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Syllabus
Week   Date   Subject/Topics

1 2025/09/09 Introduction to Artificial Intelligence

2 2025/09/16 Artificial Intelligence and Intelligent Agents; 
                          Problem Solving

3 2025/09/23 Knowledge, Reasoning and Knowledge Representation;
                          Uncertain Knowledge and Reasoning

4 2025/09/30 Case Study on Artificial Intelligence I

5 2025/10/07 Machine Learning: Supervised and Unsupervised Learning;
                          The Theory of Learning and Ensemble Learning
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Syllabus
Week   Date   Subject/Topics

6 2025/10/14 NVIDIA Fundamentals of Deep Learning I: 
                          Deep Learning; Neural Networks

7 2025/10/21 NVIDIA Fundamentals of Deep Learning II: 
                          Convolutional Neural Networks; 
                          Data Augmentation and Deployment

8 2025/10/28 Self-Learning

9 2025/11/04 Midterm Project Report

10 2025/11/11 NVIDIA Fundamentals of Deep Learning III: 
                             Pre-trained Models; Natural Language Processing
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Syllabus
Week   Date   Subject/Topics

11 2025/11/18 Case Study on Artificial Intelligence II

12 2025/11/25 Computer Vision and Robotics

13 2025/12/02 Generative AI, Agentic AI, and Physical AI

14 2025/12/09 Philosophy and Ethics of AI and the Future of AI

15 2025/12/16 Final Project Report I

16 2025/12/23 Final Project Report II
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Artificial Intelligence 
Intelligent Agents
Problem Solving
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Outline
• Artificial Intelligence
• Intelligent Agents
• Problem Solving
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Stuart Russell and Peter Norvig (2020), 
Artificial Intelligence: A Modern Approach, 

4th Edition, Pearson
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Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/
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1. Artificial Intelligence
2. Problem Solving
3. Knowledge and Reasoning
4. Uncertain Knowledge and Reasoning
5. Machine Learning
6. Communicating, Perceiving, and Acting
7. Philosophy and Ethics of AI

8Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
A Modern Approach 



9Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
Intelligent Agents



•Solving Problems by Searching
•Search in Complex Environments
•Adversarial Search and Games
•Constraint Satisfaction Problems

10Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
2. Problem Solving



•Logical Agents
•First-Order Logic
•Inference in First-Order Logic
•Knowledge Representation
•Automated Planning

11Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
3. Knowledge and Reasoning



•Quantifying Uncertainty
•Probabilistic Reasoning
•Probabilistic Reasoning over Time
•Probabilistic Programming
•Making Simple Decisions
•Making Complex Decisions
•Multiagent Decision Making

12Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
4. Uncertain Knowledge and Reasoning



•Learning from Examples
•Learning Probabilistic Models
•Deep Learning
•Reinforcement Learning

13Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
5. Machine Learning



•Natural Language Processing
•Deep Learning for Natural Language 
Processing
•Computer Vision
•Robotics

14Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
6. Communicating, Perceiving, and Acting



15Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
Philosophy and Ethics of AI

The Future of AI



NVIDIA Developer Program

NVIDIA 
Deep Learning Institute (DLI)
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https://developer.nvidia.com/join-nvidia-developer-program

https://learn.nvidia.com/
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Artificial Intelligence 
(AI) 
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AI, ML, DL, Generative AI

Source: Jeong, Cheonsu. "A Study on the Implementation of Generative AI Services Using an Enterprise Data-Based LLM Application Architecture." arXiv preprint arXiv:2309.01105 (2023).



Generative AI, Agentic AI, Physical AI

19Source: NVIDIA (2025), GTC March 2025 Keynote with NVIDIA CEO Jensen Huang, https://www.youtube.com/watch?v=_waPvOwL9Z8

2012 AlexNet

Perception AI 

Generative AI 

Agentic AI 

Physical AI

Deep learning breakthrough

Speech recognition 
Deep recommender systems
Medical imaging

Digital marketing
Content creation

Coding assistants
Customer service
Patient care

Self-driving cars
General robotics



Generative AI
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Computing

AlgorithmsData

Generative AI



From Generative AI to Agentic AI

21Source: Schneider, Johannes. "Generative to Agentic AI: Survey, Conceptualization, and Challenges." arXiv preprint arXiv:2504.18875 (2025).



Generative AI (Gen AI)
AI Generated Content (AIGC)

22Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." 
arXiv preprint arXiv:2303.04226.



