
Software Engineering

1

Min-Yuh Day, Ph.D,
Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1132SE05
MBA, IM, NTPU (M5010) (Spring 2025)

 Wed 2, 3, 4 (9:10-12:00) (B3F17)

2025-03-26

https://meet.google.com/
ish-gzmy-pmo

Software Architecture:
Architectural design, System decomposition,

and Distribution architecture

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/ish-gzmy-pmo
https://meet.google.com/ish-gzmy-pmo

Syllabus
Week Date Subject/Topics

1 2025/02/19 Introduction to Software Engineering

2 2025/02/26 Software Products and Project Management:
 Software product management and prototyping with
 Generative AI

3 2025/03/05 Agile Software Engineering:
 Agile methods, Scrum, and Extreme Programming

4 2025/03/12 Case Study on Software Engineering I

5 2025/03/19 Features, Scenarios, and Stories

6 2025/03/26 Software Architecture:
 Architectural design, System decomposition, and
 Distribution architecture

2

Syllabus
Week Date Subject/Topics

7 2025/04/02 Make-up holiday for NTPU Sports Day (No Classes)

8 2025/04/09 Midterm Project Report

9 2025/04/16 Cloud-Based Software: Virtualization and containers,
 Everything as a service, Software as a service

10 2025/04/23 Cloud Computing and Cloud Software Architecture

11 2025/04/30 Case Study on Software Engineering II

12 2025/05/07 Microservices Architecture, RESTful services,
 Service deployment

3

Syllabus
Week Date Subject/Topics

13 2025/05/14 Industry Practices of Software Engineering

14 2025/05/21 Security and Privacy; Reliable Programming;
 Testing: Functional testing, Test automation,
 Test-driven development, and Code reviews;
 DevOps and Code Management:
 Code management and DevOps automation

15 2025/05/28 Final Project Report I

16 2025/06/04 Final Project Report II

4

Software
Architecture:
Architectural design,

System decomposition, and
Distribution architecture

5

Software Engineering
and

Project Management

6

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation

and
unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Information Management (MIS)
Information Systems

7Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Organizations Technology

Management

Information
Systems

Fundamental MIS Concepts

8

Management

Organization

Technology

Information
System

Business
Challenges

Business
Solutions

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Project-based software engineering

9

Problem

SoftwareRequirements

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

generates

implemented-by

helps-with

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

Product software engineering

10Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Opportunity

Software
Product
features

DEVELOPER

DEVELOPER DEVELOPER

inspires

implemented-by

realizes

1

Software execution models

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User interface
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers

Product management concerns

12Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

13Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
 and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

14

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

15

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
e

q
u

en
cy

 o
f

D
el

iv
er

y

Lo
w

H
ig

h

Low High

Predictive Life Cycle

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

18Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Analyze
Design

Build
Test

Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

19Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

20Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

21

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application

software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application

software
Server

software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware

Data theft

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing

Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

32Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

33Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

Software
Architecture:
Architectural design,

System decomposition, and
Distribution architecture

35

Agentic AI for Software Engineering Architecture

36

System Decomposition

Modulization Based on
Function

Automated
Component Design

Bottleneck Optimization

Architectural Design

Design Pattern
Suggestions

Technology Stack
Recommendation

Diagram Generation

Trade-Off Analysis

Distribution Architecture

Designing
Scalable Systems

Supporting
Dynamic Scaling

Optimizing Performance

Key Benefits: Enhanced Efficiency, Data-Driven Decisions, Scalability

Agentic AI Foundations

37Source: Acharya, Deepak Bhaskar, Karthigeyan Kuppan, and B. Divya. "Agentic AI: Autonomous Intelligence for Complex Goals–A Comprehensive Survey." IEEE Access (2025).

Agentic AI Workflow for Scientific Discovery

38Source: Gridach, Mourad, Jay Nanavati, Khaldoun Zine El Abidine, Lenon Mendes, and Christina Mack. "Agentic AI for Scientific Discovery: A Survey of Progress, Challenges, and Future Directions." arXiv preprint arXiv:2503.08979 (2025).

Large Language Model (LLM) Based Agents

39Source: Guo, Taicheng, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xiangliang Zhang. "Large language model based multi-agents: A survey of progress and challenges." arXiv preprint arXiv:2402.01680 (2024).

Large Multimodal Agents (LMAs)
(a) Type I: Closed-source LLMs as Planners w/o Longterm Memory.

