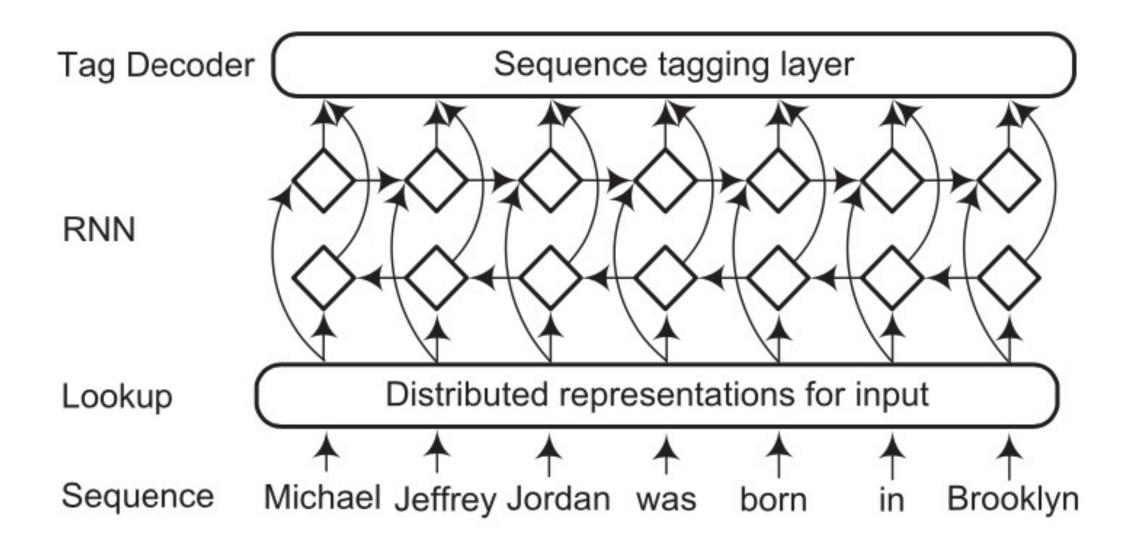

- Context Encoder Architectures
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - Recursive Neural Networks
 - Neural Language Models
 - Deep Transformer

- Tag Decoder Architectures
 - Multi-Layer Perceptron + Softmax
 - Conditional Random Fields (CRF)
 - Recurrent Neural Networks
 - Pointer Networks

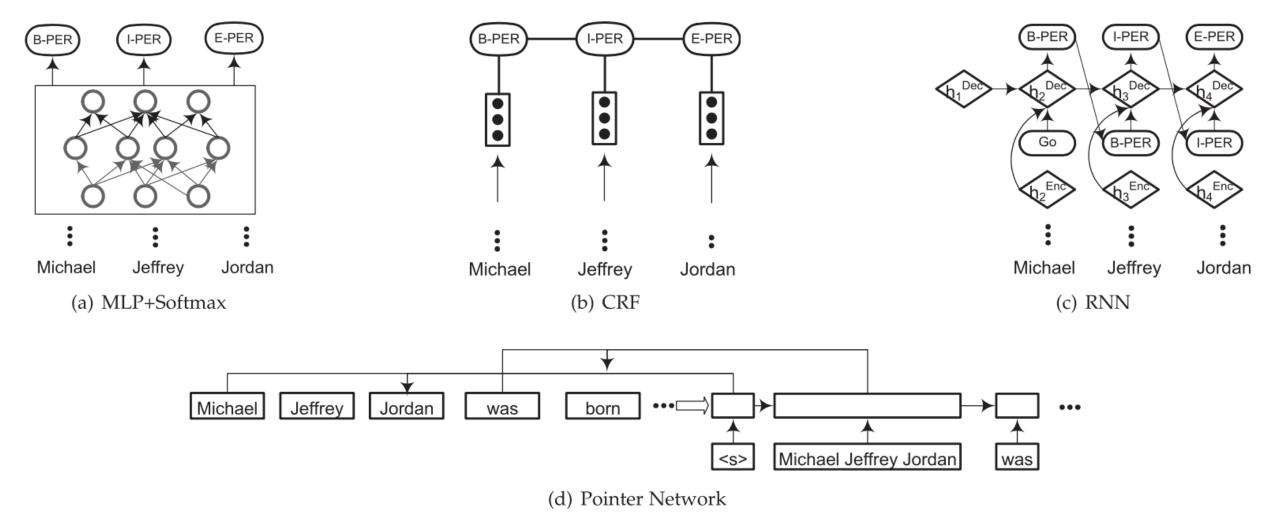
CNN-based character-level representation



RNN-based character-level representation



34


Sentence approach network based on CNN

The architecture of RNN-based context encoder

Named Entity Recognition (NER) Four tag decoders: MLP+Softmax, CRF, RNN, and Pointer network

Work		Input represer	ntation	_ Context encoder	Tag decoder	Performance (F-score
	Character	Word	Hybrid		0	
[93]	6 2 0	Trained on PubMed	POS	CNN	CRF	GENIA: 71.01%
[88]		Trained on Gigaword	-	GRU	GRU	ACE 2005: 80.00%
[94]	-	Random	-	LSTM	Pointer Network	ATIS: 96.86%
[89]	-	Trained on NYT	-	LSTM	LSTM	NYT: 49.50%
[90]	-	SENNA	Word shape	ID-CNN	CRF	CoNLL03: 90.65%;
						OntoNotes5.0: 86.84%
[95]	-	Google word2vec	-	LSTM	LSTM	CoNLL04: 75.0%
[99]	LSTM	-	-	LSTM	CRF	CoNLL03: 84.52%
[96]	CNN	GloVe	-	LSTM	CRF	CoNLL03: 91.21%
[104]	LSTM	Google word2vec	-	LSTM	CRF	CoNLL03: 84.09%
[19]	LSTM	SENNA	-	LSTM	CRF	CoNLL03: 90.94%
[105]	GRU	SENNA	-	GRU	CRF	CoNLL03: 90.94%
[97]	CNN	GloVe	POS	BRNN	Softmax	OntoNotes5.0: 87.21%
[106]	LSTM-LM	-	-	LSTM	CRF	CoNLL03: 93.09%;
						OntoNotes5.0: 89.71%
[102]	CNN-LSTM-LM	-	-	LSTM	CRF	CoNLL03: 92.22%
[17]	-	Random	POS	CNN	CRF	CoNLL03: 89.86%
[18]	-	SENNA	Spelling, n-gram, gazetteer	LSTM	CRF	CoNLL03: 90.10%
[20]	CNN	SENNA	capitalization, lexicons	LSTM	CRF	CoNLL03: 91.62%;
			- D			OntoNotes5.0: 86.34%
[115]	-	-	FOFE	MLP	CRF	CoNLL03: 91.17%
[100]	LSTM	GloVe	-	LSTM	CRF	CoNLL03: 91.07%
[112]	LSTM	GloVe	Syntactic	LSTM	CRF	W-NUT17: 40.42%
[101]	CNN	SENNA	-	LSTM	Reranker	CoNLL03: 91.62%
[113]	CNN	Twitter Word2vec	POS	LSTM	CRF	W-NUT17: 41.86%
[114]	LSTM	GloVe	POS, topics	LSTM	CRF	W-NUT17: 41.81%
[117]	LSTM	GloVe	Images	LSTM	CRF	SnapCaptions: 52.4%
[108]	LSTM	SSKIP	Lexical	LSTM	CRF	CoNLL03: 91.73%;
						OntoNiotor5 0: 87 050

OntoNotes5.0: 87.95%

Work		Input repres	entation	Context encoder	Tag decoder	Performance (F-score)	
	Character	Word	Hybrid		0		
[118]	-	WordPiece	Segment, position	Transformer	Softmax	CoNLL03: 92.8%	
[120]	LSTM	SENNA	-	LSTM	Softmax	CoNLL03: 91.48%	
[123]	LSTM	Google Word2vec	-	LSTM	CRF	CoNLL03: 86.26%	
[21]	GRU	SENNA	LM	GRU	CRF	CoNLL03: 91.93%	
[125]	LSTM	GloVe	-	LSTM	CRF	CoNLL03: 91.71%	
[141]	-	SENNA	POS, gazetteers	CNN	Semi-CRF	CoNLL03: 90.87%	
[142]	LSTM	GloVe	-	LSTM	Semi-CRF	CoNLL03: 91.38%	
[87]	CNN	Trained on Gigaword	-	LSTM	LSTM	CoNLL03: 90.69%;	
		0				OntoNotes5.0: 86.15%	
[109]	-	GloVe	ELMo, dependency	LSTM	CRF	CoNLL03: 92.4%;	
						OntoNotes5.0: 89.88%	
[107]	CNN	GloVe	ELMo, gazetteers	LSTM	Semi-CRF	CoNLL03: 92.75%;	
			0			OntoNotes5.0: 89.94%	
[132]	LSTM	GloVe	ELMo, POS	LSTM	Softmax	CoNLL03: 92.28%	
[136]	-	-	BERT	-	Softmax	CoNLL03: 93.04%;	
						OntoNotes5.0: 91.11%	
[137]	-	-	BERT	-	Softmax +Dice Loss	CoNLL03: 93.33%;	
						OntoNotes5.0: 92.07 %	
[133]	LSTM	GloVe	BERT, document-level embeddings	LSTM	CRF	CoNLL03: 93.37%;	
			0			OntoNotes5.0: 90.3%	
[134]	CNN	GloVe	BERT, global embeddings	GRU	GRU	CoNLL03: 93.47%	
[131]	CNN	-	Cloze-style LM embeddings	LSTM	CRF	CoNLL03: 93.5%	
[135]	-	GloVe	Plooled contextual embeddings	RNN	CRF	CoNLL03: 93.47%	

