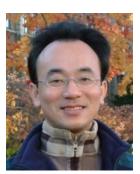
Artificial Intelligence

Machine Learning: Supervised and Unsupervised Learning; The Theory of Learning and Ensemble Learning

1141AI04 MBA, IM, NTPU (M5276) (Fall 2025) Tue 2, 3, 4 (9:10-12:00) (B3F17)



Min-Yuh Day, Ph.D, Professor and Director

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

https://meet.google.com/ paj-zhhj-mya

Syllabus

Week Date Subject/Topics

- 1 2025/09/09 Introduction to Artificial Intelligence
- 2 2025/09/16 Artificial Intelligence and Intelligent Agents;
 Problem Solving
- 3 2025/09/23 Knowledge, Reasoning and Knowledge Representation; Uncertain Knowledge and Reasoning
- 4 2025/09/30 Case Study on Artificial Intelligence I
- 5 2025/10/07 Machine Learning: Supervised and Unsupervised Learning; The Theory of Learning and Ensemble Learning

Syllabus

Week Date Subject/Topics

6 2025/10/14 NVIDIA Fundamentals of Deep Learning I: Deep Learning; Neural Networks

7 2025/10/21 NVIDIA Fundamentals of Deep Learning II:
Convolutional Neural Networks;
Data Augmentation and Deployment

8 2025/10/28 Self-Learning

9 2025/11/04 Midterm Project Report

10 2025/11/11 NVIDIA Fundamentals of Deep Learning III:

Pre-trained Models; Natural Language Processing

Syllabus

Week Date Subject/Topics

- 11 2025/11/18 Case Study on Artificial Intelligence II
- 12 2025/11/25 Computer Vision and Robotics
- 13 2025/12/02 Generative AI, Agentic AI, and Physical AI
- 14 2025/12/09 Philosophy and Ethics of AI and the Future of AI
- 15 2025/12/16 Final Project Report I
- 16 2025/12/23 Final Project Report II

Machine Learning: Supervised and Unsupervised Learning; The Theory of Learning and Ensemble Learning

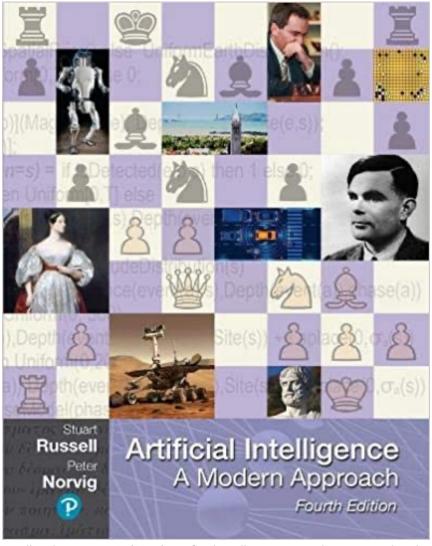
Outline

- Machine Learning
 - Supervised Learning
 - Unsupervised Learning
- The Theory of Learning
 - Computational Learning Theory
 - Probably Approximately Correct (PAC) Learning
- Ensemble Learning
 - Bagging: Random Forests (RF)
 - Boosting: Gradient Boosting, XGBoost, LightGBM, CatBoost
 - Stacking
 - Online learning
- Meta Learning: Learning to Learn

Stuart Russell and Peter Norvig (2020),

Artificial Intelligence: A Modern Approach,

4th Edition, Pearson



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence: A Modern Approach

- 1. Artificial Intelligence
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- 5. Machine Learning
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of Al

Artificial Intelligence: Machine Learning

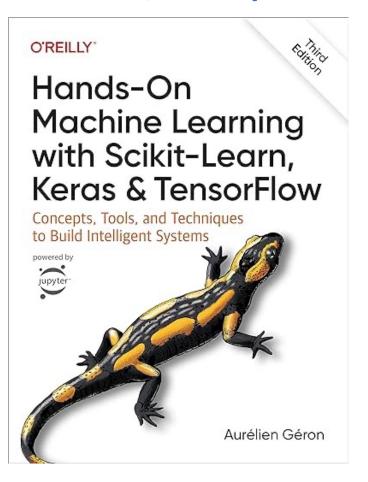
Artificial Intelligence: 5. Machine Learning

- Learning from Examples
- Learning Probabilistic Models
- Deep Learning
- Reinforcement Learning

Aurélien Géron (2022),

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd Edition, O'Reilly Media

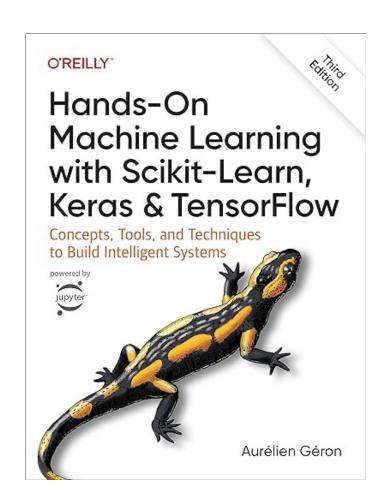


https://github.com/ageron/handson-ml3

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Notebooks

- 1. The Machine Learning landscape
- 2. End-to-end Machine Learning project
- 3. Classification
- 4. Training Models
- 5. Support Vector Machines
- 6. <u>Decision Trees</u>
- 7. Ensemble Learning and Random Forests
- 8. <u>Dimensionality Reduction</u>
- 9. <u>Unsupervised Learning Techniques</u>
- 10.Artificial Neural Nets with Keras
- 11. Training Deep Neural Networks
- 12. Custom Models and Training with TensorFlow
- 13. Loading and Preprocessing Data
- 14. <u>Deep Computer Vision Using Convolutional Neural Networks</u>
- 15. Processing Sequences Using RNNs and CNNs
- 16. Natural Language Processing with RNNs and Attention
- 17. Autoencoders, GANs, and Diffusion Models
- 18. Reinforcement Learning
- 19. Training and Deploying TensorFlow Models at Scale

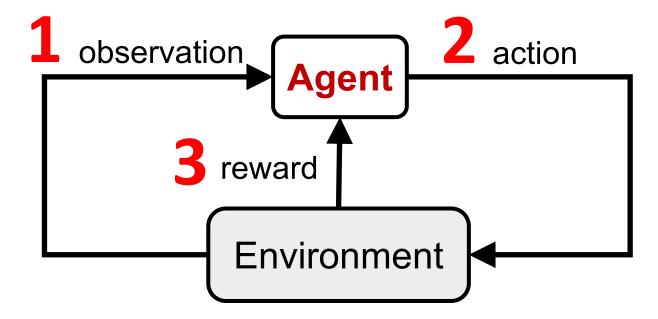


Reinforcement Learning (DL)

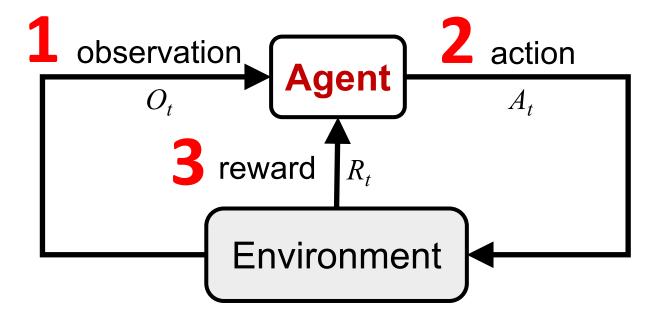
Agent

Environment

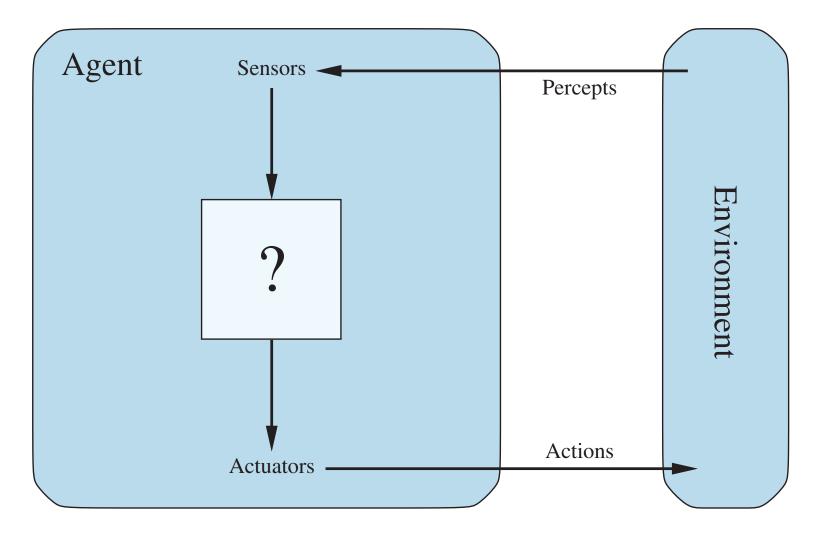
Reinforcement Learning (DL)



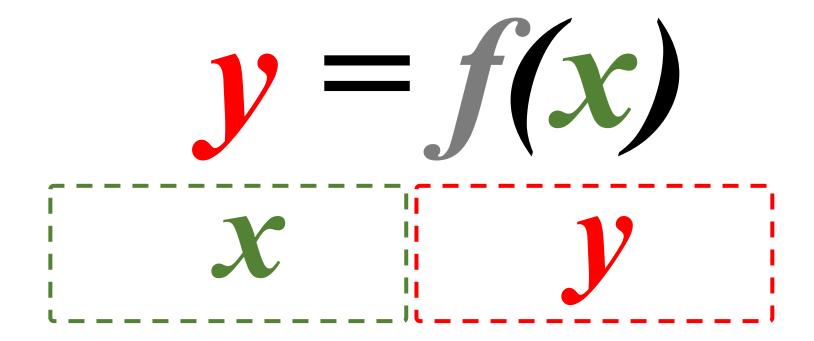
Reinforcement Learning (DL)