40

Use prompt techniques
to guide closed-source
LLMs in decision-
making
and planning to
complete tasks without
long memory.

Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).

Large Multimodal Agents (LMAs)
(b) Type II: Finetuned LLMs as Planners w/o long-term Memory.

41

Use action-related data
to finetune existing
open-source large
models,
enabling them to achieve
decision-making,
planning, and tool
invocation capabilities
comparable
to closed-source LLMs

Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).

Large Multimodal Agents (LMAs)
(c) Type III: Planners with Indirect Long-term Memory

42

Introduce indirect
long-term memory
functions,
further enhancing their
generalization and
adaptation abilities in
environments closer to
the real world.

Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).

Large Multimodal Agents (LMAs)
(d) Type IV: Planners with Native Long-term Memory

43

Introduce native
long-term memory
functions,
further enhancing their
generalization and
adaptation abilities in
environments closer to
the real world.

Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).

Multi-Agent Frameworks

44Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).

45Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).

Applications of Large Multimodal Agents (LMAs)

46Source: Wang, Xingyao, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. "Executable code actions elicit better llm agents." arXiv preprint arXiv:2402.01030 (2024).

CodeActAgent:
General Agent Multi-turn Interaction Framework

Software architecture

• To create a reliable, secure and efficient product, you need
to pay attention to architectural design which includes:

• its overall organization,

• how the software is decomposed into components,

• the server organization

• the technologies that you use to build the software. The
architecture of a software product affects its
performance, usability, security, reliability and
maintainability.

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software architecture

•There are many different interpretations of the
term ‘software architecture’.

•Some focus on ‘architecture’ as a noun
- the structure of a system
and others consider ‘architecture’ to be a verb
- the process of defining these structures.

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The IEEE definition of
software architecture

•Architecture is the
fundamental organization of a software system
embodied in its components, their relationships to
each other and
to the environment, and
the principles guiding its design and evolution.

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software architecture and
components

• A component is an element that implements a coherent set of
functionality or features.

• Software component can be considered as a collection of one or
more services that may be used by other components.

• When designing software architecture, you don’t have to decide
how an architectural element or component is to be
implemented.

• Rather, you design the component interface and leave the
implementation of that interface to a later stage of the
development process.

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Access to services provided by
software components

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

API

S1 S2 S3 S4 S5 S6

Component 1 Component 2

Services accessed directly
by other components

Services accessed through
the component API

Why is architecture important?

• Architecture is important because the architecture of a
system has a fundamental influence on the non-
functional system properties.

• Architectural design involves understanding the issues
that affect the architecture of your product and creating
an architectural description that shows the critical
components and their relationships.

• Minimizing complexity should be an important goal for
architectural designers.

52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Non-functional system quality attributes

• Responsiveness
Does the system return results to users in a reasonable time?

• Reliability
Do the system features behave as expected by both developers
and users?

• Availability
Can the system deliver its services when requested by users?

• Security
Does the system protect itself and users’ data from unauthorized
attacks and intrusions?

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Non-functional system quality attributes

• Usability
Can system users access the features that they need and use
them quickly and without errors?

• Maintainability
Can the system be readily updated and new features added
without undue costs?

• Resilience
Can the system continue to deliver user services in the event of
partial failure or external attack?

54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Centralized security architectures

• The benefits of a centralized security architecture are that
it is easier to design and build protection and that the
protected information can be accessed more efficiently.

• However, if your security is breached, you lose everything.

• If you distribute information, it takes longer to access all
of the information and costs more to protect it.

• If security is breached in one location, you only lose the
information that you have stored there.

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Shared database architecture

56

C2C1

Shared database

User interface

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Multiple database architecture

57

C2C1

C1 database

User interface

C2 database

C3

Database reconciliation
Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Maintainability and performance
• Shared database architecture:

• system with two components (C1 and C2) that share a common
database.

• Multiple database architecture:

• each component has its own copy of the parts of the database that it
needs.

• If one component needs to change the database organization, this does
not affect the other component.

• A multi-database architecture may run more slowly and may cost more to
implement and change.

• A multi-database architecture needs a mechanism
(component C3) to ensure that the data shared by C1 and C2 is kept
consistent when it is changed.

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Issues that influence
architectural decisions

59Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Architectural
influences

Product
lifetime

Software
reuse

Software
compatibility

Nonfunctional
product

characteristics

Number of
users

1

2

34

5

The importance of
architectural design issues

• Nonfunctional product characteristics
Nonfunctional product characteristics such as security and
performance affect all users.
If you get these wrong,
your product will is unlikely to be a commercial success.
Unfortunately, some characteristics are opposing,
so you can only optimize the most important.

60Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

The importance of
architectural design issues

• Product lifetime
If you anticipate a long product lifetime, you will need to
create regular product revisions. You therefore need an
architecture that is evolvable, so that it can be adapted to
accommodate new features and technology.

61Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

2

The importance of
architectural design issues

• Software reuse
You can save a lot of time and effort, if you can reuse large
components from other products or open-source software.
However, this constrains your architectural choices because
you must fit your design around the software that is being
reused.

62Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

3

The importance of
architectural design issues

• Number of users
If you are developing consumer software delivered over
the Internet, the number of users can change very quickly.
This can lead to serious performance degradation unless
you design your architecture so that your system can be
quickly scaled up and down.

63Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

4

The importance of
architectural design issues

• Software compatibility
For some products, it is important to maintain
compatibility with other software so that users can adopt
your product and use data prepared using a different
system. This may limit architectural choices, such as the
database software that you can use.

64Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

5

Trade off:
Maintainability vs performance

• System maintainability is an attribute that reflects how difficult and
expensive it is to make changes to a system after it has been released to
customers.

• You improve maintainability by building a system from small self-contained
parts, each of which can be replaced or enhanced if changes are required.

• In architectural terms, this means that the system should be
decomposed into fine-grain components, each of which does one thing
and one thing only.

• However, it takes time for components to communicate with each other.
Consequently, if many components are involved in implementing a product
feature, the software will be slower.

65Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Trade off:
Security vs usability

• You can achieve security by designing the system protection as a
series of layers.

• An attacker has to penetrate all of those layers before the system
is compromised.

• Layers might include system authentication layers, a separate
critical feature authentication layer, an encryption layer and so on.

• Architecturally, you can implement each of these layers as
separate components so that if one of these components is
compromised by an attacker, then the other layers remain intact.

66Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authentication layers

67Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

IP authentication

Application authentication

Feature authentication

Encryption

Protect asset such as a
database of user’s credit card

Usability issues
• A layered approach to security affects the usability of the software.

• Users have to remember information, like passwords, that is needed to
penetrate a security layer.
Their interaction with the system is inevitably slowed down by its
security features.

• Many users find this irritating and often look for work-arounds so that
they do not have to re-authenticate to access system features or data.

• To avoid this, you need an architecture:

• that doesn’t have too many security layers

• that doesn’t enforce unnecessary security

• that provides helper components that reduce the load on users
68Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

An architectural model of a
document retrieval system

69

DB1 DB2 DB3 DB4 DB5

Database
Query

Query
validation

Logging User account
management

Index
management

Index
querying

Index
creation

Search
Document
retrieval

Rights
management

Payments Accounting

Authentication and
authorization

Form and query
manager

Web page
generation

User interaction
Local input
validation

Local printingWeb browser

User interface
management

Information
retrieval

Document index

Basic services

Databases

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of
component relationships

70

C2
C1

C2C1

C1

C1 is part of C2 C1 uses C2

calls

C2

C2C1 Data

C1 is-located-with C2 C1 shared-data-with C2

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Architectural design guidelines

71

Design
guidelines

Separation of concerns
Organize your architecture

into components that
focus on a single concern

Stable interfaces
Design component interfaces

that are coherent and
that changes slowly

Implement once
Avoid duplicating

functionality at different
places in your architecture

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cross-cutting concerns

72Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Security

User interface

Performance Reliability

Application

Infrastructure

Operating System

Hardware

A generic layered architecture for a
web-based application

73Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Browser-based or mobile user interface

Authentication and user interaction management

Application-specific functionality

Basic shared services

Transaction and database management

A layered architectural model of
the iLearn system

74Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authentication Logging and monitoring Application interfacing

Resource
discovery

User
analytics

Virtual Learning
environment

Group
configuration

Application
configuration

Interface
creation

Forms
management Login

Web browser iLearn appUser interface

User interface
management

Configuration
services

Application
services

Integrated
services

Shared infrastructure
services

Interface
delivery

Security
configuration

User interface
configuration

Setup
service

Archive access Word processor Video conf. Email and
messaging

User installed
application Blog Wiki Spreadsheet Presentation Drawing

Authentication
and authorization

User storage Application storage Search

Distribution architecture
• The distribution architecture of a software system defines the

servers in the system and the allocation of components to these
servers.