Applied Deep Learning for Named Entity Recognition (NER)

- Deep Multi-Task Learning for NER
- Deep Transfer Learning for NER
- Deep Active Learning for NER
- Deep Reinforcement Learning for NER
- Deep Adversarial Learning for NER
- Neural Attention for NER

Named Entity Recognition (NER) Message Understanding Conference (MUC) Corpus

Year	Conf.	Language	Source Type	Data Sources	Task
1987	MUC1	English	Military reports	Fleet Operations	Open ended (no pre-defined template)
1989	MUC2	English	Military reports	Fleet Operations	IE in form of pre-provided template
1991	MUC3	English	Reports from News	Acts of terrorism in Latin America	IE in form of pre-provided template
1992	MUC4	English	Reports from News	Acts of terrorism in Latin America	IE in form of pre-provided template
1993	MUC5	English, Japanese			IE in form of pre-provided template
1995	MUC6	English	Reports Negotiation of Labor		NER, Coreference Resolution, Description of NEs and scenarios
1997	MUC7	English	Reports from News	Reports on various aerial crashes, launch report of various missiles and rockets	NER, Coreference Resolution, Description of NEs and scenarios

Named Entity Recognition (NER) Automatic Content Extraction (ACE) corpus

Corpus	Tasks	Language	Data Source	
ACE 2002	EDT, RDC	English	Newswire	
ACE 2002	EDT, RDC	English	Normanina President	
ACE 2003	EDT	Arabic	Newswire, Broadcast	
ACE 2004	EDT, RDC, LNK	English, Arabic, Chinese	Newswire, Broadcast	
ACE 2005	EDT, EDC, RDC, LNK, Time-Stamping	English, Chinese	Newswire, Newsgroups,	
	EDT, EDC, RDC, LNK	Arabic	Weblogs Broadcast	
ACE 2007	EDT, EDC, RDC, LNK	Arabic, Spanish	Newswire, Weblogs	

Conference on Computational Natural Language Learning (CoNLL) Corpus

Dataset Name	ataset Name Year		Source Type	Data Source	
CoNLL'02	2002	Dutch Newswire Articles		Belgian newspaper "De Morgen"	
CONLL 02	2002	Spanish	Newswire Articles	Spanish EFE News Agency	
CoNLL'03	2003	English	Newswire Articles	Reuters Corpus	
COINEL 05	2003	German	Newswire Articles	Frankfurter Rundschau	

Named Entity Recognition (NER) OntoNotes

Dataset Name	Year	Source Type	Language	Data Source
OntoNotes 1.0	2007	Newswire Articles	English	Wall Street Journal
Ontonotes 1.0	2007	Newswire Articles	Mandarin Chinese	Xinhua News Agency and Sinorama Magazine
OntoNotes 2.0	2008	Broadcast News	English	VoA, Public Radio International, NBC, CNN and ABC
	2008	Broadcast News	Mandarin Chinese	VoA, China Television System, China Broadcasting System, China Central TV, and China National Radio
Outo Natas 2.0	2009	Broadcast Conversation	English	Phoenix TV and China Central TV
OntoNotes 3.0	2009	Broadcast Conversation	Mandarin Chinese or Chinese	Phoenix TV and China Central TV
	2009	Newswire Articles	Standard Arabic or Arabic	An-Nahar
	2011	Weblogs, Newsgroups	English	English P2.5
OntoNotes 4.0	2011	Weblogs, Newsgroups	Mandarin Chinese or Chinese	Dev09, P2.5
	2011	Newswire Articles	Standard Arabic or Arabic	An-Nahar
OrtoNatas 5.0	2013	Telephone, Pivot	English	English CallHome, New Testament, Old Testament
OntoNotes 5.0	2013	Telephone	Mandarin Chinese or Chinese	Chinese CallHome
	2013	Newswire Articles	Arabic	An-Nahar

Named Entity Recognition (NER) Other Datasets

Dataset Name	Language	Data Source			
MET [9]	Spanish, Japanese	MUC-6 dataset			
IJCNLP [10]	Telugu, Bengali, Urdu, Hindi, Oriya	History of India including places and festivals			
KPU-NE [11]	Urdu	Fifteen various sources including Education, Health, Science, Novels			
Weibo [12]	Chinese	1,890 messages from social service provider "Weibo" with four entities GPE, person, location, and organization			
Evalita	Italian	Tweets			
Evalita	Italian	525 News stories taken from "L'Adige"			
IREX	Japanese	Mainichi Newspaper			
Mongolian [13]	Mongolian	33,209 sentences from news website			

Named Entity Recognition (NER) and Relation Extraction (RE)

Study Type	Pre 2000	2001-	2005	2006-	2010	2011-	2015	Post 2	2015
	NER	NER	RE	NER	RE	NER	RE	NER	RE
Rule-based	0	0	0	1	2	0	0	1	0
Supervised	2	3	4	4	2	2	1	4	0
Semi Supervised	1	1	3	0	5	2	4	0	0
Distant Supervised	0	0	0	0	2	0	3	0	0
Unsupervised	0	1	2	1	2	1	1	1	0
Deep Learning	0	0	0	1	0	4	2	18	10
Joint Modeling	0	0	0	1	3	0	2	0	2
Transfer Learning	0	0	0	0	0	1	0	10	2
Survey	0	0	0	1	1	4	1	4	4
Total	3	5	9	9	17	14	14	38	18

	Technique ¹		F	Feat	ures/ Properties	Typ ²]	Results	5	Lang.	Dataset
		E	W	C	0		Р	R	F		
[21]	HMM,	-	Y	Y		HR				English	CONLL
	MEMM									German	CONLL
[22]	Semi-CRF, JM	Y	Y		Brown Clusters, Wiki	HR	91.5	91.4	91.2	English	CONLL
[26]	US	Y			Heuristics		Low	High			MUC-7
[27]	MLP		Y		Sliding Window	HR	87.41	86.15	86.76	English	Commercial offers
							85.57	86.22	85.95		Seminar Announ.
[28]	MLP	Y			Skip-gram	HR			90.9	English	CONLL
									82.3		OntoNotes
[29]	RNN		Y	Y	Language Model	HR			91.93	English	CONLL
[30]	Bi-LSTM		Y	Y	Language Model	HR			92.22	English	CONLL
[32]	Neuro-CRF		Y			HR			89.62	English	CONLL
[33]	Neuro-CRF		Y	Y	Bi-LSTM	HR				English	CONLL
[54]	Neuro-CRF		Y	Y	Bi-LSTM	HR	Multi	ple lan	guage	s are used	•
[34]	Neuro-CRF		Y		CNN, Iterated	HR			90.65	English	CONLL
					Dilation				84.53		OntoNotes5
[35]	Neuro-CRF		Y		Memory Network				89.5	English	CONLL
[42]	НММ	Y	Y	Y	Lexicalized HMM	OTH				Chinese	Multiple Chinese Datasets
[11]	MLP	-	Y	-	Context Window	OTH	81.05	87.54	84.17	Urdu	KPU-NE
[47]	SS				TBL	OTH	76.45	99.20	86.36	Filipino	Asian Hist. Ref.
[48]	SS		Y	Y	Bootstrapping,	ОТН	73.03	71.62	72.31	Dutch	CONLL
[40]	33		1	1	linguistic rules		78.19	76.14	77.15	Spanish	CONLL

	Technique ¹		F	Feat	ures/ Properties	Typ ²]	Results	5	Lang.	Dataset
		E	W	С	0		Р	R	F		
[49]	SS	Y	Y		Iterative	отн				Indon- esian	75 Wikipedia Articles
[74]	RNN	Y	Y		Early Stopping, Weight Decay		85.69	80.10	82.81	Italian	Evalita (Tweets and News)
[50]	DNN		Y	Y	Bi-GRU, AdaGrad	OTH			89.92	Czech	News
[52]	DNN		Y	Y	Co-training	OTH			94.56	Vietnam	VLSP
[53]	Neuro-CRF		Y	Y	LSTM, GRU, SCRN	OTH			90.89	Korean	ETRI
[72]	Heuristic	D	-	-		DOM	99.57	93.75	96.52	English	Dietary Recom.
[73]	CRF	D	Y			DOM	67.81	52.52	58.46	English	Micropost Twitter
[87]	US				Phrase Chunking	DOM			15.2	English	GENIA
									26.5		Pittsburgh
[74]	RNN	Y	Y		Early Stopping, Weight Decay	DOM	85.69	80.10	82.81	Italian	Evalita
[88]	LSTM		Y	Y		DOM	82.70	86.70	84.60	English	Pubmed Abstracts
[75]	LSTM	Y	Y	Y	Cross domain learning	DOM			59.78	Chinese	Social Media
[79]	CNN		Y		One vs rest	DOM			88.64	Chinese	Discharge Summ.
					approach				91.13		Progress Note
[80]	Neuro-CRF				Document level		87.38	87.38	87.38	Chinese	Marriage Judge.
					features		94.49	88.60	91.45		Contract Judge.