AI, Big Data, Cloud Computing
Evolution of Decision Support, 

Business Intelligence, and Analytics

23

 Chapter 1  • An Overview of Business Intelligence, Analytics, and Data Science  39

Evolution of Computerized Decision Support  
to Analytics/Data Science

The timeline in Figure 1.8 shows the terminology used to describe analytics since the 
1970s. During the 1970s, the primary focus of information systems support for decision 
making focused on providing structured, periodic reports that a manager could use for 
decision making (or ignore them). Businesses began to create routine reports to inform 
decision makers (managers) about what had happened in the previous period (e.g., day, 
week, month, quarter). Although it was useful to know what had happened in the past, 
managers needed more than this: They needed a variety of reports at different levels 
of granularity to better understand and address changing needs and challenges of the 
business. These were usually called management information systems (MIS). In the early 
1970s, Scott-Morton first articulated the major concepts of DSS. He defined DSSs as “inter-
active computer-based systems, which help decision makers utilize data and models to 
solve unstructured problems” (Gorry and Scott-Morton, 1971). The following is another 
classic DSS definition, provided by Keen and Scott-Morton (1978):

Decision support systems couple the intellectual resources of individuals with the capabilities 
of the computer to improve the quality of decisions. It is a computer-based support system 
for management decision makers who deal with semistructured problems.

Note that the term decision support system, like management information system 
and several other terms in the field of IT, is a content-free expression (i.e., it means dif-
ferent things to different people). Therefore, there is no universally accepted definition 
of DSS.

During the early days of analytics, data was often obtained from the domain experts 
using manual processes (i.e., interviews and surveys) to build mathematical or knowledge-
based models to solve constrained optimization problems. The idea was to do the best 
with limited resources. Such decision support models were typically called operations 
research (OR). The problems that were too complex to solve optimally (using linear or 
nonlinear mathematical programming techniques) were tackled using heuristic methods 
such as simulation models. (We will introduce these as prescriptive analytics later in this 
chapter and in a bit more detail in Chapter 6.)

In the late 1970s and early 1980s, in addition to the mature OR models that were 
being used in many industries and government systems, a new and exciting line of mod-
els had emerged: rule-based expert systems. These systems promised to capture experts’ 
knowledge in a format that computers could process (via a collection of if–then–else rules 
or heuristics) so that these could be used for consultation much the same way that one 

1.3 

1970s 1980s 1990s 2000s 2010s

Routine Reporting

AI/Expert Systems

Decision Support Systems

Relational DBM
S

On-Demand Static Reporting

Enterprise Resource Planning

Data W
arehousing

Dashboards & Scorecards

Executive Information Systems

Cloud Computing, SaaS

Data/Text M
ining

Business Intelligence

Big Data Analytics

In-M
emory, In-Database

Social Network/M
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Decision Support Systems Enterprise/Executive IS Business Intelligence Analytics Big Data ...

FIGURE 1.8 Evolution of  Decision Support, Business Intelligence, and Analytics.
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Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), 
Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

AI Cloud Computing Big Data
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The Rise of AI

24
Source: DHL (2018), Artificial Intelligence in Logistics,  

http://www.globalhha.com/doclib/data/upload/doc_con/5e50c53c5bf67.pdf/

1.1  Origin & Definition of AI

Artificial intelligence (AI) is not new. The term was coined 

in 1956 by John McCarthy, a Stanford computer science 

professor who organized an academic conference on the 

topic at Dartmouth College in the summer of that year. 

The field of AI has gone through a series of boom-bust 

cycles since then, characterized by technological break-

throughs that stirred activity and excitement about the 

topic, followed by subsequent periods of disillusionment 

and disinterest known as 'AI Winters' as technical limita-

tions were discovered. As you can see in figure 1, today  

we are once again in an 'AI Spring'.

Artificial intelligence can be defined as human intelligence 

exhibited by machines; systems that approximate, mimic, 

replicate, automate, and eventually improve on human 

thinking. Throughout the past half-century a few key com-

ponents of AI were established as essential: the ability to 

perceive, understand, learn, problem solve, and reason. 

Countless working definitions of AI have been proposed 

over the years but the unifying thread in all of them is  

1 UNDERSTANDING ARTIFICIAL INTELLIGENCE

Understanding Artificial Intelligence 3

that computers with the right software can be used to 

solve the kind of problems that humans solve, interact 

with humans and the world as humans do, and create  

ideas like humans. In other words, while the mechanisms 

that give rise to AI are ‘artificial’, the intelligence to which 

AI is intended to approximate is indistinguishable from 

human intelligence. In the early days of the science, pro-

cessing inputs from the outside world required extensive 

programming, which limited early AI systems to a very 

narrow set of inputs and conditions. However since then, 

computer science has worked to advance the capability of 

AI-enabled computing systems.

