Software Engineering G

B 2 B g KB
National Taipei University

Software Products and Project Management:
Software product management and
prototyping with Generative Al

Min-Yuh Day, Ph.D,
Professor

(SR |nstitute of Information Management, National Taipei University [=] 4 [=]

https://web.ntpu.edu.tw/~myday

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/ish-gzmy-pmo
https://meet.google.com/ish-gzmy-pmo

Syllabus A<,

National Taipei University

Week Date Subject/Topics

1 2025/02/19 Introduction to Software Engineering

2 2025/02/26 Software Products and Project Management:
Software product management and prototyping with
Generative Al

3 2025/03/05 Agile Software Engineering:
Agile methods, Scrum, and Extreme Programming

4 2025/03/12 Case Study on Software Engineering |
5 2025/03/19 Features, Scenarios, and Stories

6 2025/03/26 Software Architecture:
Architectural design, System decomposition, and
Distribution architecture

Syllabus A<,

B 2 B g KB
National Taipei University

Week Date Subject/Topics

8 2025/04/09 Midterm Project Report

9 2025/04/16 Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service

10 2025/04/23 Cloud Computing and Cloud Software Architecture
11 2025/04/30 Case Study on Software Engineering li

12 2025/05/07 Microservices Architecture, RESTful services,
Service deployment

Syllabus e

B 2 B g KB
National Taipei University

Week Date Subject/Topics

13 2025/05/14 Industry Practices of Software Engineering

14 2025/05/21 Security and Privacy; Reliable Programming;
Testing: Functional testing, Test automation,
Test-driven development, and Code reviews;
DevOps and Code Management:
Code management and DevOps automation

15 2025/05/28 Final Project Report |
16 2025/06/04 Final Project Report Il

Software Products
and
Project Management:
Software product management
and
prototyping with Generative Al

lan Sommerville (2019),

Engineering Software Products:

An Introduction to Modern Software Engineering,
Pearson.

AGINEERING

\‘{ SOFTWARE

> ENGINEERING
MK

7 \"'_/l.. 5) 5 ;

VA% \'"f_\ j\; TN

g,

Source: : https://www.amazon.com/Engineering-Software-Products-lan-Sommerville/dp/013521064X

https://www.amazon.com/Engineering-Software-Products-Ian-Sommerville/dp/013521064X

lan Sommerville (2015),

Software Engineering,

10th Edition, Pearson.

S

. ¥ X

= - -
p

P ;
'14"/1- |

3

— o —

e —

VA ATV A

o,

P —————

~
oy

o e

=

A Software Englneemng

A TENTH EDITION

https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038

Titus Winters, Tom Manshreck, and Hyrum Wright (2020),

Software Engineering at Google:

Lessons Learned from Programming Over Time,
O'Reilly Media.

Cogymighted Matenal

OREILLY"

Software
Engineering at

Google B .,

Lessons Learned «’/ t‘ D
from Programming
Over Time

Curated by Titus Winters,
Tom Monshreck & Hyrum Wright

Cognnighted Matey

Source: https://www.amazon.com/So 3

https://www.amazon.com/Software-Engineering-Google-Lessons-Programming/dp/1492082791

Project Management Institute (2017),

Agile Practice Guide

PMI

PRACTICE GUIDE

0—O0_

BpP..

.1 A@b

P B g iet retha l

CACBALSTANDARD @

Source: https://www.amazon.com/Agile-Practice-Project-Management-Institute/dp/1628251999/

https://www.amazon.com/Agile-Practice-Project-Management-Institute/dp/1628251999/

Project Management Institute (2021),
A Guide to the

Project Management Body of Knowledge
(PMBOK Guide) —

Seventh Edition and The Standard for Project Management

GLOBAL STANDARD

A Guide to the Project
Management Body of Knowledge

PMBOK GUIDE

Seventh Edition

AND The Standard

for Project Management

Source: https://www.amazon.com/Guide-Project-Management-Knowledge-PMBOK%C2%AE /dp/1628256648

10

https://www.amazon.com/Guide-Project-Management-Knowledge-PMBOK%C2%AE/dp/1628256648

John Doerr (2018),

Measure What Matters:

How Google, Bono, and the Gates Foundation Rock the World
with OKRs,

Portfolio

#1 NEW YORK TIMES BESTSELLER

Measure

- What
Matters

How Google, Bono,
and the Gates Foundation s
Rock the World with OKRs

John Doerr

AAAAAAAAAAAAAAAAAAAAAAA

Source: https://www.amazon.com/Measure-What-Matters-Google-Foundation/dp/0525536221

11

https://www.amazon.com/Measure-What-Matters-Google-Foundation/dp/0525536221

Denis Rothman (2024),
RAG-Driven Generative Al:

Build custom retrieval augmented generation pipelines with Llamalndex, Deep Lake, and Pinecone,
Packt Publishing

EXPERT INSIGHT

RAG-Driven
Generative Al

In color

Denis Rothman

https://www.amazon.com/RAG-Driven-Generative-retrieval-generation-Llamalndex/dp/183620091 9/

12

https://www.amazon.com/RAG-Driven-Generative-retrieval-generation-LlamaIndex/dp/1836200919/

<A NVIDIA. \&

xxxxxxx

llllllllllllllll

NVIDIA Developer Program

https://developer.nvidia.com/join-nvidia-developer-program

NVIDIA
Deep Learning Institute (DLI)

https://learn.nvidia.com/

https://developer.nvidia.com/join-nvidia-developer-program
https://learn.nvidia.com/

Rank™
(UB)

=
I_‘I_“OOOOOOU'IU'IU'Il\)l\)l\)l—\

[N
N R

Imarena.ai Chatbot Arena Leaderboard

Rank
(StyleCtrl)

1

NOoOoO JdWwooWw - W W

=
A W PR

=
N W

Model Arena

Score

chocolate (Early Grok-3) 1403
Gemini-2.0-Flash-Thinking-Exp-01-21 1385
Gemini-2.0-Pro-Exp-02-05 1380
ChatGPT-4o0-latest (2025-01-29) 1377
DeepSeek-R1 1362
Gemini-2.0-Flash-001 1358
01-2024-12-17 1352
ol-preview 1335
Qwen2.5-Max 1334
03-mini-high 1332
DeepSeek-V3 1318
Qwen-Plus-0125 1311
GLM-4-Plus-0111 1310
Gemini-2.0-Flash-Lite-Preview-02-05 1309
03-mini 1306

95% Cl Votes Organization

+6/-6

+4/-6
+5/-6

+5/-5
+7/-7
+7/-7
+5/-5
+3/-4
+5/-5
+5/-9
+4/-5
+9/-7
+6/-9

+6/-5
+5/-6

9992
15083
13000
13470

6581
10862
17248
33169
9282
5954
19461
5112
5134

10262
12179

XAl
Google
Google
OpenAl

DeepSeek
Google
OpenAl
OpenAl
Alibaba
OpenAl

DeepSeek
Alibaba

Zhipu
Google
OpenAl

https://huggingface.co/spaces/Imarena-ai/chatbot-arena-leaderboard

License

Proprietary
Proprietary
Proprietary
Proprietary

MIT
Proprietary
Proprietary
Proprietary
Proprietary
Proprietary

DeepSeek
Proprietary
Proprietary

Proprietary
Proprietary

14

https://x.com/lmarena_ai/status/1891706264800936307
https://aistudio.google.com/prompts/new_chat?model=gemini-2.0-flash-thinking-exp-01-21
https://aistudio.google.com/prompts/new_chat?model=gemini-2.0-pro-exp-02-05
https://help.openai.com/en/articles/9624314-model-release-notes
https://api-docs.deepseek.com/news/news250120
https://aistudio.google.com/app/prompts/new_chat?instructions=lmsys-1121&model=gemini-2.0-flash-001
https://openai.com/index/o1-and-new-tools-for-developers/
https://platform.openai.com/docs/models/o1
https://qwenlm.github.io/blog/qwen2.5-max/
https://platform.openai.com/docs/guides/reasoning
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://www.alibabacloud.com/help/en/model-studio/developer-reference/what-is-qwen-llm
https://bigmodel.cn/dev/howuse/glm-4
https://aistudio.google.com/prompts/new_chat?model=gemini-2.0-flash-lite-preview-02-05
https://openai.com/index/openai-o3-mini/
https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard

Imarena.ai Chatbot Arena Leaderboard

Confidence Intervals on Model Strength (via Bootstrapping)

15

ol-mini
step-2-16k-exp-202412
03-mini

gemini-2.0-flash-lite-preview-02-05

qwen-plus-0125

o
o
o
o
= gim-4-plus-0111
—o—]
g chatgpt-4o-latest-20240808
k-

deepseek-v3

O

©

(@)

2

e

ge)

o

= 03-mini-high =

e

e qwen2.5-max <

H- ol-preview m

©

g chatgpt-4o-latest-20240903 -5

T

©

g gemini-exp-1114 S &

A

ag 01-2024-12-17 m

ag gemini-2.0-flash-exp M

O

o gemini-2.0-flash-001 o

~

== deepseek-ri S

(]

O

e gemini-2.0-flash-thinking-exp-1219 £

=

ag gemini-exp-1121 o

-}

hg chatgpt-4o-latest-20241120 %

ke gemini-exp-1206 =

e

e chatgpt-4o-latest-20250129
e gemini-2.0-pro-exp-02-05
e gemini-2.0-flash-thinking-exp-01-21
e early-grok-3

o . o O @) .
© ©®© © ¥ N ©
< M M M M M
™ L L ™ L L

bujey

https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard

Claude 3.7
Sonnet,
Claude 3.5
Sonnet,
OpenAl,
DeepSeek,
and Grok

Graduate-level
reasoning

GPQA Diamond?

