
Agile Software Engineering:
Agile methods, Scrum, and Extreme Programming

Software Engineering

1

Min-Yuh Day, Ph.D,
Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1132SE03
MBA, IM, NTPU (M5010) (Spring 2025)

 Wed 2, 3, 4 (9:10-12:00) (B3F17)

2025-03-05

https://meet.google.com/
ish-gzmy-pmo

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/ish-gzmy-pmo
https://meet.google.com/ish-gzmy-pmo

Syllabus
Week Date Subject/Topics

1 2025/02/19 Introduction to Software Engineering

2 2025/02/26 Software Products and Project Management:
 Software product management and prototyping with
 Generative AI

3 2025/03/05 Agile Software Engineering:
 Agile methods, Scrum, and Extreme Programming

4 2025/03/12 Case Study on Software Engineering I

5 2025/03/19 Features, Scenarios, and Stories

6 2025/03/26 Software Architecture:
 Architectural design, System decomposition, and
 Distribution architecture

2

Syllabus
Week Date Subject/Topics

7 2025/04/02 Make-up holiday for NTPU Sports Day (No Classes)

8 2025/04/09 Midterm Project Report

9 2025/04/16 Cloud-Based Software: Virtualization and containers,
 Everything as a service, Software as a service

10 2025/04/23 Cloud Computing and Cloud Software Architecture

11 2025/04/30 Case Study on Software Engineering II

12 2025/05/07 Microservices Architecture, RESTful services,
 Service deployment

3

Syllabus
Week Date Subject/Topics

13 2025/05/14 Industry Practices of Software Engineering

14 2025/05/21 Security and Privacy; Reliable Programming;
 Testing: Functional testing, Test automation,
 Test-driven development, and Code reviews;
 DevOps and Code Management:
 Code management and DevOps automation

15 2025/05/28 Final Project Report I

16 2025/06/04 Final Project Report II

4

Agile
Software

Engineering
5

Software Engineering
and

Project Management

6

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation

and
unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Information Management (MIS)
Information Systems

7Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Organizations Technology

Management

Information
Systems

Fundamental MIS Concepts

8

Management

Organization

Technology

Information
System

Business
Challenges

Business
Solutions

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Project-based software engineering

9

Problem

SoftwareRequirements

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

generates

implemented-by

helps-with

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

Product software engineering

10Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Opportunity

Software
Product
features

DEVELOPER

DEVELOPER DEVELOPER

inspires

implemented-by

realizes

1

Software execution models

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User interface
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers

Product management concerns

12Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

13Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
 and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

14

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

15

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
e

q
u

en
cy

 o
f

D
el

iv
er

y

Lo
w

H
ig

h

Low High

Predictive Life Cycle

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

18Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Analyze
Design

Build
Test

Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

19Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

20Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

21

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application

software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application

software
Server

software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware

Data theft

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing

Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

32Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

33Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

35
Source: Abrahão, Silvia, John Grundy, Mauro Pezzè, ANNE STOREY, and DAMIAN ANDREW TAMBURRI (2025). "Software Engineering by and for Humans in an AI Era."

ACM Transactions on Software Engineering and Methodology (2025).

Tools for Software Engineering Lifecycle

36
Source: Abrahão, Silvia, John Grundy, Mauro Pezzè, ANNE STOREY, and DAMIAN ANDREW TAMBURRI (2025). "Software Engineering by and for Humans in an AI Era."

ACM Transactions on Software Engineering and Methodology (2025).

AI-powered Software Developer Agents

Generative AI in Agile Software Engineering

37Source: Mahesh Bondre (2024), Enhancing Agile Delivery with Generative AI, https://www.ltimindtree.com/blogs/enhancing-agile-delivery-with-generative-ai/

Agile
38

• Software products must be brought to market quickly so
rapid software development and delivery is essential.

• Virtually all software products are now developed using an
agile approach.

• Agile software engineering focuses on delivering
functionality quickly,
responding to changing product specifications and
minimizing development overheads.