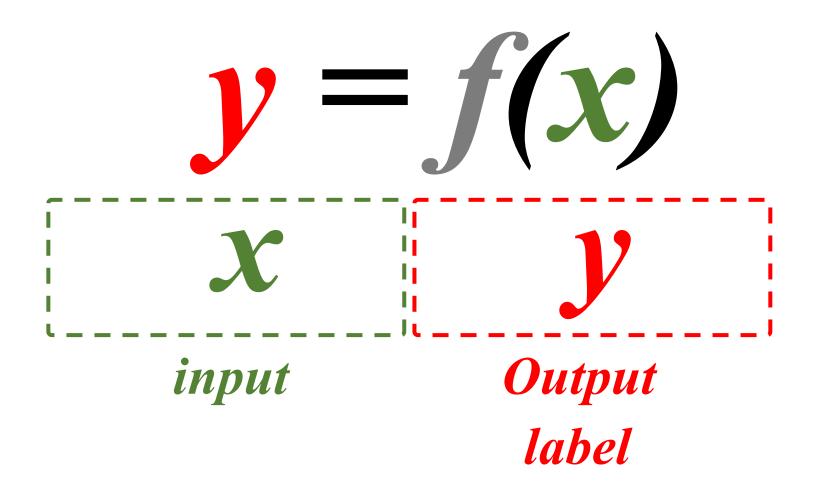
Agents interact with environments through sensors and actuators



Machine Learning Supervised Learning (Classification) Learning from Examples



Machine Learning Supervised Learning (Classification) Learning from Examples

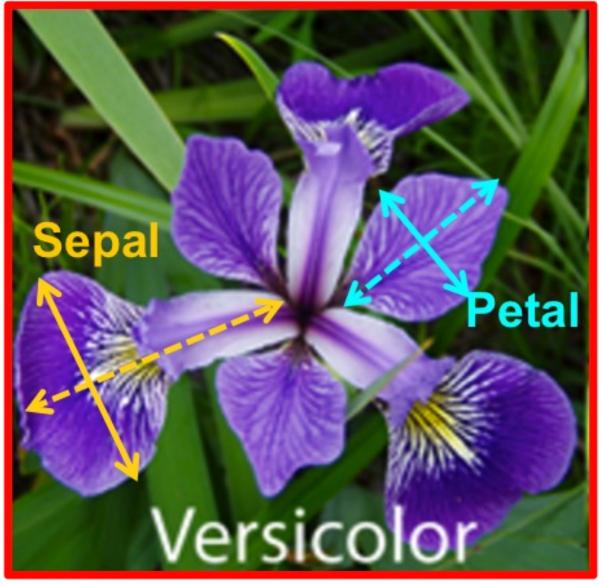


Iris flower data set

setosa

virginica

Iris Classfication



iris.data

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

```
5.1,3.5,1.4,0.2, Iris-setosa
4.9,3.0,1.4,0.2, Iris-setosa
4.7,3.2,1.3,0.2, Iris-setosa
4.6,3.1,1.5,0.2, Iris-setosa
5.0,3.6,1.4,0.2, Iris-setosa
5.4,3.9,1.7,0.4, Iris-setosa
4.6,3.4,1.4,0.3, Iris-setosa
5.0,3.4,1.5,0.2, Iris-setosa
4.4,2.9,1.4,0.2, Iris-setosa
4.9,3.1,1.5,0.1, Iris-setosa
5.4,3.7,1.5,0.2, Iris-setosa
4.8,3.4,1.6,0.2, Iris-setosa
4.8,3.0,1.4,0.1, Iris-setosa
4.3,3.0,1.1,0.1, Iris-setosa
5.8,4.0,1.2,0.2, Iris-setosa
5.7,4.4,1.5,0.4, Iris-setosa
5.4,3.9,1.3,0.4, Iris-setosa
5.1,3.5,1.4,0.3, Iris-setosa
5.7,3.8,1.7,0.3, Iris-setosa
5.1,3.8,1.5,0.3, Iris-setosa
5.4,3.4,1.7,0.2, Iris-setosa
5.1,3.7,1.5,0.4, Iris-setosa
4.6,3.6,1.0,0.2, Iris-setosa
5.1,3.3,1.7,0.5, Iris-setosa
4.8,3.4,1.9,0.2, Iris-setosa
5.0,3.0,1.6,0.2, Iris-setosa
```

setosa

virginica

versicolor

Machine Learning Supervised Learning (Classification) Learning from Examples v = f(x)

5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2, Iris-setosa 4.7,3.2,1.3,0.2, Iris-setosa 7.0,3.2,4.7,1.4, Iris-versicolor 6.4,3.2,4.5,1.5, Iris-versicolor 6.9,3.1,4.9,1.5, Iris-versicolor 6.3,3.3,6.0,2.5, Iris-virginica 5.8, 2.7, 5.1, 1.9, Iris-virginica 7.1,3.0,5.9,2.1, Iris-virginica

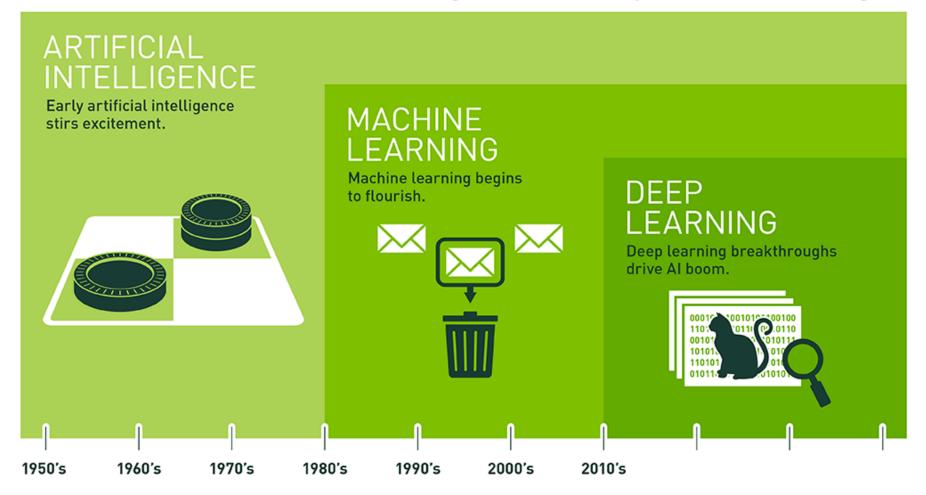
Machine Learning Supervised Learning (Classification) Learning from Examples v = f(x)

```
Example 5.1,3.5,1.4,0.2, Iris-setosa
           4.9,3.0,1.4,0.2, Iris-setosa
           4.7,3.2,1.3,0.2, Iris-setosa
           7.0,3.2,4.7,1.4, Iris-versicolor
           6.4,3.2,4.5,1.5, Iris-versicolor
           6.9,3.1,4.9,1.5, Iris-versicolor
           6.3,3.3,6.0,2.5, Iris-virginica
           5.8, 2.7, 5.1, 1.9, Iris-virginica
           7.1,3.0,5.9,2.1, Iris-virginica
```

Machine Learning Supervised Learning (Classification) Learning from Examples v = f(x)

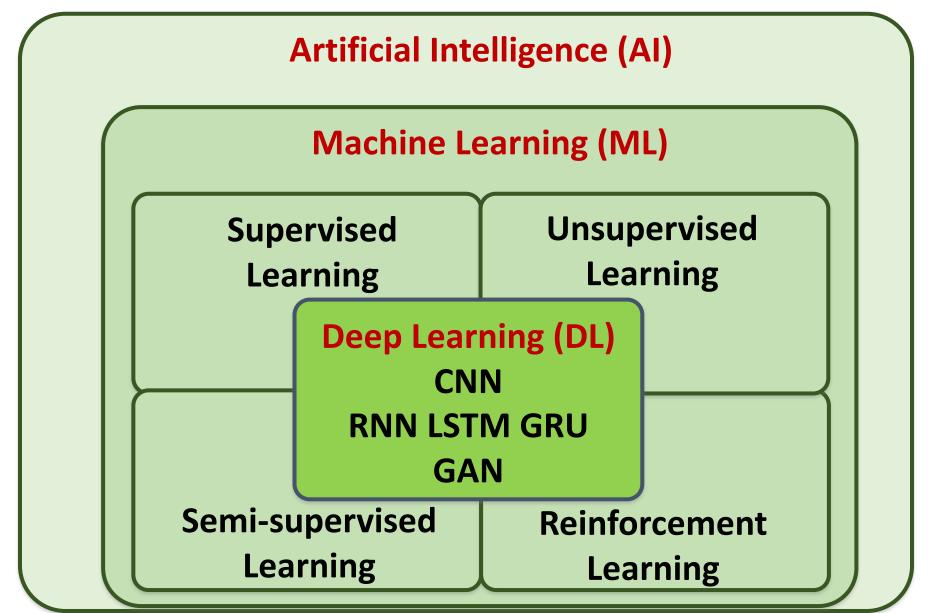
Example 5.1,3.5,1.4,0.2, Iris-setosa 4.9,3.0,1.4,0.2, Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 7.0,3.2,4.7,1.4 Iris-versicolor X 6.4,3.2,4.5,1.5, Iris-versicolor 6.9,3.1,4.9,1.5, Iris-versicolor 6.3,3.3,6.0,2.5, Iris-virginica 5.8,2.7,5.1,1.9, Iris-virginica 7.1,3.0,5.9,2.1, Iris-virginica