Agentic coding
SWE-bench Verified?

Agentic tool use
TAU-bench

Multilingual Q&A
MMMLU

Visual reasoning
MMMU (validation)

Instruction-
following

IFEval

Math
problem-solving

MATH 500

High school math
competition
AIME 20243

Claude 3.7
Sonnet

64K extended
thinking

78.2%/
84.8%

86.1%

75%

93.2%

96.2%

61.3%/
80.0%

\,

Claude 3.7
Sonnet

No extended
thinking

68.0%

62.3%/
70.3%

Retail

81.2%

Airline

58.4%

83.2%

71.8%

90.8%

82.2%

23.3%

7

Claude 3.5
Sonnet

(new)

65.0%

49.0%

Retail
71.5%

Airline

48.8%

82.1%

70.4%

90.2%

78.0%

16.0%

OpenAl o1!

75.7% /
78.0%

48.9%

Retail
73.5%

Airline

54.2%

87.7%

78.2%

96.4%

79.2% /
83.3%

Source: https://www.anthropic.com/news/claude-3-7-sonnet

OpenAl
03-mini’
High

79.7%

49.3%

79.5%

97.9%

87.3%

DeepSeek
R1

32K extended
thinking

71.5%

49.2%

83.3%

97.3%

79.8%

Grok 3 Beta

Extended
thinking

80.2% /
84.6%

76.0% /
78.0%

83.9%/
93.3%

16

https://www.anthropic.com/news/claude-3-7-sonnet

ACCURACY

Claude 3.7 Sonnet and Claude Code

Software engineering
SWE-bench verified

80
70.3%
with custom scaffold
60
49.0% 48.9% 49.3% 49.2%
40
20
0
Claude 3.7 Claude 3.5 OpenAl o1 OpenAl DeepSeek R1
Sonnet Sonnet (new) 03-mini (high)

Source: https://www.anthropic.com/news/claude-3-7-sonnet

17

https://www.anthropic.com/news/claude-3-7-sonnet

Generative Al Meets Product Development

Use Case 1:
Enhancing Creativity and Design Workflows

Use Case 2:
GenAl for Customer Insights and Concept Validation

Use Case 3:
LLMs as Natural Language Interfaces to
Complex Design Tools

Software
Engineering

Software Engineering

and

Project Management

(N\ [N\ [N\ [)
Analyze Design Build Test
Requirements i System and > Implementation > Integration

definition Software and and
design unit testing system testing

g /L /L J J

r

.

Deliver

Operation

maintenance

~

J

Project Management

Information Management

Management
Information Systems (MIS)

Information Systems

Information Management (MIS)
Information Systems

Organizations Technology

Information
Systems

Management

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

22

Fundamental MIS Concepts

Business
Challenges
\ 4
Management
Organization » Information Business
° System Solutions
Technology

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Project-based software engineering

CUSTOMER

Problem

generates helps-with

implemented-by

CUSTOMER and DEVELOPER
DEVELOPER

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

24

Project-based software engineering

* The starting point for the software development is a set of ‘software
requirements’ that are owned by an external client and which set out what
they want a software system to do to support their business processes.

* The software is developed by a software company (the contractor) who
design and implement a system that delivers functionality to meet the
requirements.

* The customer may change the requirements at any time in response to
business changes (they usually do). The contractor must change the software
to reflect these requirements changes.

e Custom software usually has a long-lifetime (10 years or more) and it must be
supported over that lifetime.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

25

Product software engineering

DEVELOPER

®

inspires

Opportunity

realizes

implemented-by

Product
features

DEVELOPER DEVELOPER

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

26

Product software engineering

* The starting point for product development is a business opportunity that is
identified by individuals or a company.
They develop a software product to take advantage of this opportunity and sell
this to customers.

 The company who identified the opportunity design and implement a set of
software features that realize the opportunity and that will be useful to
customers.

* The software development company are responsible for deciding on the
development timescale, what features to include and when the product should

change.

* Rapid delivery of software products is essential to capture the market for that
type of product.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

27

Software execution models

Stand-alone execution Hybrid execution Software as a service
User’s computer User’s computer User’s computer
User interface User interface User interf
Product functionality Partial functionality >l INtertace

User data User data (browser or app)

Additional functionality
Product updates User data backups
Product updates

Product functionality
User data

Vendor’s servers Vendor’s servers Vendor’s servers

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product management concerns

Business
needs

Product
manager

Technology
constraints

Customer
experience

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Technical interactions of
product managers

| management |

Product
vision

Product
backlog

__management

Acceptance
testing

Product

manager

User
interface
design

J

User stories
and
scenarios

Customer
testing

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

30

Software Development Life Cycle (sowc)
The waterfall model

Gequirements
definition) |
7'y
<System and
Software design) ‘
7y
Gplementation)
and unit testing
7y
Gtegration and)
system testing

Y mperation and
\maintenance

Source : lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

31

Plan-based and Agile development

|r Plan-based develo| p:n;n; ___________________

Requirements Requirements Design and
engineering specification implementation

Requirements change requests

Agile development
Requirements Design and
engineering implementation

Source: lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

32

The Continuum of Life Cycles

P
Incremental Agile
>
2
O
o
5
>
2
S
o
t | Predictive Iterative
>
Low High

Degree of Change

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

33

Predictive Life Cycle

[Analyze H Design H Build H Test H Deliver]

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

34

Analyze

Prototype

Analyze
Design

Refine

7

Iterative Life Cycle

f

Build
Test

~\

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Deliver

35

A Life Cycle of

Varying-Sized Increments

Analyze
Design
Build
Test
Deliver

e

_

Analyze
Design
Build
Test
Deliver

~

J

[

_

Analyze
Design
Build
Test
Deliver

\

J

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

36

Iteration-Based and Flow-Based
Agile Life Cycles

Iteration-Based Agile

4 Y Y Y Y Y Y)
Requirements | Requirements | Requirements | Requirements Requirements | Requirements
Analysis Analysis Analysis Analysis Repeat Analysis Analysis
Design Design Design Design as needed Design Design
Build Build Build Build Build Build
Test Test Test Test Test Test
_ A AL A A A AL J

Flow-Based Agile
e ' Y Y Y Y~ ™\
Requirements |Requirements Requirements Requirements Requirements
Analysis Analysis Analysis Analysis Analysis
Des.lgn Des.lgn Des-lgn Repeat Des.lgn Des-lgn
Build Build Build as needed Build Build
Test Test Test Test Test
the number of |the number of the number of the number of the number of
features in the features in features in the WIP featuresin the| featuresin the WIP
WIP limit the WIP limit limit WIP limit limit
_ A A A A A J

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

37

From personas to features

0[Personas

A way of representing users

inspire

Scenarios

inspire

4

Features

3/

Natural language descriptions of a user
interacting with a software product

are-developed-into

Stories

Fragments of product functionality

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

define

Natural language
descriptions of
something that is
needed or wanted
by users

38

Multi-tier client-server architecture

Web Application Database
Server Server Server

>/

Source : lan Sommervi ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Service-oriented Architecture

Client 1

<Client 2
<Client 3
<Client

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Web Service
Server gateway

N

Services

VM

Virtual Virtual
web server mail server
(mmmmmm————— | (e m—————)
| 11 |
. | Server | ||| Server |'!
| 11 |
| software L software | |
| |l I
| 11 |
| 11 |
|| Guest []!]| Guest |!
| oS B oS !
| 11 |
Vo o o o o o o e e I S J
Hypervisor
Host OS

Server Hardware

Container

User1
Container 1

Application
software

Server
software

4 N N N N N N N N N . -

User 2
Container 2

Application
software

Server
software

Container manager

Host OS

Server Hardware

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

41

Everything as a service

Photo Software as a service Logistics
editing (Saa$) management
. Datab
Cloud Platform as a service atabase
management (Paas) Software
Monitoring development
Storage Infrastructure as a service Computing
Network (1aa$) Virtualization
Cloud data center

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Software as a service

Software
customers \ \ / /
SOftVYare Software services
provider

Cloud
provider Cloud Infrastructure

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 43

Microservices architecture —
key design questions

-

-

How should data
be distributed and

_

~

shared?

the system be

Qnake up the system?j

What are the
microservices that

~

. coordinated?)