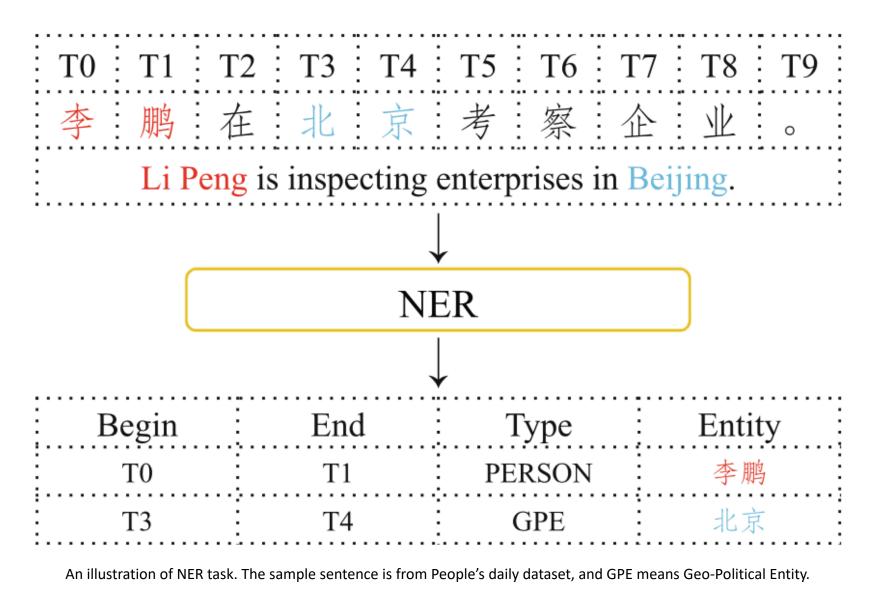
	Technique ¹			Fe	atures/ Properties	Typ ²]	Results	5	Lang.	Dataset
		E	W	C	0		Р	R	F		
[38]	HMM	-	Y	-	-	MUL	96.00	93.00	94.47	English	MUC-6
									90.00	Spanish	MET-1
[40]	MEMM	Y	Y		Reference	MUL			90.25	English	MUC-7
					Resolution				83.80	Japanese	MET-2
									77.37	Japanese	IREX
[41].	CRF	Y	Y						84.04	English	CONLL
									68.11	German	CONLL
study [43]	CLM	Y	Y	Y	Language Models, CogCompNLP	MUL	parv	orman with re ramew	ecent	Tagalog, Somali, Hindi, Farsi, Bengali, Arabic, Amharic and English	
[61]	Neuro-CRF	Y	Y			MUL			70.90	М	arathi
					Bi-LSTM and CRF for				55.57	В	engali
					NER, CNN for word features				64.27	Ma	layalam
									60.25]	Гamil
[60]	TL	Y	Y		Wikipedia, Translation of lexical resources, Cross-lingual NER	MUL	Training of each model using English and one Turkish, Ber		rman, Spanish, Bengali, Tamil, a, Uyghur		

¹SS, US, TL denote semi-supervised, unsupervised, respectively, and transfer learning.

²HR, OTH, MUL denotes high-resource, others, and multiple languages, respectively.

Relation Extraction (RE)

Study	Study Technique		luation M	etrics	Features/ Model Properties	Dataset/ Genre	
		Р	R	F			
[105]				52.8	Lexical, Semantic and	ACE'02	
[105]	MEMM			55.2	Syntactic	ACE'03	
[88]	Bi-LSTM	67.5	75.8	71.4	- Stacked LSTM Model	PubMed abstracts	
[99]	Heuristic	68	83	75	Conjunction, Negation	LLL'05 workshop	
[101]	Heuristic	75.5	62.1	68.1	Syntactic Parser, DBPedia	Quaero News	
[107]	SVM	77.2	60.7	68.0	Lexical, Semantic, Syntactic, External Lexicon	ACE'03	
[109]	SVM	82.7	91.3	86.0	Kernels and voted perceptron	200 newswire and publications	
[110]	SVM	70.3	26.3	38.0	Tree Kernel	ACE	
[111]	SVM	76.1	68.4	72.1	Tree Kernel	ACE'03	
[113]	Bootstrapping with SVM	63.2	61.5	60.3	Radial Bias Kernel	Self-annotated	
[115]	CRF	73.4	56.1	63.6	Relational pattern features. Word, external	Wikipedia articles	
[94]	SS				BootStrapping, Ontology	Sports and Companies web pages	
[117]	SVM				Semantic Classes, Partial Pattern	TSUBAKI	
[118]	SS	57.0			KBs, Tensor Decomposition	New York Times dataset [119]	
[119]	Collaborative Filtering	69.0			KB, Universal Schemas	New York Times dataset	

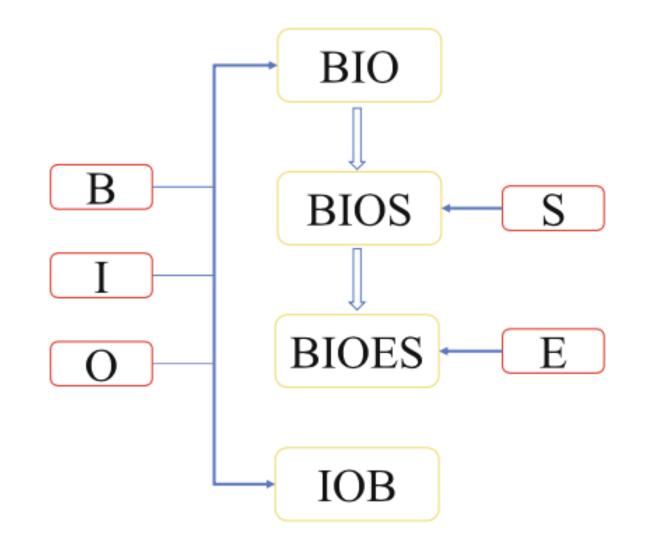

Relation Extraction (RE)

Study	Technique	Eval	Evaluation Metrics Featu		Features/ Model Properties	Dataset/ Genre
		Р	R	F		
[116]	Multi-class Logistic Regression	68.0			KBs, Lexical and Syntactical Features	Self-annotated using Mechanical Turk
[121]	DS	87.0			SampleRank, CRF, FreeBase	New York Times dataset
[123]	Logistic Regression	78.2	68.2	66.7	Freebase, EM	Wikipedia articles
[144]	LSTM				Attention Mechanism	NYT
[145]	CNN	Ad	Accuracy: 86.2 77.3		Semantic Jaccard	Wikipedia Articles New York Times
[146]	Piece-wise CNN	46.9	44.5	45.7	Word-level attention model	NYT [121]
[147]	Multi-path CNN	77.0			Word and sentence level attention model	NYT [121]
[154]	Clustering	77.5	78.5	77.5	Hierarchy NER, Complete Linkage	NYT
[125]	US				Unsupervised Feature Subset Selection, K-means	
[126]	US	A	ccuracy: 7	9.5	Chunking Information, Hierarchical Clustering	News
[127]	HMM	85.1				Web-pages
[128]	US	89.7	68.4	77.6	Hierarchical Clustering	Cluewebset'09

Relation Extraction (RE)

Study	Technique	Eva	luation M	etrics	Features/ Model Properties	Dataset/ Genre
		Р	R	F		
[138]	RNN	82.4		82.4	POS Tags, NER Tags, Wordnet Hypernyms	SemEval 2010
[139]	CNN	82.7		82.7	Wordnet	SemEval 2010
[140]	CNN	88.0		88.0	Multi-level Attention Model	SemEval 2010
[141]	RNN	79.0		79.0	Skip-gam-based Word Vectors	SemEval 2010
[142]	LSTMs	72.9	70.8	67.9	Dynamic models	CONLL'04
[129]	Viterbi	54.0	68.4	58.14	Inferencing	TREC documents
[130]	Joint Model	90.1 73.0	91.8 62.7	91.3 66.0	POS Tags, Context Words, Hybrid Model including SVM, CYK-Parsing	TREC documents [129]
[155]	Joint Model	94.0 76.0			Graph	New York Times data
[131]	Joint Model	93.4 72.6	93.4 64.3	93.4 68.2	BootStrapping with Markov Models and CRF, Joint Model	Wikipedia
[148]	Joint Model	83.5 64.7	76.2 38.5	79.7 48.3	Casing, Gazetteer, Relation	ACE'04
		85.2 68.9	76.9 41.9	80.8 52.1	Features, Perceptron	ACE'05
[132]	Joint Model	92.4 83.7	92.4 59.9	92.4 69.8	History Info., Structured Learning	TREC documents [129]
[149]	Joint Model	80.8 48.7	82.9 48.1	81.8 48.4	Bi-directional LSTM	ACE'04
		82.9 57.2	83.9 54.0	83.4 55.6		ACE'05
[143]	LSTM, Capsule	30.8	63.7	41.6	Attention re-routing,	NYT
	Networks			84.5	position embedding	SemEval-2010
[150]	Transfer Learning				Knowledge bases	Wiki-KBP NYT

Chinese Named Entity Recognition (CNER)


Language	Ref.	Year	Торіс
Universal	[1]	2007	A survey of named entity recognition and classification
Universal	[2]	2008	Named entity recognition approaches
Universal	[3]	2013	Techniques for named entity recognition: a survey
Universal	[4]	2018	An overview of named entity recognition
Universal	[5]	2018	Recent named entity recognition and classification techniques: a systematic review
Universal	[6]	2019	A survey on named entity recognition
Universal	[7]	2020	A survey on deep learning for named entity recognition
Universal	[8]	2020	A survey of named-entity recognition methods for food information extraction

