
Software Products and Project Management:
Software product management and

prototyping with Generative AI

Software Engineering

1

Min-Yuh Day, Ph.D,
Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1132SE02
MBA, IM, NTPU (M5010) (Spring 2025)

 Wed 2, 3, 4 (9:10-12:00) (B3F17)

2025-02-26

https://meet.google.com/
ish-gzmy-pmo

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/ish-gzmy-pmo
https://meet.google.com/ish-gzmy-pmo

Syllabus
Week Date Subject/Topics

1 2025/02/19 Introduction to Software Engineering

2 2025/02/26 Software Products and Project Management:
 Software product management and prototyping with
 Generative AI

3 2025/03/05 Agile Software Engineering:
 Agile methods, Scrum, and Extreme Programming

4 2025/03/12 Case Study on Software Engineering I

5 2025/03/19 Features, Scenarios, and Stories

6 2025/03/26 Software Architecture:
 Architectural design, System decomposition, and
 Distribution architecture

2

Syllabus
Week Date Subject/Topics

7 2025/04/02 Make-up holiday for NTPU Sports Day (No Classes)

8 2025/04/09 Midterm Project Report

9 2025/04/16 Cloud-Based Software: Virtualization and containers,
 Everything as a service, Software as a service

10 2025/04/23 Cloud Computing and Cloud Software Architecture

11 2025/04/30 Case Study on Software Engineering II

12 2025/05/07 Microservices Architecture, RESTful services,
 Service deployment

3

Syllabus
Week Date Subject/Topics

13 2025/05/14 Industry Practices of Software Engineering

14 2025/05/21 Security and Privacy; Reliable Programming;
 Testing: Functional testing, Test automation,
 Test-driven development, and Code reviews;
 DevOps and Code Management:
 Code management and DevOps automation

15 2025/05/28 Final Project Report I

16 2025/06/04 Final Project Report II

4

Software Products
and

Project Management:
Software product management

and
prototyping with Generative AI

5

Ian Sommerville (2019),

Engineering Software Products:
An Introduction to Modern Software Engineering,

Pearson.

6Source: https://www.amazon.com/Engineering-Software-Products-Ian-Sommerville/dp/013521064X

https://www.amazon.com/Engineering-Software-Products-Ian-Sommerville/dp/013521064X

Ian Sommerville (2015),

Software Engineering,
10th Edition, Pearson.

7Source: https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038

https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038

Titus Winters, Tom Manshreck, and Hyrum Wright (2020),

Software Engineering at Google:

Lessons Learned from Programming Over Time,
O'Reilly Media.

8Source: https://www.amazon.com/Software-Engineering-Google-Lessons-Programming/dp/1492082791

https://www.amazon.com/Software-Engineering-Google-Lessons-Programming/dp/1492082791

Project Management Institute (2017),

Agile Practice Guide
PMI

9Source: https://www.amazon.com/Agile-Practice-Project-Management-Institute/dp/1628251999/

https://www.amazon.com/Agile-Practice-Project-Management-Institute/dp/1628251999/

Project Management Institute (2021),

A Guide to the
Project Management Body of Knowledge

(PMBOK Guide) –
Seventh Edition and The Standard for Project Management

10Source: https://www.amazon.com/Guide-Project-Management-Knowledge-PMBOK%C2%AE/dp/1628256648

https://www.amazon.com/Guide-Project-Management-Knowledge-PMBOK%C2%AE/dp/1628256648

John Doerr (2018),

Measure What Matters:
How Google, Bono, and the Gates Foundation Rock the World

with OKRs,
Portfolio

11Source: https://www.amazon.com/Measure-What-Matters-Google-Foundation/dp/0525536221

https://www.amazon.com/Measure-What-Matters-Google-Foundation/dp/0525536221

Denis Rothman (2024),

RAG-Driven Generative AI:
Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone,

Packt Publishing

12Source: https://www.amazon.com/RAG-Driven-Generative-retrieval-generation-LlamaIndex/dp/1836200919/

https://www.amazon.com/RAG-Driven-Generative-retrieval-generation-LlamaIndex/dp/1836200919/

NVIDIA Developer Program

NVIDIA
Deep Learning Institute (DLI)

13

https://developer.nvidia.com/join-nvidia-developer-program

https://learn.nvidia.com/

https://developer.nvidia.com/join-nvidia-developer-program
https://learn.nvidia.com/

lmarena.ai Chatbot Arena Leaderboard

14

Rank*
(UB)

Rank
(StyleCtrl)

Model
Arena
Score

95% CI Votes Organization License

1 1 chocolate (Early Grok-3) 1403 +6/-6 9992 xAI Proprietary

2 3 Gemini-2.0-Flash-Thinking-Exp-01-21 1385 +4/-6 15083 Google Proprietary

2 3 Gemini-2.0-Pro-Exp-02-05 1380 +5/-6 13000 Google Proprietary

2 1 ChatGPT-4o-latest (2025-01-29) 1377 +5/-5 13470 OpenAI Proprietary

5 3 DeepSeek-R1 1362 +7/-7 6581 DeepSeek MIT
5 8 Gemini-2.0-Flash-001 1358 +7/-7 10862 Google Proprietary
5 3 o1-2024-12-17 1352 +5/-5 17248 OpenAI Proprietary
8 7 o1-preview 1335 +3/-4 33169 OpenAI Proprietary
8 8 Qwen2.5-Max 1334 +5/-5 9282 Alibaba Proprietary
8 7 o3-mini-high 1332 +5/-9 5954 OpenAI Proprietary