I

Microservices
architecture
design

" How should the) 4
microservices in service failure be

" How should

each other?

microservices
communicate with

\

J

How should

detected, reported

. and managed?

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

44

Types of security threat

An attacker attempts to An attacker attempts
deny access to the system to damage the
for legitimate users system or its data
Availability Integrity
I PRODUCT
PROGRAM
Distributed denial of Virus
service (DDoS) attack DATA
Ransomware
Data theftT
Confidentiality
threats

An attacker tries to gain
access to private information
held by the system

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

45

Software product quality attributes

2,

Availability

Reliability

3

Resilience

Software
product
quality

attributes

6

Usability

Maintainability

Responsiveness

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

46

A refactoring process

or ,N@

: Identif
Identify code .y
. , refactoring
smell
strategy

V)

©

Make small
improvement until
) _strategy completed

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 47

(4,

Run automated
code tests

Functional testing

Start

\ 4

Unit

; Testing

Release
Testing

Y

Feature
Testing

System
Testing

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

48

Test-driven development (TDD)

Start» Identify new

functionality

N

Identify partial implementation
of functionality

Write code stub
that will fail test

Y

Functionality Functionality

complete incomplete
Run all
automated test
Refactor code 'V
if required Implement code that should
cause failing test to pass
Test failure
Run all
All tests pass utomated test

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

49

Multi-skilled DevOps team

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

50

Code management and DevOps

DevOps automation

Continuous
integration

)

Continuous
deployment

Continuous
delivery

Infrastructure
as code

|

T Code management system *

4 . .
Branching and merging
Recover Save and
: Code :
version) retrieve
information repository versions
9 Transfer code to/from developer’s filestore

T DevOps measurement *

[Data

Data Report
collection analysis

] [generation

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

51

Platform Engineering

[J Team
B Components

Product and Service Teams A Consumption

Direction
X-as-a-Service Developer Portal
Reusable Platform Knowledge T %
Components Services Platform
Team(s)
Digital Platform

Infrastructure Platform

Infrastructure Complexity

Source: https://www.gartner.com/en/articles/what-is-platform-engineering 52

https://www.gartner.com/en/articles/what-is-platform-engineering

Marketing

Marketing

“Meeting
heeds
profita bly

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

Marketing

“Marketing is an organizational function
and a set of processes for
creating, communicating, and delivering
value to customers and
for managing customer relationships
in ways that benefit the organization and its stakeholders.”

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

55

Marketing
Management

Marketing Management

“Marketing management is the
art and science
of choosing target markets
and getting, keeping, and growing
customers through
creating, delivering, and communicating
superior customer value.”

57

Marketing Management

58

OKRs, CFRs, KPIs
Agile Performance Management

*OKRs

*Objectives and Key Results
*CFRs

*Conversations, Feedback, Recognition
*KPIs

*Key Performance Indicators

Software
Engineering

Software Engineering

and

Project Management

(N\ [N\ [N\ [)
Analyze Design Build Test
Requirements i System and > Implementation > Integration

definition Software and and
design unit testing system testing

g /L /L J J

r

.

Deliver

Operation

maintenance

~

J

Project Management

Software Engineering

e Software engineering is an engineering discipline that is
concerned with all aspects of software production from the
early stages of system specification through to maintaining the
system after it has gone into use.

‘l“")(Z \ \
U / \
i\ ' b
R Vi /
L

w=o0ftware Engineering

Source : lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

62

What is software?

* Computer programs and associated documentation. Software
products may be developed for a particular customer or may be
developed for a general market.

Source : lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

63

What are the attributes of good software?

* Good software should deliver the required functionality and
performance to the user and should be maintainable,
dependable and usable.

64

What is software engineering?

* Software engineering is an engineering discipline that is
concerned with all aspects of software production from initial
conception to operation and maintenance.

Source : lan Sommerville (2015), Software Engineering, 10th Edition, Pearson

65

What are the fundamental
software engineering activities?

* Software specification, software development, software
validation and software evolution.

66

What is the difference between
software engineering and
computer science?

* Computer science focuses on theory and fundamentals;
software engineering is concerned with the practicalities of
developing and delivering useful software.

67

What are the best software engineering
techniques and methods?

* While all software projects have to be professionally managed and
developed, different techniques are appropriate for different types of
system.

* For example, games should always be developed using a series of
prototypes whereas safety critical control systems require a complete
and analyzable specification to be developed.

* There are no methods and techniques that are good for everything.

Source : lan Sommerville (2015), Software Engineering, 10th Edition, Pearson. 68

What are the costs of software engineering?

* Roughly 60% of software costs are development costs, 40% are
testing costs.

* For custom software, evolution costs often exceed development
costs.

69

Information Management

Management
Information Systems (MIS)

Information Systems

Information Management (MIS)
Information Systems

Organizations - Technology

Management

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

71

Fundamental MIS Concepts

Business
Challenges
\ 4
Management
Organization » Information Business
° System Solutions
Technology

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Software products

* Software products are generic software systems that provide
functionality that is useful to a range of customers.

* Software products:

 Large-scale business systems (e.g. MS Excel)
* Personal products (e.g. Evernote)

* Simple mobile phone apps and games (e.g. Suduko).

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

73

Software product engineering

* Software product engineering methods and techniques have
evolved from software engineering techniques that support the
development of one-off, custom software systems.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

74

Software projects

* Custom software systems are still important for large
businesses, government and public bodies.

* They are developed in dedicated software projects.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

75

Project

*A projectis a
temporary endeavor
undertaken to create a
unique product, service, or result.

Source: Project Management Institute (2017), A Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition, PMI

76

Project Management Body of Knowledge

(PMBOK Guide) pviBok v6 vs. PMBOK v7

PMBOK Guide v6

Project Management Body of Knowledge:
* Introduction

* Project Environment

* Role of the Project Manager

* 10 Knowledge Areas

Integration
Scope

Schedule

Cost

Quality
Resources
Communications
Risk
Procurement
Stakeholders

The Standard for Project Management

(5 Process Groups):

* Initiating

* Planning

* Executing

* Monitoring and Controlling
* Closing

e System for Value Delivery

e 1. Stewardship, 2. Team

* 3. Stakeholders, 4. Value

5. Systems Thinking, 5. Leadership
7. Tailoring, 8. Quality

9. Complexity, 10, Risk

11. Adaptability and Resiliency
12. Change

PMBOK Guide v7

The Standard for Project Management :
* Introduction

e 12 Project Management Principles:

e 1. Stakeholders, 2. Team,

3. Development approach and Life Cycle
* 4. Planning, 5. Project Work, 6. Delivery,
* 7. Measurement, 8. Uncertainty

e Tailoring
* Models, Methods, and Artifacts

Project Management Body of Knowledge:
* 8 Project Performance Domains:

~

\a

Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) —
Seventh Edition and The Standard for Project Management, PMI

77

Project Management Knowledge Areas
(PMBOK v6)

Project Integration Management
Project Scope Management

Project Schedule Management

Project Cost Management

Project Quality Management

Project Resource Management
Project Communications Management

Project Risk Management

© 0O N O U kB WNRE

Project Procurement Management

10. Project Stakeholder Management

Source: Project Management Institute (2017), A Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition, PMI

78

N N

Project Management Process Groups
(PMBOK v6)

Initiating Process Group

Planning Process Group

. Executing Process Group

Monitoring and Controlling Process Group

. Closing Process Group

Source: Project Management Institute (2017), A Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition, PMI

79

10. Risk
11. Adaptability and Resiliency

© 0 N O U = WDNH

Project Management 12 Principles
(PMBOK v7)

Stewardship

Team

Stakeholders BN e

Value OLORAL sTANDARD
Systems Thinking e

Management Body of Knowledge

Leadership PMBOK GUIDE

Tailori ng Seventh Edition

. AND The Standard
Qual ity for Project Management
Complexity

12. Change

Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) —
Seventh Edition and The Standard for Project Management, PMI

80

00O N O N H W N =

Project Management

8 Project Performance Domains
(PMBOK v7)

. Stakeholders
. Team

. Development Approach and Life Cycle
. Planning

. Project Work
. Delivery

e rojec
Management Body of Knowledge
PMBOK GUIDE

Seventh Edition

. Measurement
. Uncertainty (

Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) —
Seventh Edition and The Standard for Project Management, PMI

81

Project-based software engineering

CUSTOMER

Problem

generates helps-with

implemented-by

CUSTOMER and DEVELOPER
DEVELOPER

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

82

Project-based software engineering

* The starting point for the software development is a set of ‘software
requirements’ that are owned by an external client and which set out what
they want a software system to do to support their business processes.