Artificial Intelligence Machine Learning & Deep Learning

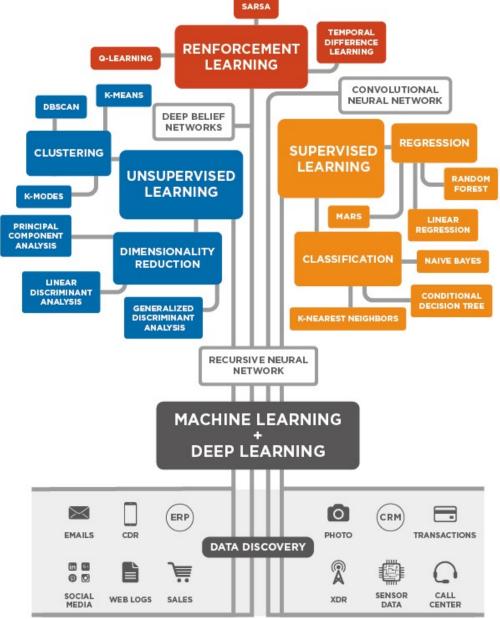


Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

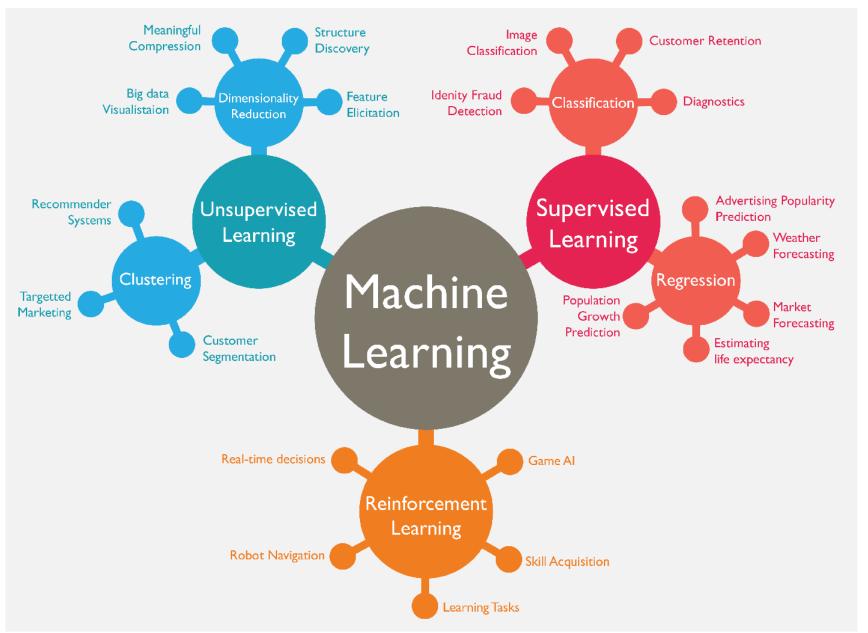
AI, ML, DL



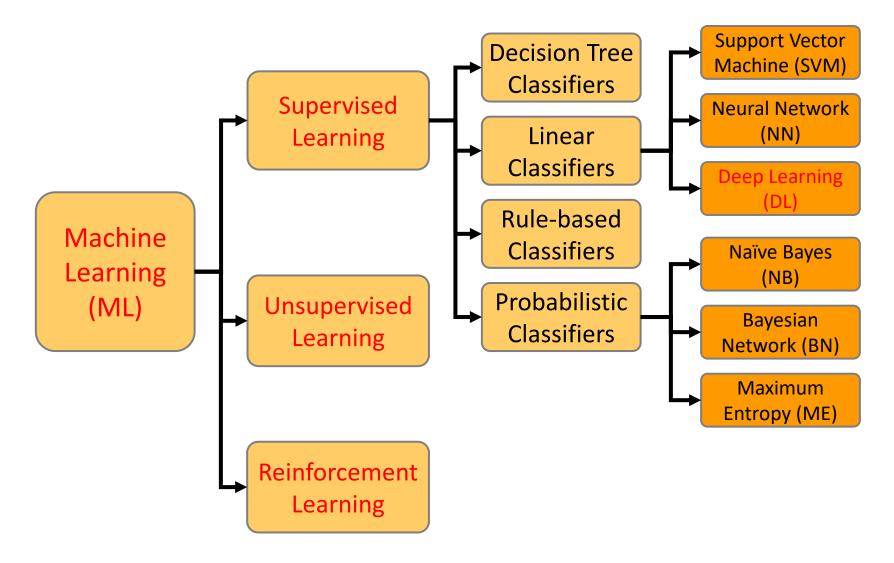
3 Machine Learning Algorithms



Machine Learning (ML)



Machine Learning (ML) / Deep Learning (DL)



Machine Learning Models

Deep Learning

Kernel

Association rules

Ensemble

Decision tree

Dimensionality reduction

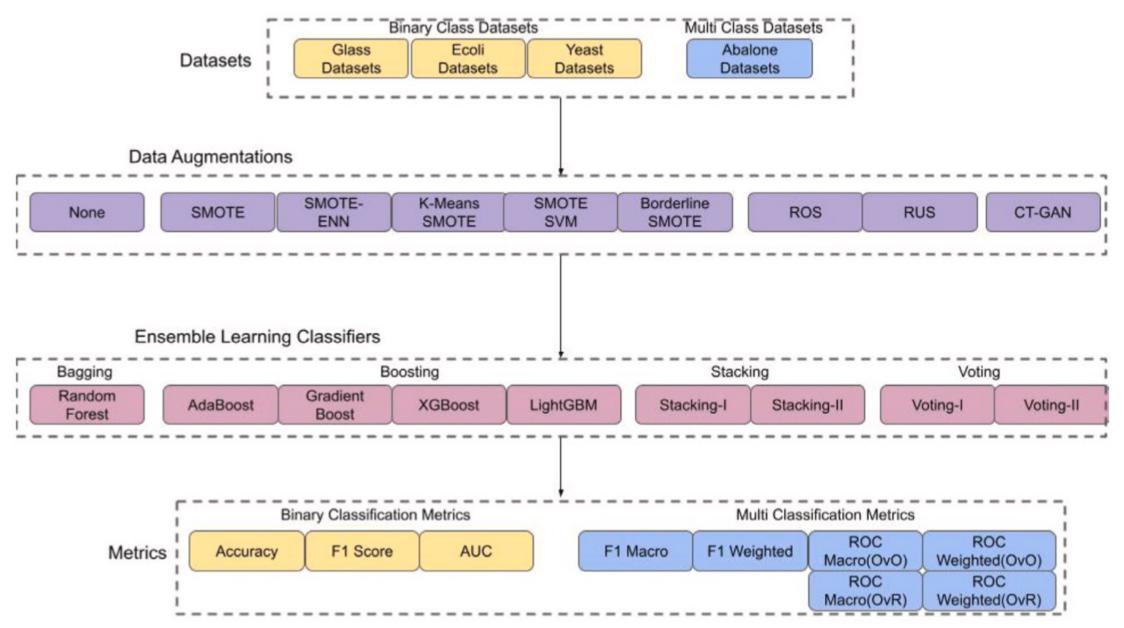
Clustering

Regression Analysis

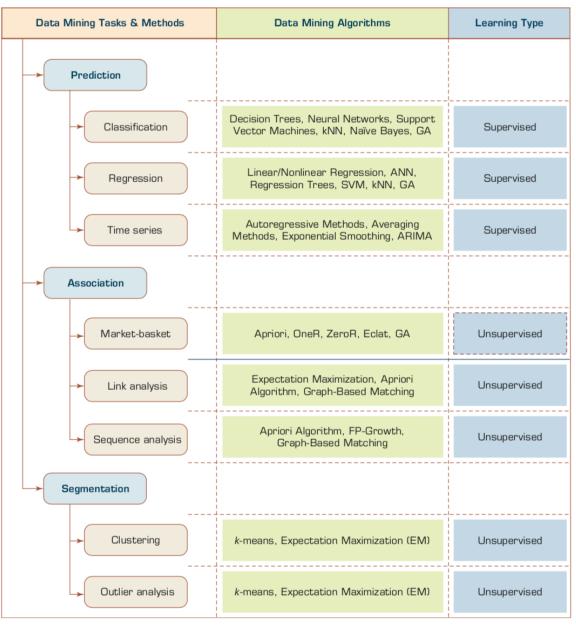
Bayesian

Instance based

Ensemble Learning and Data Augmentations (DA)



Machine Learning: Data Mining Tasks & Methods



Data Mining Methods

- Supervised Learning
 - Classification
 - Class Label Prediction
 - Regression
 - Numeric Value Prediction
- Unsupervised Learning
 - Clustering
 - Association

Scikit-Learn

Machine Learning in Python

Scikit-Learn

scikit-learn

Machine Learning in Python

Getting Started

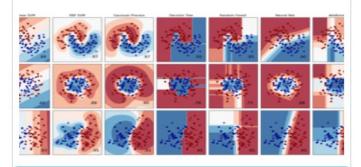
Release Highlights for 1.5

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition. **Algorithms:** <u>Gradient boosting</u>, <u>nearest neighbors</u>, <u>random forest</u>, <u>logistic regression</u>, and <u>more...</u>



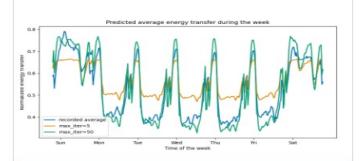
Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, stock prices.

Algorithms: <u>Gradient boosting, nearest neighbors,</u> random forest, ridge, and more...



Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, increased efficiency. **Algorithms:** PCA, feature selection, non-negative matrix factorization, and more...

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tuning.

Algorithms: <u>Grid search</u>, <u>cross validation</u>, <u>metrics</u>, and more...

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, grouping experiment outcomes.

Algorithms: k-Means, HDBSCAN, hierarchical clustering, and more...