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Agile software engineering

40Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Agile Manifesto Values, Principles,
and Common Practices

Agile
Mindset

4
Values

12
Principles

Practices

41Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Agile is a Blanket Term for
Many Approaches

Kanban

Crystal

Agile

ScrumBan

Scrum

XP

Lean

FDD
DSDM

AUP

Agile is a mindset defined by 4 values,
guided by 12 principles, and

manifested through many different
practices.

Agile practitioners select practices

based on their needs.
42Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Agile Manifesto and Mindset

4
Agile Values

43

The Four Values of
the Agile Manifesto

(Manifesto for Agile Software Development, 2001)

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

1. individuals and interactions over processes and tools

2. working software over comprehensive documentation

3. customer collaboration over contract negotiation

4. responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

12
Agile Principles

45

The Twelve Principles
Behind the Agile Manifesto

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

46Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

47Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

The Twelve Principles
Behind the Agile Manifesto

• Involve the customer

Involve customers closely with the software development team. Their role is to
provide and prioritize new system requirements and to evaluate each
increment of the system.

• Embrace change

Expect the features of the product and the details of these features to change
as the development team and the product manager learn more about it. Adapt
the software to cope with changes as they are made.

•Develop and deliver incrementally

Always develop software products in increments. Test and evaluate each
increment as it is developed and feed back required changes to the
development team.

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Agile Development Principles

Agile Development Principles

•Maintain simplicity
Focus on simplicity in both the software being developed and in
the development process. Wherever possible, do what you can
to eliminate complexity from the system.

• Focus on people, not things
Trust the development team and do not expect everyone to
always do the development process in the same way. Team
members should be left to develop their own ways of working
without being limited by prescriptive software processes.

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

12
Project

Management
Principles

50

Project Management Body of Knowledge
(PMBOK Guide) PMBOK v6 vs. PMBOK v7

51
Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) –

Seventh Edition and The Standard for Project Management, PMI

PMBOK Guide v6 PMBOK Guide v7

Project Management Body of Knowledge:
• Introduction
• Project Environment
• Role of the Project Manager
• 10 Knowledge Areas

• Integration
• Scope
• Schedule
• Cost
• Quality
• Resources
• Communications
• Risk
• Procurement
• Stakeholders

The Standard for Project Management
(5 Process Groups):
• Initiating
• Planning
• Executing
• Monitoring and Controlling
• Closing

The Standard for Project Management :
• Introduction
• System for Value Delivery
• 12 Project Management Principles:

• 1. Stewardship, 2. Team
• 3. Stakeholders, 4. Value

• 5. Systems Thinking, 5. Leadership
• 7. Tailoring, 8. Quality
• 9. Complexity, 10, Risk
• 11. Adaptability and Resiliency
• 12. Change

Project Management Body of Knowledge:
• 8 Project Performance Domains:

• 1. Stakeholders, 2. Team,
• 3. Development approach and Life Cycle
• 4. Planning, 5. Project Work, 6. Delivery,
• 7. Measurement, 8. Uncertainty

• Tailoring
• Models, Methods, and Artifacts

Project Management Knowledge Areas
(PMBOK v6)

1. Project Integration Management

2. Project Scope Management

3. Project Schedule Management

4. Project Cost Management

5. Project Quality Management

6. Project Resource Management

7. Project Communications Management

8. Project Risk Management

9. Project Procurement Management

10. Project Stakeholder Management

52Source: Project Management Institute (2017), A Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition , PMI

Project Management Process Groups
(PMBOK v6)

1. Initiating Process Group

2. Planning Process Group

3. Executing Process Group

4. Monitoring and Controlling Process Group

5. Closing Process Group

53Source: Project Management Institute (2017), A Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition , PMI

Project Management 12 Principles
(PMBOK v7)

1. Stewardship

2. Team

3. Stakeholders

4. Value

5. Systems Thinking

6. Leadership

7. Tailoring

8. Quality

9. Complexity

10. Risk

11. Adaptability and Resiliency

12. Change

54
Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) –

Seventh Edition and The Standard for Project Management, PMI

Project Management
8 Project Performance Domains

(PMBOK v7)

1. Stakeholders

2. Team

3. Development Approach and Life Cycle

4. Planning

5. Project Work

6. Delivery

7. Measurement

8. Uncertainty

55
Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) –

Seventh Edition and The Standard for Project Management, PMI

• A large number of ‘agile methods’ have been developed.

