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Syllabus
Week    Date    Subject/Topics

1 2025/02/19 Introduction to Software Engineering

2 2025/02/26 Software Products and Project Management: 
                          Software product management and prototyping with 
                          Generative AI

3 2025/03/05 Agile Software Engineering: 
                          Agile methods, Scrum, and Extreme Programming

4 2025/03/12 Case Study on Software Engineering I

5 2025/03/19 Features, Scenarios, and Stories

6 2025/03/26 Software Architecture: 
                          Architectural design, System decomposition, and 
                          Distribution architecture

2



Syllabus
Week    Date    Subject/Topics

7 2025/04/02 Make-up holiday for NTPU Sports Day (No Classes)

8 2025/04/09 Midterm Project Report

9 2025/04/16 Cloud-Based Software: Virtualization and containers,
                           Everything as a service, Software as a service

10 2025/04/23 Cloud Computing and Cloud Software Architecture

11 2025/04/30 Case Study on Software Engineering II

12 2025/05/07 Microservices Architecture, RESTful services, 
                            Service deployment
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Syllabus
Week    Date    Subject/Topics

13 2025/05/14 Industry Practices of Software Engineering

14 2025/05/21 Security and Privacy; Reliable Programming; 
                            Testing: Functional testing, Test automation, 
                            Test-driven development, and Code reviews; 
                            DevOps and Code Management: 
                            Code management and DevOps automation

15 2025/05/28 Final Project Report I

16 2025/06/04 Final Project Report II
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Information Management (MIS)
Information Systems

7Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson. 
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Fundamental MIS Concepts
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Project-based software engineering
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Product software engineering

10Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software execution models

Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Product management concerns

12Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Technical interactions of 
product managers

13Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Product 
manager

Product 
backlog 

management

Product 
vision 

management

Acceptance 
testing

User 
interface 

design

Customer 
testing

User stories 
 and 

scenarios



Software Development Life Cycle (SDLC)

The waterfall model

14

Requirements 
definition

System and 
Software design

Implementation 
and unit testing

Integration and 
system testing

Operation and 
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.



Plan-based and Agile development
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The Continuum of Life Cycles

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Predictive Life Cycle

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iterative Life Cycle

18Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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A Life Cycle of 
Varying-Sized Increments

19Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iteration-Based and Flow-Based 
Agile Life Cycles

20Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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From personas to features
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Multi-tier client-server architecture

22Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Service-oriented Architecture

23Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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VM

24Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Everything as a service

25Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software as a service

26Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud 

provider

Software 
provider

Software 
customers

Software services



27Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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28Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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29Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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30Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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31Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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32Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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33Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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34Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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ACM Transactions on Software Engineering and Methodology (2025).
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Generative AI in Agile Software Engineering

37Source: Mahesh Bondre (2024), Enhancing Agile Delivery with Generative AI, https://www.ltimindtree.com/blogs/enhancing-agile-delivery-with-generative-ai/



Agile
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• Software products must be brought to market quickly so 
rapid software development and delivery is essential.

• Virtually all software products are now developed using an 
agile approach.

• Agile software engineering focuses on delivering 
functionality quickly, 
responding to changing product specifications and 
minimizing development overheads. 

39Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Agile software engineering



40Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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41Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Agile is a mindset defined by 4 values, 
guided by 12 principles, and 

manifested through many different 
practices.

 
Agile practitioners select practices 

based on their needs.
42Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Agile Manifesto and Mindset



4
Agile Values
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The Four Values of 
the Agile Manifesto 

(Manifesto for Agile Software Development, 2001)

We are uncovering better ways of developing software by doing it 
and helping others do it. Through this work we have come to value:

1. individuals and interactions over processes and tools

2. working software over comprehensive documentation

3. customer collaboration over contract negotiation

4. responding to change over following a plan

That is, while there is value in the items on the right, we value the 
items on the left more.

44Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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The Twelve Principles 
Behind the Agile Manifesto

1. Our highest priority is to satisfy the customer through early and continuous 
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes 
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of 
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the 
project.

5. Build projects around motivated individuals. Give them the environment and 
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within 
a development team is face-to-face conversation.

46Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute



7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, 
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing 
teams.

12. At regular intervals, the team reflects on how to become more effective, then 
tunes and adjusts its behavior accordingly.

47Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

The Twelve Principles 
Behind the Agile Manifesto



• Involve the customer 

Involve customers closely with the software development team. Their role is to 
provide and prioritize new system requirements and to evaluate each 
increment of the system. 

• Embrace change  

Expect the features of the product and the details of these features to change 
as the development team and the product manager learn more about it. Adapt 
the software to cope with changes as they are made.

•Develop and deliver incrementally  

Always develop software products in increments. Test and evaluate each 
increment as it is developed and feed back required changes to the 
development team.  

48Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Agile Development Principles



Agile Development Principles

•Maintain simplicity
Focus on simplicity in both the software being developed and in 
the development process. Wherever possible, do what you can 
to eliminate complexity from the system.

• Focus on people, not things 
Trust the development team and do not expect everyone to 
always do the development process in the same way. Team 
members should be left to develop their own ways of working 
without being limited by prescriptive software processes. 

49Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Project Management Body of Knowledge 
(PMBOK Guide) PMBOK v6 vs. PMBOK v7

51
Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) – 

Seventh Edition and The Standard for Project Management, PMI

PMBOK Guide v6 PMBOK Guide v7

Project Management Body of Knowledge:
• Introduction
• Project Environment
• Role of the Project Manager
• 10 Knowledge Areas

• Integration
• Scope
• Schedule
• Cost
• Quality
• Resources
• Communications
• Risk
• Procurement
• Stakeholders

The Standard for Project Management 
(5 Process Groups):
• Initiating
• Planning
• Executing
• Monitoring and Controlling
• Closing

The Standard for Project Management :
• Introduction
• System for Value Delivery
• 12 Project Management Principles:

• 1. Stewardship, 2. Team
• 3. Stakeholders, 4. Value

• 5. Systems Thinking, 5. Leadership
• 7. Tailoring, 8. Quality
• 9. Complexity, 10, Risk
• 11. Adaptability and Resiliency
• 12. Change

Project Management Body of Knowledge:
• 8 Project Performance Domains:

• 1. Stakeholders, 2. Team, 
• 3. Development approach and Life Cycle
• 4. Planning, 5. Project Work, 6. Delivery, 
• 7. Measurement, 8. Uncertainty

• Tailoring
• Models, Methods, and Artifacts



Project Management Knowledge Areas
(PMBOK v6)

1. Project Integration Management

2. Project Scope Management

3. Project Schedule Management

4. Project Cost Management

5. Project Quality Management

6. Project Resource Management

7. Project Communications Management

8. Project Risk Management

9. Project Procurement Management

10. Project Stakeholder Management

52Source: Project Management Institute (2017), A Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition , PMI



Project Management Process Groups
(PMBOK v6)

1. Initiating Process Group

2. Planning Process Group

3. Executing Process Group

4. Monitoring and Controlling Process Group

5. Closing Process Group

53Source: Project Management Institute (2017), A Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition , PMI



Project Management 12 Principles
(PMBOK v7)

1. Stewardship

2. Team

3. Stakeholders

4. Value

5. Systems Thinking

6. Leadership

7. Tailoring

8. Quality

9. Complexity

10. Risk

11. Adaptability and Resiliency

12. Change

54
Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) – 

Seventh Edition and The Standard for Project Management, PMI



Project Management 
8 Project Performance Domains

(PMBOK v7)

1. Stakeholders

2. Team

3. Development Approach and Life Cycle

4. Planning

5. Project Work

6. Delivery

7. Measurement

8. Uncertainty

55
Source: Project Management Institute (2021), A Guide to the Project Management Body of Knowledge (PMBOK Guide) – 

Seventh Edition and The Standard for Project Management, PMI



• A large number of ‘agile methods’ have been developed. 

• There is no ‘best’ agile method or technique.

• It depends on who is using the technique, the development team and 
the type of product being developed

56

Agile software engineering

Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Agile methods
• Plan-driven development evolved to support the engineering of large, long-

lifetime systems 

• This approach is based on controlled and rigorous software development 
processes that include detailed project planning, requirements specification 
and analysis and system modelling.

• However, plan-driven development involves significant overheads and 
documentation and it does not support the rapid development and delivery 
of software.

• Agile methods were developed in the 1990s to address this problem. 

• These methods focus on the software rather than its documentation, 
develop software in a series of increments and aim to reduce process 
bureaucracy as much as possible.

57Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Incremental development

• All agile methods are based around 
incremental development and delivery. 