Language	Ref.	Year	Торіс
Arabic	[13]	2017	A comparative review of machine learning for Arabic named entity recognition
Arabic	[14]	2019	Arabic named entity recognition using deep learning approach
Arabic	[15]	2019	Arabic named entity recognition: What works and what's next
Indian	[16]	2010	A survey of named entity recognition in English and other Indian languages
Indian	[17]	2011	A survey on named entity recognition in Indian languages with particular reference to Telugu
Indian(Assamese)	[18]	2014	A survey of named entity recognition in Assamese and other Indian languages
Indian(Hindi)	[19]	2016	Survey of named entity recognition systems with respect to Indian and foreign languages
Indian	[20]	2017	Survey of named entity recognition techniques for various Indian regional languages
Indian(Hindi)	[21]	2019	Named entity recognition for Hindi language: A survey
Indian	[22]	2019	Named entity recognition: A survey for Indian languages
Indian(Hindi)	[23]	2020	A survey on various methods used in named entity recognition for hindi language
English	[24]	2013	Named entity recognition in english using hidden markov model
Marathi	[25]	2016	Issues and Challenges in Marathi Named Entity Recognition
Turkish	[26]	2017	Named entity recognition in Turkish: Approaches and issues
Spanish	[27]	2020	Named entity recognition in Spanish biomedical literature: Short review and bert model

Public datasets of Chinese NER

	Corpus	#Tags	Entity types	URL
	WEIBO	4	Person, Location, Organization and Geo- political	https://github.com/ hltcoe/golden-horse
	MSRA	3	Person, Location, Organization	https://github.com/ InsaneLife/ ChineseNLPCorpus/ tree/master/NER/MSRA
	People's Daily	4	Person, Organization, Geo- political, Date	https://github.com/ GuocaiL/nlp_corpus/ tree/main/ open_ner_data/ people_daily
	bosonNLP	6	Person, Location, Organization, Company, Product, Time	https://github.com/ InsaneLife/ ChineseNLPCorpus/ tree/master/NER/boson
	RESUME	8	Person, Location, Organization, Country, Education, Profession, Race, Title	https://github.com/ GuocaiL/nlp_corpus/ tree/main/ open_ner_data/ ResumeNER
#Tags: the number of entity types	OntoNotes Release 5.0	18	Preson, NORP, Facility, Organization, GPE, Location, Product, Event, Work of art, Law, Language, Date, Time, Percent, Money, Quantity, Ordinal, Cardinal	https://doi.org/ 10.35111/xmhb-2b84
	CLUENER 2020	10	Address, Book, Company, Game, Government, Movie, Name, Organization, Position, Scene	https://github.com/ CLUEbenchmark/ CLUENER2020

Evolution of four commonly used tag schemes

李鹏:在北京考察:企业: ELi Peng is inspecting enterprises in Beijin Regular expression Dictionary [张三(Zhangsan), Last name(李,王,...) 李鹏(Lipeng), + First name(鹏,...) 王五(Wangwu)...]

An illustration of rule-based methods. A person's name is matched by a regular expression and a dictionary.

Lexicon	朝阳 (morning sun)	明朝 (Ming Dynasty)	朝鲜半岛 (Korean Peninsula)	朝夕 (morning and evening)
Glyph	D Oracle Bone Script	پ اہا Bronze Script	朝 Clerical Script	朝 Regular Script
Radical	(ten)	日 (sun)	+ (ten)	月 (moon)
Stoker]		ノフーー

The illustration of some external information of the character "朝"

Source: Pan Liu, Yanming Guo, Fenglei Wang, and Guohui Li (2022). "Chinese named entity recognition: The state of the art." Neurocomputing 473 (2022): 37-53.

Named Entity Recognition (NER) Improvement brought by BERT in different works

Work	Dataset	Model	F1(%)	Improvement(%)	Year
[63]	MSRA	Word2Vec + radical + BGRU-CRF	90.45	4.97	2019
		BERT + radical + BGRU-CRF	95.42		
[74]	MSRA	PLTE	93.26	1.27	2020
		PLTE[BERT]	94.53		
	Ontonotes	PLTE	74.60	6.00	
		PLTE[BERT]	80.60		
	Weibo	PLTE	55.15	14.08	
		PLTE[BERT]	69.23		
[75]	MSRA	SoftLexicon(LSTM)	93.66	1.76	2020
		SoftLexicon(LSTM)+BERT	95.42		
	Ontonotes	SoftLexicon(LSTM)	75.64	7.17	
		SoftLexicon(LSTM)+BERT	82.81		
	Weibo	SoftLexicon(LSTM)	61.42	9.08	
		SoftLexicon(LSTM)+BERT	70.50		
[76]	CCKS2018	Word2Vec + CRF	69.01	21.53	2020
		BERT + CRF	90.54		
		Word2Vec + BILSTM-CRF	75.60	15.83	
		BERT + BILSTM-CRF	91.43		

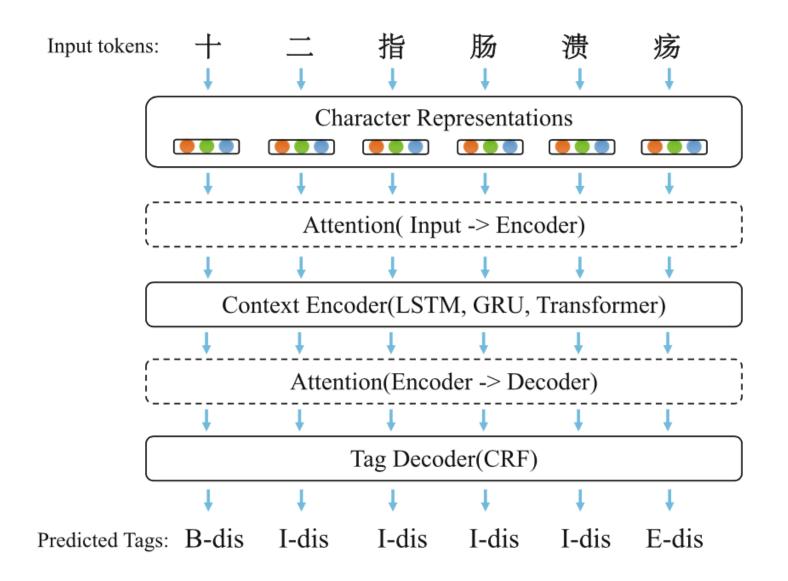
Named Entity Recognition (NER) The effect of POS and radical information

Work	Dataset	Model	F1(%)	Improvement(%)	Year
[55]	MSRA	random + dropout	88.91	0.53	2016
		random + radical + dropout	89.44		
[58]	CCKS2018	LSTM-CRF	67.32	11.62	2019
		POS + LSTM-CRF	78.94		
		SM-LSTM-CRF	69.91	10.16	
		POS + SM-LSTM-CRF	80.07		
[60]	CCKS2017	BILSTM-CRF	88.78	Baseline	2019
		BILSTM-CRF + radical	89.64	0.86	
		BILSTM-CRF + POS	89.06	0.28	
		BILSTM-CRF + radical + POS	90.12	1.34	
		Att-BILSTM-CRF	90.11	Baseline	
		Att-BILSTM-CRF + radical	90.96	0.85	
		Att-BILSTM-CRF + POS	90.81	0.70	
		Att-BILSTM-CRF + radical + POS	91.35	1.24	
[61]	CCKS2017	CRF	85.14	1.87	2019
		POS + CRF	87.01		
		BILSTM-CRF	89.66	-0.11	
		POS + BILSTM-CRF	89.55		
	CCKS2018	CRF	82.49	0.93	
		POS + CRF	83.42		
		BILSTM-CRF	84.13	-0.17	
		POS + BILSTM-CRF	83.96		

Named Entity Recognition (NER) Improvement brought by Glyph information

Work	Dataset	Model	F1(%)	Improvement(%)	Year
[81]	MSRA	BERT	94.80	0.74	2019
		BERT + Glyce	95.54		
		Lattice-LSTM	93.18	0.71	
		Lattice-LSTM + Glyce	93.89		
[57]	MSRA	BILSTM-CRF	89.94	1.14	2019
		BILSTM-CRF + glyph embeddings	91.08		
[83]	MSRA	BERT + BILSTM-CRF	95.30	1.19	2019
		BERT + BILSTM-CRF + GLYNN	96.49		