• Client-server architectures are a type of distribution architecture
that is suited to applications where clients access a shared
database and business logic operations on that data.

• In this architecture, the user interface is implemented on the
user’s own computer or mobile device.

• Functionality is distributed between the client and one or
more server computers.

75Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client-server architecture

76Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Servers

Load
balancerresponse

response

response

response

request

request

request

request

The Model-View-Controller (MVC)
pattern

77Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Model

ViewController

Browser
CLIENT

SERVER

User inputs
User

changes

Page to display

Change
notification

View update
request

View refresh
request

Mobile Web App

78

HTML

JavaScriptCSS

Phone
Data

External
Data

Templates

Mobile frameworks
and

Libraries

Source: Scott Preston, Learn HTML5 and JavaScript for iOS: Web Standards-based Apps for iPhone, iPad, and iPod touch, Apress, 2012

MVC Framework of Mobile Apps
(HTML5, CSS3, JavaScript)

79Source: http://sc5.io/blog/2012/02/anatomy-of-a-html5-app/

http://sc5.io/blog/2012/02/anatomy-of-a-html5-app/

Multi-tier client-server architecture

80Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

• Services in a service-oriented architecture are
stateless components, which means that they can
be replicated and can migrate from one computer to
another.

•Many servers may be involved in providing services

•A service-oriented architecture is usually easier to
scale as demand increases and is resilient to failure.

81Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Service-oriented Architecture

82Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

Issues in architectural choice

•Data type and data updates

•Change frequency

• The system execution platform

83Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Issues in architectural choice

• Data type and data updates

• If you are mostly using structured data that may be
updated by different system features, it is usually best to
have a single shared database that provides locking and
transaction management. If data is distributed across
services, you need a way to keep it consistent and this
adds overhead to your system.

84Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Issues in architectural choice

• Change frequency

• If you anticipate that system components will be regularly
changed or replaced, then isolating these components as
separate services simplifies those changes.

85Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Issues in architectural choice

• The system execution platform

• If you plan to run your system on the cloud with users
accessing it over the Internet, it is usually best to
implement it as a service-oriented architecture because
scaling the system is simpler.

• If your product is a business system that runs on local
servers, a multi-tier architecture may be more
appropriate.

86Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technology choices

• Database
Should you use a relational SQL database or an unstructured NOSQL database?

• Platform
Should you deliver your product on a mobile app and/or a web platform?

• Server
Should you use dedicated in-house servers or design your system to run on a public
cloud? If a public cloud, should you use Amazon, Google, Microsoft, or some other
option?

• Open source
Are there suitable open-source components that you could incorporate into your
products?

• Development tools
Do your development tools embed architectural assumptions about the software being
developed that limit your architectural choices

87Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Software architecture is the fundamental organization of a
system embodied in its components, their relationships to
each other, and to the environment, and the principles
guiding its design and evolution.

• The architecture of a software system has a significant
influence on non-functional system properties such as
reliability, efficiency and security.

• Architectural design involves understanding the issues that
are critical for your product and creating system descriptions
that shows components and their relationships.

88Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• The principal role of architectural descriptions is to provide
a basis for the development team to discuss the system
organization. Informal architectural diagrams are effective
in architectural description because they are fast and easy
to draw and share.

• System decomposition involves analyzing architectural
components and representing them as a set of finer-grain
components.

89Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• To minimize complexity, you should separate concerns,
avoid functional duplication and focus on component
interfaces.

• Web-based systems often have a common layered structure
including user interface layers, application-specific layers
and a database layer.

• The distribution architecture in a system defines the
organization of the servers in that system and the
allocation of components to these servers.

90Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Multi-tier client-server and
service-oriented architectures are the most commonly used
architectures for web-based systems.

• Making decisions on technologies such as database and
cloud technologies are an important part of the
architectural design process.

91Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

References
• Ian Sommerville (2019), Engineering Software Products: An Introduction to

Modern Software Engineering, Pearson.

• Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

• Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at
Google: Lessons Learned from Programming Over Time, O'Reilly Media.

• Project Management Institute (2021), A Guide to the Project Management Body of
Knowledge (PMBOK Guide) – Seventh Edition and The Standard for Project
Management, PMI.

• Project Management Institute (2017), A Guide to the Project Management Body of
Knowledge (PMBOK Guide), Sixth Edition, Project Management Institute.

• Project Management Institute (2017), Agile Practice Guide, Project Management
Institute.