• There is no ‘best’ agile method or technique.

• It depends on who is using the technique, the development team and
the type of product being developed

56

Agile software engineering

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Agile methods
• Plan-driven development evolved to support the engineering of large, long-

lifetime systems

• This approach is based on controlled and rigorous software development
processes that include detailed project planning, requirements specification
and analysis and system modelling.

• However, plan-driven development involves significant overheads and
documentation and it does not support the rapid development and delivery
of software.

• Agile methods were developed in the 1990s to address this problem.

• These methods focus on the software rather than its documentation,
develop software in a series of increments and aim to reduce process
bureaucracy as much as possible.

57Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Incremental development

• All agile methods are based around
incremental development and delivery.

• Product development focuses on the software features, where a feature
does something for the software user.

• With incremental development, you start by prioritizing the features so that
the most important features are implemented first.

• You only define the details of the feature being implemented in an
increment.

• That feature is then implemented and delivered.

• Users or surrogate users can try it out and provide feedback to the
development team. You then go on to define and implement the next
feature of the system.

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Incremental development

59

Product feature list Choose features to
be included
in increment

Refine features
descriptions

Implement and
test feature

Integrate feature
into system

Deliver system
increment

If all features are
complete, deliver

system release

1

2

34

5

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Incremental development activities

1. Choose features to be included in an increment
Using the list of features in the planned product, select those features that can be implemented in
the next product increment.

2. Refine feature descriptions
Add detail to the feature descriptions so that the team have a common understanding of each
feature and there is sufficient detail to begin implementation.

3. Implement and test
Implement the feature and develop automated tests for that feature that show that its behaviour is
consistent with its description.

4. Integrate feature and test
Integrate the developed feature with the existing system and test it to check that it works in
conjunction with other features.

5. Deliver system increment
Deliver the system increment to the customer or product manager for checking and comments. If
enough features have been implemented, release a version of the system for customer use.

60Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Extreme programming

• The most influential work that has changed software development
culture was the development of Extreme Programming (XP).

• The name was coined by Kent Beck in 1998 because the approach
was developed by pushing recognized good practice, such as
iterative development, to ‘extreme’ levels.

• Extreme programming focused on 12 new development techniques
that were geared to rapid, incremental software development,
change and delivery.

• Some of these techniques are now widely used; others have been
less popular.

61Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Extreme Programming Practices

62

Test-first
development

Refactoring

Small
releases

Continuous
integration

Incremental
planning

Collective
ownership

Pair
programming

Sustainable
pace

On-site
customer

Simple
design

Extreme
Programming

(XP)

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Widely adopted XP practices

• Incremental planning/user stories

• There is no ‘grand plan’ for the system. Instead, what needs to be
implemented (the requirements) in each increment are established in
discussions with a customer representative.

• The requirements are written as user stories.

• The stories to be included in a release are determined by the time
available and their relative priority.

63Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Widely adopted XP practices

• Small releases

• The minimal useful set of functionality that provides business value is
developed first.

• Releases of the system are frequent and incrementally add
functionality to the previous release.

64Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Widely adopted XP practices

• Test-driven development

• Instead of writing code then tests for that code, developers
write the tests first.

• This helps clarify what the code should actually do and that
there is always a ‘tested’ version of the code available.

• An automated unit test framework is used to run the tests after
every change.

• New code should not ‘break’ code that has already been
implemented.

65Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Widely adopted XP practices

• Continuous integration

• As soon as the work on a task is complete, it is integrated into the
whole system and a new version of the system is created.