Board games have long been a proving ground for AI 

research, as they typically involve a finite number of 

players, rules, objectives, and possible moves. This essen-

tially means that games – one by one, including checkers, 

backgammon, and even Jeopardy! to name a few – have 

been taken over by AI. Most famously, in 1997 IBM’s Deep 

Blue defeated Garry Kasparov, the then reigning world 

champion of chess. This trajectory persists with the ancient 

Chinese game of Go, and the defeat of reigning world 

champion Lee Sedol by DeepMind’s AlphaGo in March 2016.

Figure 1: An AI timeline; Source: Lavenda, D. / Marsden, P.

AI is born Focus on specific intelligence Focus on specific problems

The Turing Test
Dartmouth College conference
Information theory-digital signals
Symbolic reasoning

Expert systems & knowledge
Neural networks conceptualized
Optical character recognition
Speech recognition

Machine learning
Deep learning: pattern analysis & classification

Big data: large databases
Fast processors to crunch data

High-speed networks and connectivity

        AI Winter I AI Winter II

                    1964 
Eliza, the first chatbot 

is developed by Joseph 
Weizenbaum at MIT

1997
IBM's Deep Blue defeats 
Garry Kasparov, the world's 
reigning chess champion

Edward Feigenbaum  
develops the first  

Expert System,  
giving rebirth to AI

1975 – 1982

IBM's Watson Q&A machine wins Jeopardy! 
Apple integrates Siri, a personal voice  

assistant into the iPhone 

2011

2016
AlphaGo 
defeats Lee Sedol

1950 1960 1990 2010 2020

2000

19801970

2014
YouTube recognizes  
cats from videos

Dartmouth conference  
led by John McCarthy  

coins the term  
"artificial intelligence" 

1956

Real-world problems are complicated
   Facial recognition, translation 
   Combinatorial explosion

Limited computer processing power 
Limited database storage capacity

Limited network ability
Disappointing results: failure to achieve scale
Collapse of dedicated hardware vendors

THE RISE OF AI
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The Development of LM-based Dialogue Systems
1) Early Stage (1966 - 2015) 

2) The Independent Development of TOD and ODD (2015 - 2019)
3) Fusions of Dialogue Systems (2019 - 2022)

4) LLM-based DS (2022 - Now)

Source: Wang, Hongru, Lingzhi Wang, Yiming Du, Liang Chen, Jingyan Zhou, Yufei Wang, and Kam-Fai Wong. "A Survey of the Evolution of Language Model-Based Dialogue Systems." arXiv preprint arXiv:2311.16789 (2023).

Task-oriented DS (TOD), Open-domain DS (ODD)



Definition 
of 

Artificial Intelligence 
(A.I.) 
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Artificial Intelligence 

“… the science and 
engineering 

of 
making 

intelligent machines” 
(John McCarthy, 1955)

27Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/



Artificial Intelligence 
 

“… technology that 
thinks and acts 
like humans”

28Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/



Artificial Intelligence 
 

“… intelligence 
exhibited by machines 

or software”
29Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/



4 Approaches of AI
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Thinking Humanly Thinking Rationally

Acting Humanly Acting Rationally

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



4 Approaches of AI

31

2.
Thinking Humanly: 

The Cognitive 
Modeling Approach

3. 
Thinking Rationally:
The “Laws of Thought” 

Approach

1.
Acting Humanly:

The Turing Test 
Approach (1950)

4. 
Acting Rationally:

The Rational Agent 
Approach

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



AI Acting Humanly:
The Turing Test Approach

(Alan Turing, 1950)

• Knowledge Representation
• Automated Reasoning
•Machine Learning (ML)
• Deep Learning (DL)

• Computer Vision (Image, Video)
• Natural Language Processing (NLP)
• Robotics

32Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



AI, ML, DL

33Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html

Artificial Intelligence (AI)

Machine Learning (ML)

Deep Learning (DL)
CNN

RNN LSTM GRU
GAN

Supervised 
Learning

Unsupervised 
Learning

Semi-supervised 
Learning

Reinforcement 
Learning



3 Machine Learning Algorithms

34Source: Enrico Galimberti, http://blogs.teradata.com/data-points/tree-machine-learning-algorithms/



Machine Learning (ML)

35Source: https://www.mactores.com/services/aws-big-data-machine-learning-cognitive-services/



Machine Learning (ML) / Deep Learning (DL)

36
Source: Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma  (2015), 

"Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.