* The software is developed by a software company (the contractor) who
design and implement a system that delivers functionality to meet the
requirements.

* The customer may change the requirements at any time in response to
business changes (they usually do). The contractor must change the
software to reflect these requirements changes.

* Custom software usually has a long-lifetime (10 years or more) and it must
be supported over that lifetime.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

83

Product software engineering

DEVELOPER

®

inspires

Opportunity

realizes

implemented-by

Product
features

DEVELOPER DEVELOPER

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

84

Product software engineering

* The starting point for product development is a business opportunity that is
identified by individuals or a company.
They develop a software product to take advantage of this opportunity and
sell this to customers.

* The company who identified the opportunity design and implement a set of
software features that realize the opportunity and that will be useful to
customers.

* The software development company are responsible for deciding on the
development timescale, what features to include and when the product

should change.

* Rapid delivery of software products is essential to capture the market for that
type of product.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

85

Software product line

* A set of software products that share a common core.

* Each member of the product line includes customer-specific
adaptations and additions.

* Software product lines may be used to implement a custom
system for a customer with specific needs that can’t be met by a
generic product.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 36

Platform

A software (or software + hardware) product that includes
functionality so that new applications can be built on it.

* An example of a platform that you probably use is
Facebook.

* It provides an extensive set of product functionality but also
provides support for creating ‘Facebook apps’.

* These add new features that may be used by a business or a
Facebook interest group.

Software execution models

Stand-alone execution Hybrid execution Software as a service
User’s computer User’s computer User’s computer
User interface User interface User interf
Product functionality Partial functionality >l INtertace

User data User data (browser or app)

Additional functionality
Product updates User data backups
Product updates

Product functionality
User data

Vendor’s servers Vendor’s servers Vendor’s servers

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software execution models

* Stand-alone
* The software executes entirely on the customer’s computers.
* Hybrid

* Part of the software’s functionality is implemented on the
customer’s computer but some features are implemented on the
product developer’s servers.

e Software service

 All of the product’s features are implemented on the developer’s
servers and the customer accesses these through a browser or a
mobile app.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

89

Comparable
software development

* The key feature of product development is that there is no external customer
that generates requirements and pays for the software.

* Student projects

* Individuals or student groups develop software as part of their course.

Given an assignment, they decide what features to include in the software.

 Research software

* Researchers develop software to help them answer questions that are
relevant to their research.

* Internal tool development

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

90

The product vision

* The starting point for software product development is a ‘product vision’.

* Product visions are simple statements that define the essence of the
product to be developed.

* The product vision should answer three fundamental questions:
* What is the product to be developed?
* Who are the target customers and users?

 Why should customers buy this product?

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

91

Moore’s vision template

* FOR (target customer)

* WHO (statement of the need or opportunity)

* The (PRODUCT NAME) is a (product category)

* THAT (key benefit, compelling reason to buy)

* UNLIKE (primary competitive alternative)

* OUR PRODUCT (statement of primary differentiation)

Vision template example

* “FOR a mid-sized company's marketing and sales departments
WHO need basic CRM functionality,
THE CRM-Innovator is a Web-based service
THAT provides sales tracking, lead generation, and sales
representative support features that improve customer
relationships at critical touch points.
UNLIKE other services or package software products,
OUR product provides very capable services at a moderate
cost.”

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

93

Information sources for
developing a product vision

* Domain experience
* Product experience
* Customer experience

* Prototyping and playing around

94

Information sources for
developing a product vision

* Domain experience

* The product developers may work in a particular area (say marketing
and sales) and understand the software support that they need.

* They may be frustrated by the deficiencies in the software they use and
see opportunities for an improved system.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

95

Information sources for
developing a product vision

* Product experience

* Users of existing software (such as word processing software) may see
simpler and better ways of providing comparable functionality and
propose a new system that implements this.

* New products can take advantage of recent technological
developments such as speech interfaces.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

96

Information sources for
developing a product vision

* Customer experience

* The software developers may have extensive discussions with
prospective customers of the product to understand the problems that
they face, constraints, such as interoperability, that limit their flexibility
to buy new software, and the critical attributes of the software that

they need.

97

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Information sources for
developing a product vision

* Prototyping and playing around

* Developers may have an idea for software but need to develop a better
understanding of that idea and what might be involved in developing it
into a product.

* They may develop a prototype system as an experiment and ‘play
around’ with ideas and variations using that prototype system as a
platform.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 98

A vision statement for
the iLearn system

* FOR teachers and educators WHO need a way to help students use web-based
learning resources and applications, THE iLearn system is an open learning
environment THAT allows the set of resources used by classes and students to be
easily configured for these students and classes by teachers themselves. UNLIKE
Virtual Learning Environments, such as Moodle, the focus of iLearn is the learning
process rather than the administration and management of materials, assessments
and coursework. OUR product enables teachers to create subject and age-specific
environments for their students using any web-based resources, such as videos,
simulations and written materials that are appropriate.

Schools and universities are the target customers for the iLearn system as it will significantly improve
the learning experience of students at relatively low cost. It will collect and process learner analytics
that will reduce the costs of progress tracking and reporting.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

99

The Essence of

Strategic Marketing (STP)

Segmentation
Targeting
Positioning

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

Customer
Value

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson. 101

Value

the sum of the
tangible and
intangible
benefits and costs

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson.

Value

Total
customer

benefit

Customer
perceived

value

Total
customer

cost

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson. 103

Customer Perceived Value

Product benefit

Total
customer

Personnel benefit be N Ef|t

Image benefit Customer
perceived

Services benefit

Monetary cost Vd I ue

Total
customer

Energy cost COSt

Psychological cost

Time cost

Source: Philip Kotler and Kevin Lane Keller (2016), Marketing Management, 15th edition, Pearson. 104

Business Model

Key Customer
Activities Relationships
Key Value Customer
Partners Proposition Segments
Key Channels
Resources
9 Cost 5 Revenue
Structure Streams

Source: Alexander Osterwalder & Yves Pigneur, Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Wiley, 2010.

105

Software product management

* Software product management is a business activity that focuses on
the software products developed and sold by the business.

* Product managers (PMs) take overall responsibility for the product
and are involved in planning, development and product marketing.

* Product managers are the interface between the organization, its
customers and the software development team. They are involved at
all stages of a product’s lifetime from initial conception through to
withdrawal of the product from the market.

* Product managers must look outward to customers and potential
customers rather than focus on the software being developed

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 106

Product management concerns

Business
needs

Product
manager

Technology
constraints

Customer
experience

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 107

Product management concerns

 Business needs

 PMs have to ensure that the software being developed meets the business
goals of the software development company.

* Technology constraints

* PMs must make developers aware of technology issues that are important
to customers.

* Customer experience

 PMs should be in regular contact with customers and potential customers
to understand what they are looking for in a product, the types of users
and their backgrounds and the ways that the product may be used.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 108

Technical interactions of
product managers

| management |

Product
vision

Product
backlog

__management

Acceptance
testing

Product

manager

User
interface
design

J

User stories
and
scenarios

Customer
testing

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

109

Technical interactions of
product managers

* Product vision management

* The product manager may be responsible for helping
with the development of the product vision.

* The should always be responsible for managing the
vision, which involves assessing and evaluating proposed
changes against the product vision.

* They should ensure that there is no ‘vision drift’

SSSSSS : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 110

Technical interactions of
product managers

* Product roadmap development

* A product roadmap is a plan for the development,
release and marketing of the software.

* The PM should lead roadmap development and should
be the ultimate authority in deciding if changes to the
roadmap should be made.

SSSSSS : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 111

Technical interactions of
product managers

* User story and scenario development

e User stories and scenarios are used to refine a product vision
and identify product features.

* Based on his or her knowledge of customers, the PM should
lead the development of stories and scenarios.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 112

Technical interactions of
product managers

* Product backlog creation and management

* The product backlog is a prioritized ‘to-do’ list of
what has to be developed.

* PMs should be involved in creating and refining the
backlog and deciding on the priority of product
features to be developed.

113

Technical interactions of
product managers

* Acceptance testing

* Acceptance testing is the process of verifying that a
software release meets the goals set out in the
product roadmap and that the product is efficient
and reliable.

* The PM should be involved in developing tests of
the product features that reflect how customers use
the product.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

114

Technical interactions of
product managers

* Customer testing

* Customer testing involves taking a release of a product
to customers and getting feedback on the product’s
features, usability and business.

* PMs are involved in selecting customers to be involved
in the customer testing process and working with them
during that process.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

115

Technical interactions of
product managers

e User interface design

* Product managers should understand user limitations
and act as surrogate users in their interactions with
the development team.

* They should evaluate user interface features as they
are developed to check that these features are not
unnecessarily complex or force users to work in an
unnatural way.