11 11 DeepSeek-V3 1318 +4/-5 19461 DeepSeek DeepSeek
11 13 Qwen-Plus-0125 1311 +9/-7 5112 Alibaba Proprietary
11 14 GLM-4-Plus-0111 1310 +6/-9 5134 Zhipu Proprietary

11 13 Gemini-2.0-Flash-Lite-Preview-02-05 1309 +6/-5 10262 Google Proprietary

12 12 o3-mini 1306 +5/-6 12179 OpenAI Proprietary
https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard

https://x.com/lmarena_ai/status/1891706264800936307
https://aistudio.google.com/prompts/new_chat?model=gemini-2.0-flash-thinking-exp-01-21
https://aistudio.google.com/prompts/new_chat?model=gemini-2.0-pro-exp-02-05
https://help.openai.com/en/articles/9624314-model-release-notes
https://api-docs.deepseek.com/news/news250120
https://aistudio.google.com/app/prompts/new_chat?instructions=lmsys-1121&model=gemini-2.0-flash-001
https://openai.com/index/o1-and-new-tools-for-developers/
https://platform.openai.com/docs/models/o1
https://qwenlm.github.io/blog/qwen2.5-max/
https://platform.openai.com/docs/guides/reasoning
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://www.alibabacloud.com/help/en/model-studio/developer-reference/what-is-qwen-llm
https://bigmodel.cn/dev/howuse/glm-4
https://aistudio.google.com/prompts/new_chat?model=gemini-2.0-flash-lite-preview-02-05
https://openai.com/index/openai-o3-mini/
https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard

lmarena.ai Chatbot Arena Leaderboard
Confidence Intervals on Model Strength (via Bootstrapping)

15https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard

https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard

Claude 3.7
Sonnet,

Claude 3.5
Sonnet,
OpenAI,

DeepSeek,
and Grok

16Source: https://www.anthropic.com/news/claude-3-7-sonnet

https://www.anthropic.com/news/claude-3-7-sonnet

Claude 3.7 Sonnet and Claude Code

17Source: https://www.anthropic.com/news/claude-3-7-sonnet

https://www.anthropic.com/news/claude-3-7-sonnet

Generative AI Meets Product Development

18Source: Tucker J. Marion, Mahdi Srour, and Frank Piller (2024), "When Generative AI meets product development." MIT Sloan Management Review 66, no. 1 : 14-15.

Use Case 1:

Enhancing Creativity and Design Workflows

Use Case 2:

GenAI for Customer Insights and Concept Validation

Use Case 3:

LLMs as Natural Language Interfaces to
Complex Design Tools

Software
Engineering

19

Software Engineering
and

Project Management

20

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation

and
unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Information Management

 Management
Information Systems (MIS)

Information Systems

21

Information Management (MIS)
Information Systems

22Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Organizations Technology

Management

Information
Systems

Fundamental MIS Concepts

23

Management

Organization

Technology

Information
System

Business
Challenges

Business
Solutions

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Project-based software engineering

24

Problem

SoftwareRequirements

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

generates

implemented-by

helps-with

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

• The starting point for the software development is a set of ‘software
requirements’ that are owned by an external client and which set out what
they want a software system to do to support their business processes.

• The software is developed by a software company (the contractor) who
design and implement a system that delivers functionality to meet the
requirements.

• The customer may change the requirements at any time in response to
business changes (they usually do). The contractor must change the software
to reflect these requirements changes.

• Custom software usually has a long-lifetime (10 years or more) and it must be
supported over that lifetime.

25

Project-based software engineering

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product software engineering

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Opportunity

Software
Product
features

DEVELOPER

DEVELOPER DEVELOPER

inspires

implemented-by

realizes

1

• The starting point for product development is a business opportunity that is
identified by individuals or a company.
They develop a software product to take advantage of this opportunity and sell
this to customers.

• The company who identified the opportunity design and implement a set of
software features that realize the opportunity and that will be useful to
customers.

• The software development company are responsible for deciding on the
development timescale, what features to include and when the product should
change.

• Rapid delivery of software products is essential to capture the market for that
type of product.

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product software engineering

Software execution models

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User interface
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers

Product management concerns

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
 and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

31

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

32

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

33Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
e

q
u

en
cy

 o
f

D
el

iv
er

y

Lo
w

H
ig

h

Low High

Predictive Life Cycle

34Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

35Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Analyze
Design

Build
Test

Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

36Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

37Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

38

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application

software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application

software
Server

software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

45Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware

Data theft

46Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing

Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

Platform Engineering

52Source: https://www.gartner.com/en/articles/what-is-platform-engineering

https://www.gartner.com/en/articles/what-is-platform-engineering

Marketing

53

Marketing

“Meeting
needs

profitably”
54Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

Marketing
“Marketing is an organizational function

and a set of processes for
creating, communicating, and delivering

value to customers and
for managing customer relationships

in ways that benefit the organization and its stakeholders.”

55Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

Marketing
Management

56

Marketing Management
“Marketing management is the

art and science
of choosing target markets

and getting, keeping, and growing
customers through

creating, delivering, and communicating
superior customer value.”

57Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

Marketing Management

58

Understanding Marketing Management

Capturing Marketing Insights

Connecting with Customers

Building Strong Brands

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

1

3

5

4
Creating Value

Delivering Value

Communicating Value

Conducting Marketing Responsibly for Long-term Success

2

6

7

8

OKRs, CFRs, KPIs
Agile Performance Management

•OKRs

•Objectives and Key Results

•CFRs

•Conversations, Feedback, Recognition

•KPIs

•Key Performance Indicators
59

Software
Engineering

60

Software Engineering
and

Project Management

61

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation

and
unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Software Engineering

• Software engineering is an engineering discipline that is
concerned with all aspects of software production from the
early stages of system specification through to maintaining the
system after it has gone into use.

62Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

What is software?

• Computer programs and associated documentation. Software
products may be developed for a particular customer or may be
developed for a general market.

63Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

What are the attributes of good software?

• Good software should deliver the required functionality and
performance to the user and should be maintainable,
dependable and usable.

64Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

What is software engineering?

• Software engineering is an engineering discipline that is
concerned with all aspects of software production from initial
conception to operation and maintenance.

65Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

What are the fundamental
software engineering activities?

• Software specification, software development, software
validation and software evolution.

66Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

What is the difference between
software engineering and

computer science?
• Computer science focuses on theory and fundamentals;

software engineering is concerned with the practicalities of
developing and delivering useful software.

67Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

What are the best software engineering
techniques and methods?

• While all software projects have to be professionally managed and
developed, different techniques are appropriate for different types of
system.

• For example, games should always be developed using a series of
prototypes whereas safety critical control systems require a complete
and analyzable specification to be developed.

• There are no methods and techniques that are good for everything.

68Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

What are the costs of software engineering?

• Roughly 60% of software costs are development costs, 40% are
testing costs.

• For custom software, evolution costs often exceed development
costs.

69Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Information Management

 Management
Information Systems (MIS)

Information Systems

70

Information Management (MIS)
Information Systems

71Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Fundamental MIS Concepts

72

Management

Organization

Technology

Information
System

Business
Challenges

Business
Solutions

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Software products

• Software products are generic software systems that provide
functionality that is useful to a range of customers.

• Software products:

• Large-scale business systems (e.g. MS Excel)

• Personal products (e.g. Evernote)

• Simple mobile phone apps and games (e.g. Suduko).

73Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product engineering

• Software product engineering methods and techniques have
evolved from software engineering techniques that support the
development of one-off, custom software systems.

74Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software projects

• Custom software systems are still important for large
businesses, government and public bodies.

• They are developed in dedicated software projects.

75Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Project

•A project is a
temporary endeavor
undertaken to create a
unique product, service, or result.

76Source: Project Management Institute (2017), A Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition , PMI

Project Management Body of Knowledge
(PMBOK Guide) PMBOK v6 vs. PMBOK v7

77
Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) –

Seventh Edition and The Standard for Project Management, PMI

PMBOK Guide v6 PMBOK Guide v7

Project Management Body of Knowledge:
• Introduction
• Project Environment
• Role of the Project Manager
• 10 Knowledge Areas

• Integration
• Scope
• Schedule
• Cost
• Quality
• Resources
• Communications
• Risk
• Procurement
• Stakeholders

The Standard for Project Management
(5 Process Groups):
• Initiating
• Planning
• Executing
• Monitoring and Controlling
• Closing

The Standard for Project Management :
• Introduction
• System for Value Delivery
• 12 Project Management Principles:

• 1. Stewardship, 2. Team
• 3. Stakeholders, 4. Value

• 5. Systems Thinking, 5. Leadership
• 7. Tailoring, 8. Quality
• 9. Complexity, 10, Risk
• 11. Adaptability and Resiliency
• 12. Change

Project Management Body of Knowledge:
• 8 Project Performance Domains:

• 1. Stakeholders, 2. Team,
• 3. Development approach and Life Cycle
• 4. Planning, 5. Project Work, 6. Delivery,
• 7. Measurement, 8. Uncertainty

• Tailoring
• Models, Methods, and Artifacts

Project Management Knowledge Areas
(PMBOK v6)

1. Project Integration Management

2. Project Scope Management

3. Project Schedule Management

4. Project Cost Management

5. Project Quality Management

6. Project Resource Management

7. Project Communications Management

8. Project Risk Management

9. Project Procurement Management

10. Project Stakeholder Management

78Source: Project Management Institute (2017), A Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition , PMI

Project Management Process Groups
(PMBOK v6)

1. Initiating Process Group

2. Planning Process Group

3. Executing Process Group

4. Monitoring and Controlling Process Group

5. Closing Process Group

79Source: Project Management Institute (2017), A Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition , PMI

Project Management 12 Principles
(PMBOK v7)

1. Stewardship

2. Team

3. Stakeholders

4. Value

5. Systems Thinking

6. Leadership

7. Tailoring

8. Quality

9. Complexity

10. Risk

11. Adaptability and Resiliency

12. Change

80
Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) –

Seventh Edition and The Standard for Project Management, PMI

Project Management
8 Project Performance Domains

(PMBOK v7)

1. Stakeholders

2. Team

3. Development Approach and Life Cycle

4. Planning

5. Project Work

6. Delivery

7. Measurement

8. Uncertainty

81
Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) –

Seventh Edition and The Standard for Project Management, PMI

Project-based software engineering

82

Problem

SoftwareRequirements

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

generates

implemented-by

helps-with

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

• The starting point for the software development is a set of ‘software
requirements’ that are owned by an external client and which set out what
they want a software system to do to support their business processes.

• The software is developed by a software company (the contractor) who
design and implement a system that delivers functionality to meet the
requirements.

• The customer may change the requirements at any time in response to
business changes (they usually do). The contractor must change the
software to reflect these requirements changes.

• Custom software usually has a long-lifetime (10 years or more) and it must
be supported over that lifetime.

83

Project-based software engineering

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product software engineering

84Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Opportunity

Software
Product
features

DEVELOPER

DEVELOPER DEVELOPER

inspires

implemented-by

realizes

1

• The starting point for product development is a business opportunity that is
identified by individuals or a company.
They develop a software product to take advantage of this opportunity and
sell this to customers.