Machine 
Learning

(ML)

Supervised 
Learning

Unsupervised 
Learning

Decision Tree 
Classifiers

Linear 
Classifiers

Rule-based 
Classifiers

Probabilistic 
Classifiers

Support Vector 
Machine (SVM)

Deep Learning 
(DL)

Neural Network 
(NN)

Bayesian 
Network (BN)

Maximum 
Entropy (ME)

Naïve Bayes 
(NB)

Reinforcement  
Learning



Transformer Models

37Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers:  Building Language Applications with Hugging Face,  O'Reilly Media.

Encoder Decoder

T5

BART

M2M-100

BigBird

BERTDistilBERT

RoBERTa

XLM

ALBERT

ELECTRA

DeBERTa

XLM-R

GPT

GPT-2 CTRL

GPT-3

GPT-Neo GPT-J

Transformer

BLOOM

ChatGPT

BLOOMZmT0

GPT-4



Four Paradigms in NLP (LM)

38Source: Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. (2023) "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing." ACM Computing Surveys 55, no. 9 (2023): 1-35.

GAI: Pre-train, Prompt, and Predict (Prompting)

Transfer Learning: Pre-training, Fine-Tuning (FT)



Generative AI
Text, Image, Video, Audio 

Applications

39



Feature Generative AI Traditional AI

Output type New content Classification/Prediction

Creativity High Low

Interactivity Usually more natural Limited

40

Comparison of Generative AI and Traditional AI



Generative AI

• Generative AI: The Art of Creation
• Definition: AI systems capable of creating new content
• Characteristics: Creativity, interactivity

41



LMArena Leaderboard

42https://lmarena.ai/

https://lmarena.ai/


LMArena Leaderboard

43https://huggingface.co/spaces/lmarena-ai/lmarena-leaderboard
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Artificial Analysis Intelligence Index
Intelligence, Speed, Price

44Source:  https://artificialanalysis.ai/

https://artificialanalysis.ai/


Artificial Analysis Intelligence Index
2022-2025

45Source:  https://artificialanalysis.ai/

https://artificialanalysis.ai/


Google Gemma 3 27B
The most capable model you can run on a single GPU or TPU

46Source:  https://blog.google/technology/developers/gemma-3/

https://blog.google/technology/developers/gemma-3/
https://blog.google/technology/developers/gemma-3/
https://blog.google/technology/developers/gemma-3/


Google Gemma 3 Multimodality 
(vision-language input and text outputs)

47Source: https://developers.googleblog.com/en/introducing-gemma3/

https://developers.googleblog.com/en/introducing-gemma3/
https://developers.googleblog.com/en/introducing-gemma3/
https://developers.googleblog.com/en/introducing-gemma3/


Google Gemma 3: Pre-training and Post-training
(distillation, reinforcement learning, and model merging)

48Source: https://developers.googleblog.com/en/introducing-gemma3/

https://developers.googleblog.com/en/introducing-gemma3/
https://developers.googleblog.com/en/introducing-gemma3/
https://developers.googleblog.com/en/introducing-gemma3/


Google AI Studio (Gemma 3 27B)

49Source: https://aistudio.google.com/

https://aistudio.google.com/


Grok 3 Deep Search

50Source: https://grok.com/chat

https://grok.com/chat


Perplexity.ai Deep Research

51Source: https://www.perplexity.ai/

https://www.perplexity.ai/


Token

52https://tiktokenizer.vercel.app/

https://tiktokenizer.vercel.app/


Word Embeddings

53Source: https://www.scaler.com/topics/tensorflow/tensorflow-word-embeddings/



Transformer (Attention is All You Need) 
(Vaswani et al., 2017)

54Source: Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 
"Attention is all you need." In Advances in neural information processing systems, pp. 5998-6008. 2017.



BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding

55
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

BERT (Bidirectional Encoder Representations from Transformers)
Overall pre-training and fine-tuning procedures for BERT



56
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on Different Tasks



57
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

Sentiment Analysis: 
Single Sentence Classification



58
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on 
Question Answering (QA)



59
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on Dialogue
Intent Detection (ID; Classification)



60
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on Dialogue
Slot Filling (SF)



Task-Oriented Dialogue (ToD) System
Speech, Text, NLP

61Source: Razumovskaia, Evgeniia, Goran Glavas, Olga Majewska, Edoardo M. Ponti, Anna Korhonen, and Ivan Vulic. 
"Crossing the conversational chasm: A primer on natural language processing for multilingual task-oriented dialogue systems." Journal of Artificial Intelligence Research 74 (2022): 1351-1402.



Conversational AI 
to deliver contextual and personal experience to users

62
Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim  (2022). 

"Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.



