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Syllabus
Week    Date    Subject/Topics

1 2025/02/19 Introduction to Software Engineering

2 2025/02/26 Software Products and Project Management: 
                          Software product management and prototyping with 
                          Generative AI

3 2025/03/05 Agile Software Engineering: 
                          Agile methods, Scrum, and Extreme Programming

4 2025/03/12 Case Study on Software Engineering I

5 2025/03/19 Features, Scenarios, and Stories

6 2025/03/26 Software Architecture: 
                          Architectural design, System decomposition, and 
                          Distribution architecture
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Syllabus
Week    Date    Subject/Topics

7 2025/04/02 Make-up holiday for NTPU Sports Day (No Classes)

8 2025/04/09 Midterm Project Report

9 2025/04/16 Cloud-Based Software: Virtualization and containers,
                           Everything as a service, Software as a service

10 2025/04/23 Cloud Computing and Cloud Software Architecture

11 2025/04/30 Case Study on Software Engineering II

12 2025/05/07 Microservices Architecture, RESTful services, 
                            Service deployment
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Syllabus
Week    Date    Subject/Topics

13 2025/05/14 Industry Practices of Software Engineering

14 2025/05/21 Security and Privacy; Reliable Programming; 
                            Testing: Functional testing, Test automation, 
                            Test-driven development, and Code reviews; 
                            DevOps and Code Management: 
                            Code management and DevOps automation

15 2025/05/28 Final Project Report I

16 2025/06/04 Final Project Report II
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Software 
Architecture: 
Architectural design, 

System decomposition, and 
Distribution architecture
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Software Engineering 
and 

Project Management
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Information Management (MIS)
Information Systems

7Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson. 
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Fundamental MIS Concepts
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Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson. 



Project-based software engineering
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Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Product software engineering

10Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software execution models

Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

User interface 
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface 
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface 
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers



Product management concerns

12Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Technical interactions of 
product managers

13Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software Development Life Cycle (SDLC)

The waterfall model
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Plan-based and Agile development
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The Continuum of Life Cycles

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Predictive Life Cycle

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iterative Life Cycle

18Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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A Life Cycle of 
Varying-Sized Increments

19Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iteration-Based and Flow-Based 
Agile Life Cycles

20Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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From personas to features
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interacting with a software product
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Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Multi-tier client-server architecture

22Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Service-oriented Architecture

23Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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VM

24Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Everything as a service

25Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software as a service

26Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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27Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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28Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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29Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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30Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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31Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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32Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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33Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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34Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software 
Architecture: 
Architectural design, 

System decomposition, and 
Distribution architecture
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Agentic AI for Software Engineering Architecture

36
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Agentic AI Foundations

37Source: Acharya, Deepak Bhaskar, Karthigeyan Kuppan, and B. Divya. "Agentic AI: Autonomous Intelligence for Complex Goals–A Comprehensive Survey." IEEE Access (2025).



Agentic AI Workflow for Scientific Discovery

38Source: Gridach, Mourad, Jay Nanavati, Khaldoun Zine El Abidine, Lenon Mendes, and Christina Mack. "Agentic AI for Scientific Discovery: A Survey of Progress, Challenges, and Future Directions." arXiv preprint arXiv:2503.08979 (2025).



Large Language Model (LLM) Based Agents

39Source: Guo, Taicheng, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xiangliang Zhang. "Large language model based multi-agents: A survey of progress and challenges." arXiv preprint arXiv:2402.01680 (2024).



Large Multimodal Agents (LMAs)
(a) Type I: Closed-source LLMs as Planners w/o Longterm Memory. 

40

Use prompt techniques 
to guide closed-source 
LLMs in decision-
making
and planning to 
complete tasks without 
long memory.

Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).



Large Multimodal Agents (LMAs)
(b) Type II: Finetuned LLMs as Planners w/o long-term Memory. 

41

Use action-related data 
to finetune existing 
open-source large 
models,
enabling them to achieve 
decision-making, 
planning, and tool 
invocation capabilities 
comparable
to closed-source LLMs

Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).



Large Multimodal Agents (LMAs)
(c) Type III: Planners with Indirect Long-term Memory

42

Introduce indirect 
long-term memory 
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further enhancing their 
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adaptation abilities in 
environments closer to 
the real world.

Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).



Large Multimodal Agents (LMAs)
(d) Type IV: Planners with Native Long-term Memory

43

Introduce native 
long-term memory 
functions,
further enhancing their 
generalization and 
adaptation abilities in 
environments closer to 
the real world.

Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).



Multi-Agent Frameworks

44Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).



45Source: Xie, Junlin, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. "Large Multimodal Agents: A Survey." arXiv preprint arXiv:2402.15116 (2024).

Applications of Large Multimodal Agents (LMAs) 



46Source: Wang, Xingyao, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. "Executable code actions elicit better llm agents." arXiv preprint arXiv:2402.01030 (2024).