Examples

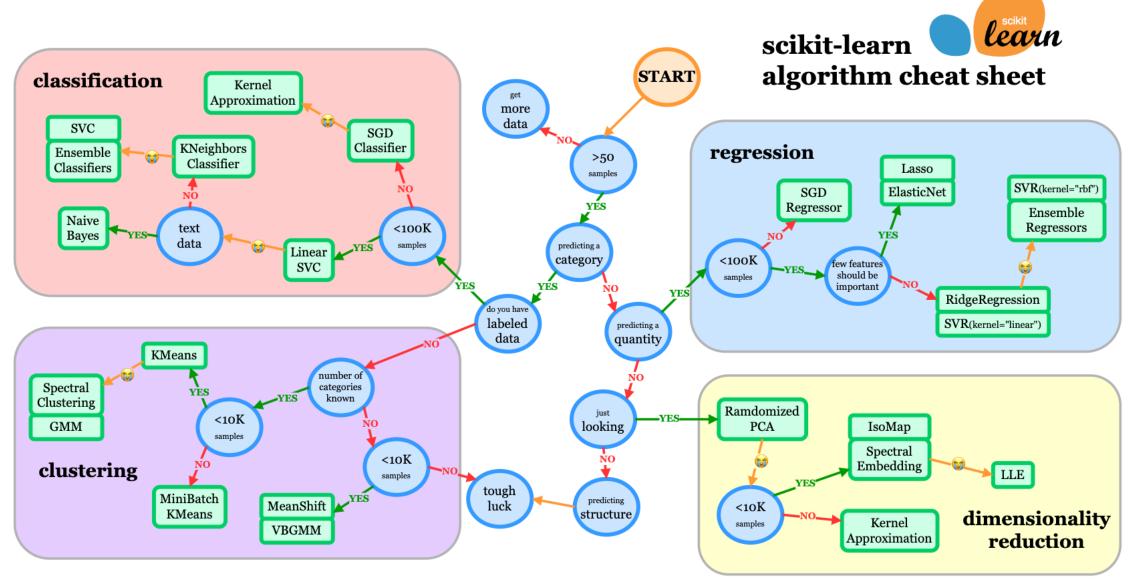
Preprocessing

Feature extraction and normalization.

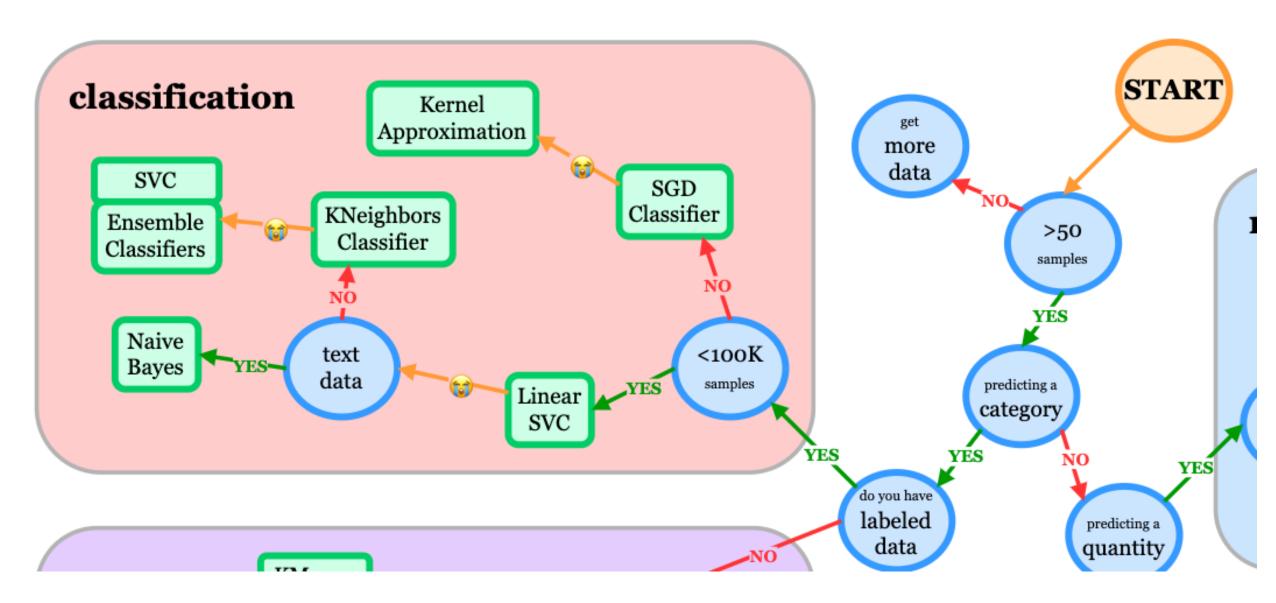
Applications: Transforming input data such as text for use with machine learning algorithms.

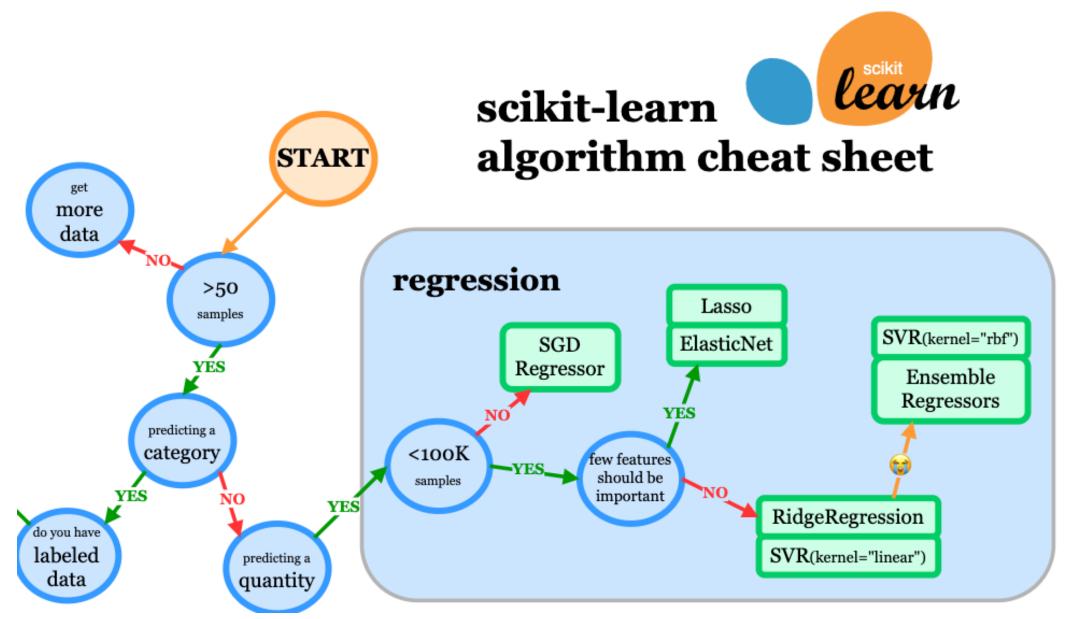
Algorithms: Preprocessing, feature extraction, and more...