Technological Integration for Multimodal AI

63
Source: Sohail, Shahab Saquib, Faiza Farhat, Yassine Himeur, Mohammad Nadeem, Dag Øivind Madsen, Yashbir Singh, Shadi Atalla, and Wathiq Mansoor. "The Future of GPT: A Taxonomy of Existing ChatGPT 

Research, Current Challenges, and Possible Future Directions." Current Challenges, and Possible Future Directions (April 8, 2023) (2023).



4 Approaches of AI

64

2.
Thinking Humanly: 

The Cognitive 
Modeling Approach

3. 
Thinking Rationally:
The “Laws of Thought” 

Approach

1.
Acting Humanly:

The Turing Test 
Approach (1950)

4. 
Acting Rationally:

The Rational Agent 
Approach

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Acting Rationally:
The Rational Agent Approach

•AI has focused on the study and construction of 
agents that do the right thing.
•Standard model

65Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Neuroscience
The parts of a nerve cell or neuron

66Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Axonal arborization

Axon from another cell

Synapse
Dendrite Axon

Nucleus

Synapses

Cell body or soma



Comparison of 
Computer and Human Brain

67Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Supercomputer Personal Computer Human Brain

Computational units 106 GPUs + CPUs 8 CPU cores 106 columns

1015 transistors 1010 transistors 1011 neurons

Storage units 1016 bytes RAM 1010 bytes RAM 1011 neurons

1017 bytes disk 1012 bytes disk 1014 synapses

Cycle time 10−9 sec 10−9 sec 10−3 sec

Operations/sec 1018 1010 1017



A scene from the blocks world

68Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Find a block which is taller than the one you 
are holding and put it in the box.



69Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Intelligent Agents



4 Approaches of AI

70

2.
Thinking Humanly: 

The Cognitive 
Modeling Approach

3. 
Thinking Rationally:
The “Laws of Thought” 

Approach

1.
Acting Humanly:
The Turing Test 

Approach (1950)

4. 
Acting Rationally:

The Rational Agent 
Approach

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Intelligent Agents Roadmap

71Source: Cheng, Yuheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong, Wenhao Li, Zihao Wang et al. "Exploring large language model based intelligent agents: Definitions, methods, and prospects." arXiv preprint arXiv:2401.03428 (2024).



AI Agents
• Traditional AI Agents 
• Simple reflex agents
• Model-based reflex agents
• Goal-based agents
• Utility-based agents
• Learning agents

72

• Evolution of AI Agents
• LLM-based Agents

• Multi-modal agents
• Embodied AI agents in 

virtual environments
• Collaborative AI agents



Agents interact with environments 
through sensors and actuators
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Figure 2.1 Agents interact with environments through sensors and actuators.

A B

Figure 2.2 A vacuum-cleaner world with just two locations. Each location can be clean or
dirty, and the agent can move left or right and can clean the square that it occupies. Different
versions of the vacuum world allow for different rules about what the agent can perceive,
whether its actions always succeed, and so on.



AI Agents

•Definition: An AI agent is an entity that perceives its 
environment and takes actions to achieve goals
•Components: 

1. Sensors: Perceive the environment
2. Actuators: Act upon the environment
3. Decision-making mechanism: Process inputs and 

decide on actions
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Figure 2.2 A vacuum-cleaner world with just two locations. Each location can be clean or
dirty, and the agent can move left or right and can clean the square that it occupies. Different
versions of the vacuum world allow for different rules about what the agent can perceive,
whether its actions always succeed, and so on.
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Reinforcement Learning (DL)

75Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
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Reinforcement Learning (DL)
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A vacuum-cleaner world 
with just two locations 

78Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Partial tabulation of 
a simple agent function for 
the vacuum-cleaner world 

79Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

4 Chapter 2 Intelligent Agents

Percept sequence Action

[A,Clean ] Right

[A,Dirty ] Suck

[B,Clean ] Left

[B,Dirty ] Suck

[A,Clean ], [A,Clean ] Right

[A,Clean ], [A,Dirty ] Suck
...

...
[A,Clean ], [A,Clean ], [A,Clean ] Right

[A,Clean ], [A,Clean ], [A,Dirty ] Suck
...

...

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world shown
in Figure ??. The agent cleans the current square if it is dirty, otherwise it moves to the other
square. Note that the table is of unbounded size unless there is a restriction on the length of
possible percept sequences.

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast,
legal,
comfortable
trip, maximize
profits,
minimize
impact on
other road
users

Roads, other
traffic, police,
pedestrians,
customers,
weather

Steering,
accelerator,
brake, signal,
horn, display,
speech

Cameras, radar,
speedometer, GPS, engine
sensors, accelerometer,
microphones, touchscreen

Figure 2.4 PEAS description of the task environment for an automated taxi driver.