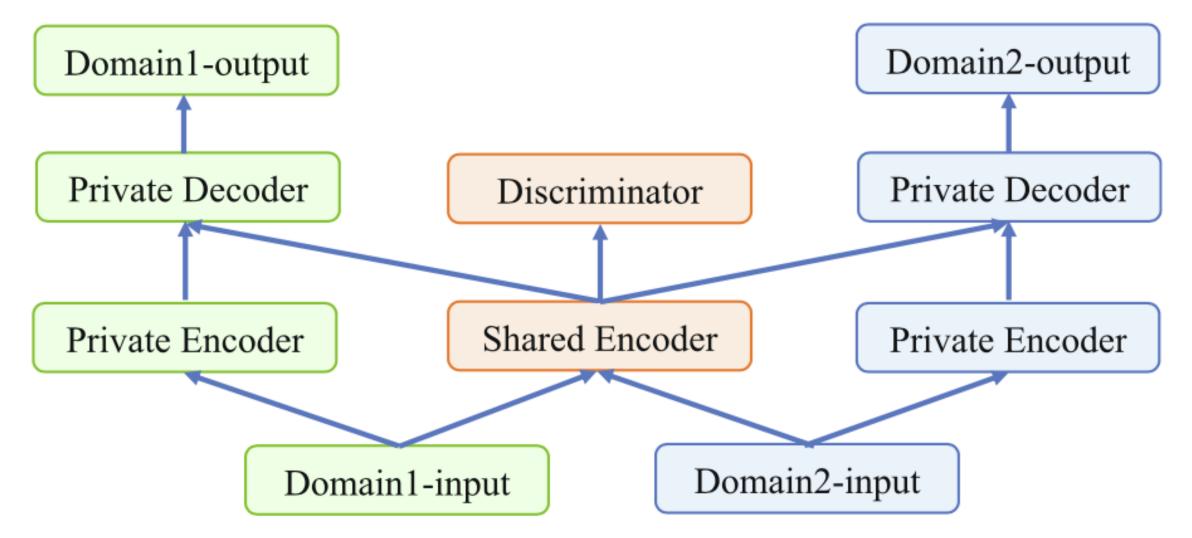
Named Entity Recognition (NER) The illustration of representations of the character "朝"

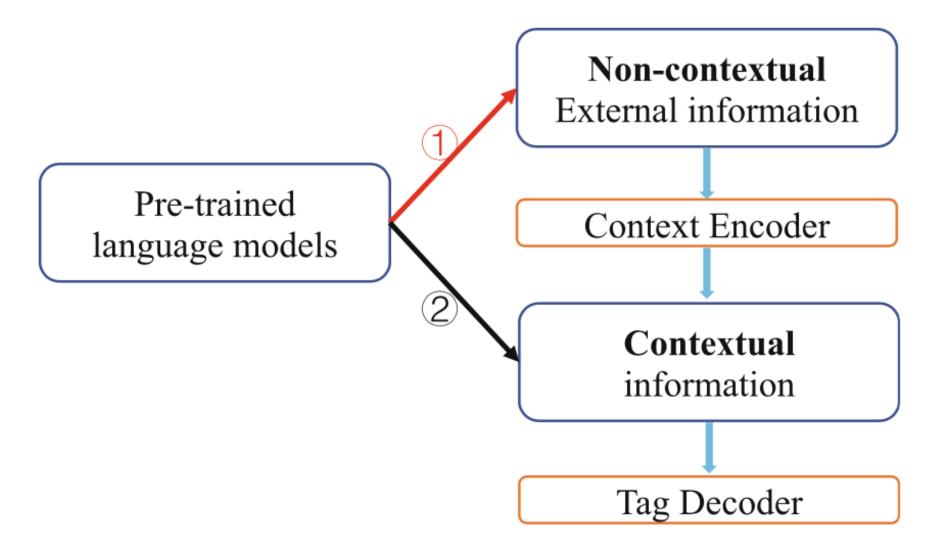

	Pre-trained character embeddings		External Information						
	Lookup tables	Pre-trained language models	POS	Radical Information	Stroke Information	Glyph Information	Lexicon Information	Chinese Word Segmentation	
Illustrations	Ward2vaa Clava	BERT, ELMo, NEZHA, etc.		十日十月		朝		明朝/的/皇帝	
methods	Static embeddings	Contextual embeddings	embeddings	embeddings and RNN	RNN	CNN	Lattice	CWS tools	

Chinese Named Entity Recognition (CNER)

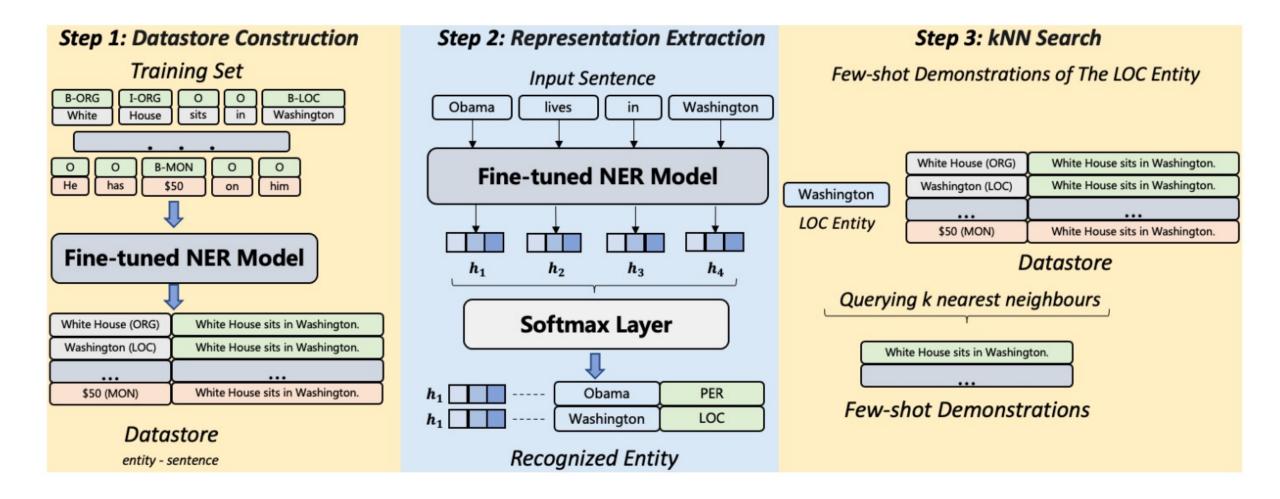
	Characte	er representation	Attention		Attention			
Work	Character embeddings	External Information	Input -> Encoder	Context Encoder	Encoder -> Decoder	Tag Decoder	Performance (F1-score)	Year
[55]		Radical		LSTM		CRF	MSRA:89.78%	2016
	Word2vec						MSRA:90.95%	
[58]	\checkmark	POS		LSTM		CRF	CCKS2018:78.94%	2019
			\checkmark				CCKS2018:80.07%	
[59]	\checkmark			LSTM		CRF	CCKS2018:86.68%	2019
					\checkmark		CCKS2018:87.26%	
[60]	\checkmark	POS, Radical		LSTM		CRF	CCKS2017:90.12%	2019
					\checkmark		CCKS2017:91.35%	
[61]	\checkmark	POS, Dictionary		LSTM	\checkmark	CRF	CCKS2017:90.48%	2019
							CCKS2018:86.11%	
[80]	Word2vec	CWS, Radical, Lexicon,		LSTM		CRF	CCKS2017:91.75%	2020
		Stroker					CCKS2018:90.05%	
[76]	Word2vec			0		CRF	CCKS2018:69.01%	2020
	BERT						CCKS2018:90.54%	
	ERNIE						CCKS2018:93.37%	
	ALBERT						CCKS2018:87.68%	
	NEZHA						CCKS2018:93.58%	
	Word2vec			LSTM			CCKS2018:75.60%	
	BERT						CCKS2018:91.43%	
	ERNIE						CCKS2018:93.11%	
	ALBERT						CCKS2018:90.12%	
15.01	NEZHA					CD F	CCKS2018:95.08%	2010
[56]	Sogou news	Radical		LSTM	,	CRF	Peoples'Daily:92.06%	2019
[(2)]	Word2vec	Desition as much to the		CDU	\checkmark	CDE	Peoples'Daily:94.37%	2010
[62]	\checkmark	Position, segmentation	Conselection	GRU		CRF	WEIBO:53.80% MSRA:90.32%	2019
			Concolution -		,		WEIBO:55.91% MSRA:92.34%	
			attention		\checkmark		WEIBO:59.31% MSRA:92.97%	

Chinese Named Entity Recognition (CNER)


	Character	representation	Attention		Attention			
Work	Character embeddings	External Information	Input -> Encoder	Context Encoder	Encoder -> Decoder	Tag Decoder	Performance (F1-score)	Year
[63]	Word2vec BERT	Radical		GRU		CRF	MSRA:90.45% MSRA:95.42%	2019
[77]	Conv-GRU Embedding	Word, Radical		GRU		CRF	WEIBO:68.93% MSRA:91.45%	2019
[88]	\checkmark	Dictionary		LSTM		CRF	CCKS2017:91.24%	2019
[64]		Lexicon, Word		LSTM		CRF	WEIBO:63.09% MSRA:93.47%	2019
[65]	\checkmark	Word, Position		LSTM	\checkmark	CRF	WEIBO:59.5% MSRA:92.99%	2020
[81]	BERT	Glyph		Transformer		CRF	WEIBO:67.60% MSRA:95.54%	2019
[57]	Wikipedia GloVe	Glyph		LSTM		CRF	MSRA:91.11%	2019
[82]	BERT	Radical, Glyph		LSTM		CRF	WEIBO:70.01% MSRA:95.51%	2020
[83]	BERT	Glyph		LSTM		CRF	WEIBO:71.81% MSRA:96.49%	2019
[66]	\checkmark	Radical, Word	\checkmark	GRU		CRF	WEIBO:71.86% MSRA:92.71%	2020
[67]	\checkmark	Adapted GGNN Gazetteers		LSTM		CRF	WEIBO:59.5% MSRA:94.4%	2020
[85]	\checkmark	Lexicon		Lattice-LSTM		CRF	WEIBO:58.79% MSRA:93.18%	2018
[86]	v v	Lexicon		WC-LSTM		CRF	WEIBO:59.84% MSRA:93.36%	2019
[74]	\checkmark	Lexicon		PLTE		CRF	WEIBO:55.15% MSRA:93.26%	2019
	BERT						WEIBO:69.23% MSRA:94.53%	
[87]	BERT			MLP		CRF	WEIBO:68.20% MSRA:94.95%	2020
	\checkmark	Lexicon		FLAT			WEIBO:63.42% MSRA:94.35%	
	BERT						WEIBO:68.55% MSRA:96.09%	
[75]	√ BERT	SoftLexicon		LSTM		CRF	WEIBO:61.42% MSRA:93.66% WEIBO:70.50% MSRA:95.42%	2020
[99]	BERT	Lexicon, radical		Transformer	\checkmark	CRF	WEIBO:70.43% MSRA:96.24%	2021