116

Product prototyping

* Product prototyping is the process of developing an early
version of a product to test your ideas and to convince yourself
and company funders that your product has real market
potential.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 117

Product prototyping

* You may be able to write an inspiring product vision, but
your potential users can only really relate to your product
when they see a working version of your software.

* They can point out what they like and don’t like about it
and make suggestions for new features.

* A prototype may be also used to help identify
fundamental software components or services and to test
technology.

Product prototyping

 Building a prototype should be the first thing that you do
when developing a software product.

* Your aim should be to have a working version of your
software that can be used to demonstrate its key features.

* You should always plan to throw-away the prototype after
development and to re-implement the software, taking
account of issues such as security and reliability.

Two-stage prototyping

1. Feasibility demonstration

* You create an executable system that demonstrates the new ideas in
your product.

* The aims at this stage are to see if your ideas actually work and to
show funders and/or company management the original product
features that are better than those in competing products.

2. Customer demonstration

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 120

Two-stage prototyping

1. Feasibility demonstration

2. Customer demonstration

* You take an existing prototype created to demonstrate feasibility and
extend this with your ideas for specific customer features and how
these can be realized.

* Before you develop this type of prototype, you need to do some user
studies and have a clearer idea of your potential users and scenarios
of use.

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 121

Software process models

* The waterfall model

* This takes the fundamental process activities of specification,
development, validation, and evolution and represents them as separate
process phases such as requirements specification, software design,
implementation, and testing.

* Incremental development

* This approach interleaves the activities of specification, development,
and validation. The system is developed as a series of versions
(increments), with each version adding functionality to the previous
version.

* Integration and configuration

* This approach relies on the availability of reusable components or systems. The system
development process focuses on configuring these components for use in a new setting
and integrating them into a system.

Source: lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

122

Software Development Life Cycle (sowc)
The waterfall model

Gequirements
definition) |
7'y
<System and
Software design) ‘
7y
Gplementation)
and unit testing
7y
Gtegration and)
system testing

Y mperation and
\maintenance

Source : lan Sommerville (2015), Software Engineering, 10th Edition, Pearson. 123

Incremental development

Concurrent
activities

. Initial
GpeuflcatloD - [)]
e version
Outline Intermediate
Development — NV N
description PR

|

\

<Va|idation> [Fm.al
version

Source lan Sommervi ille (2015), Software Engineering, 10th Edition, Pearson. 124

Reuse-oriented
software engineering

Configure
application
system

Application
system

_/

Software available
4 discovery
Requirements Requirements
specification refinement Adapt
Software components

evaluation Integrate
Components
. system
available

Develop new
components

&

Source: lan Sommerville (2015), Software Engineering, 10th Edition, Pearson. 125

Prototype development

Establish Define
Develop Evaluate
prototype prototype rototype rototype
objectives functionality P yP P yP
Prototyping Outline Executable Evaluation
plan definition Prototyping report

Source : lan Sommerville (2015), Software Engineering, 10th Edition, Pearson. 126

Incremental delivery

Define Assign Design Develop
outline requirements system system
requirements to increments architecture increment
System
1 incomplete ?
Validate Integrate Validate Deploy
increment increment system increment
System
complete ?
Final
system

Source: lan Sommerville (2015), Software Engineering, 10th Edition, Pearson. 127

The process improvement model

Process
Measure

Process
Analyze

Process
Change

Source : lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

128

Capability maturity levels

Level 5
Optimizing

Level 4
Quantitatively
Defined

Level 3
Defined

Level 2

Managed
Level 1
Initial

Source : lan Sommerville (2015), Software Engineering, 10th Edition, Pearson. 129

Plan-based and Agile development

c- . - - = ==-==-=======-"="="=""============ N\
| Plan-based development

Requirements Requirements Design and
engineering specification implementation

Requirements change requests

Agile development
Requirements Design and
engineering implementation

— e e e —_—_———
I
l
I
l
I
l
I
l
I
l
I
l
I
l
I
l
I
l
I
l
I
l
I
l
I
l
I
l
I
l
I
&

Source: lan Sommerville (2015), Software Engineering, 10th Edition, Pearson. 130

Uncertainty and Complexity Model
Inspired by the Stacey Complexity Model

Requirements Uncertainty

BA
I=
38
§ Fundamentally
2 risky
00
X
9 r
% Adaptive
'0// approaches

- OQ(work well here
£ Q
© ®
b5 % v [Linear
5 ,O/ approaches
2 (Y \ | work well here |
B >

Low Uncertainty High Uncertainty

Technical Degree of Uncertainty

131

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Characteristics of
Four Categories of Life Cycles

Approach |Requirements| Activities Delivery Goal
Predictive Fixed Performed once for Single delivery Manage cost
the entire project

- : Repeated until : . Correctness of

Dynamic Single deliver .
Iterative y correct 8 Y solution
| tal Dvhamic Performed once for | Frequent smaller Speed
ncrementa y a given increment deliveries P
. Customer value via
. : Repeated until Frequent smaller)
f I
Aglle Dynamic . deliveries requent deliveries

and feedback

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

132

The Continuum of Life Cycles

P
Incremental Agile
>
2
O
o
5
>
2
S
o
t | Predictive Iterative
>
Low High

Degree of Change

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute 133

Predictive Life Cycle

[Analyze H Design H Build H Test H Deliver]

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute 134

Analyze

Prototype

Analyze
Design

Refine

7

Iterative Life Cycle

f

Build
Test

~\

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Deliver

135

A Life Cycle of
Varying-Sized Increments

N (N \
Analyze Analyze Analyze
Design Design Design
Build —> Build — Build
Test Test Test
Deliver Deliver Deliver
J - Y _ J

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute 136

Iteration-Based and Flow-Based
Agile Life Cycles

Iteration-Based Agile

4 Y Y Y Y Y Y)
Requirements | Requirements | Requirements | Requirements Requirements | Requirements
Analysis Analysis Analysis Analysis Repeat Analysis Analysis
Design Design Design Design as needed Design Design
Build Build Build Build Build Build
Test Test Test Test Test Test
_ A AL A A A AL J

Flow-Based Agile
e ' Y Y Y Y~ ™\
Requirements |Requirements Requirements Requirements Requirements
Analysis Analysis Analysis Analysis Analysis
Des.lgn Des.lgn Des-lgn Repeat Des.lgn Des-lgn
Build Build Build as needed Build Build
Test Test Test Test Test
the number of |the number of the number of the number of the number of
features in the features in features in the WIP featuresin the| featuresin the WIP
WIP limit the WIP limit limit WIP limit limit
_ A A A A A J

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

137

Agentic Al

for
Agile Al Software Engineering

<A NVIDIA. \&

xxxxxxx

llllllllllllllll

NVIDIA Developer Program

https://developer.nvidia.com/join-nvidia-developer-program

NVIDIA
Deep Learning Institute (DLI)

https://learn.nvidia.com/

https://developer.nvidia.com/join-nvidia-developer-program
https://learn.nvidia.com/

<2 NVIDIA.

Join the
NVIDIA
Developer
Program

take one of the

complimentary

technical self-

paced courses
(worth up to $90)

Generative Al and LLMs

8 hours

Getting Started With Deep
Learning

Explore the fundamentals of deep learning by
training neural networks and using results to

improve performance and capabilities.

Graphics and Simulation Accelerated Computing

2 hours

Modeling Time-Series Data
With Recurrent Neural
Networks in Keras

Explore how to classify and forecast time-series
data using recurrent neural networks (RNNs), such

as modeling a patient's health over time.

Data Science Deep Learning

4 hours

Deploying a Model for
Inference at Production Scale

Learn how to deploy your own machine learning

models on a GPU server.

8 hours

Building Real-Time Video Al
Applications

Gain the knowledge and skills needed to enable the
real-time transformation of raw video data from
widely deployed camera sensors into deep learning-

based insights.

2 hours

Introduction to Graph Neural
Networks

Learn the basic concepts, models, and applications

of graph neural networks.

4 hours

Introduction to Physics-
Informed Machine Learning
With Modulus

Learn the various building blocks of NVIDIA
Modulus, which turbocharges use cases by building
physics-based deep learning models that are
100,000X faster than traditional methods and
offers high-fidelity simulation results.

2 hours

Get Started With Highly
Accurate Custom ASR for
Speech Al

Learn to build, train, fine-tune, and deploy a GPU-
accelerated automatic speech recognition (ASR)
service with NVIDIA® Riva that includes customized

features.

2 hours

Integrating Sensors With
NVIDIA DRIVE

Find out how to integrate automotive sensors into
your applications using NVIDIA DRIVE®.

https://developer.nvidia.com/join-nvidia-developer-program

140

https://developer.nvidia.com/join-nvidia-developer-program

<2 NVIDIA.