• The company who identified the opportunity design and implement a set of
software features that realize the opportunity and that will be useful to
customers.

• The software development company are responsible for deciding on the
development timescale, what features to include and when the product
should change.

• Rapid delivery of software products is essential to capture the market for that
type of product.

85Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product software engineering

Software product line

• A set of software products that share a common core.

• Each member of the product line includes customer-specific
adaptations and additions.

• Software product lines may be used to implement a custom
system for a customer with specific needs that can’t be met by a
generic product.

86Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Platform

• A software (or software + hardware) product that includes
functionality so that new applications can be built on it.

• An example of a platform that you probably use is
Facebook.

• It provides an extensive set of product functionality but also
provides support for creating ‘Facebook apps’.

• These add new features that may be used by a business or a
Facebook interest group.

87Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software execution models

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User interface
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers

Software execution models

• Stand-alone

• The software executes entirely on the customer’s computers.

• Hybrid

• Part of the software’s functionality is implemented on the
customer’s computer but some features are implemented on the
product developer’s servers.

• Software service

• All of the product’s features are implemented on the developer’s
servers and the customer accesses these through a browser or a
mobile app.

89Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Comparable
software development

• The key feature of product development is that there is no external customer
that generates requirements and pays for the software.

• Student projects

• Individuals or student groups develop software as part of their course.
Given an assignment, they decide what features to include in the software.

• Research software

• Researchers develop software to help them answer questions that are
relevant to their research.

• Internal tool development

90Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The product vision

• The starting point for software product development is a ‘product vision’.

• Product visions are simple statements that define the essence of the
product to be developed.

• The product vision should answer three fundamental questions:

• What is the product to be developed?

• Who are the target customers and users?

• Why should customers buy this product?

91Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Moore’s vision template

• FOR (target customer)

• WHO (statement of the need or opportunity)

• The (PRODUCT NAME) is a (product category)

• THAT (key benefit, compelling reason to buy)

• UNLIKE (primary competitive alternative)

• OUR PRODUCT (statement of primary differentiation)

92Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Vision template example

• “FOR a mid-sized company's marketing and sales departments

WHO need basic CRM functionality,

THE CRM-Innovator is a Web-based service

THAT provides sales tracking, lead generation, and sales

representative support features that improve customer

relationships at critical touch points.

UNLIKE other services or package software products,

OUR product provides very capable services at a moderate

cost.”

93Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Information sources for
developing a product vision

•Domain experience

•Product experience

•Customer experience

•Prototyping and playing around

94Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Information sources for
developing a product vision

• Domain experience

• The product developers may work in a particular area (say marketing
and sales) and understand the software support that they need.

• They may be frustrated by the deficiencies in the software they use and
see opportunities for an improved system.

95Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Information sources for
developing a product vision

• Product experience

• Users of existing software (such as word processing software) may see
simpler and better ways of providing comparable functionality and
propose a new system that implements this.

• New products can take advantage of recent technological
developments such as speech interfaces.

96Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Information sources for
developing a product vision

• Customer experience

• The software developers may have extensive discussions with
prospective customers of the product to understand the problems that
they face, constraints, such as interoperability, that limit their flexibility
to buy new software, and the critical attributes of the software that
they need.

97Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Information sources for
developing a product vision

• Prototyping and playing around

• Developers may have an idea for software but need to develop a better
understanding of that idea and what might be involved in developing it
into a product.

• They may develop a prototype system as an experiment and ‘play
around’ with ideas and variations using that prototype system as a
platform.

98Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A vision statement for
the iLearn system

• FOR teachers and educators WHO need a way to help students use web-based
learning resources and applications, THE iLearn system is an open learning
environment THAT allows the set of resources used by classes and students to be
easily configured for these students and classes by teachers themselves. UNLIKE
Virtual Learning Environments, such as Moodle, the focus of iLearn is the learning
process rather than the administration and management of materials, assessments
and coursework. OUR product enables teachers to create subject and age-specific
environments for their students using any web-based resources, such as videos,
simulations and written materials that are appropriate.

• Schools and universities are the target customers for the iLearn system as it will significantly improve
the learning experience of students at relatively low cost. It will collect and process learner analytics
that will reduce the costs of progress tracking and reporting.

99Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The Essence of

Strategic Marketing (STP)

Segmentation

Targeting

Positioning

100Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

101

Customer
Value

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

Value
the sum of the
tangible and

intangible
benefits and costs

102Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

Value

103

Total
customer

benefit
Customer
perceived

value
Total

customer

cost

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

Customer Perceived Value

104

Product benefit

Services benefit

Personnel benefit

Image benefit

Total
customer

benefit
Customer
perceived

value
Total

customer

cost

Monetary cost

Time cost

Energy cost

Psychological cost

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

Business Model

105Source: Alexander Osterwalder & Yves Pigneur, Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Wiley, 2010.

Key
Activities

Key
Resources

Customer
Segments

Key
Partners

Customer
Relationships

Channels

Revenue
Streams

Cost
Structure

Value
Proposition

12

36

7 4

9 5

8

Software product management
• Software product management is a business activity that focuses on

the software products developed and sold by the business.

• Product managers (PMs) take overall responsibility for the product
and are involved in planning, development and product marketing.

• Product managers are the interface between the organization, its
customers and the software development team. They are involved at
all stages of a product’s lifetime from initial conception through to
withdrawal of the product from the market.

• Product managers must look outward to customers and potential
customers rather than focus on the software being developed

106Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product management concerns

107Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Product management concerns

• Business needs

• PMs have to ensure that the software being developed meets the business
goals of the software development company.