PEAS description of 
the task environment for 
an automated taxi driver
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Examples of Agent Types and 
their PEAS descriptions
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Agent Type Performance
Measure

Environment Actuators Sensors

Medical
diagnosis system

Healthy patient,
reduced costs

Patient, hospital,
staff

Display of
questions, tests,
diagnoses,
treatments

Touchscreen/voice
entry of
symptoms and
findings

Satellite image
analysis system

Correct
categorization of
objects, terrain

Orbiting satellite,
downlink,
weather

Display of scene
categorization

High-resolution
digital camera

Part-picking
robot

Percentage of
parts in correct
bins

Conveyor belt
with parts; bins

Jointed arm and
hand

Camera, tactile
and joint angle
sensors

Refinery
controller

Purity, yield,
safety

Refinery, raw
materials,
operators

Valves, pumps,
heaters, stirrers,
displays

Temperature,
pressure, flow,
chemical sensors

Interactive
English tutor

Student’s score
on test

Set of students,
testing agency

Display of
exercises,
feedback, speech

Keyboard entry,
voice

Figure 2.5 Examples of agent types and their PEAS descriptions.

Task Environment Observable Agents Deterministic Episodic Static Discrete

Crossword puzzle Fully Single Deterministic Sequential Static Discrete
Chess with a clock Fully Multi Deterministic Sequential Semi Discrete

Poker Partially Multi Stochastic Sequential Static Discrete
Backgammon Fully Multi Stochastic Sequential Static Discrete

Taxi driving Partially Multi Stochastic Sequential Dynamic Continuous
Medical diagnosis Partially Single Stochastic Sequential Dynamic Continuous

Image analysis Fully Single Deterministic Episodic Semi Continuous
Part-picking robot Partially Single Stochastic Episodic Dynamic Continuous

Refinery controller Partially Single Stochastic Sequential Dynamic Continuous
English tutor Partially Multi Stochastic Sequential Dynamic Discrete

Figure 2.6 Examples of task environments and their characteristics.
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The TABLE-DRIVEN-AGENT program 
is invoked for each new percept and 

returns an action each time. 
It retains the complete percept sequence in memory.
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6 Chapter 2 Intelligent Agents

function TABLE-DRIVEN-AGENT(percept ) returns an action
persistent: percepts , a sequence, initially empty

table , a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action← LOOKUP(percepts , table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and re-
turns an action each time. It retains the complete percept sequence in memory.

function REFLEX-VACUUM-AGENT([location ,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-location vacuum environ-
ment. This program implements the agent function tabulated in Figure ??.
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Figure 2.9 Schematic diagram of a simple reflex agent. We use rectangles to denote the
current internal state of the agent’s decision process, and ovals to represent the background
information used in the process.



The agent program for a simple 
reflex agent in the two-location 

vacuum environment.
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Figure 2.9 Schematic diagram of a simple reflex agent. We use rectangles to denote the
current internal state of the agent’s decision process, and ovals to represent the background
information used in the process.
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Figure 2.1 Agents interact with environments through sensors and actuators.
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Figure 2.2 A vacuum-cleaner world with just two locations. Each location can be clean or
dirty, and the agent can move left or right and can clean the square that it occupies. Different
versions of the vacuum world allow for different rules about what the agent can perceive,
whether its actions always succeed, and so on.
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A Simple Reflex Agent
It acts according to a rule whose condition 

matches the current state, 
as defined by the percept.
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function SIMPLE-REFLEX-AGENT(percept ) returns an action
persistent: rules, a set of condition–action rules

state← INTERPRET-INPUT(percept )
rule←RULE-MATCH(state, rules)
action← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches the
current state, as defined by the percept.
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Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

transition model , a description of how the next state depends on
the current state and action

sensor model , a description of how the current world state is reflected
in the agent’s percepts

rules, a set of condition–action rules
action , the most recent action, initially none

state←UPDATE-STATE(state,action ,percept , transition model , sensor model )
rule←RULE-MATCH(state, rules)
action← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

6 Chapter 2 Intelligent Agents

function TABLE-DRIVEN-AGENT(percept ) returns an action
persistent: percepts , a sequence, initially empty

table , a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action← LOOKUP(percepts , table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and re-
turns an action each time. It retains the complete percept sequence in memory.

function REFLEX-VACUUM-AGENT([location ,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-location vacuum environ-
ment. This program implements the agent function tabulated in Figure ??.