Self-Paced Course

Generative Al Explained

Free
2 hours

Self-Paced Course

Building RAG Agents With
LLMs

Certificate available
Free
8 hours

https://www.nvidia.com/en-us/learn/learning-path/generative-ai-llm/

Self-Paced Course

Getting Started With Deep
Learning

Certificate available
$90
8 hours

Instructor-Led Workshop

Building RAG Agents With
LLMs

Certificate available
$500
8 hours

Instructor-Led Workshop

Fundamentals of Deep
Learning

Certificate available
$500
8 hours

Self-Paced Course

Generative Al with
Diffusion Models

Certificate available
$90
8 hours

NVIDIA Deep Learning Institute (DLI)

Self-Paced Course

Introduction to Transformer-
Based Natural Language
Processing

Certificate available
$30
6 hours

Instructor-Led Workshop

Generative Al with
Diffusion Models

Certificate available
$500
8 hours

141

https://learn.nvidia.com/en-us/training/self-paced-courses

NVIDIA.

Deep Learning Institute (DLI)

NVIDIA. Products Solutions Industries For You Shop Drivers Support Q T Min-Yuh Day ~

Deep Learning Institute Find Training Self P C s -Led Wo ps Educator Pr ms Enterpri

Monthly Activity Skills

Certificates

Skill Points o

Time spent Q O O
- -

Introduction to

Courses in Progress 12 Transformer- Building RAG Building RAG
Based Natural Agents with Agents with
Language LLMs LLMs
Courses Completed 9 Processing

Watched Videos O
Assessments -~
Accelerating
End-to-End Data

Science
Workflows

Completed Courses View more

Self-paced

Sizing LLM Inference Systems

100% Completed
03:00

Self-paced

Augment your LLM Using
Retrieval Augmented
Generation

100% Completed
01:00

Self-paced

Building RAG Agents with
LLMs

100% Completed
08:00

Self-paced

Generative Al Explained

100% Completed
02:00

https://learn.nvidia.com/my-learning

Self-paced

Introduction to Transform
Based Natural Language
Processing

100% Completed
06:00

142

https://learn.nvidia.com/my-learning

< NVIDIA.

Certificate of Completion

This certificate is awarded to

Min-Yuh Day

for successfully completing
Building RAG Agents with LLMs

Aoy 4

s 7/
Greg Estes

Vice President, NVIDIA

Issue Date: : December 8, 2024
Certification ID: ed-gOCIMQaatzU8SNUNxgw |
https://learn.nvidia.com/certificates?id=ed-qOCIMQaatzUBSNUNxgw/courses/course?course_id=course-v1:DLI+S-FX-15+V1

https://learn.nvidia.com/certificates?id=ed-qOCIMQaatzUSSNUNxgw 143

https://learn.nvidia.com/certificates?id=ed-qOCIMQaatzU8SNUNxgw

Generative Al

Text, Image, Video, Audio
Applications

Transformer Models
Transformer

Encoder B Decoer

|
TS

BART
|

M2M-100
|

ALBERT BigBird

|

ELECTRA mTO

RoBERTa

DistilBERT

BLOOMZ

DeBERTa

ChatGPT

145

Four Paradigms in NLP (LM)

Paradigm Engineering Task Relation
CLS TAG
a. Fully Supervised Learning ieah;rrzrd entite oart-of-coeech o [
(Non-Neural Network) & P P ’
sentence length)
. |GEN
CLS TAG
b. Fully Supervised Learning Architecture) | v B
N | Network (e.g. convolutional, recurrent,
(Neural Network) self-allentlional)
. |GEN
Transfer Learning: Pre-training, Fine-Tuning (FT) CLS TAG
Objective :]\LM /,:
c. Pre-train, Fine-tune (e.g. masked language modeling, next
sentence prediction) l
- 1GEN
GAIl: Pre-train, Prompt, and Predict (Prompting) CLS TAG
= M ==
d. Pre-train, Prompt, Predict Prompt (e.g. cloze, prefix) o T o

146

Large Language Models (LLM) G

Three typical learning paradigms
4 N 4 N
A) Pretrain-finetune
(A) > Flnt‘:t:l?i on l Infs:rerll(c: on
« Typically requires many as
task-specific examples _ Y, _)
* One specialized model
for each task
N g ™\
Pretrained (B) Prompting »| Inference on
LM Few-shot prompting / prompt engineering L
J (& J
'z N)
(C) Instruction tuning Instruction-tune on Y Inference on
> many tasks: B, C, D, ... unseen task A

Model learns to perform
many tasks via natural _ J J
language instructions

147

Popular Generative Al e

llllllllllllllllllllllll

OpenAl ChatGPT (GPT-01, GPT-40, GPT-4)
Claude.ai (Claude 3.5)

Google Gemini

Meta Llama 3.3, Llama 3.2 Vision
Mixtral Pixtral (mistral.ai)

DeepSeek

Chat.LMSys.org (Imarena.ai)
Perplexity.ai (Perplexity Deep Research)
Stable Diffusion

Video: D-ID, Synthesia

Audio: Speechify

148

Chat

Large Language Models for Data Science (=
\ NTPU

& Expand to see the descriptions of 72 models

with
Open
Large
Language
Models:
Chatbot
Arena

) Model A

llama-3.2-vision-90b-instruct

llama 3.2

Large Language Models for Data Science

I

Step 1: Introduction to Large Language Models

Large Language Models (LLMs) are a type of artificial
intelligence (Al) designed to process and understand human
language. They are trained on vast amounts of text data,
enabling them to learn patterns, relationships, and context
within language. LLMs have become increasingly popularin
recent years due to their ability to generate human-like text,

answer questions, and even create content.
Step 2: Applications of Large Language Models in Data Science

LLMs have numerous applications in data science, including:

© Text Analysis: LLMs can be used to analyze large datasets of
text, such as customer reviews or social media posts, to extract
insights and sentiment.

© Natural Language Processing (NLP): LLMs can be used for
NLP tasks like text classification, named entity recognition, and

| [P [FRPUSAPRRY PRS- .

-~ Ais better = Bis better

Enter your prompt and press ENTER

https://Imarena.ai/

= Model B

SIS T

National Talpel University

<

claude-3-5-sonnet-20241022 -

claude 3.5 sonnet
Large Language Models for Data Science

-

Let me provide a comprehensive overview of how Large

Language Models (LLMs) can be used in Data Science:

Key Applications of LLMs in Data Science:

1. Data Analysis & Exploration

© Natural language queries to databases

© Data summarization and insights generation

o Exploratory data analysis assistance

© Pattern recognition and trend identification

2. Code Generation & Assistance

© Writing data processing scripts

o Generating SQL queries

© Creating data visualization code

© Debugging and code optimization

3. Data Preprocessing

o Feature engineering suggestions

< Tie -~ Both are bad

Send

149

https://lmarena.ai/

Perplexity.ai

7K perplexity
Large Language Models for Data Science

New Thread ® K
Q_Home ‘S Sources
q What Is a Large Language What are Large Language Catch Up On Large @ o X
@ Discover Model and What Can... Models? | NVIDIA Language Models | by..
i O snowflake - 1 &3 nvidia - 2 @ towardsdatascien.. - 3 View 3 more
] Library
<) Login = Answer
F— Large Language Models (LLMs) are advanced Al systems designed to understand human
ign e
gn tp language intricacies and generate intelligent, creative responses to queries ' . They are deep

learning algorithms that can recognize, summarize, translate, predict, and generate content
using very large datasets 2. LLMs are trained on enormous data sets typically measured in
petabytes, sourced from books, articles, websites, and other text-based sources ' . They are
dynamic tools that are continuously updated and refined as new data becomes available .

Try Pro In the field of data science, LLMs can potentially transform how teams source, manage, and

Upgrade to Claude-2 or analyze data '.They are used in numerous data science applications, and their ability to

GRS IBO0EEC DplloRisos; process and interpret vast amounts of text data has made them an indispensable part of

and upload more files. . : - - o . .
e

A Learn More .
® Ask follow-up.. Copilot P
B Download X @ social media posts or customer reviews, to determine whether the overall sentiment is

https://www.perplexity.ai/

(

.-
\ NTPU

SIS T

National Talpel University
ii Anonymous O Like

150

https://www.perplexity.ai/

Agentic Al Systems
RAG Agents with LLM
Dialogue Systems

User

instructions

Agentic Al Systems

Manager agent

©
Q@O

Analyst Checker Planner
agent agent agent

tey

External systems

&

&
®

Natural language
interpretation

Task
allocation

et

Task
executoin

User Feedback

No

User
Satisfaction

Yes

Iterative
improvement

Output

152

2024

Technology Tree of RAG Research
Retrieval-Augmented Generation (RAG) for Large Language Models (LLMs)

Inference

Fine-tuning s RADA
>-Retrieve
Pre-training RAPTOR

UniMS-RAG CRAG

IAG HyKGE
: M DRAGON-AI
FILCO PaperQA
CREA-ICL
PRCA 1-PAGER ToC

Dual-Feedback-ToD FABULA

L QLM-Doc-ranking

MK-ToD ENEindaxar InstructRetro KALMV ‘ A
RAG_Robust , RA-DIT ITRG Recomp
Retrieve-and-Sam / ,,
RAVEN A5 \ KnowledGPT
3 /

LLM-R / IRCOT
PGRA
PKG '
SCM4LLMs
Filter-Reranker

RePLUG

Self-RAG Token-Elimination

S \
SUGRE ITER-RETGEN

R
|
Self-Mem JIGER ‘ coQ
Retro++ TR
UPRISE LMk
ICRALM
RAG-e2e \

PROMPTAGATOR GenRead

, RAG

W

Augmentation Stage

[_Pro-training |
Retrieval—Augmented Generation [intoronce]

153

Retrieval-Augmented Generation (RAG)
for Large Language Models (LLMs)

Indexing

Hﬁﬂﬂ

I
E How do you evaluate the fact Documents %
User 2 ° that OpenAl's CEO, Sam Altman, 5t A
Ay Chunks|Vectors
went through a sudden dismissal
by the board in just three days,
Output .
y | embeddings

company, resembling a real-life
version of "Game of Thrones" in
terms of power dynamics?