Chinese Named Entity Recognition (CNER) using attention modules

Work	Dataset	Model	F1(%)	Improvement(%)
[58]	CCKS2018	LSTM-CRF	67.32	2.59
		SM-LSTM-CRF	69.91	
		POS + LSTM-CRF	78.94	1.13
		POS + SM-LSTM-CRF	80.07	
[60]	CCKS2017	BILSTM-CRF	88.78	1.33
		Att-BILSTM-CRF	90.11	
		BILSTM-CRF + radical	89.64	1.32
		Att-BILSTM-CRF + radical	90.96	
		BILSTM-CRF + POS	89.06	1.75
		Att-BILSTM-CRF + POS	90.81	
		BILSTM-CRF + radical + POS	90.12	1.23
		Att-BILSTM-CRF + radical + POS	91.35	
[59]	CCKS2018	BILSTM-CRF	86.68	0.58
		Attention-BILSTM-CRF	87.26	
		BILSTM-CRF + dictionary	87.71	0.58
		Attention-BILSTM-CRF + dictionary	88.29	
[56]	CCKS2018	char	86.09	3.17
		char + attention	89.26	
		char + word	90.74	3.74
		char + word + attention	94.48	

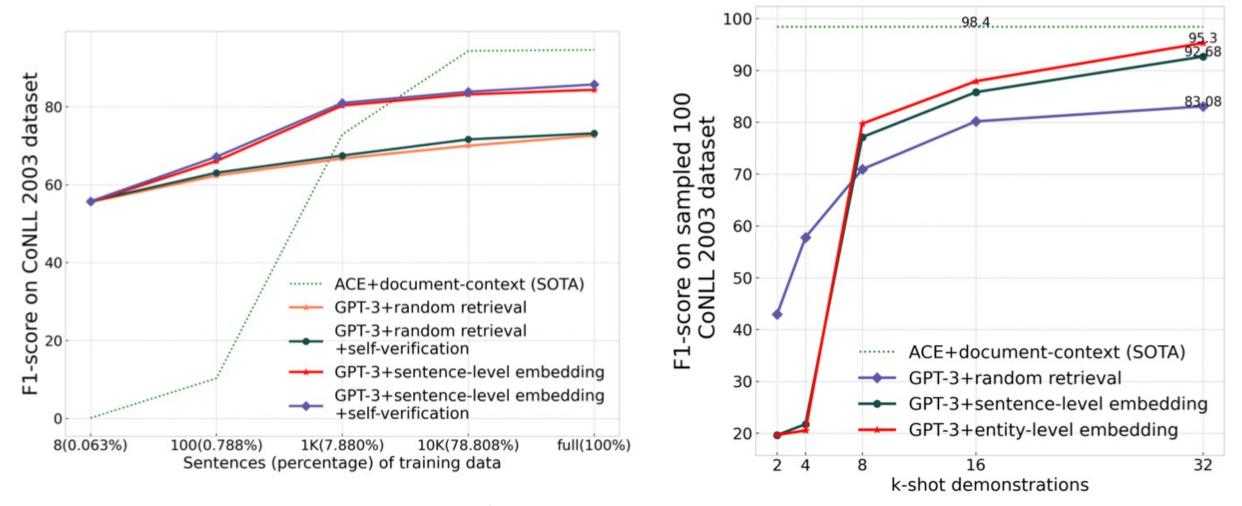

Schematic diagram of cross-domain adversarial transfer learning

Two ways of concatenating the representations of pre-trained language models and external information

GPT-NER: Named Entity Recognition (NER) via LLM Entity-level embedding to retrieve few-shot demonstrations

GPT-NER: Named Entity Recognition (NER) via LLM

English CoNLL2003 (Sampled 100)					
Model	Precision	Recall	F1		
Baselines (Supervi	ised Model)				
ACE+document-context (Wang et al., 2020)	97.8	98.28	98.04 (SOTA)		
GPT-NE	R				
GPT-3 + random retrieval	88.18	78.54	83.08		
GPT-3 + sentence-level embedding	90.47	95	92.68		
GPT-3 + entity-level embedding	94.06	96.54	95.3		
Self-verification (zero-shot)				
+ GPT-3 + random retrieval	88.95	79.73	84.34		
+ GPT-3 + sentence-level embedding	91.77	96.36	94.01		
+ GPT-3 + entity-level embedding	94.15	96.77	95.46		
Self-verification	(few-shot)				
+ GPT-3 + random retrieval	90.04	80.14	85.09		
+ GPT-3 + sentence-level embedding	92.92	95.45	94.17		
+ GPT-3 + entity-level embedding	94.73	96.97	95.85		


Source: Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang (2023). "Gpt-ner: Named entity recognition via large language models." arXiv preprint arXiv:2304.10428 (2023).

GPT-NER: Named Entity Recognition (NER) via LLM

English CoNLL2	003 (FULL)										
Model	Precision	Recall	F1								
Baselines (Supervised Model)											
BERT-Tagger (Devlin et al., 2018)	-	-	92.8								
BERT-MRC (Li et al., 2019a)	92.33	94.61	93.04								
GNN-SL (Wang et al., 2022)	93.02	93.40	93.2								
ACE+document-context (Wang et al., 2020)	-	-	94.6 (SOTA)								
GPT-NE	ER .										
GPT-3 + random retrieval	77.04	68.69	72.62								
GPT-3 + sentence-level embedding	81.04	88.00	84.36								
GPT-3 + entity-level embedding	88.54	91.4	89.97								
Self-verification	(zero-shot)										
+ GPT-3 + random retrieval	77.13	69.23	73.18								
+ GPT-3 + sentence-level embedding	83.31	88.11	85.71								
+ GPT-3 + entity-level embedding	89.47	91.77	90.62								
Self-verification	(few-shot)										
+ GPT-3 + random retrieval	77.50	69.38	73.44								
+ GPT-3 + sentence-level embedding	83.73	88.07	85.9								
+ GPT-3 + entity-level embedding	89.76	92.06	90.91								

Source: Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang (2023). "Gpt-ner: Named entity recognition via large language models." arXiv preprint arXiv:2304.10428 (2023).

GPT-NER: Named Entity Recognition (NER) via LLM

Low-resource comparisons on CoNLL2003 dataset.

Comparisons by varying k-shot demonstrations.

Source: Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang (2023). "Gpt-ner: Named entity recognition via large language models." arXiv preprint arXiv:2304.10428 (2023).

NLP with Transformers Github

Why GitHub? - Team Enterpris	e Explore \vee Marketplace Pricing \vee	Search	/ Sig	n in Sign up
Inlp-with-transformers / notes <> Code ⊙ Issues \$\$ Pull requered		🗘 Notificatio	ns 양 Fork 170 ☆ Star	• 1.1k •
Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state Image: Provide the second state		to file Code - go ① 71 commits 25 days ago	About Jupyter notebooks for the N Language Processing with T book	
 data images scripts .gitignore 01_introduction.ipynb 	Move dataset to data directory Add README Update issue templates Initial commit Remove Colab badges & fastdoc refs	4 months ago last month 25 days ago 4 months ago 27 days ago	 	O'REILLY' Natural Language Processing with Transformers Building Language Applications with Hugging Face
 O2_classification.ipynb O3_transformer-anatomy.ipynb O4_multilingual-ner.ipynb O5_text-generation.ipynb 	Merge pull request #8 from nlp-with-transformers/remove-display-d [Transformers Anatomy] Remove cells with figure references Merge pull request #8 from nlp-with-transformers/remove-display-d Merge pull request #8 from nlp-with-transformers/remove-display-d	22 days ago If 26 days ago	Releases No releases published	Lewis Tunstal Leandro von Werre & Thomas Wol
			Packages	

https://github.com/nlp-with-transformers/notebooks

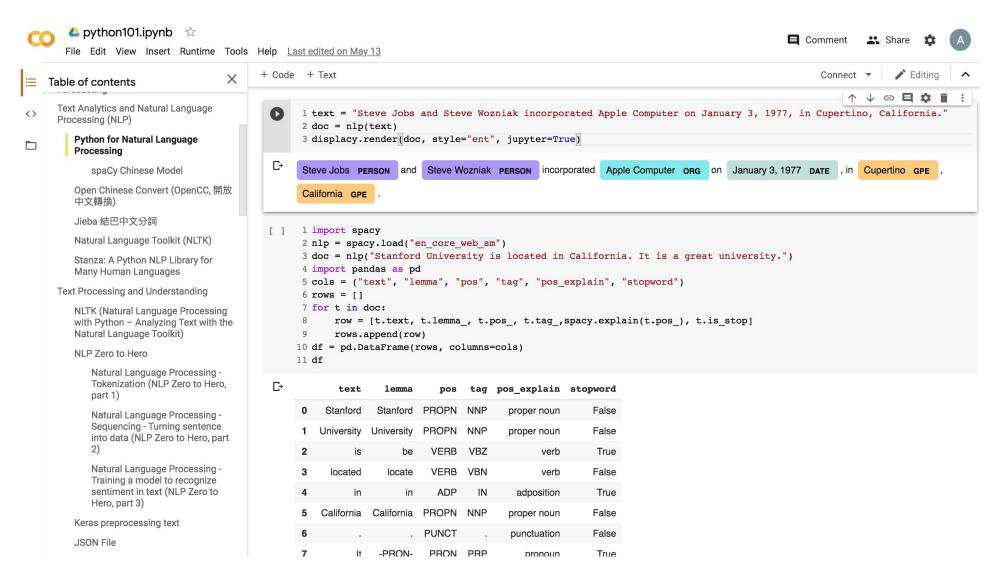
NLP with Transformers Github Notebooks

O'REILLY'