Agent

E
n

v
iro

n
m

en
t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent. We use rectangles to denote the
current internal state of the agent’s decision process, and ovals to represent the background
information used in the process.
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return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

It keeps track of the current state of the world, 
using an internal model. 

It then chooses an action in the same way as the reflex agent.



A model-based, goal-based agent

91Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



A model-based, utility-based agent 
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A general learning agent
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Three ways to represent states and 
the transitions between them
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Large Language Model (LLM) based Agents

95Source: Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., ... & Gui, T. (2023). The rise and potential of large language model based agents: A survey. arXiv preprint arXiv:2309.07864.



LLM-based Agents
• Definition: AI agents that use Large Language Models as their 

core decision-making mechanism

• Key Features: 
• Natural language interface

• Vast knowledge base
• Ability to understand context and nuance
• Generalize to new tasks with minimal additional training

96



LLM-based Agents

97Source: Cheng, Yuheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong, Wenhao Li, Zihao Wang et al. "Exploring large language model based intelligent agents: Definitions, methods, and prospects." arXiv preprint arXiv:2401.03428 (2024).



Large Multimodal Agents (LMA) 

98Source: Xie, J., Chen, Z., Zhang, R., Wan, X., & Li, G. (2024). Large Multimodal Agents: A Survey. ArXiv, abs/2402.15116.



Large Multimodal Agents (LMA) 

99Source: Xie, J., Chen, Z., Zhang, R., Wan, X., & Li, G. (2024). Large Multimodal Agents: A Survey. ArXiv, abs/2402.15116.



A2A 
(Agent2Agent 

Protocol) 
for agent-agent 
collaboration

MCP 
(Model Context 

Protocol) 
for tools and 

resources
100Source: https://google.github.io/A2A/

https://google.github.io/A2A/


Agentic AI System with Microservices Architecture
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Agentic AI and World Model for 
Edge General Intelligence

102
Source: Changyuan Zhao, Guangyuan Liu, Ruichen Zhang, Yinqiu Liu, Jiacheng Wang, Jiawen Kang, Dusit Niyato et al (2025), 

"Edge general intelligence through world models and agentic AI: Fundamentals, solutions, and challenges." arXiv preprint arXiv:2508.09561.



Artificial Intelligence 
Problem Solving
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1. Artificial Intelligence
2. Problem Solving
3. Knowledge and Reasoning
4. Uncertain Knowledge and Reasoning
5. Machine Learning
6. Communicating, Perceiving, and Acting
7. Philosophy and Ethics of AI

104Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
A Modern Approach 



• Solving Problems by Searching
• Search in Complex Environments
•Adversarial Search and Games
•Constraint Satisfaction Problems

105Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: 
2. Problem Solving
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LLM-enhanced 
Problem Solving



Problem Solving and LLM-enhanced Techniques
• Traditional Search Algorithms 
• Breadth-first Search (BFS)

• Depth-first Search (DFS)
• A* Search

• LLM-enhanced Problem Solving
• Chain-of-thought (CoT) prompting
• Few-shot learning for problem decomposition

• Integration with external tools and APIs
107



LLM-based Agents for Complex Problem Solving

• ReAct: Reasoning and Acting in Language Models

• MRKL (Modular Reasoning, Knowledge and Language) systems

• LLM-powered planning and decision making

• Chain-of-thought Prompting 

• Solving a complex problem 
using chain-of-thought prompting

108



109Source: Plaat, A., Wong, A., Verberne, S., Broekens, J., van Stein, N., & Back, T. (2024). Reasoning with Large Language Models, a Survey. arXiv preprint arXiv:2407.11511.

LLM-Reasoning Approaches: Prompt Generation, Evaluation, and Control



LLM-Reasoning Approaches: Prompt Generation, Evaluation, and Control

110Source: Plaat, A., Wong, A., Verberne, S., Broekens, J., van Stein, N., & Back, T. (2024). Reasoning with Large Language Models, a Survey. arXiv preprint arXiv:2407.11511.



Self-Refine: Iterative refinement with self-feedback

111Source: Madaan, Aman, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon et al. "Self-refine: Iterative refinement with self-feedback." Advances in Neural Information Processing Systems 36 (2024).
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Solving Problems 
by 

Searching



AI: Solving Problems by Searching

113Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

A simplified road map of part of Romania, with road distances in miles.



The state-space graph for 
the two-cell vacuum world

114Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

There are 8 states and three actions for each state: 
L = Left, R = Right, S = Suck. 