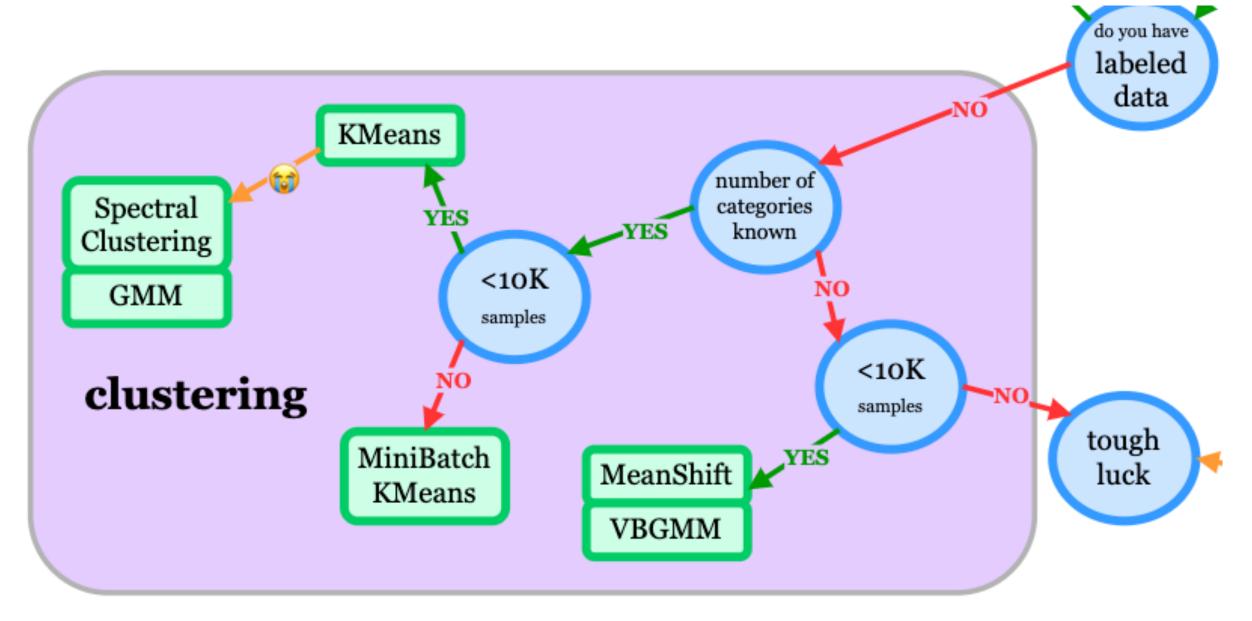
Scikit-Learn Machine Learning Map

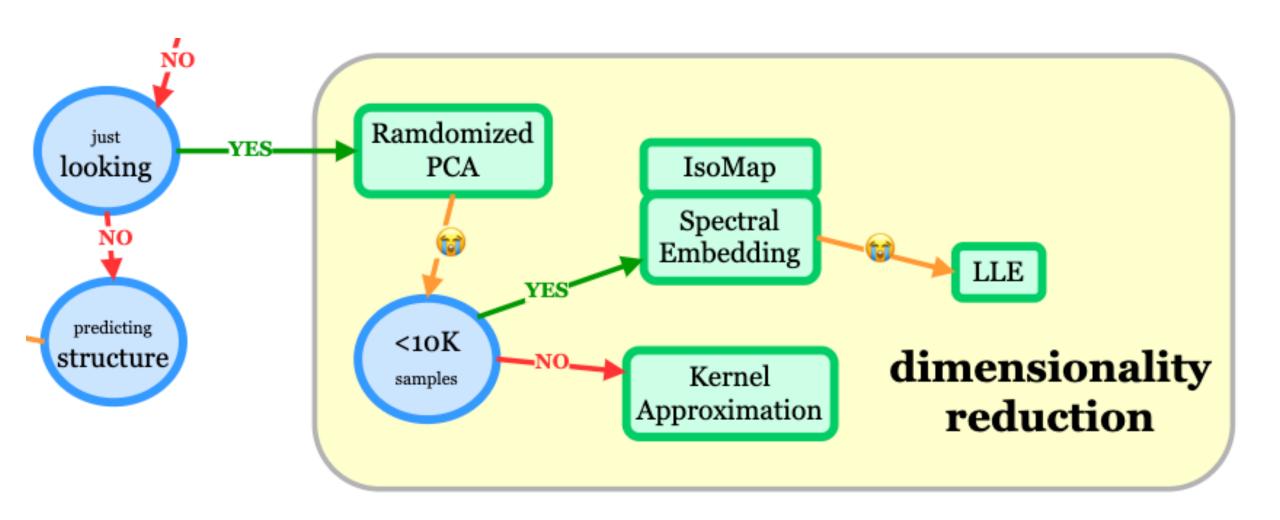


36







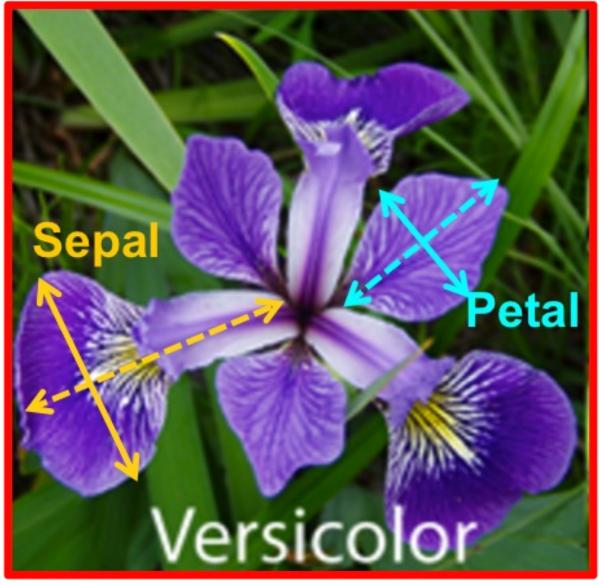


Iris flower data set

setosa

virginica

Iris Classfication



iris.data

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

```
5.1,3.5,1.4,0.2, Iris-setosa
4.9,3.0,1.4,0.2, Iris-setosa
4.7,3.2,1.3,0.2, Iris-setosa
4.6,3.1,1.5,0.2, Iris-setosa
5.0,3.6,1.4,0.2, Iris-setosa
5.4,3.9,1.7,0.4, Iris-setosa
4.6,3.4,1.4,0.3, Iris-setosa
5.0,3.4,1.5,0.2, Iris-setosa
4.4,2.9,1.4,0.2, Iris-setosa
4.9,3.1,1.5,0.1, Iris-setosa
5.4,3.7,1.5,0.2, Iris-setosa
4.8,3.4,1.6,0.2, Iris-setosa
4.8,3.0,1.4,0.1, Iris-setosa
4.3,3.0,1.1,0.1, Iris-setosa
5.8,4.0,1.2,0.2, Iris-setosa
5.7,4.4,1.5,0.4, Iris-setosa
5.4,3.9,1.3,0.4, Iris-setosa
5.1,3.5,1.4,0.3, Iris-setosa
5.7,3.8,1.7,0.3, Iris-setosa
5.1,3.8,1.5,0.3, Iris-setosa
5.4,3.4,1.7,0.2, Iris-setosa
5.1,3.7,1.5,0.4, Iris-setosa
4.6,3.6,1.0,0.2, Iris-setosa
5.1,3.3,1.7,0.5, Iris-setosa
4.8,3.4,1.9,0.2, Iris-setosa
5.0,3.0,1.6,0.2, Iris-setosa
```

setosa

virginica

versicolor

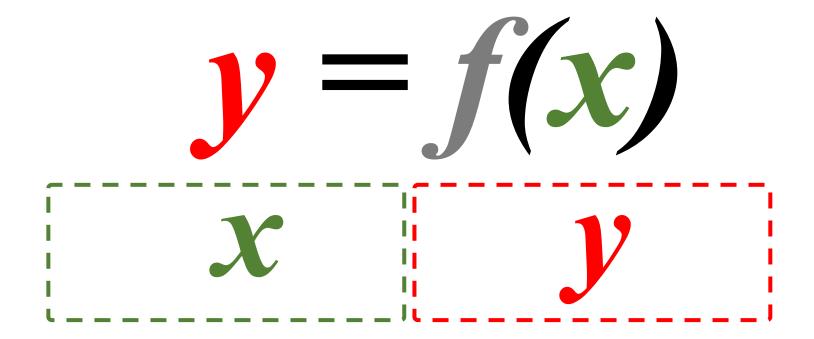
Machine Learning Supervised Learning (Classification) Learning from Examples

```
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2, Iris-setosa
4.7,3.2,1.3,0.2, Iris-setosa
7.0,3.2,4.7,1.4, Iris-versicolor
6.4,3.2,4.5,1.5, Iris-versicolor
6.9,3.1,4.9,1.5, Iris-versicolor
6.3,3.3,6.0,2.5, Iris-virginica
5.8, 2.7, 5.1, 1.9, Iris-virginica
7.1,3.0,5.9,2.1, Iris-virginica
```

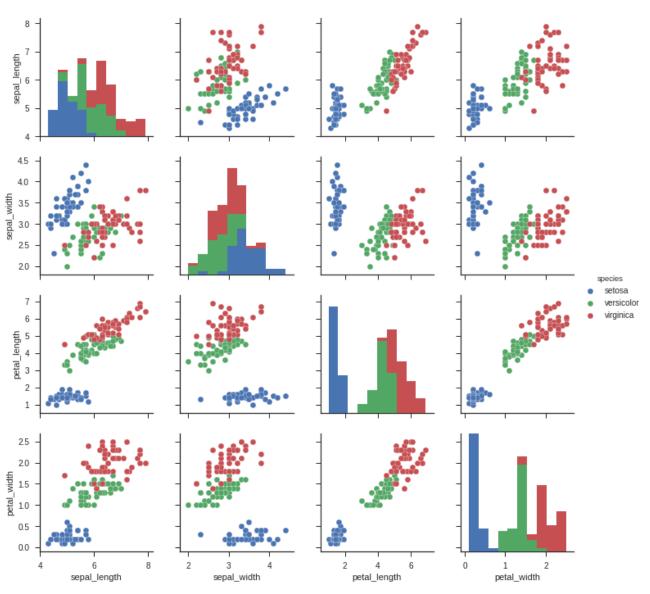
Machine Learning Supervised Learning (Classification) Learning from Examples v = f(x)

5.1,3.5,1.4,0.2, Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2, Iris-setosa 7.0,3.2,4.7,1.4, Iris-versicolor 6.4,3.2,4.5,1.5, Iris-versicolor 6.9,3.1,4.9,1.5, Iris-versicolor 6.3,3.3,6.0,2.5, Iris-virginica 5.8,2.7,5.1,1.9, Iris-virginica 7.1,3.0,5.9,2.1, Iris-virginica

Machine Learning Supervised Learning (Classification) Learning from Examples

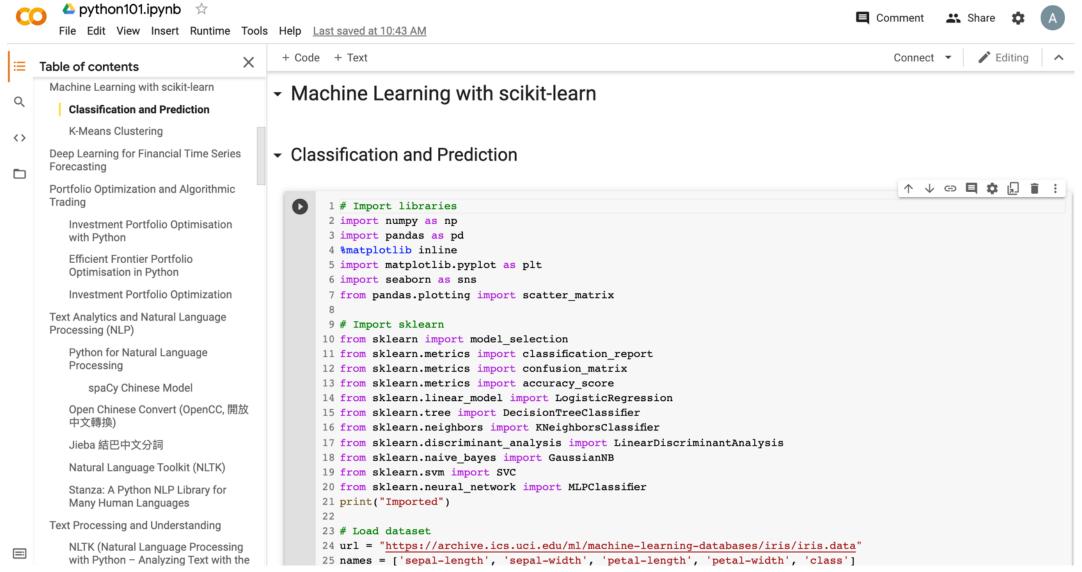


Iris Data Visualization

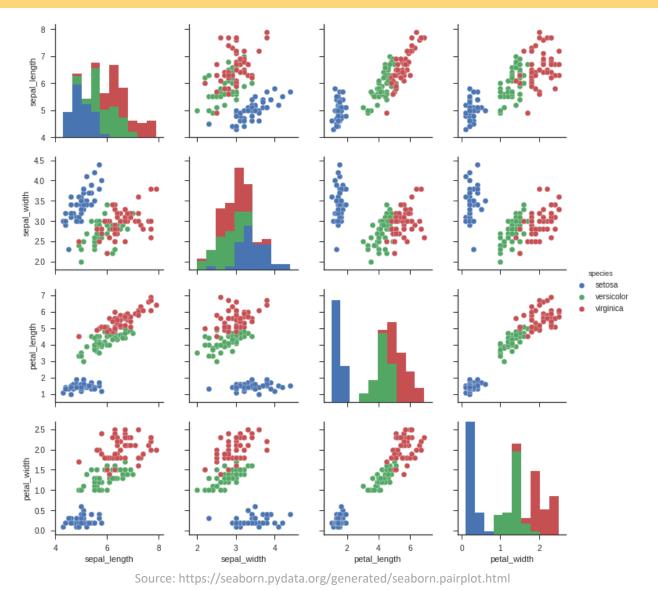


Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



```
import seaborn as sns
sns.set(style="ticks", color_codes=True)
iris = sns.load_dataset("iris")
g = sns.pairplot(iris, hue="species")
```



```
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix
```

```
# Import Libraries
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix
print('imported')
```