Retrieval

I
I
I
:
, and then was rehired by the
|
1
|
I
I
I
1

Q

[Relevant Documents J

...l am unable to provide comments on

future events. Currently, | do not have

any information regarding the dismissal * LLM Generatio

and rehiring of OpenAl's CEO ... A e T e s L S i [R B .
Question :

Chunk 1: "Sam Altman Returns to
OpenAl as CEOQ, Silicon Valley Drama
Resembles the 'Zhen Huan' Comedy"

How do you evaluate the fact that the
OpenAls CEQ, dynamics?

Please answer the above questions
based on the following information :

...... This suggests significant internal
disagreements within OpenAl regarding
the company's future direction and

Chunk 2: "The Drama Concludes? Sam

strategic decisions. All of these twists 8232E ; Altman to Return as CEO Qf QpenAl,
and turns reflect power struggles and Chunk 8 Board to Undergo Restructuring

corporate governance issues within
OpenAl...

Chunk 3: "The Personnel Turmoil at
OpenAl Comes to an End: Who Won
and Who Lost?"

Combine Context
and Prompts

154

Retrieval-Augmented Generation (RAG) Architecture

Modalities

Input

...............

Encode
& Index

Others

Retriever

. Transformer :

Diffusion
. GAN |

= Hugging Face
& Openal
Gemini

stability.ai

Ly ModelScope

Generator

vvvvvvvvvvvvvvvvvvvvvv

155

Synthesizing RAG with LLMs
for Question Answering Application

J—,
Search Relevant 1 > Knowledge
Information J % Sources

Relevant
Information

Prompt for
Context

Query
Generated
Text 5
Response

Prompt T
+
4 Query
+ >
Enhanced

Context Large Language Model EndPoint

2) Query

156

Svynthesizing the KG as a Retriever with LLMs

[Kes]

Q: Which country _
is Obama from?

Y

(& S

Knowledge
Retriever

—>

Retrieved Facts

'(Obama, Bornin, Honolulu)\

J
... L------------‘

((Honolulu, LocatedIn, USA)\

Backpropagation

LLMs

157

A LLM-based Agent for

Conversational Information Seekmg

External
Knowledge

proprietary
databases)

: Environment

LLM-Augmenter

Utility
(utility score & feedback)

$

Policy
(action selection)

-

(e.g., news, wiki,

Action Executor

- Knowledge Consolidator |+

- Prompt Engine

Working
Memory

LLM
(e.g., ChatGPT)

158

Direct LLM, RAG, and GraphRAG

Query

How did the artistic movements
of the 19th century impact the
development of modern art in
the 20th century?

LLMs

Response

The artistic movements of
the 19th century influenced
modern art in the 20th
century by encouraging
experimentation with color,
form, and subject matter.
These movements paved
the way for abstraction,
expressionism, and other

innovative. x

Query

How did the artistic movements @
of the 19th century impact the
development of modern art in

the 20th century? Retriever

\

1. Impressionist artists like
Claude Monet introduced new
technigues that revolutionized
the depiction of light and color.
\d 2. The Impressionist technigues
influenced later art movements.
LLMs <« 3.Pablo Picasso pioneered
Cubism, which radically
transformed the approach to
visual representation.
4. Cubism emerged in the early
20th century and challenged
traditional perspectives on art.

Retrieved Text

\ Response

Impressionist artists like Claude Monet in the 19th
century introduced new techniques that influence
later art movements. Pablo Picasso pioneered
Cubism relativity in the early 20th century. x

Query

How did the artistic movements @

of the 19th century impact the
development of modern art in .

the 20th century? FIeTever

- (Claude Monet) - [introduced] -
(new technigues)
- [new techniques) —
[revolutionized] - (depiction of

\d light and color)

- (Impressionist technigues) -

LLMs <« [influenced] - (laterart
movements)
- (Pablo Picasso) - [pioneered] =
(Cubism)
- (Cubism) - [emerged in] = (early
20th century)

.}é Retrieved Triplets

v Response

Monet introduced new techniques that revolutionized
the depiction of light and color. His Impressionist
techniques influenced later art movements, including
Picasso's Cubism, which emerged in the early 20th
century. This influence helped shape Picasso's
innovative approach to fragmented perspectives.

159

LangChain Architecture

LangGraph Cloud LangSmith
5
£
>
Q
[oR
2 Debugging
(COMMERCIAL)
Playground
" Integrations
i= Prompt Management
2
(@)
Q.
g A tati
O nnotation
Testing
LangChain LangGraph
o Monitoring
3
©
Joi
<
o
<

(COMMERCIAL)

160

https://www.langchain.com/

Multimodal LLM RAG
Multi-Vector Retriever for RAG

Option 1:
Retrieve raw and text image via
Vectorstore w/ multimodal embeddings multimodal embeddings

Multimodal 'n
LLM :
)

@g&\; - Answer

Multimodal Embedding

@

-
7’
/
\
N

Table + Text

=
8
z

Raw
Table + Text

Option 2:
Retrieve image summary and pass this
text to LLM for synthesis

Documents
5 LLM

@ ~ Answer
Raw
Tables Q Table + Text
Br—

Vot Bearasbos Tamsmy

S Teenr e Multi-vector retriever

|
1

Option 3:
Retrieve via image summary, pass
raw image to LLM for synthesis

- - e = -y

Summarize + Text Embedding

ry
Text Image Summary

@ Table Summary
) Text Summary Raw Table Summary

Raw Text ! .E Summary

| S ——

Multimodal
LLM

Answer

Raw
Table + Text

|
)

_ oo, dew/ Hine-rag/ 161

https://blog.langchain.dev/deconstructing-rag/

Evaluating RAG with Ragas Metrics
ragas score

generation retrieval

faithfulness context precision

how factually acurate is the signal to noise ratio of retrieved
the generated answer context

answer relevancy context recall

how relevant is the generated can it retrieve all the relevant information
answer to the question required to answer the question

162

https://blog.langchain.dev/evaluating-rag-pipelines-with-ragas-langsmith/

Summary

* Software products are software systems that include general
functionality that is likely to be useful to a wide range of
customers.

* In product software engineering, the same company is
responsible for deciding on the features that should be part of
the product and the implementation of these features.

Summary

e Software products may be delivered as stand-alone
systems running on the customer’s computers, hybrid
systems or service-based systems.

* In hybrid systems, some features are implemented locally
and others are accessed over the Internet.

* All product features are remotely accessed in service-
based products.

Summary

* A product vision should succinctly describe what is to be
developed, who are the target customers for the product
and why they should buy the product that you are
developing.

* Domain experience, product experience, customer
experience and an experimental software prototype may all
contribute to the development of the product vision.

Summary

* Key responsibilities of product managers are product vision
ownership, product roadmap development, creating user
stories and the product backlog, customer and acceptance
testing and user interface design.

* Product managers work at the interface between the
business, the software development team and the product
customers.

* They facilitate communications between these groups.

Summary

* You should always develop a product prototype to refine your
own ideas and to demonstrate the planned product features to
potential customers

Source : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 167

References

lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software
Engineering, Pearson.

lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at Google: Lessons
Learned from Programming Over Time, O'Reilly Media.

Project Management Institute (2021), A Guide to the Project Management Body of Knowledge
(PMBOK Guide) — Seventh Edition and The Standard for Project Management, PMI.

Project Management Institute (2017), A Guide to the Project Management Body of Knowledge
(PMBOK Guide), Sixth Edition, Project Management Institute.