• Technology constraints

• PMs must make developers aware of technology issues that are important
to customers.

• Customer experience

• PMs should be in regular contact with customers and potential customers
to understand what they are looking for in a product, the types of users
and their backgrounds and the ways that the product may be used.

108Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technical interactions of
product managers

109Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
 and

scenarios

Technical interactions of
product managers

• Product vision management

• The product manager may be responsible for helping
with the development of the product vision.

• The should always be responsible for managing the
vision, which involves assessing and evaluating proposed
changes against the product vision.

• They should ensure that there is no ‘vision drift’

110Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technical interactions of
product managers

• Product roadmap development

• A product roadmap is a plan for the development,
release and marketing of the software.

• The PM should lead roadmap development and should
be the ultimate authority in deciding if changes to the
roadmap should be made.

111Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technical interactions of
product managers

• User story and scenario development

• User stories and scenarios are used to refine a product vision
and identify product features.

• Based on his or her knowledge of customers, the PM should
lead the development of stories and scenarios.

112Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technical interactions of
product managers

• Product backlog creation and management

• The product backlog is a prioritized ‘to-do’ list of
what has to be developed.

• PMs should be involved in creating and refining the
backlog and deciding on the priority of product
features to be developed.

113Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technical interactions of
product managers

• Acceptance testing

• Acceptance testing is the process of verifying that a
software release meets the goals set out in the
product roadmap and that the product is efficient
and reliable.

• The PM should be involved in developing tests of
the product features that reflect how customers use
the product.

114Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technical interactions of
product managers

• Customer testing

• Customer testing involves taking a release of a product
to customers and getting feedback on the product’s
features, usability and business.

• PMs are involved in selecting customers to be involved
in the customer testing process and working with them
during that process.

115Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technical interactions of
product managers

• User interface design

• Product managers should understand user limitations
and act as surrogate users in their interactions with
the development team.

• They should evaluate user interface features as they
are developed to check that these features are not
unnecessarily complex or force users to work in an
unnatural way.

116Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product prototyping

• Product prototyping is the process of developing an early
version of a product to test your ideas and to convince yourself
and company funders that your product has real market
potential.

117Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product prototyping

• You may be able to write an inspiring product vision, but
your potential users can only really relate to your product
when they see a working version of your software.

• They can point out what they like and don’t like about it
and make suggestions for new features.

• A prototype may be also used to help identify
fundamental software components or services and to test
technology.

118Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product prototyping

• Building a prototype should be the first thing that you do
when developing a software product.

• Your aim should be to have a working version of your
software that can be used to demonstrate its key features.

• You should always plan to throw-away the prototype after
development and to re-implement the software, taking
account of issues such as security and reliability.

119Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Two-stage prototyping

1. Feasibility demonstration

• You create an executable system that demonstrates the new ideas in
your product.

• The aims at this stage are to see if your ideas actually work and to
show funders and/or company management the original product
features that are better than those in competing products.

2. Customer demonstration

120Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Two-stage prototyping

1. Feasibility demonstration

2. Customer demonstration

• You take an existing prototype created to demonstrate feasibility and
extend this with your ideas for specific customer features and how
these can be realized.

• Before you develop this type of prototype, you need to do some user
studies and have a clearer idea of your potential users and scenarios
of use.

121Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software process models
• The waterfall model

• This takes the fundamental process activities of specification,
development, validation, and evolution and represents them as separate
process phases such as requirements specification, software design,
implementation, and testing.

• Incremental development

• This approach interleaves the activities of specification, development,
and validation. The system is developed as a series of versions
(increments), with each version adding functionality to the previous
version.

• Integration and configuration

• This approach relies on the availability of reusable components or systems. The system
development process focuses on configuring these components for use in a new setting
and integrating them into a system.

122Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Software Development Life Cycle (SDLC)

The waterfall model

123

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Incremental development

124

Specification

Development

Validation

Outline
description

Initial
version

Intermediate
versions

Intermediate
versions

Intermediate
versions

Final
version

Concurrent
activities

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Reuse-oriented
software engineering

125

Requirements
specification

Software
evaluation

Software
discovery

Requirements
refinement

Configure
application

system

Adapt
components

Develop new
components

Integrate
system

Application
system

available

Components
available

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Prototype development

126

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
Prototyping

Evaluation
report

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Incremental delivery

127

Define
outline

requirements

Final
system

Assign
requirements
to increments

Design
system

architecture

Develop
system

increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete ?

System
incomplete ?

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The process improvement model

128

Process
Measure

Process
Change

Process
Analyze

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Capability maturity levels

129

Level 1
Initial

Level 2
Managed

Level 3
Defined

Level 4
Quantitatively

Defined

Level 5
Optimizing

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

130

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Uncertainty and Complexity Model
Inspired by the Stacey Complexity Model

131Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Technical Degree of Uncertainty

R
eq

u
ir

em
en

ts
 U

n
ce

rt
ai

n
ty

Lo
w

 U
n

ce
rt

ai
n

ty
H

ig
h

 U
n

ce
rt

ai
n

ty

Low Uncertainty High Uncertainty

Fundamentally
risky

Adaptive
approaches

work well here

Linear
approaches

work well here

Characteristics of
Four Categories of Life Cycles

132Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Predictive

Iterative

Incremental

Agile

Approach Requirements Activities Delivery Goal

Fixed

Dynamic

Dynamic

Dynamic

Performed once for
the entire project

Repeated until
correct

Performed once for
a given increment

Repeated until
correct

Single delivery

Single delivery

Frequent smaller
deliveries

Frequent smaller
deliveries

Manage cost

Correctness of
solution

Speed

Customer value via
frequent deliveries

and feedback

The Continuum of Life Cycles

133Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
e

q
u

en
cy

 o
f

D
el

iv
er

y

Lo
w

H
ig

h

Low High

Predictive Life Cycle

134Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

135Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Analyze
Design

Build
Test

Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

136Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

137Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

Agentic AI
for

Agile AI Software Engineering

138

NVIDIA Developer Program

NVIDIA
Deep Learning Institute (DLI)