92

	Slide 1
	Slide 2: Syllabus
	Slide 3: Syllabus
	Slide 4: Syllabus
	Slide 5: Software Architecture: Architectural design, System decomposition, and Distribution architecture
	Slide 6: Software Engineering and Project Management
	Slide 7: Information Management (MIS) Information Systems
	Slide 8: Fundamental MIS Concepts
	Slide 9: Project-based software engineering
	Slide 10: Product software engineering
	Slide 11: Software execution models
	Slide 12: Product management concerns
	Slide 13: Technical interactions of product managers
	Slide 14: Software Development Life Cycle (SDLC) The waterfall model
	Slide 15: Plan-based and Agile development
	Slide 16: The Continuum of Life Cycles
	Slide 17: Predictive Life Cycle
	Slide 18: Iterative Life Cycle
	Slide 19: A Life Cycle of Varying-Sized Increments
	Slide 20: Iteration-Based and Flow-Based Agile Life Cycles
	Slide 21: From personas to features
	Slide 22: Multi-tier client-server architecture
	Slide 23: Service-oriented Architecture
	Slide 24: VM
	Slide 25: Everything as a service
	Slide 26: Software as a service
	Slide 27: Microservices architecture – key design questions
	Slide 28: Types of security threat
	Slide 29: Software product quality attributes
	Slide 30: A refactoring process
	Slide 31: Functional testing
	Slide 32: Test-driven development (TDD)
	Slide 33: DevOps
	Slide 34: Code management and DevOps
	Slide 35: Software Architecture: Architectural design, System decomposition, and Distribution architecture
	Slide 36: Agentic AI for Software Engineering Architecture
	Slide 37: Agentic AI Foundations
	Slide 38: Agentic AI Workflow for Scientific Discovery
	Slide 39: Large Language Model (LLM) Based Agents
	Slide 40: Large Multimodal Agents (LMAs) (a) Type I: Closed-source LLMs as Planners w/o Longterm Memory.
	Slide 41: Large Multimodal Agents (LMAs) (b) Type II: Finetuned LLMs as Planners w/o long-term Memory.
	Slide 42: Large Multimodal Agents (LMAs) (c) Type III: Planners with Indirect Long-term Memory
	Slide 43: Large Multimodal Agents (LMAs) (d) Type IV: Planners with Native Long-term Memory
	Slide 44: Multi-Agent Frameworks
	Slide 45: Applications of Large Multimodal Agents (LMAs)
	Slide 46: CodeActAgent: General Agent Multi-turn Interaction Framework
	Slide 47: Software architecture
	Slide 48: Software architecture
	Slide 49: The IEEE definition of software architecture
	Slide 50: Software architecture and components
	Slide 51: Access to services provided by software components
	Slide 52: Why is architecture important?
	Slide 53: Non-functional system quality attributes
	Slide 54: Non-functional system quality attributes
	Slide 55: Centralized security architectures
	Slide 56: Shared database architecture
	Slide 57: Multiple database architecture
	Slide 58: Maintainability and performance
	Slide 59: Issues that influence architectural decisions
	Slide 60: The importance of architectural design issues
	Slide 61: The importance of architectural design issues
	Slide 62: The importance of architectural design issues
	Slide 63: The importance of architectural design issues
	Slide 64: The importance of architectural design issues
	Slide 65: Trade off: Maintainability vs performance
	Slide 66: Trade off: Security vs usability
	Slide 67: Authentication layers
	Slide 68: Usability issues
	Slide 69: An architectural model of a document retrieval system
	Slide 70: Examples of component relationships
	Slide 71: Architectural design guidelines
	Slide 72: Cross-cutting concerns
	Slide 73: A generic layered architecture for a web-based application
	Slide 74: A layered architectural model of the iLearn system
	Slide 75: Distribution architecture
	Slide 76: Client-server architecture
	Slide 77: The Model-View-Controller (MVC) pattern
	Slide 78: Mobile Web App
	Slide 79: MVC Framework of Mobile Apps (HTML5, CSS3, JavaScript)
	Slide 80: Multi-tier client-server architecture
	Slide 81: Service-oriented Architecture
	Slide 82: Service-oriented Architecture
	Slide 83: Issues in architectural choice
	Slide 84: Issues in architectural choice
	Slide 85: Issues in architectural choice
	Slide 86: Issues in architectural choice
	Slide 87: Technology choices
	Slide 88: Summary
	Slide 89: Summary
	Slide 90: Summary
	Slide 91: Summary
	Slide 92: References