Project Management Institute (2017), Agile Practice Guide, Project Management Institute.
Denis Rothman (2024), RAG-Driven Generative Al: Build custom retrieval augmented generation
pipelines with Llamalndex, Deep Lake, and Pinecone, Packt Publishing

NVIDIA DLI (2025), Building RAG Agents with LLMs,
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-15+V1

NVIDIA DLI (2025), Generative Al with Diffusion Models,
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-14+V1

Tucker J. Marion, Mahdi Srour, and Frank Piller (2024), "When Generative Al meets product
development." MIT Sloan Management Review 66, no. 1 : 14-15.

168

https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-15+V1
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-14+V1

	Slide 1: Software Products and Project Management: Software product management and prototyping with Generative AI
	Slide 2: Syllabus
	Slide 3: Syllabus
	Slide 4: Syllabus
	Slide 5: Software Products and Project Management: Software product management and prototyping with Generative AI
	Slide 6: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.
	Slide 7: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.
	Slide 8: Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at Google: Lessons Learned from Programming Over Time, O'Reilly Media.
	Slide 9: Project Management Institute (2017), Agile Practice Guide PMI
	Slide 10: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) – Seventh Edition and The Standard for Project Management
	Slide 11: John Doerr (2018), Measure What Matters: How Google, Bono, and the Gates Foundation Rock the World with OKRs, Portfolio
	Slide 12: Denis Rothman (2024), RAG-Driven Generative AI: Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone, Packt Publishing
	Slide 13: NVIDIA Developer Program NVIDIA Deep Learning Institute (DLI)
	Slide 14: lmarena.ai Chatbot Arena Leaderboard
	Slide 15: lmarena.ai Chatbot Arena Leaderboard Confidence Intervals on Model Strength (via Bootstrapping)
	Slide 16: Claude 3.7 Sonnet, Claude 3.5 Sonnet, OpenAI, DeepSeek, and Grok
	Slide 17: Claude 3.7 Sonnet and Claude Code
	Slide 18: Generative AI Meets Product Development
	Slide 19: Software Engineering
	Slide 20: Software Engineering and Project Management
	Slide 21: Information Management Management Information Systems (MIS) Information Systems
	Slide 22: Information Management (MIS) Information Systems
	Slide 23: Fundamental MIS Concepts
	Slide 24: Project-based software engineering
	Slide 25: Project-based software engineering
	Slide 26: Product software engineering
	Slide 27: Product software engineering
	Slide 28: Software execution models
	Slide 29: Product management concerns
	Slide 30: Technical interactions of product managers
	Slide 31: Software Development Life Cycle (SDLC) The waterfall model
	Slide 32: Plan-based and Agile development
	Slide 33: The Continuum of Life Cycles
	Slide 34: Predictive Life Cycle
	Slide 35: Iterative Life Cycle
	Slide 36: A Life Cycle of Varying-Sized Increments
	Slide 37: Iteration-Based and Flow-Based Agile Life Cycles
	Slide 38: From personas to features
	Slide 39: Multi-tier client-server architecture
	Slide 40: Service-oriented Architecture
	Slide 41: VM
	Slide 42: Everything as a service
	Slide 43: Software as a service
	Slide 44: Microservices architecture – key design questions
	Slide 45: Types of security threat
	Slide 46: Software product quality attributes
	Slide 47: A refactoring process
	Slide 48: Functional testing
	Slide 49: Test-driven development (TDD)
	Slide 50: DevOps
	Slide 51: Code management and DevOps
	Slide 52: Platform Engineering
	Slide 53: Marketing
	Slide 54: Marketing
	Slide 55: Marketing
	Slide 56: Marketing Management
	Slide 57: Marketing Management
	Slide 58: Marketing Management
	Slide 59: OKRs, CFRs, KPIs Agile Performance Management
	Slide 60: Software Engineering
	Slide 61: Software Engineering and Project Management
	Slide 62: Software Engineering
	Slide 63: What is software?
	Slide 64: What are the attributes of good software?
	Slide 65: What is software engineering?
	Slide 66: What are the fundamental software engineering activities?
	Slide 67: What is the difference between software engineering and computer science?
	Slide 68: What are the best software engineering techniques and methods?
	Slide 69: What are the costs of software engineering?
	Slide 70: Information Management Management Information Systems (MIS) Information Systems
	Slide 71: Information Management (MIS) Information Systems
	Slide 72: Fundamental MIS Concepts
	Slide 73: Software products
	Slide 74: Software product engineering
	Slide 75: Software projects
	Slide 76: Project
	Slide 77: Project Management Body of Knowledge (PMBOK Guide) PMBOK v6 vs. PMBOK v7
	Slide 78: Project Management Knowledge Areas (PMBOK v6)
	Slide 79: Project Management Process Groups (PMBOK v6)
	Slide 80: Project Management 12 Principles (PMBOK v7)
	Slide 81: Project Management 8 Project Performance Domains (PMBOK v7)
	Slide 82: Project-based software engineering
	Slide 83: Project-based software engineering
	Slide 84: Product software engineering
	Slide 85: Product software engineering
	Slide 86: Software product line
	Slide 87: Platform
	Slide 88: Software execution models
	Slide 89: Software execution models
	Slide 90: Comparable software development
	Slide 91: The product vision
	Slide 92: Moore’s vision template
	Slide 93: Vision template example
	Slide 94: Information sources for developing a product vision
	Slide 95: Information sources for developing a product vision
	Slide 96: Information sources for developing a product vision
	Slide 97: Information sources for developing a product vision
	Slide 98: Information sources for developing a product vision
	Slide 99: A vision statement for the iLearn system
	Slide 100: The Essence of Strategic Marketing (STP)
	Slide 101: Customer Value
	Slide 102: Value
	Slide 103: Value
	Slide 104: Customer Perceived Value
	Slide 105: Business Model
	Slide 106: Software product management
	Slide 107: Product management concerns
	Slide 108: Product management concerns
	Slide 109: Technical interactions of product managers
	Slide 110: Technical interactions of product managers
	Slide 111: Technical interactions of product managers
	Slide 112: Technical interactions of product managers
	Slide 113: Technical interactions of product managers
	Slide 114: Technical interactions of product managers
	Slide 115: Technical interactions of product managers
	Slide 116: Technical interactions of product managers
	Slide 117: Product prototyping
	Slide 118: Product prototyping
	Slide 119: Product prototyping
	Slide 120: Two-stage prototyping
	Slide 121: Two-stage prototyping
	Slide 122: Software process models
	Slide 123: Software Development Life Cycle (SDLC) The waterfall model
	Slide 124: Incremental development
	Slide 125: Reuse-oriented software engineering
	Slide 126: Prototype development
	Slide 127: Incremental delivery
	Slide 128: The process improvement model
	Slide 129: Capability maturity levels
	Slide 130: Plan-based and Agile development
	Slide 131: Uncertainty and Complexity Model Inspired by the Stacey Complexity Model
	Slide 132: Characteristics of Four Categories of Life Cycles
	Slide 133: The Continuum of Life Cycles
	Slide 134: Predictive Life Cycle
	Slide 135: Iterative Life Cycle
	Slide 136: A Life Cycle of Varying-Sized Increments
	Slide 137: Iteration-Based and Flow-Based Agile Life Cycles
	Slide 138: Agentic AI for Agile AI Software Engineering
	Slide 139: NVIDIA Developer Program NVIDIA Deep Learning Institute (DLI)
	Slide 140: Join the NVIDIA Developer Program take one of the complimentary technical self-paced courses (worth up to $90)
	Slide 141: NVIDIA Deep Learning Institute (DLI)
	Slide 142: Deep Learning Institute (DLI)
	Slide 143
	Slide 144: Generative AI Text, Image, Video, Audio Applications
	Slide 145: Transformer Models
	Slide 146: Four Paradigms in NLP (LM)
	Slide 147: Large Language Models (LLM) Three typical learning paradigms
	Slide 148: Popular Generative AI
	Slide 149: Chat with Open Large Language Models: Chatbot Arena
	Slide 150: Perplexity.ai
	Slide 151: Agentic AI Systems RAG Agents with LLM Dialogue Systems
	Slide 152: Agentic AI Systems
	Slide 153: Technology Tree of RAG Research Retrieval-Augmented Generation (RAG) for Large Language Models (LLMs)
	Slide 154: Retrieval-Augmented Generation (RAG) for Large Language Models (LLMs)
	Slide 155: Retrieval-Augmented Generation (RAG) Architecture
	Slide 156: Synthesizing RAG with LLMs for Question Answering Application
	Slide 157: Synthesizing the KG as a Retriever with LLMs
	Slide 158: A LLM-based Agent for Conversational Information Seeking
	Slide 159: Direct LLM, RAG, and GraphRAG
	Slide 160: LangChain Architecture
	Slide 161: Multimodal LLM RAG Multi-Vector Retriever for RAG
	Slide 162: Evaluating RAG with Ragas Metrics
	Slide 163: Summary
	Slide 164: Summary
	Slide 165: Summary
	Slide 166: Summary
	Slide 167: Summary
	Slide 168: References