139

https://developer.nvidia.com/join-nvidia-developer-program

https://learn.nvidia.com/

https://developer.nvidia.com/join-nvidia-developer-program
https://learn.nvidia.com/

Join the
NVIDIA

Developer
Program
 take one of the

complimentary
technical self-
paced courses

(worth up to $90)

140https://developer.nvidia.com/join-nvidia-developer-program

https://developer.nvidia.com/join-nvidia-developer-program

NVIDIA Deep Learning Institute (DLI)

141https://www.nvidia.com/en-us/learn/learning-path/generative-ai-llm/

Instructor-Led Workshop

Fundamentals of Deep

Learning

Certificate available

$500

8 hours

Self-Paced Course

Getting Started With Deep

Learning

Certificate available

$90

8 hours

Self-Paced Course

Generative AI Explained

Free

2 hours

Instructor-Led Workshop

Generative AI with

Diffusion Models

Certificate available

$500

8 hours

Self-Paced Course

Building RAG Agents With

LLMs

Certificate available

Free

8 hours

Instructor-Led Workshop

Building RAG Agents With

LLMs

Certificate available

$500

8 hours

Self-Paced Course

Generative AI with

Diffusion Models

Certificate available

$90

8 hours

Self-Paced Course

Introduction to Transformer-

Based Natural Language

Processing

Certificate available

$30

6 hours

https://learn.nvidia.com/en-us/training/self-paced-courses

Deep Learning Institute (DLI)

142https://learn.nvidia.com/my-learning

https://learn.nvidia.com/my-learning

143https://learn.nvidia.com/certificates?id=ed-qOCIMQaatzU8SNUNxgw

https://learn.nvidia.com/certificates?id=ed-qOCIMQaatzU8SNUNxgw

Generative AI
Text, Image, Video, Audio

Applications

144

Transformer Models

145Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building L anguage Applications with Hugging Face, O'Reilly Media.

Encoder Decoder

T5

BART

M2M-100

BigBird

BERTDistilBERT

RoBERTa

XLM

ALBERT

ELECTRA

DeBERTa

XLM-R

GPT

GPT-2 CTRL

GPT-3

GPT-Neo GPT-J

Transformer

BLOOM

ChatGPT

BLOOMZmT0

GPT-4

Four Paradigms in NLP (LM)

146Source: Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. (2023) "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing." ACM Computing Surveys 55, no. 9 (2023): 1-35.

GAI: Pre-train, Prompt, and Predict (Prompting)

Transfer Learning: Pre-training, Fine-Tuning (FT)

147

Large Language Models (LLM)
Three typical learning paradigms

Source: Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. (2024) "A survey on multimodal large language models." National Science Review (2024): nwae403.

Popular Generative AI
• OpenAI ChatGPT (GPT-o1, GPT-4o, GPT-4)

• Claude.ai (Claude 3.5)

• Google Gemini

• Meta Llama 3.3, Llama 3.2 Vision

• Mixtral Pixtral (mistral.ai)

• DeepSeek

• Chat.LMSys.org (lmarena.ai)

• Perplexity.ai (Perplexity Deep Research)

• Stable Diffusion

• Video: D-ID, Synthesia

• Audio: Speechify
148

Chat
with
Open
Large

Language
Models:
Chatbot
Arena

149https://lmarena.ai/

Large Language Models for Data Science

llama 3.2 claude 3.5 sonnet

https://lmarena.ai/

Perplexity.ai

150https://www.perplexity.ai/

https://www.perplexity.ai/

Agentic AI Systems
RAG Agents with LLM

Dialogue Systems

151

Agentic AI Systems

152Source: https://neontri.com/blog/agentic-ai/

Technology Tree of RAG Research
Retrieval-Augmented Generation (RAG) for Large Language Models (LLMs)

153Source: Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., ... & Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997.

Retrieval-Augmented Generation (RAG)
for Large Language Models (LLMs)

154Source: Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., ... & Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997.

Retrieval-Augmented Generation (RAG) Architecture

155Source: Zhao, P., Zhang, H., Yu, Q., Wang, Z., Geng, Y., Fu, F., ... & Cui, B. (2024). Retrieval-augmented generation for ai-generated content: A survey. arXiv preprint arXiv:2402.19473.

Synthesizing RAG with LLMs
for Question Answering Application

156Source: Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., & Gao, J. (2024). Large language models: A survey. arXiv preprint arXiv:2402.06196.

Synthesizing the KG as a Retriever with LLMs

157Source: Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., & Gao, J. (2024). Large language models: A survey. arXiv preprint arXiv:2402.06196.

A LLM-based Agent for
Conversational Information Seeking

158Source: Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., & Gao, J. (2024). Large language models: A survey. arXiv preprint arXiv:2402.06196.

Direct LLM, RAG, and GraphRAG

159Source: Peng, B., Zhu, Y., Liu, Y., Bo, X., Shi, H., Hong, C., ... & Tang, S. (2024). Graph retrieval -augmented generation: A survey. arXiv preprint arXiv:2408.08921.