imported

```
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)
print(df.head(10))
```

```
# Load dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)
print(df.head(10))
```

	sepal-length	sepal-width	petal-length	petal-width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa

df.tail(10)

print(df.tail(10)) sepal-length sepal-width petal-length petal-width class 140 6.7 3.1 5.6 2.4 Iris-virginica 141 6.9 3.1 5.1 2.3 Iris-virginica 5.8 2.7 5.1 1.9 Iris-virginica 142 2.3 143 6.8 3.2 5.9 Iris-virginica 6.7 3.3 2.5 Iris-virginica 144 5.7 6.7 3.0 5.2 Iris-virginica 145 2.3 146 6.3 2.5 5.0 1.9 Iris-virginica 6.5 5.2 Iris-virginica 147 3.0 2.0 148 6.2 3.4 5.4 2.3 Iris-virginica 149 5.9 3.0 Iris-virginica 5.1

df.describe()

print(df.describe())

	sepal-length	sepal-width	petal-length	petal-width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
print(df.info())
print(df.shape)
```

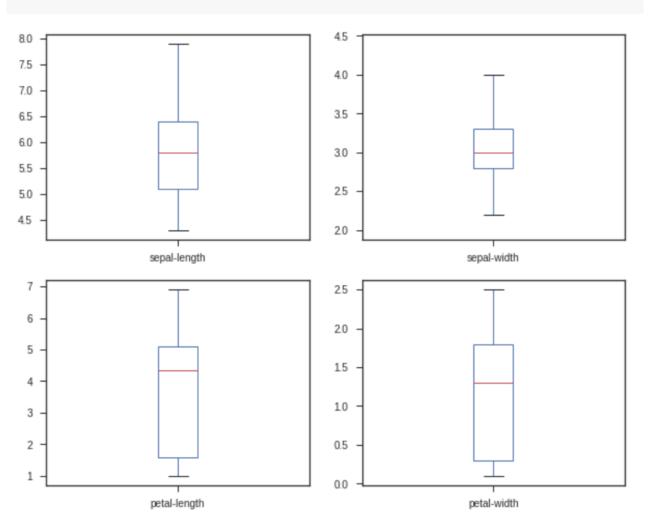
```
print(df.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
sepal-length 150 non-null float64
sepal-width 150 non-null float64
petal-length 150 non-null float64
petal-width 150 non-null float64
class 150 non-null object
dtypes: float64(4), object(1)
memory usage: 5.9+ KB
None
print(df.shape)
(150, 5)
```

df.groupby('class').size()

```
print(df.groupby('class').size())
class
Iris-setosa
                    50
Iris-versicolor
                    50
Iris-virginica
                    50
dtype: int64
```

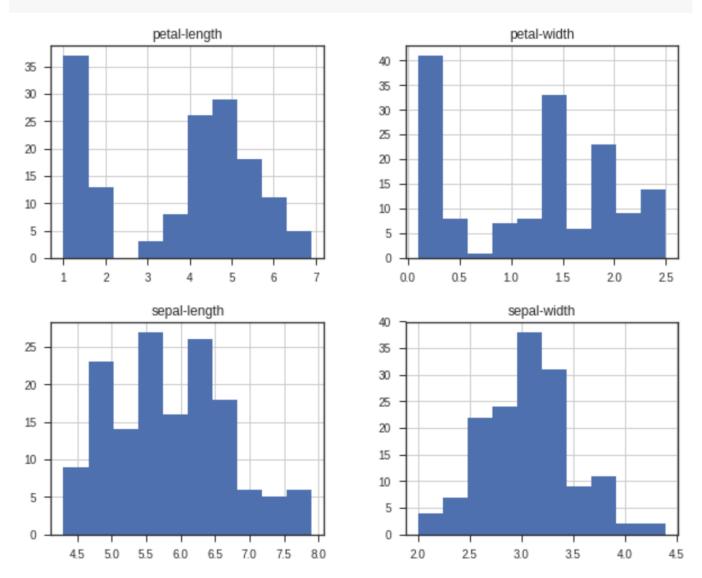
```
plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()
```

plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()



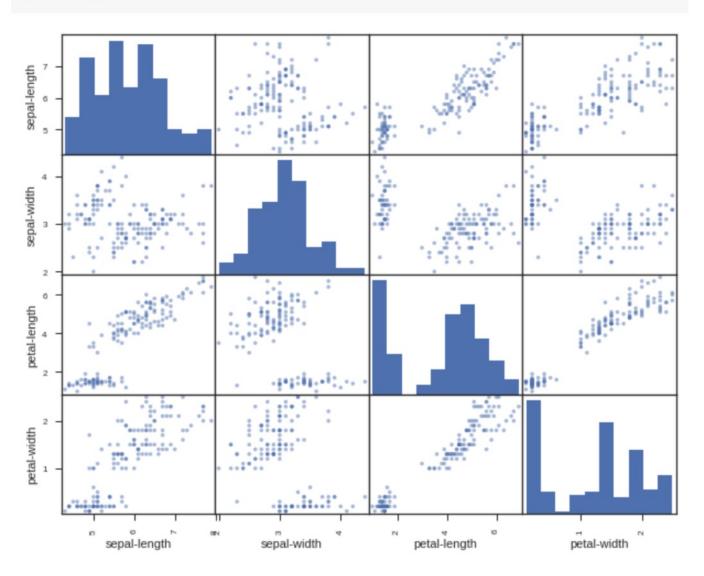
df.hist() plt.show()

df.hist()
plt.show()



scatter_matrix(df) plt.show()

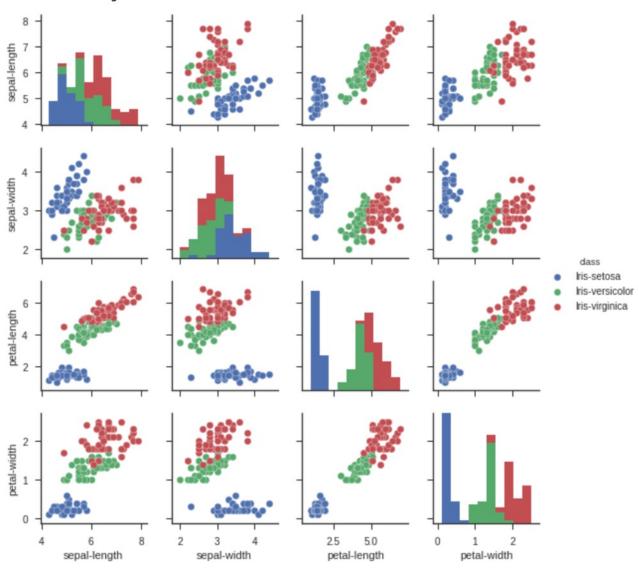
scatter_matrix(df)
plt.show(_)



sns.pairplot(df, hue="class", size=2)

sns.pairplot(df, hue="class", size=2)

<seaborn.axisgrid.PairGrid at 0x7f1d21267390>

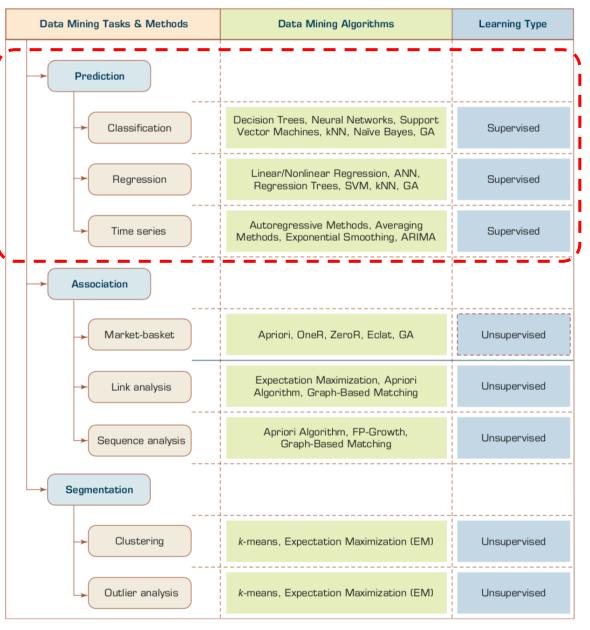


Machine Learning: Supervised Learning: Classification and Prediction

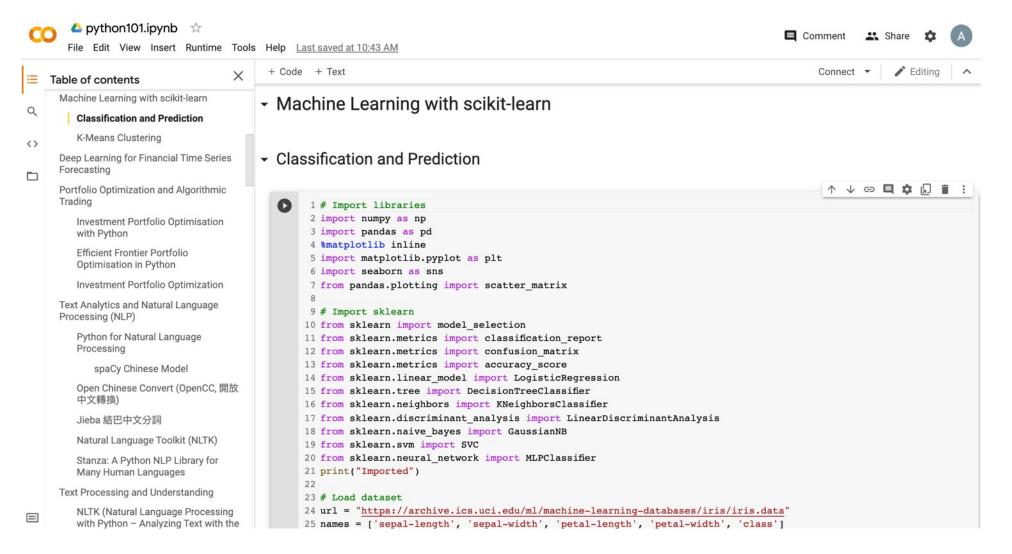
Machine Learning: Data Mining Tasks & Methods

Prediction Classification

Supervised Learning: Classification and Prediction



Machine Learning: Supervised Learning Classification and Prediction