• All unit tests from all developers are run automatically and must be
successful before the new version of the system is accepted.

66Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Widely adopted XP practices

• Refactoring

• Refactoring means improving the structure, readability, efficiency and
security of a program.

• All developers are expected to refactor the code as soon as potential
code improvements are found.

• This keeps the code simple and maintainable.

67Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Widely adopted XP practices

• Incremental planning/user stories

• There is no ‘grand plan’ for the system. Instead, what needs to be
implemented (the requirements) in each increment are established in
discussions with a customer representative.

• The requirements are written as user stories.

• The stories to be included in a release are determined by the time
available and their relative priority.

68Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scrum
• Software company managers need information that will help them

understand how much it costs to develop a software product, how
long it will take and when the product can be brought to market.

• Plan-driven development provides this information through long-term
development plans that identify deliverables - items the team will
deliver and when these will be delivered.

• Plans always change so anything apart from short-term plans are
unreliable.

• Scrum is an agile method that provides a framework for agile project
organization and planning. It does not mandate any specific technical
practices.

69Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scrum Terminology

• Scrum
A daily team meeting where progress is reviewed and
work to be done that day as discussed and agreed.

• Sprint
A short period, typically two to four weeks, when a
product increment is developed.

• ScrumMaster
A team coach who guides the team in the effective use of
Scrum.

70Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scrum Terminology

• Product
The software product that is being developed by the Scrum
team.

• Product owner
A team member who is responsible for identifying product
features and attributes. They review work done and help to
test the product.

• Product backlog
A to-do list of items such as bugs, features and product
improvements that the Scrum team have not yet completed.

71Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scrum Terminology

• Development team
A small self-organising team of five to eight people who
are responsible for developing the product.

• Potentially shippable product increment
The output of a sprint which should be of high enough
quality to be deployed for customer use.

• Velocity
An estimate of how much work a team can do in a single
sprint.

72Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Key roles in Scrum
• The Product Owner is responsible for ensuring that the development

team are always focused on the product they are building rather than
diverted into technically interesting but less relevant work.

• In product development, the product manager should normally take on
the Product Owner role.

• The ScrumMaster is a Scrum expert whose job is to guide the team in
the effective use of the Scrum method. The developers of Scrum
emphasize that the ScrumMaster is not a conventional project
manager but is a coach for the team. They have authority within the
team on how Scrum is used.

• In many companies that use Scrum, the ScrumMaster also has some
project management responsibilities.

73Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scrum and sprints

• In Scrum, software is developed in sprints, which are fixed-length
periods (2 - 4 weeks) in which software features are developed
and delivered.

• During a sprint, the team has daily meetings (Scrums) to review
progress and to update the list of work items that are incomplete.

• Sprints should produce a ‘shippable product increment’. This
means that the developed software should be complete and
ready to deploy.

74Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scrum cycles

75

Start

Shippable
product increment

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Review product
backlog

Select items
to implement

Plan
sprint

sprint

Review
sprint

Test
software

Develop
software

Scrum

Product
backlog

Sprint
backlog

1

Key Scrum practices
• Product backlog

This is a to-do list of items to be implemented that is
reviewed and updated before each sprint.

• Timeboxed sprints
Fixed-time (2-4 week) periods in which items from the
product backlog are implemented,

• Self-organizing teams
Self-organizing teams make their own decisions and work by
discussing issues and making decisions by consensus.

76Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product backlogs
• The product backlog is a list of what needs to be done to complete

the development of the product.

• The items on this list are called product backlog items (PBIs).

• The product backlog may include a variety of different items such
as product features to be implemented, user requests, essential
development activities and desirable engineering improvements.

• The product backlog should always be prioritized so that the items
that be implemented first are at the top of the list.

77Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of
Product Backlog Items (PBIs)

1. As a teacher, I want to be able to configure the group of tools that are
available to individual classes. (feature)

2. As a parent, I want to be able to view my children’s work and the
assessments made by their teachers. (feature)

3. As a teacher of young children, I want a pictorial interface for children with
limited reading ability. (user request)

4. Establish criteria for the assessment of open source software that might be
used as a basis for parts of this system. (development activity)

5. Refactor user interface code to improve understandability and performance.
(engineering improvement)

6. Implement encryption for all personal user data. (engineering improvement)

78Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product backlog item states
• Ready for consideration

These are high-level ideas and feature descriptions that will be
considered for inclusion in the product. They are tentative so may
radically change or may not be included in the final product.

• Ready for refinement
The team has agreed that this is an important item that should be
implemented as part of the current development. There is a reasonably
clear definition of what is required. However, work is needed to
understand and refine the item.

• Ready for implementation
The PBI has enough detail for the team to estimate the effort involved
and to implement the item. Dependencies on other items have been
identified.

79Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product backlog activities

80

RefinementPBI 1
PBI 1.1

PRODUCT BACKLOG

PBI 1.2

PBI 2E

PBI 3E

PBI 4

PBI 5

PBI 6

PBI 2

PBI 3

PBI 4

PBI 5

REVISED
PRODUCT BACKLOG

Estimation

Prioritization

Creation

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Sprint activities

81Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Sprint
review

Sprint
execution

Sprint
planning

Integration

Develop
software

Scrum

Sprint
backlog

Sprint
backlog

Managing External Interactions

82Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

External
interactions

Team-focused
external interactions

ScrumMaster

Product-focused
external interactions

Product owner

Project Management Responsibilities

83Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Project
Management

Budget
Schedule

Risks
Problems
Progress

Finance
Compliance

Procurement
Liaison

Vacations
Absence

Work quality
Reviewing

Hiring

Administration People

Reporting

Summary

• The best way to develop software products is to use agile
software engineering methods that are geared to rapid product
development and delivery.

• Agile methods are based around iterative development and the
minimization of overheads during the development process.

• Extreme programming (XP) is an influential agile method that
introduced agile development practices such as user stories, test-
first development and continuous integration. These are now
mainstream software development activities.

84Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Scrum is an agile method that focuses on agile planning and
management. Unlike XP, it does not define the engineering
practices to be used. The development team may use any technical
practices that they believe are appropriate for the product being
developed.

• In Scrum, work to be done is maintained in a product backlog – a
list of work items to be completed. Each increment of the software
implements some of the work items from the product backlog.

85Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Sprints are fixed-time activities (usually 2–4 weeks) where a product
increment is developed. Increments should be ‘potentially
shippable’ i.e. they should not need further work before they are
delivered.

• A self-organizing team is a development team that organizes the
work to be done by discussion and agreement amongst team
members.

• Scrum practices such as the product backlog, sprints and self-
organizing teams can be used in any agile development process,
even if other aspects of Scrum are not used.

86Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

References
• Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software

Engineering, Pearson.
• Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.
• Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at Google: Lessons

Learned from Programming Over Time, O'Reilly Media.
• Project Management Institute (2021), A Guide to the Project Management Body of Knowledge

(PMBOK Guide) – Seventh Edition and The Standard for Project Management, PMI.
• Project Management Institute (2017), A Guide to the Project Management Body of Knowledge

(PMBOK Guide), Sixth Edition, Project Management Institute.
• Project Management Institute (2017), Agile Practice Guide, Project Management Institute.
• Denis Rothman (2024), RAG-Driven Generative AI: Build custom retrieval augmented generation

pipelines with LlamaIndex, Deep Lake, and Pinecone, Packt Publishing
• NVIDIA DLI (2025), Building RAG Agents with LLMs,

https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-15+V1
• NVIDIA DLI (2025), Generative AI with Diffusion Models,

https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-14+V1
• Tucker J. Marion, Mahdi Srour, and Frank Piller (2024), "When Generative AI meets product

development." MIT Sloan Management Review 66, no. 1 : 14-15.
87

https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-15+V1
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-14+V1