LangChain Architecture

160Source: https://www.langchain.com/

https://www.langchain.com/

Multimodal LLM RAG
Multi-Vector Retriever for RAG

161Source: https://blog.langchain.dev/deconstructing-rag/

https://blog.langchain.dev/deconstructing-rag/

Evaluating RAG with Ragas Metrics

162Source: https://blog.langchain.dev/evaluating-rag-pipelines-with-ragas-langsmith/

https://blog.langchain.dev/evaluating-rag-pipelines-with-ragas-langsmith/

Summary

• Software products are software systems that include general
functionality that is likely to be useful to a wide range of
customers.

• In product software engineering, the same company is
responsible for deciding on the features that should be part of
the product and the implementation of these features.

163Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Software products may be delivered as stand-alone
systems running on the customer’s computers, hybrid
systems or service-based systems.

• In hybrid systems, some features are implemented locally
and others are accessed over the Internet.

• All product features are remotely accessed in service-
based products.

164Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• A product vision should succinctly describe what is to be
developed, who are the target customers for the product
and why they should buy the product that you are
developing.

• Domain experience, product experience, customer
experience and an experimental software prototype may all
contribute to the development of the product vision.

165Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Key responsibilities of product managers are product vision
ownership, product roadmap development, creating user
stories and the product backlog, customer and acceptance
testing and user interface design.

• Product managers work at the interface between the
business, the software development team and the product
customers.

• They facilitate communications between these groups.

166Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• You should always develop a product prototype to refine your
own ideas and to demonstrate the planned product features to
potential customers

167Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

References
• Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software

Engineering, Pearson.
• Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.
• Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at Google: Lessons

Learned from Programming Over Time, O'Reilly Media.
• Project Management Institute (2021), A Guide to the Project Management Body of Knowledge

(PMBOK Guide) – Seventh Edition and The Standard for Project Management, PMI.
• Project Management Institute (2017), A Guide to the Project Management Body of Knowledge

(PMBOK Guide), Sixth Edition, Project Management Institute.
• Project Management Institute (2017), Agile Practice Guide, Project Management Institute.
• Denis Rothman (2024), RAG-Driven Generative AI: Build custom retrieval augmented generation

pipelines with LlamaIndex, Deep Lake, and Pinecone, Packt Publishing
• NVIDIA DLI (2025), Building RAG Agents with LLMs,

https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-15+V1
• NVIDIA DLI (2025), Generative AI with Diffusion Models,

https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-14+V1
• Tucker J. Marion, Mahdi Srour, and Frank Piller (2024), "When Generative AI meets product

development." MIT Sloan Management Review 66, no. 1 : 14-15.
168

https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-15+V1
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-14+V1