Natural Language Processing with Transformers

Building Language Applications with Hugging Face Lewis Tunstall, Leandro von Werra & Thomas Wolf

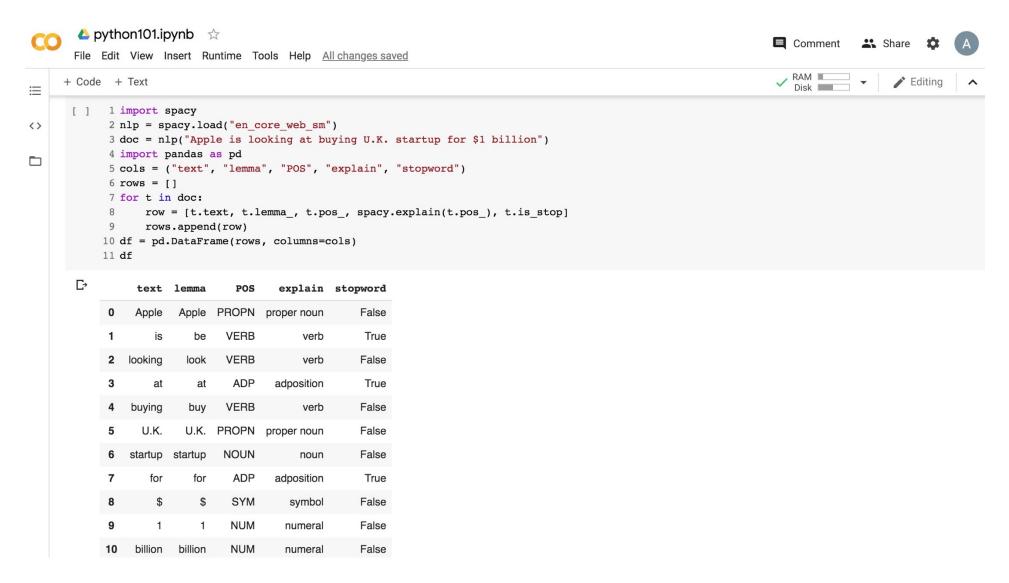
Running on a cloud platform


To run these notebooks on a cloud platform, just click on one of the badges in the table below:

Chapter	Colab	Kaggle	Gradient	Studio Lab
Introduction	CO Open in Colab	k Open in Kaggle	Run on Gradient	한 Open Studio Lab
Text Classification	CO Open in Colab	k Open in Kaggle	Run on Gradient	한 Open Studio Lab
Transformer Anatomy	CO Open in Colab	k Open in Kaggle	Run on Gradient	Copen Studio Lab
Multilingual Named Entity Recognition	CO Open in Colab	k Open in Kaggle	O Run on Gradient	Deen Studio Lab
Text Generation	CO Open in Colab	k Open in Kaggle	Run on Gradient	한미 Open Studio Lab
Summarization	CO Open in Colab	k Open in Kaggle	Run on Gradient	한미 Open Studio Lab
Question Answering	CO Open in Colab	k Open in Kaggle	Run on Gradient	Copen Studio Lab
Making Transformers Efficient in Production	CO Open in Colab	k Open in Kaggle	Run on Gradient	Copen Studio Lab
Dealing with Few to No Labels	CO Open in Colab	k Open in Kaggle	Run on Gradient	한미 Open Studio Lab
Training Transformers from Scratch	CO Open in Colab	k Open in Kaggle	Run on Gradient	 ① Open Studio Lab
Future Directions	CO Open in Colab	k Open in Kaggle	Run on Gradient	💬 Open Studio Lab

Nowadays, the GPUs on Colab tend to be K80s (which have limited memory), so we recommend using Kaggle, Gradient, or SageMaker Studio Lab. These platforms tend to provide more performant GPUs like P100s, all for free!

https://github.com/nlp-with-transformers/notebooks


https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

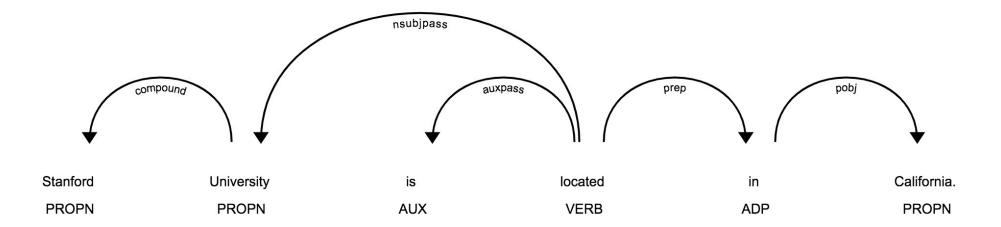
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

CO 🖕 python101.ipynb 🖞		📮 Comment 🛛 🚜 Share 🏼 🏟 🗛		
File Edit View Insert Runtime Tools	Help <u>All changes saved</u>			
\equiv Table of contents $ imes$	× + Code + Text			
Text Analytics and Natural Language Processing (NLP)	 Text Analytics and Natural Language Processing (N 	ILP)		
Python for Natural Language Processing				
spaCy Chinese Model	 Python for Natural Language Processing 			
Open Chinese Convert (OpenCC, 開放 中文轉換)	spaCy			
Jieba 結巴中文分詞	 spaCy: Industrial-Strength Natural Language Processing in Python 			
Natural Language Toolkit (NLTK)	 Source: <u>https://spacy.io/usage/spacy-101</u> 			
Stanza: A Python NLP Library for Many Human Languages	[1] 1 !python -m spacy download en_core_web_sm			
Text Processing and Understanding				
NLTK (Natural Language Processing with Python – Analyzing Text with the Natural Language Toolkit)	<pre>[3] 1 import spacy 2 nlp = spacy.load("en_core_web_sm") 3 doc = nlp("Apple is looking at buying U.K. startup for \$1 bill 4 for token in doc:</pre>	ion")		
NLP Zero to Hero	5 print(token.text, token.pos_, token.dep_)			
Natural Language Processing - Tokenization (NLP Zero to Hero, part 1) Natural Language Processing - Sequencing - Turning sentence into data (NLP Zero to Hero, part 2) Natural Language Processing - Training a model to recognize sentiment in text (NLP Zero to Hero, part 3)	<pre> □→ Apple PROPN nsubj is AUX aux looking VERB ROOT at ADP prep buying VERB pcomp U.K. PROPN compound startup NOUN dobj for ADP prep \$ SYM quantmod 1 NUM compound billion NUM pobj</pre>			

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

		on101.ipyr View Inse		e Tools	Help <u>All chan</u>	es saved		E Comment	Share Share	\$	A
+ Code	+	Text						V RAM Disk	- 🖍 Ec	liting	
:	2 n 3 d 4 i 5 c 6 r 7 f 8 9 10 d	mport par cols = ("t cows = [] for t in c row = rows.a ff = pd.Da	y.load("e "Stanford das as po ext", "le loc: [t.text, uppend(row	d Univer d emma", ": t.lemma W)	sity is loca POS", "expla	ted in California. in", "stopword") pacy.explain(t.pos_	 iversity.")				
: C≁	11 d	text	lemma	POS	explain	stopword					
	0	Stanford			proper noun	False					
	1	University			proper noun	False					
	2	is	be	VERB	verb	True					
	3	located	locate	VERB	verb	False					
	4	in	in	ADP	adposition	True					
	5	California	California	PROPN	proper noun	False					
	6			PUNCT	punctuation	False					
	7	It	-PRON-	PRON	pronoun	True					
	8	is	be	VERB	verb	True					
	9	а	а	DET	determiner	True					
	10	great	great	ADJ	adjective	False					
	11	university	university	NOUN	noun	False					
	12			PUNCT	punctuation	False					