	Slide 1: Agile Software Engineering: Agile methods, Scrum, and Extreme Programming
	Slide 2: Syllabus
	Slide 3: Syllabus
	Slide 4: Syllabus
	Slide 5: Agile Software Engineering
	Slide 6: Software Engineering and Project Management
	Slide 7: Information Management (MIS) Information Systems
	Slide 8: Fundamental MIS Concepts
	Slide 9: Project-based software engineering
	Slide 10: Product software engineering
	Slide 11: Software execution models
	Slide 12: Product management concerns
	Slide 13: Technical interactions of product managers
	Slide 14: Software Development Life Cycle (SDLC) The waterfall model
	Slide 15: Plan-based and Agile development
	Slide 16: The Continuum of Life Cycles
	Slide 17: Predictive Life Cycle
	Slide 18: Iterative Life Cycle
	Slide 19: A Life Cycle of Varying-Sized Increments
	Slide 20: Iteration-Based and Flow-Based Agile Life Cycles
	Slide 21: From personas to features
	Slide 22: Multi-tier client-server architecture
	Slide 23: Service-oriented Architecture
	Slide 24: VM
	Slide 25: Everything as a service
	Slide 26: Software as a service
	Slide 27: Microservices architecture – key design questions
	Slide 28: Types of security threat
	Slide 29: Software product quality attributes
	Slide 30: A refactoring process
	Slide 31: Functional testing
	Slide 32: Test-driven development (TDD)
	Slide 33: DevOps
	Slide 34: Code management and DevOps
	Slide 35: Tools for Software Engineering Lifecycle
	Slide 36: AI-powered Software Developer Agents
	Slide 37: Generative AI in Agile Software Engineering
	Slide 38: Agile
	Slide 39: Agile software engineering
	Slide 40
	Slide 41
	Slide 42: Agile is a mindset defined by 4 values, guided by 12 principles, and manifested through many different practices. Agile practitioners select practices based on their needs.
	Slide 43: 4 Agile Values
	Slide 44: The Four Values of the Agile Manifesto (Manifesto for Agile Software Development, 2001)
	Slide 45: 12 Agile Principles
	Slide 46: The Twelve Principles Behind the Agile Manifesto
	Slide 47: The Twelve Principles Behind the Agile Manifesto
	Slide 48: Agile Development Principles
	Slide 49: Agile Development Principles
	Slide 50: 12 Project Management Principles
	Slide 51: Project Management Body of Knowledge (PMBOK Guide) PMBOK v6 vs. PMBOK v7
	Slide 52: Project Management Knowledge Areas (PMBOK v6)
	Slide 53: Project Management Process Groups (PMBOK v6)
	Slide 54: Project Management 12 Principles (PMBOK v7)
	Slide 55: Project Management 8 Project Performance Domains (PMBOK v7)
	Slide 56: Agile software engineering
	Slide 57: Agile methods
	Slide 58: Incremental development
	Slide 59: Incremental development
	Slide 60: Incremental development activities
	Slide 61: Extreme programming
	Slide 62: Extreme Programming Practices
	Slide 63: Widely adopted XP practices
	Slide 64: Widely adopted XP practices
	Slide 65: Widely adopted XP practices
	Slide 66: Widely adopted XP practices
	Slide 67: Widely adopted XP practices
	Slide 68: Widely adopted XP practices
	Slide 69: Scrum
	Slide 70: Scrum Terminology
	Slide 71: Scrum Terminology
	Slide 72: Scrum Terminology
	Slide 73: Key roles in Scrum
	Slide 74: Scrum and sprints
	Slide 75: Scrum cycles
	Slide 76: Key Scrum practices
	Slide 77: Product backlogs
	Slide 78: Examples of Product Backlog Items (PBIs)
	Slide 79: Product backlog item states
	Slide 80: Product backlog activities
	Slide 81: Sprint activities
	Slide 82: Managing External Interactions
	Slide 83: Project Management Responsibilities
	Slide 84: Summary
	Slide 85: Summary
	Slide 86: Summary
	Slide 87: References