```
# Import sklearn
from sklearn import model selection
from sklearn.metrics import classification report
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neural network import MLPClassifier
print("Imported")
```

```
1 # Load dataset
      2 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
      3 names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
        df = pd.read csv(url, names=names)
      5
        print(df.head(10))
      7 print(df.tail(10))
      8 print(df.describe())
      9 print(df.info())
     10 print(df.shape)
     11 print(df.groupby('class').size())
     12
     13 plt.rcParams["figure.figsize"] = (10,8)
     14 df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
     15 plt.show()
     16
     17 df.hist()
     18 plt.show()
     19
     20 scatter matrix(df)
     21 plt.show()
     22
     23 sns.pairplot(df, hue="class", size=2)
       sepal-length sepal-width petal-length petal-width
                                                                      class
\Box
    0
                5.1
                              3.5
                                            1.4
                                                          0.2 Iris-setosa
                4.9
                              3.0
                                            1.4
                                                          0.2 Iris-setosa
                4.7
                              3.2
                                            1.3
                                                          0.2 Iris-setosa
                4.6
                              3.1
                                            1.5
                                                          0.2 Iris-setosa
                5.0
                              3.6
                                            1.4
                                                          0.2 Iris-setosa
                5.4
                              3.9
                                            1.7
                                                          0.4 Iris-setosa
                4.6
                              3.4
                                            1.4
                                                          0.3 Iris-setosa
                5.0
                              3.4
                                            1.5
                                                          0.2 Iris-setosa
    8
                4.4
                              2.9
                                            1.4
                                                          0.2 Iris-setosa
                4.9
                              3.1
                                            1.5
    9
                                                          0.1 Iris-setosa
                        sepal-width petal-length
                                                   petal-width
         sepal-length
                                                                           class
    140
                  6.7
                                3.1
                                               5.6
                                                            2.4 Iris-virginica
    141
                   6.9
                                3.1
                                               5.1
                                                            2.3 Iris-virginica
    142
                   5.8
                                2.7
                                               5.1
                                                            1.9 Iris-virginica
                          https://tinyurl.com/aintpupython101
```

```
1 # Load dataset
      2 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
      3 names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
        df = pd.read csv(url, names=names)
      5
        print(df.head(10))
      7 print(df.tail(10))
      8 print(df.describe())
      9 print(df.info())
     10 print(df.shape)
     11 print(df.groupby('class').size())
     12
     13 plt.rcParams["figure.figsize"] = (10,8)
     14 df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
     15 plt.show()
     16
     17 df.hist()
     18 plt.show()
     19
     20 scatter matrix(df)
     21 plt.show()
     22
     23 sns.pairplot(df, hue="class", size=2)
       sepal-length sepal-width petal-length petal-width
                                                                      class
\Box
    0
                5.1
                              3.5
                                            1.4
                                                          0.2 Iris-setosa
                4.9
                              3.0
                                            1.4
                                                          0.2 Iris-setosa
                4.7
                              3.2
                                            1.3
                                                          0.2 Iris-setosa
                4.6
                              3.1
                                            1.5
                                                          0.2 Iris-setosa
                5.0
                              3.6
                                            1.4
                                                          0.2 Iris-setosa
                5.4
                              3.9
                                            1.7
                                                          0.4 Iris-setosa
                4.6
                              3.4
                                            1.4
                                                          0.3 Iris-setosa
                5.0
                              3.4
                                            1.5
                                                          0.2 Iris-setosa
    8
                4.4
                              2.9
                                            1.4
                                                          0.2 Iris-setosa
                4.9
                              3.1
                                            1.5
    9
                                                          0.1 Iris-setosa
                        sepal-width petal-length
                                                   petal-width
         sepal-length
                                                                           class
    140
                  6.7
                                3.1
                                               5.6
                                                            2.4 Iris-virginica
    141
                   6.9
                                3.1
                                               5.1
                                                            2.3 Iris-virginica
    142
                   5.8
                                2.7
                                               5.1
                                                            1.9 Iris-virginica
                          https://tinyurl.com/aintpupython101
```

df.corr()

1 df.corr()

	sepal-length	sepal-width	petal-length	petal-width
sepal-length	1.000000	-0.109369	0.871754	0.817954
sepal-width	-0.109369	1.000000	-0.420516	-0.356544
petal-length	0.871754	-0.420516	1.000000	0.962757
petal-width	0.817954	-0.356544	0.962757	1.000000

```
# Split-out validation dataset
array = df.values
X = array[:,0:4]
Y = array[:,4]
validation size = 0.20
seed = 7
X train, X validation, Y train, Y validation =
model selection.train test split(X, Y,
test size=validation size, random state=seed)
scoring = 'accuracy'
```

```
# Split-out validation dataset
array = df.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size=validation_size, random_state=seed)
scoring = 'accuracy'|

len(Y_validation)
1 len(Y_validation)
```

```
# Models
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA',
LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('DT',
DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
```

```
# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model selection.KFold(n splits=10,
random state=seed)
    cv results =
model selection.cross val score (model,
X train, Y train, cv=kfold, scoring=scoring)
    results.append(cv results)
    names.append(name)
    msg = "%s: %.4f (%.4f)" % (name,
cv results.mean(), cv results.std())
    print(msq)
```

```
1 # Models
  2 models = []
  3 models.append(('LR', LogisticRegression()))
  4 models.append(('LDA', LinearDiscriminantAnalysis()))
  5 models.append(('KNN', KNeighborsClassifier()))
  6 models.append(('DT', DecisionTreeClassifier()))
  7 models.append(('NB', GaussianNB()))
  8 models.append(('SVM', SVC()))
  9 # evaluate each model in turn
 10 results = []
 11 names = []
 12 for name, model in models:
        kfold = model selection.KFold(n splits=10, random state=seed)
 13
        cv results = model selection.cross val score(model, X train, Y train, cv=kfold, scoring=scoring)
 14
        results.append(cv results)
 15
 16
        names.append(name)
        msq = "%s: %.4f (%.4f)" % (name, cv results.mean(), cv results.std())
 17
 18
        print(msg)
LR: 0.9667 (0.0408)
LDA: 0.9750 (0.0382)
KNN: 0.9833 (0.0333)
DT: 0.9750 (0.0382)
```

NB: 0.9750 (0.0534) SVM: 0.9917 (0.0250)

```
# Make predictions on validation dataset
model = KNeighborsClassifier()
model.fit(X train, Y train)
predictions = model.predict(X validation)
print("%.4f" % accuracy score(Y validation,
predictions))
print(confusion matrix(Y validation,
predictions))
print(classification report(Y validation,
predictions))
print(model)
```

```
1 # Make predictions on validation dataset
  2 model = KNeighborsClassifier()
  3 model.fit(X_train, Y_train)
  4 predictions = model.predict(X validation)
  5 print("%.4f" % accuracy score(Y validation, predictions))
  6 print(confusion matrix(Y validation, predictions))
  7 print(classification report(Y validation, predictions))
  8 print(model)
0.9000
[[7 0 0]
[ 0 11 1]
[ 0 2 9]]
                precision
                             recall f1-score
                                                support
   Iris-setosa
                     1.00 1.00 1.00
Iris-versicolor
                     0.85 0.92 0.88
                                                     12
                                         0.86
Iris-virginica
                     0.90 0.82
                                                     11
   avg / total
                     0.90
                               0.90
                                         0.90
                                                     30
KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
          metric params=None, n jobs=1, n neighbors=5, p=2,
          weights='uniform')
```

```
# Make predictions on validation dataset
model = SVC()
model.fit(X train, Y train)
predictions = model.predict(X validation)
print("%.4f" % accuracy score(Y validation,
predictions))
print(confusion matrix(Y validation,
predictions))
print(classification report(Y validation,
predictions))
print(model)
```

```
model = SVC()
model.fit(X train, Y train)
predictions = model.predict(X validation)
     1 # Make predictions on validation dataset
     2 model = SVC()
     3 model.fit(X train, Y train)
     4 predictions = model.predict(X validation)
     5 print("%.4f" % accuracy score(Y validation, predictions))
     6 print(confusion matrix(Y validation, predictions))
     7 print(classification report(Y validation, predictions))
     8 print(model)
   0.9333
   [[ 7 0 0]
   [ 0 10 2]
   [ 0 0 11]]
                  precision recall f1-score
                                              support
                  1.00 1.00
                                         1.00
      Iris-setosa
   Iris-versicolor 1.00 0.83
                                         0.91
                                                    12
   Iris-virginica
                      0.85 1.00
                                         0.92
                                                    11
      avg / total 0.94
                               0.93
                                         0.93
                                                    30
   SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
    decision function shape='ovr', degree=3, gamma='auto', kernel='rbf',
    max iter=-1, probability=False, random state=None, shrinking=True,
    tol=0.001, verbose=False)
```