	Slide 1: Software Products and Project Management: Software product management and prototyping with Generative AI
	Slide 2: Syllabus
	Slide 3: Syllabus
	Slide 4: Syllabus
	Slide 5: Software Products and Project Management: Software product management and prototyping with Generative AI
	Slide 6: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.
	Slide 7: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.
	Slide 8: Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at Google: Lessons Learned from Programming Over Time, O'Reilly Media.
	Slide 9: Project Management Institute (2017), Agile Practice Guide PMI
	Slide 10: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) – Seventh Edition and The Standard for Project Management
	Slide 11: John Doerr (2018), Measure What Matters: How Google, Bono, and the Gates Foundation Rock the World with OKRs, Portfolio
	Slide 12: Denis Rothman (2024), RAG-Driven Generative AI: Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone, Packt Publishing
	Slide 13: NVIDIA Developer Program NVIDIA Deep Learning Institute (DLI)
	Slide 14: lmarena.ai Chatbot Arena Leaderboard
	Slide 15: lmarena.ai Chatbot Arena Leaderboard Confidence Intervals on Model Strength (via Bootstrapping)
	Slide 16: Claude 3.7 Sonnet, Claude 3.5 Sonnet, OpenAI, DeepSeek, and Grok
	Slide 17: Claude 3.7 Sonnet and Claude Code
	Slide 18: Generative AI Meets Product Development
	Slide 19: Software Engineering
	Slide 20: Software Engineering and Project Management
	Slide 21: Information Management Management Information Systems (MIS) Information Systems
	Slide 22: Information Management (MIS) Information Systems
	Slide 23: Fundamental MIS Concepts
	Slide 24: Project-based software engineering
	Slide 25: Project-based software engineering
	Slide 26: Product software engineering
	Slide 27: Product software engineering
	Slide 28: Software execution models
	Slide 29: Product management concerns
	Slide 30: Technical interactions of product managers
	Slide 31: Software Development Life Cycle (SDLC) The waterfall model
	Slide 32: Plan-based and Agile development
	Slide 33: The Continuum of Life Cycles
	Slide 34: Predictive Life Cycle
	Slide 35: Iterative Life Cycle
	Slide 36: A Life Cycle of Varying-Sized Increments
	Slide 37: Iteration-Based and Flow-Based Agile Life Cycles
	Slide 38: From personas to features
	Slide 39: Multi-tier client-server architecture
	Slide 40: Service-oriented Architecture
	Slide 41: VM
	Slide 42: Everything as a service
	Slide 43: Software as a service
	Slide 44: Microservices architecture – key design questions
	Slide 45: Types of security threat
	Slide 46: Software product quality attributes
	Slide 47: A refactoring process
	Slide 48: Functional testing
	Slide 49: Test-driven development (TDD)
	Slide 50: DevOps
	Slide 51: Code management and DevOps
	Slide 52: Platform Engineering
	Slide 53: Marketing
	Slide 54: Marketing
	Slide 55: Marketing
	Slide 56: Marketing Management
	Slide 57: Marketing Management
	Slide 58: Marketing Management
	Slide 59: OKRs, CFRs, KPIs Agile Performance Management
	Slide 60: Software Engineering
	Slide 61: Software Engineering and Project Management
	Slide 62: Software Engineering
	Slide 63: What is software?
	Slide 64: What are the attributes of good software?
	Slide 65: What is software engineering?
	Slide 66: What are the fundamental software engineering activities?
	Slide 67: What is the difference between software engineering and computer science?
	Slide 68: What are the best software engineering techniques and methods?
	Slide 69: What are the costs of software engineering?
	Slide 70: Information Management Management Information Systems (MIS) Information Systems
	Slide 71: Information Management (MIS) Information Systems
	Slide 72: Fundamental MIS Concepts
	Slide 73: Software products
	Slide 74: Software product engineering
	Slide 75: Software projects
	Slide 76: Project
	Slide 77: Project Management Body of Knowledge (PMBOK Guide) PMBOK v6 vs. PMBOK v7
	Slide 78: Project Management Knowledge Areas (PMBOK v6)
	Slide 79: Project Management Process Groups (PMBOK v6)
	Slide 80: Project Management 12 Principles (PMBOK v7)
	Slide 81: Project Management 8 Project Performance Domains (PMBOK v7)
	Slide 82: Project-based software engineering
	Slide 83: Project-based software engineering
	Slide 84: Product software engineering
	Slide 85: Product software engineering
	Slide 86: Software product line
	Slide 87: Platform
	Slide 88: Software execution models
	Slide 89: Software execution models
	Slide 90: Comparable software development
	Slide 91: The product vision
	Slide 92: Moore’s vision template
	Slide 93: Vision template example
	Slide 94: Information sources for developing a product vision
	Slide 95: Information sources for developing a product vision
	Slide 96: Information sources for developing a product vision
	Slide 97: Information sources for developing a product vision
	Slide 98: Information sources for developing a product vision
	Slide 99: A vision statement for the iLearn system
	Slide 100: The Essence of Strategic Marketing (STP)
	Slide 101: Customer Value
	Slide 102: Value
	Slide 103: Value
	Slide 104: Customer Perceived Value
	Slide 105: Business Model
	Slide 106: Software product management
	Slide 107: Product management concerns
	Slide 108: Product management concerns
	Slide 109: Technical interactions of product managers
	Slide 110: Technical interactions of product managers
	Slide 111: Technical interactions of product managers
	Slide 112: Technical interactions of product managers
	Slide 113: Technical interactions of product managers
	Slide 114: Technical interactions of product managers
	Slide 115: Technical interactions of product managers
	Slide 116: Technical interactions of product managers
	Slide 117: Product prototyping
	Slide 118: Product prototyping
	Slide 119: Product prototyping
	Slide 120: Two-stage prototyping
	Slide 121: Two-stage prototyping
	Slide 122: Software process models
	Slide 123: Software Development Life Cycle (SDLC) The waterfall model
	Slide 124: Incremental development
	Slide 125: Reuse-oriented software engineering
	Slide 126: Prototype development
	Slide 127: Incremental delivery
	Slide 128: The process improvement model
	Slide 129: Capability maturity levels
	Slide 130: Plan-based and Agile development
	Slide 131: Uncertainty and Complexity Model Inspired by the Stacey Complexity Model
	Slide 132: Characteristics of Four Categories of Life Cycles
	Slide 133: The Continuum of Life Cycles
	Slide 134: Predictive Life Cycle
	Slide 135: Iterative Life Cycle
	Slide 136: A Life Cycle of Varying-Sized Increments
	Slide 137: Iteration-Based and Flow-Based Agile Life Cycles
	Slide 138: Agentic AI for Agile AI Software Engineering
	Slide 139: NVIDIA Developer Program NVIDIA Deep Learning Institute (DLI)
	Slide 140: Join the NVIDIA Developer Program take one of the complimentary technical self-paced courses (worth up to $90)
	Slide 141: NVIDIA Deep Learning Institute (DLI)
	Slide 142: Deep Learning Institute (DLI)
	Slide 143
	Slide 144: Generative AI Text, Image, Video, Audio Applications
	Slide 145: Transformer Models
	Slide 146: Four Paradigms in NLP (LM)
	Slide 147: Large Language Models (LLM) Three typical learning paradigms
	Slide 148: Popular Generative AI
	Slide 149: Chat with Open Large Language Models: Chatbot Arena
	Slide 150: Perplexity.ai
	Slide 151: Agentic AI Systems RAG Agents with LLM Dialogue Systems
	Slide 152: Agentic AI Systems
	Slide 153: Technology Tree of RAG Research Retrieval-Augmented Generation (RAG) for Large Language Models (LLMs)
	Slide 154: Retrieval-Augmented Generation (RAG) for Large Language Models (LLMs)
	Slide 155: Retrieval-Augmented Generation (RAG) Architecture
	Slide 156: Synthesizing RAG with LLMs for Question Answering Application
	Slide 157: Synthesizing the KG as a Retriever with LLMs
	Slide 158: A LLM-based Agent for Conversational Information Seeking
	Slide 159: Direct LLM, RAG, and GraphRAG
	Slide 160: LangChain Architecture
	Slide 161: Multimodal LLM RAG Multi-Vector Retriever for RAG
	Slide 162: Evaluating RAG with Ragas Metrics
	Slide 163: Summary
	Slide 164: Summary
	Slide 165: Summary
	Slide 166: Summary
	Slide 167: Summary
	Slide 168: References