A typical instance of 
the 8-puzzle

115Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Arad to Bucharest

116Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Three partial search trees for finding 
a route from Arad to Bucharest
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Three partial search trees for finding 
a route from Arad to Bucharest

118Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Three partial search trees for finding 
a route from Arad to Bucharest
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Three partial search trees for finding 
a route from Arad to Bucharest
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A sequence of search trees 
generated by a graph search 

on the Romania problem 

121Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



The Separation Property of 
Graph Search

illustrated on a rectangular-grid problem

122Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

The frontier (green) separates 
the interior (lavender) from 
the exterior (faint dashed) 
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The Best-First Search (BFS) Algorithm



Breadth-First Search 
on a Simple Binary Tree

124Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Bread-First 
Search 
(BFS) 



Breadth-First Search 
on a Simple Binary Tree
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Bread-First 
Search 
(BFS) 



Breadth-First Search 
on a Simple Binary Tree
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Bread-First 
Search 
(BFS) 
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Breadth-First Search and 
Uniform-Cost Search Algorithms



Part of the Romania State Space 
Uniform-Cost Search
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Depth-First Search 
(DFS) 
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Depth-First 
Search 
(DFS) 
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Iterative deepening and
 depth-limited tree-like search



Four iterations of iterative deepening search 
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Four iterations of iterative deepening search 
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Four iterations of iterative deepening search 
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Bidirectional Best-First Search 
keeps two frontiers and two tables of reached states
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Bidirectional Best-First Search 
keeps two frontiers and two tables of reached states



Evaluation of search algorithms
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b is the branching factor; m is the maximum depth of the search tree; 
d is the depth of the shallowest solution, or is m when there is no solution; 
ℓ is the depth limit 



Values of hSLD 
—straight-line distances to Bucharest.
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A∗ search
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A∗ search
Nodes are labeled with f = g + h. 
The h values are the Straight-Line Distances heuristic hSLD 
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A∗ search
Nodes are labeled with f = g + h. 
The h values are the Straight-Line Distances heuristic hSLD 



Triangle Inequality

145Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

If the heuristic h is consistent, then the single number h(n) 
will be less than the sum of the cost c(n, a, a′) of the action 
from n to n′ plus the heuristic estimate h(n′).



Map of Romania showing contours at 
f = 380, f = 400, and f = 420, 
with Arad as the start state
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(a) A∗ Search 
(b) Weighted A∗ Search 

147Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

The gray bars are obstacles, the purple line is the path from the green start to red goal, 
and the small dots are states that were reached by each search. 
On this particular problem, weighted A∗ explores 7 times fewer states and finds a path 
that is 5% more costly. 
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Recursive Best-First Search (RBFS) 
Algorithm



Recursive Best-First Search (RBFS) 
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Recursive Best-First Search (RBFS) 
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Recursive Best-First Search (RBFS) 
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Bidirectional Search 
maintains two frontiers

152Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

On the left, nodes A and B are successors of Start; 
on the right, node F is an inverse successor of Goal 



A typical instance of the 8-puzzle
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The shortest solution is 26 actions long



Comparison of the search costs and effective 
branching factors for 8-puzzle problems
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A subproblem of the 8-puzzle 

155Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

The task is to get tiles 1, 2, 3, 4, and the blank into their correct positions, 
without worrying about what happens to the other tiles 



A Web service providing driving directions, 
computed by a search algorithm.
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Search 
in 

Complex 
Environments



A one-dimensional 
state-space landscape
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Adversarial 
Search 

and 
Games



Game Tree for the Game of Tic-tac-toe
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Constraint 
Satisfaction 

Problems



The Map-Coloring Problem 
Represented as a Constraint Graph
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A Tree Decomposition of the 
Constraint Graph

163Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



• Artificial Intelligence: A Modern Approach (AIMA)
• http://aima.cs.berkeley.edu/

• AIMA Python
• http://aima.cs.berkeley.edu/python/readme.html
• https://github.com/aimacode/aima-python

• Search
• http://aima.cs.berkeley.edu/python/search.html

• Games: Adversarial Search
http://aima.cs.berkeley.edu/python/games.html

• CSP (Constraint Satisfaction Problems)
• http://aima.cs.berkeley.edu/python/csp.html
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Artificial Intelligence: A Modern Approach (AIMA)

165http://aima.cs.berkeley.edu/

http://aima.cs.berkeley.edu/


AIMA Code

166https://github.com/aimacode

https://github.com/aimacode


AIMA Python

167https://github.com/aimacode/aima-python

https://github.com/aimacode/aima-python
https://github.com/aimacode/aima-python
https://github.com/aimacode/aima-python


Papers with Code
State-of-the-Art (SOTA)

168https://paperswithcode.com/sota

https://paperswithcode.com/sota
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Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101


Summary
• Artificial Intelligence
• Intelligent Agents
• Problem Solving
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