• Product development focuses on the software features, where a feature 
does something for the software user.

• With incremental development, you start by prioritizing the features so that 
the most important features are implemented first. 

• You only define the details of the feature being implemented in an 
increment. 

• That feature is then implemented and delivered. 

• Users or surrogate users can try it out and provide feedback to the 
development team. You then go on to define and implement the next 
feature of the system.

58Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Incremental development
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Incremental development activities

1. Choose features to be included in an increment
Using the list of features in the planned product, select those features that can be implemented in 
the next product increment.

2. Refine feature descriptions
Add detail to the feature descriptions so that the team have a common understanding of each 
feature and there is sufficient detail to begin implementation.

3. Implement and test
Implement the feature and develop automated tests for that feature that show that its behaviour is 
consistent with its description.  

4. Integrate feature and test
Integrate the developed feature with the existing system and test it to check that it works in 
conjunction with other features.

5. Deliver system increment
Deliver the system increment to the customer or product manager for checking and comments. If 
enough features have been implemented, release a version of the system for customer use.

60Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Extreme programming

• The most influential work that has changed software development 
culture was the development of Extreme Programming (XP). 

• The name was coined by Kent Beck in 1998 because the approach 
was developed by pushing recognized good practice, such as 
iterative development, to ‘extreme’ levels.

• Extreme programming focused on 12 new development techniques 
that were geared to rapid, incremental software development, 
change and delivery.

• Some of these techniques are now widely used; others have been 
less popular.

61Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Extreme Programming Practices
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Widely adopted XP practices

• Incremental planning/user stories

• There is no ‘grand plan’ for the system. Instead, what needs to be 
implemented (the requirements) in each increment are established in 
discussions with a customer representative. 

• The requirements are written as user stories. 

• The stories to be included in a release are determined by the time 
available and their relative priority.  

63Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Widely adopted XP practices

• Small releases

• The minimal useful set of functionality that provides business value is 
developed first.

• Releases of the system are frequent and incrementally add 
functionality to the previous release.  

64Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Widely adopted XP practices

• Test-driven development

• Instead of writing code then tests for that code, developers 
write the tests first. 

• This helps clarify what the code should actually do and that 
there is always a ‘tested’ version of the code available. 

• An automated unit test framework is used to run the tests after 
every change. 

• New code should not ‘break’ code that has already been 
implemented.  

65Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Widely adopted XP practices

• Continuous integration

• As soon as the work on a task is complete, it is integrated into the 
whole system and a new version of the system is created. 

• All unit tests from all developers are run automatically and must be 
successful before the new version of the system is accepted. 

66Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Widely adopted XP practices

• Refactoring

• Refactoring means improving the structure, readability, efficiency and 
security of a program.

• All developers are expected to refactor the code as soon as potential 
code improvements are found. 

• This keeps the code simple and maintainable.

67Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Widely adopted XP practices

• Incremental planning/user stories

• There is no ‘grand plan’ for the system. Instead, what needs to be 
implemented (the requirements) in each increment are established in 
discussions with a customer representative. 

• The requirements are written as user stories. 

• The stories to be included in a release are determined by the time 
available and their relative priority.  

68Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Scrum
• Software company managers need information that will help them 

understand how much it costs to develop a software product, how 
long it will take and when the product can be brought to market.

• Plan-driven development provides this information through long-term 
development plans that identify deliverables - items the team will 
deliver and when these will be delivered.

• Plans always change so anything apart from short-term plans are 
unreliable.

• Scrum is an agile method that provides a framework for agile project 
organization and planning. It does not mandate any specific technical 
practices. 

69Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Scrum Terminology

• Scrum   
A daily team meeting where progress is reviewed and 
work to be done that day as discussed and agreed.

• Sprint 
A short period, typically two to four weeks, when a 
product increment is developed.

• ScrumMaster  
A team coach who guides the team in the effective use of 
Scrum.

70Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Scrum Terminology

• Product
The software product that is being developed by the Scrum 
team.

• Product owner
A team member who is responsible for identifying product 
features and attributes. They review work done and help to 
test the product.

• Product backlog 
A to-do list of items such as bugs, features and product 
improvements that the Scrum team have not yet completed.

71Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Scrum Terminology

• Development team
A small self-organising team of five to eight people who 
are responsible for developing the product.