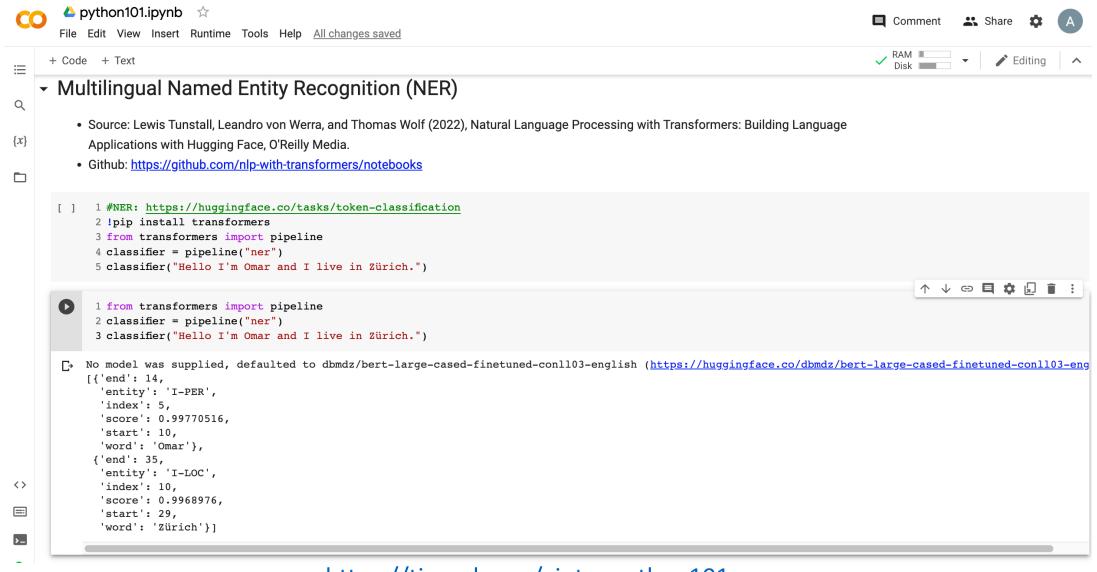

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

```
🛆 python101.ipynb 🛛 ☆
       File Edit View Insert Runtime Tools Help All changes saved
      + Code + Text
:=
       [] 1 import spacy
<>
             2 nlp = spacy.load("en core web sm")
             3 text = "Stanford University is located in California. It is a great university."
             4 \text{ doc} = \text{nlp(text)}
5 for ent in doc.ents:
             6
                   print(ent.text, ent.label )
            Stanford University ORG
            California GPE
            1 from spacy import displacy
       [ ]
             2 text = "Stanford University is located in California. It is a great university."
             3 \text{ doc} = \text{nlp(text)}
             4 displacy.render(doc, style="ent", jupyter=True)
        Ŀ
             Stanford University ORG is located in California GPE . It is a great university.
```

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

1 from spacy import displacy 2 text = "Stanford University is located in California. It is a great university." 3 doc = nlp(text) 4 displacy.render(doc, style="ent", jupyter=True) 5 displacy.render(doc, style="dep", jupyter=True)

Stanford University ORG is located in California GPE . It is a great university.


https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

O 💪 python101.ipynb 🖄 File Edit View Insert Runtim	e Tools Help	b <u>Last e</u>	dited on May	13					🗏 Comment 🛛 🚓 Share 🎄 🌔
Table of contents	× + 0	Code +	- Text						Connect 👻 🎤 Editing
Text Analytics and Natural Language Processing (NLP) Python for Natural Language		2	doc = nlp(text)			zniak incorpo ", jupyter=Tr		↑ ↓ ⇔ 🖬 🌣 🚺 le Computer on January 3, 1977, in Cupertino, California."
Processing spaCy Chinese Model	0	C÷ St	eve lobs pe	and	Steve W	lozniak	PERSON incorr		ple Computer org on January 3, 1977 DATE , in Cupertino GPE ,
Open Chinese Kouer 中文轉換)	開放		alifornia GPE		Oleve W	02mak	TENSON		pre computer ond on bandary o, 1977 bare , in ouperinto are ,
Jieba 結巴中文分詞		1 1	import spa						
Natural Language Toolkit (NLTK)		-	nlp = spac	-	en_core_	web_sr	n")		
Stanza: A Python NLP Library for Many Human Languages	r	4	import par	ndas <mark>as</mark> po	ł				<pre>ia. It is a great university.")</pre>
Text Processing and Understanding			cols = ("t rows = []	ext", "10	emma", "	pos",	"tag", "pos_	explain",	"stopword")
NLTK (Natural Language Process with Python – Analyzing Text wit Natural Language Toolkit)		8 9	rows.a	[t.text, append(row	v)			spacy.expl	<pre>lain(t.pos_), t.is_stop]</pre>
NLP Zero to Hero		10 11	df = pd.Da df	ataFrame()	cows, co	lumns=	=cols)		
Natural Language Processin Tokenization (NLP Zero to H part 1)		C≁	text	lemma	pos	tag	pos_explain	stopword	
Natural Language Processin	g -	0	Stanford	Stanford	PROPN	NNP	proper noun	False	
Sequencing - Turning sentence into data (NLP Zero to Hero, part 2)		1	University	University	PROPN	NNP	proper noun	False	
	•	2	is	be	VERB	VBZ	verb	True	
Natural Language Processing - Training a model to recognize sentiment in text (NLP Zero to		3	located	locate	VERB	VBN	verb	False	
		4	in	in	ADP	IN	adposition	True	
Hero, part 3)		5	California	California	PROPN	NNP	proper noun	False	
Keras preprocessing text		6			PUNCT		punctuation	False	
JSON File		7	It	-PRON-	PRON	PRP	pronoun	True	

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

File Edit View Insert Ru	ntime Tools Help All changes saved	🔲 Comment 🛛 👫 Share 🏘
Table of contents \times	+ Code + Text	✓ RAM Disk ▼ Fditing
Text Summarization Text Summarization Text Summarization Text Summarization with Gensim Summarization	 Semantic Analysis and Named Entity Recognition (NER) Source: Dipanjan Sarkar (2019), Text Analytics with Python: A Practitioner's Guide to Natural Language F APress. <u>https://github.com/Apress/text-analytics-w-python-2e</u> Semantic Analysis 	^{>} rocessing, Second Edition.
Topic Modeling Topic Modeling with Gensim LSI model Topic Modeling with Gensim LDA model Topic Modeling with Scikit-learn LDA and NMF Topic Modeling Visualization Text Similarity and Clustering Text Similarity	<pre>[1] 1 import nltk 2 from nltk.corpus import wordnet as wn 3 import pandas as pd 4 nltk.download('wordnet') 5 # WordNet Synsets 6 word = 'fruit' 7 synsets = wn.synsets(word) 8 print('Word:', word) 9 print('Wordnet Synsets:', len(synsets)) 10 df = pd.DataFrame([{'Synset': synset, 11 'Part of Speech': synset.lexname(), 12 'Definition': synset.lemma_names(), 13 'Lemmas': synset.lemma_names(), 14 'Examples': synset.examples()} 15 for synset in synsets]) 16 df</pre>	
Text Clustering Semantic Analysis and Named Entity Recognition (NER)	[hltk_data] Downloading package wordnet to /root/nltk_data [nltk_data] Unzipping corpora/wordnet.zip. Word: fruit Wordnet Synsets: 5 Synset Part of Speech Definition Lemmas	Examples
Semantic Analysis	0 Synset('fruit.n.01') noun.plant the ripened reproductive body of a seed plant [fruit]	Ο
Named Entity Recognition (NER)	1 Synset('yield.n.03') noun.artifact an amount of a product [yield, fruit]	П

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Named Entity Recognition (NER)

```
from transformers import pipeline
import pandas as pd
classifier = pipeline("ner")
text = "My name is Michael and I live in Berkeley, California."
outputs = classifier(text)
pd.DataFrame(outputs)
```

	entity	score	index	word	start	end	
0	I-PER	0.998874	4	Michael	11	18	
1	I-LOC	0.997050	9	Berkeley	33	41	
2	I-LOC	0.999170	11	California	43	53	

Summary

- Named Entities (NE)
 - represent real-world objects
 - people, places, organizations
 - proper names
- Named Entity Recognition (NER)
 - Entity chunking
 - Entity extraction
- Relation Extraction (RE)

References

- Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.
- Denis Rothman (2021), Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more, Packt Publishing.
- Savaş Yıldırım and Meysam Asgari-Chenaghlu (2021), Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques, Packt Publishing.
- Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta (2020), Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems, O'Reilly Media.
- Jing Li, Aixin Sun, Jianglei Han, and Chenliang LI (2022). "A survey on deep learning for named entity recognition." IEEE Transactions on Knowledge and Data Engineering 34, no. 1 (2022): 50-70.
- Zara Nasar, Syed Waqar Jaffry, and Muhammad Kamran Malik (2022). "Named entity recognition and relation extraction: State-of-the-art." ACM Computing Surveys (CSUR) 54, no. 1 (2022): 1-39.
- Pan Liu, Yanming Guo, Fenglei Wang, and Guohui Li (2022). "Chinese named entity recognition: The state of the art." Neurocomputing 473 (2022): 37-53.
- Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang (2023). "Gpt-ner: Named entity recognition via large language models." arXiv preprint arXiv:2304.10428 (2023).
- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.
- Dipanjan Sarkar (2019), Text Analytics with Python: A Practitioner's Guide to Natural Language Processing, Second Edition. APress.
- Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda (2018), Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning, O'Reilly.
- Charu C. Aggarwal (2018), Machine Learning for Text, Springer.
- Gabe Ignatow and Rada F. Mihalcea (2017), An Introduction to Text Mining: Research Design, Data Collection, and Analysis, SAGE Publications.
- Rajesh Arumugam (2018), Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications, Packt.
- Jake VanderPlas (2016), Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media.
- Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805.
- The Super Duper NLP Repo, https://notebooks.quantumstat.com/
- Jay Alammar (2018), The Illustrated Transformer, <u>http://jalammar.github.io/illustrated-transformer/</u>
- Jay Alammar (2019), A Visual Guide to Using BERT for the First Time, http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
- NLP with Transformer, https://github.com/nlp-with-transformers/notebooks
- Min-Yuh Day (2023), Python 101, https://tinyurl.com/aintpupython101