CodeActAgent: 
General Agent Multi-turn Interaction Framework 



Software architecture

• To create a reliable, secure and efficient product, you need 
to pay attention to architectural design which includes: 

• its overall organization, 

• how the software is decomposed into components, 

• the server organization 

• the technologies that you use to build the software. The 
architecture of a software product affects its 
performance, usability, security, reliability and 
maintainability.

47Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Software architecture

•There are many different interpretations of the 
term ‘software architecture’. 

•Some focus on ‘architecture’ as a noun 
- the structure of a system 
and others consider ‘architecture’ to be a verb 
- the process of defining these structures.

48Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



The IEEE definition of 
software architecture

•Architecture is the 
fundamental organization of a software system 
embodied in its components, their relationships to 
each other and 
to the environment, and 
the principles guiding its design and evolution.

49Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Software architecture and 
components

• A component is an element that implements a coherent set of 
functionality or features. 

• Software component can be considered as a collection of one or 
more services that may be used by other components.

• When designing software architecture, you don’t have to decide 
how an architectural element or component is to be 
implemented.  

• Rather, you design the component interface and leave the 
implementation of that interface to a later stage of the 
development process.

50Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Access to services provided by 
software components

51Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

API

S1 S2 S3 S4 S5 S6

Component 1 Component 2

Services accessed directly 
by other components

Services accessed through 
the component API



Why is architecture important?

• Architecture is important because the architecture of a 
system has a fundamental influence on the non-
functional system properties.

• Architectural design involves understanding the issues 
that affect the architecture of your product and creating 
an architectural description that shows the critical 
components and their relationships.

• Minimizing complexity should be an important goal for 
architectural designers.

52Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Non-functional system quality attributes

• Responsiveness
Does the system return results to users in a reasonable time?

• Reliability
Do the system features behave as expected by both developers 
and users?

• Availability
Can the system deliver its services when requested by users?

• Security
Does the system protect itself and users’ data from unauthorized 
attacks and intrusions?

53Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Non-functional system quality attributes

• Usability
Can system users access the features that they need and use 
them quickly and without errors?

• Maintainability
Can the system be readily updated and new features added 
without undue costs?

• Resilience
Can the system continue to deliver user services in the event of 
partial failure or external attack?

54Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Centralized security architectures

• The benefits of a centralized security architecture are that 
it is easier to design and build protection and that the 
protected information can be accessed more efficiently. 

• However, if your security is breached, you lose everything. 

• If you distribute information, it takes longer to access all 
of the information and costs more to protect it. 

• If security is breached in one location, you only lose the 
information that you have stored there.

55Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Shared database architecture

56
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Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Multiple database architecture

57
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Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Maintainability and performance
• Shared database architecture:

• system with two components (C1 and C2) that share a common 
database. 

• Multiple database architecture:

• each component has its own copy of the parts of the database that it 
needs. 

• If one component needs to change the database organization, this does 
not affect the other component. 

• A multi-database architecture may run more slowly and may cost more to 
implement and change. 

• A multi-database architecture needs a mechanism 
(component C3) to ensure that the data shared by C1 and C2 is kept 
consistent when it is changed. 

58Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Issues that influence 
architectural decisions

59Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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The importance of 
architectural design issues

• Nonfunctional product characteristics
Nonfunctional product characteristics such as security and 
performance affect all users. 
If you get these wrong, 
your product will is unlikely to be a commercial success. 
Unfortunately, some characteristics are opposing, 
so you can only optimize the most important.

60Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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The importance of 
architectural design issues

• Product lifetime
If you anticipate a long product lifetime, you will need to 
create regular product revisions. You therefore need an 
architecture that is evolvable, so that it can be adapted to 
accommodate new features and technology.

61Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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The importance of 
architectural design issues

• Software reuse
You can save a lot of time and effort, if you can reuse large 
components from other products or open-source software. 
However, this constrains your architectural choices because 
you must fit your design around the software that is being 
reused.

62Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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The importance of 
architectural design issues

• Number of users
If you are developing  consumer software delivered over 
the Internet, the number of users can change very quickly. 
This can lead to serious performance degradation unless 
you design your architecture so that your system can be 
quickly scaled up and down.

63Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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The importance of 
architectural design issues

• Software compatibility
For some products, it is important to maintain 
compatibility with other software so that users can adopt 
your product and use data prepared using a different 
system. This may limit architectural choices, such as the 
database software that you can use.

64Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Trade off: 
Maintainability vs performance

• System maintainability is an attribute that reflects how difficult and 
expensive it is to make changes to a system after it has been released to 
customers. 

• You improve maintainability by building a system from small self-contained 
parts, each of which can be replaced or enhanced if changes are required. 

• In architectural terms, this means that the system should be 
decomposed into fine-grain components, each of which does one thing 
and one thing only. 

• However, it takes time for components to communicate with each other. 
Consequently, if many components are involved in implementing a product 
feature, the software will be slower. 

65Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Trade off: 
Security vs usability

• You can achieve security by designing the system protection as a 
series of layers. 

• An attacker has to penetrate all of those layers before the system 
is compromised. 

• Layers might include system authentication layers, a separate 
critical feature authentication layer, an encryption layer and so on. 