• Potentially shippable product increment
The output of a sprint which should be of high enough 
quality to be deployed for customer use.

• Velocity
An estimate of how much work a team can do in a single 
sprint.

72Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Key roles in Scrum
• The Product Owner is responsible for ensuring that the development 

team are always focused on the product they are building rather than 
diverted into technically interesting but less relevant work. 

• In product development, the product manager should normally take on 
the Product Owner role.   

• The ScrumMaster is a Scrum expert whose job is to guide the team in 
the effective use of the Scrum method. The developers of Scrum 
emphasize that the ScrumMaster is not a conventional project 
manager but is a coach for the team. They have authority within the 
team on how Scrum is used. 

• In many companies that use Scrum, the ScrumMaster also has some 
project management responsibilities.
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Scrum and sprints

• In Scrum, software is developed in sprints, which are fixed-length 
periods (2 - 4 weeks) in which software features are developed 
and delivered.

• During a sprint, the team has daily meetings (Scrums) to review 
progress and to update the list of work items that are incomplete.

• Sprints should produce a ‘shippable product increment’. This 
means that the developed software should be complete and 
ready to deploy.
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Scrum cycles
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Key Scrum practices
• Product backlog

This is a to-do list of items to be implemented that is 
reviewed and updated before each sprint.

• Timeboxed sprints
Fixed-time (2-4 week) periods in which items from the 
product backlog are implemented,

• Self-organizing teams
Self-organizing teams make their own decisions and work by 
discussing issues and making decisions by consensus.
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Product backlogs
• The product backlog is a list of what needs to be done to complete 

the development of the product. 

• The items on this list are called product backlog items (PBIs). 

• The product backlog may include a variety of different items such 
as product features to be implemented, user requests, essential 
development activities and desirable engineering improvements.  

• The product backlog should always be prioritized so that the items 
that be implemented first are at the top of the list. 
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Examples of 
Product Backlog Items (PBIs)

1.  As a teacher, I want to be able to configure the group of tools that are 
available to individual classes. (feature)

2.  As a parent, I want to be able to view my children’s work and the 
assessments made by their teachers. (feature)

3.  As a teacher of young children, I want a pictorial interface for children with 
limited reading ability. (user request)

4. Establish criteria for the assessment of open source software that might be 
used as a basis for parts of this system. (development activity)

5.  Refactor user interface code to improve understandability and performance. 
(engineering improvement)

6.  Implement encryption for all personal user data. (engineering improvement)
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Product backlog item states
• Ready for consideration 

These are high-level ideas and feature descriptions that will be 
considered for inclusion in the product. They are tentative so may 
radically change or may not be included in the final product.

• Ready for refinement 
The team has agreed that this is an important item that should be 
implemented as part of the current development. There is a reasonably 
clear definition of what is required. However, work is needed to 
understand and refine the item.

• Ready for implementation 
The PBI has enough detail for the team to estimate the effort involved 
and to implement the item. Dependencies on other items have been 
identified.
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Product backlog activities
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Sprint activities

81Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Sprint
review

Sprint 
execution

Sprint
planning

Integration

Develop
software

Scrum

Sprint 
backlog

Sprint
backlog



Managing External Interactions
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Project Management Responsibilities
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Summary

• The best way to develop software products is to use agile 
software engineering methods that are geared to rapid product 
development and delivery.

• Agile methods are based around iterative development and the 
minimization of overheads during the development process.

• Extreme programming (XP) is an influential agile method that 
introduced agile development practices such as user stories, test-
first development and continuous integration. These are now 
mainstream software development activities.
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Summary

• Scrum is an agile method that focuses on agile planning and 
management. Unlike XP, it does not define the engineering 
practices to be used. The development team may use any technical 
practices that they believe are appropriate for the product being 
developed.

• In Scrum, work to be done is maintained in a product backlog – a 
list of work items to be completed. Each increment of the software 
implements some of the work items from the product backlog.
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Summary

• Sprints are fixed-time activities (usually 2–4 weeks) where a product 
increment is developed. Increments should be ‘potentially 
shippable’ i.e. they should not need further work before they are 
delivered.

• A self-organizing team is a development team that organizes the 
work to be done by discussion and agreement amongst team 
members.

• Scrum practices such as the product backlog, sprints and self-
organizing teams can be used in any agile development process, 
even if other aspects of Scrum are not used.
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