• Architecturally, you can implement each of these layers as 
separate components so that if one of these components is 
compromised by an attacker, then the other layers remain intact. 

66Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Authentication layers

67Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Usability issues
• A layered approach to security affects the usability of the software. 

• Users have to remember information, like passwords, that is needed to 
penetrate a security layer. 
Their interaction with the system is inevitably slowed down by its 
security features. 

• Many users find this irritating and often look for work-arounds so that 
they do not have to re-authenticate to access system features or data.

• To avoid this, you need an architecture:

• that doesn’t have too many security layers 

• that doesn’t enforce unnecessary security

• that provides helper components that reduce the load on users
68Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



An architectural model of a 
document retrieval system

69
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Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Examples of 
component relationships

70
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calls

C2

C2C1 Data

C1 is-located-with C2 C1 shared-data-with C2

Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Architectural design guidelines

71

Design 
guidelines

Separation of concerns
Organize your architecture 

into components that 
focus on a single concern

Stable interfaces
Design component interfaces 

that are coherent and 
that changes slowly

Implement once
Avoid duplicating 

functionality at different 
places in your architecture

Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Cross-cutting concerns

72Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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A generic layered architecture for a 
web-based application

73Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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A layered architectural model of 
the iLearn system

74Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Distribution architecture
• The distribution architecture of a software system defines the 

servers in the system and the allocation of components to these 
servers. 

• Client-server architectures are a type of distribution architecture 
that is suited to applications where clients access a shared 
database and business logic operations on that data. 

• In this architecture, the user interface is implemented on the 
user’s own computer or mobile device. 

• Functionality is distributed between the client and one or 
more server computers. 

75Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Client-server architecture

76Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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The Model-View-Controller (MVC) 
pattern
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Mobile Web App
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HTML

JavaScriptCSS

Phone 
Data

External 
Data

Templates

Mobile frameworks 
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Libraries

Source: Scott Preston, Learn HTML5 and JavaScript for iOS: Web Standards-based Apps for iPhone, iPad, and iPod touch, Apress, 2012



MVC Framework of Mobile Apps
(HTML5, CSS3, JavaScript)
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Multi-tier client-server architecture
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Service-oriented Architecture

• Services in a service-oriented architecture are 
stateless components, which means that they can 
be replicated and can migrate from one computer to 
another. 

•Many servers may be involved in providing services

•A service-oriented architecture is usually easier to 
scale as demand increases and is resilient to failure.

81Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Service-oriented Architecture
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Issues in architectural choice

•Data type and data updates

•Change frequency

• The system execution platform

83Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Issues in architectural choice

• Data type and data updates

• If you are mostly using structured data that may be 
updated by different system features, it is usually best to 
have a single shared database that provides locking and 
transaction management.  If data is distributed across 
services, you need a way to keep it consistent and this 
adds overhead to your system.
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Issues in architectural choice

• Change frequency

• If you anticipate that system components will be regularly 
changed or replaced, then isolating these components as 
separate services simplifies those changes.
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Issues in architectural choice

• The system execution platform

• If you plan to run your system on the cloud with users 
accessing it over the Internet, it is usually best to 
implement it as a service-oriented architecture because 
scaling the system is simpler. 

• If your product is a business system that runs on local 
servers, a multi-tier architecture may be more 
appropriate.
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Technology choices

• Database
Should you use a relational SQL database or an unstructured NOSQL database?

• Platform
Should you deliver your product on a mobile app and/or a web platform?

• Server
Should you use dedicated in-house servers or design your system to run on a public 
cloud? If a public cloud, should you use Amazon, Google, Microsoft, or some other 
option?

• Open source
Are there suitable open-source components that you could incorporate into your 
products?

• Development tools
Do your development tools embed architectural assumptions about the software being 
developed that limit your architectural choices

87Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Summary

• Software architecture is the fundamental organization of a 
system embodied in its components, their relationships to 
each other, and to the environment, and the principles 
guiding its design and evolution.

• The architecture of a software system has a significant 
influence on non-functional system properties such as 
reliability, efficiency and security.

• Architectural design involves understanding the issues that 
are critical for your product and creating system descriptions 
that shows components and their relationships. 
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Summary

• The principal role of architectural descriptions is to provide 
a basis for the development team to discuss the system 
organization. Informal architectural diagrams are effective 
in architectural description because they are fast and easy 
to draw and share.

• System decomposition involves analyzing architectural 
components and representing them as a set of finer-grain 
components. 
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Summary

• To minimize complexity, you should separate concerns, 
avoid functional duplication and focus on component 
interfaces.

• Web-based systems often have a common layered structure 
including user interface layers, application-specific layers 
and a database layer.

• The distribution architecture in a system defines the 
organization of the servers in that system and the 
allocation of components to these servers.

90Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Summary

• Multi-tier client-server and 
service-oriented architectures are the most commonly used 
architectures for web-based systems.

• Making decisions on technologies such as database and 
cloud technologies are an important part of the 
architectural design process.
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