```
1 # Make predictions on validation dataset
  2 model = DecisionTreeClassifier()
  3 model.fit(X train, Y train)
  4 predictions = model.predict(X validation)
  5 print("%.4f" % accuracy score(Y validation, predictions))
  6 print(confusion matrix(Y validation, predictions))
  7 print(classification report(Y validation, predictions))
  8 print(model)
0.9000
[[ 7 0 0]
[ 0 11 1]
 [ 0 2 9]]
                 precision
                              recall f1-score
                                                 support
    Iris-setosa
                      1.00
                                1.00
                                          1.00
Iris-versicolor
                     0.85
                               0.92
                                          0.88
                                                      12
 Iris-virginica
                      0.90
                                0.82
                                          0.86
                                                      11
    avg / total
                      0.90
                                0.90
                                          0.90
                                                      30
DecisionTreeClassifier(class weight=None, criterion='gini', max depth=None,
            max features=None, max leaf nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min samples leaf=1, min samples split=2,
            min weight fraction leaf=0.0, presort=False, random state=None,
```

splitter='best')

```
1 # Make predictions on validation dataset
  2 model = GaussianNB()
  3 model.fit(X_train, Y_train)
  4 predictions = model.predict(X validation)
  5 print("%.4f" % accuracy_score(Y_validation, predictions))
  6 print(confusion matrix(Y validation, predictions))
  7 print(classification report(Y validation, predictions))
  8 print(model)
0.8333
[[7 0 0]
[0 9 3]
 [0 2 9]]
                precision
                             recall f1-score
                                                support
    Iris-setosa
                     1.00
                               1.00
                                         1.00
Iris-versicolor
                     0.82
                               0.75
                                         0.78
                                                     12
 Iris-virginica
                0.75
                               0.82
                                         0.78
                                                     11
    avg / total
                     0.84
                               0.83
                                         0.83
                                                     30
```

GaussianNB(priors=None)

```
1 # Make predictions on validation dataset
  2 model = LogisticRegression()
  3 model.fit(X train, Y train)
  4 predictions = model.predict(X validation)
  5 print("%.4f" % accuracy score(Y validation, predictions))
  6 print(confusion matrix(Y validation, predictions))
  7 print(classification report(Y validation, predictions))
  8 print(model)
0.8000
[[7 0 0]]
[ 0 7 5]
[ 0 1 10]]
                precision
                             recall f1-score
                                                 support
   Iris-setosa
                     1.00
                                1.00
                                          1.00
Iris-versicolor
                     0.88 0.58
                                          0.70
                                                      12
Iris-virginica
                      0.67 0.91
                                          0.77
                                                      11
   avg / total
                     0.83
                                0.80
                                          0.80
                                                      30
```

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='12', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

```
1 # Make predictions on validation dataset
  2 model = LinearDiscriminantAnalysis()
  3 model.fit(X train, Y train)
  4 predictions = model.predict(X validation)
  5 print("%.4f" % accuracy score(Y validation, predictions))
  6 print(confusion_matrix(Y_validation, predictions))
  7 print(classification report(Y validation, predictions))
  8 print(model)
0.9667
[[ 7 0 0]
 [ 0 11 1]
 [ 0 0 11]]
                  precision
                               recall f1-score
                                                    support
    Iris-setosa
                       1.00
                                 1.00
                                            1.00
Iris-versicolor
                       1.00
                                 0.92
                                            0.96
                                                         12
 Iris-virginica
                       0.92
                                 1.00
                                            0.96
                                                         11
    avg / total
                       0.97
                                 0.97
                                            0.97
                                                         30
```

LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001)

```
1 # Make predictions on validation dataset
  2 model = MLPClassifier()
  3 model.fit(X train, Y train)
  4 predictions = model.predict(X validation)
  5 print("%.4f" % accuracy score(Y validation, predictions))
  6 print(confusion matrix(Y validation, predictions))
  7 print(classification report(Y validation, predictions))
  8 print(model)
0.9000
[[7 0 0]
 [ 0 9 3]
 [ 0 0 11]]
                 precision
                              recall f1-score
                                                 support
    Iris-setosa
                      1.00
                                1.00
                                          1.00
Iris-versicolor
                      1.00
                               0.75
                                          0.86
                                                      12
 Iris-virginica
                      0.79
                                          0.88
                                1.00
                                                      11
    avg / total
                      0.92
                                0.90
                                          0.90
                                                      30
MLPClassifier(activation='relu', alpha=0.0001, batch size='auto', beta 1=0.9,
       beta 2=0.999, early stopping=False, epsilon=1e-08,
       hidden layer sizes=(100,), learning rate='constant',
       learning rate init=0.001, max iter=200, momentum=0.9,
       nesterovs momentum=True, power t=0.5, random state=None,
       shuffle=True, solver='adam', tol=0.0001, validation fraction=0.1,
       verbose=False, warm start=False)
```

Evaluation(Accuracy of Classification Model)

Assessing the Classification Model

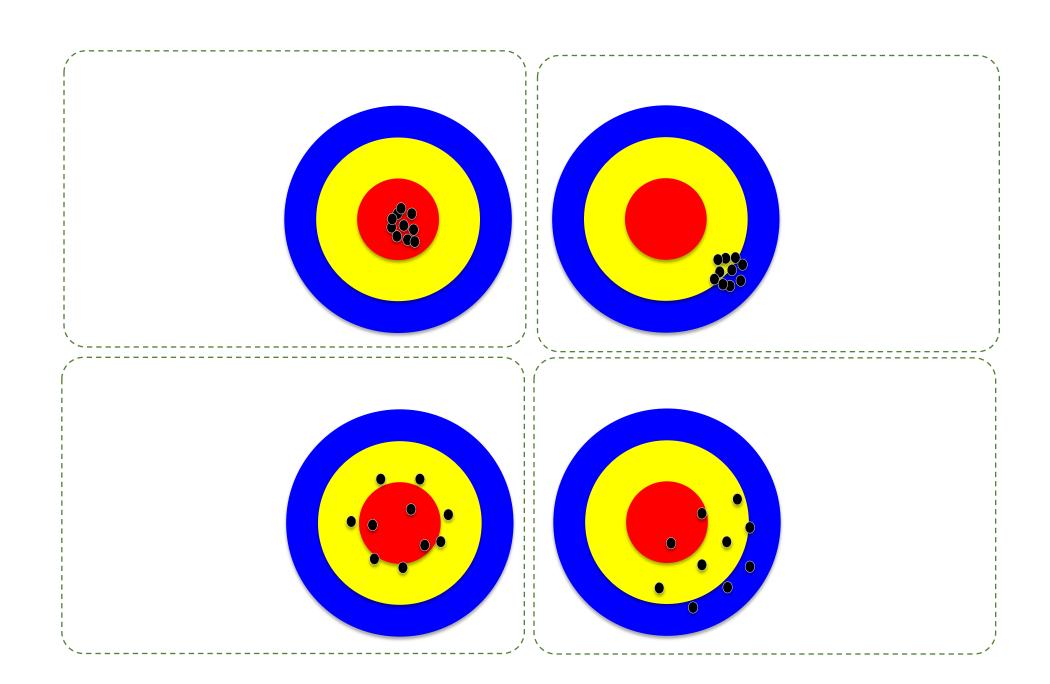
- Predictive accuracy
 - Hit rate
- Speed
 - Model building; predicting
- Robustness
- Scalability
- Interpretability
 - Transparency, explainability

Accuracy

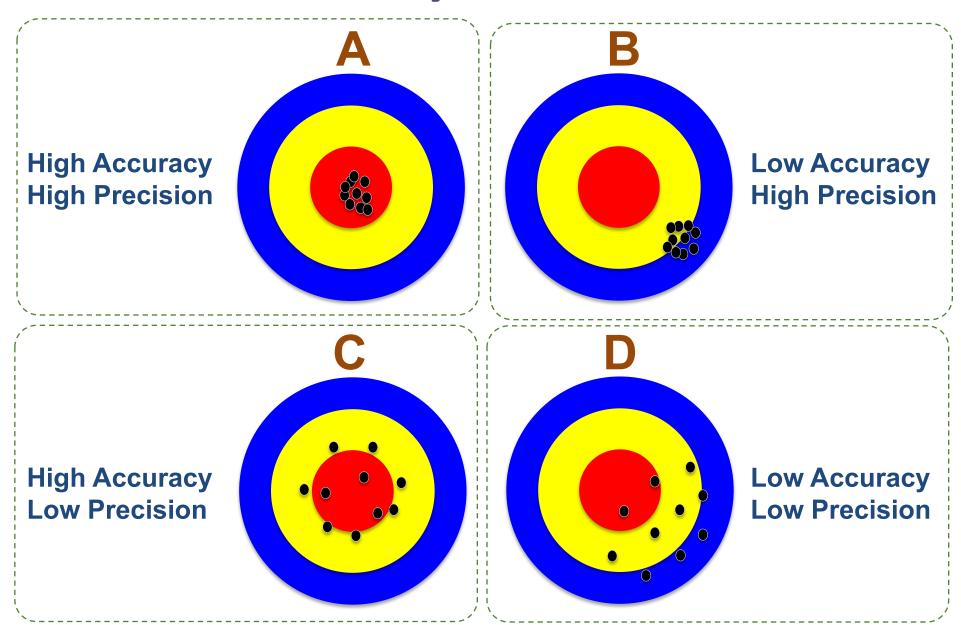
Validity

Precision

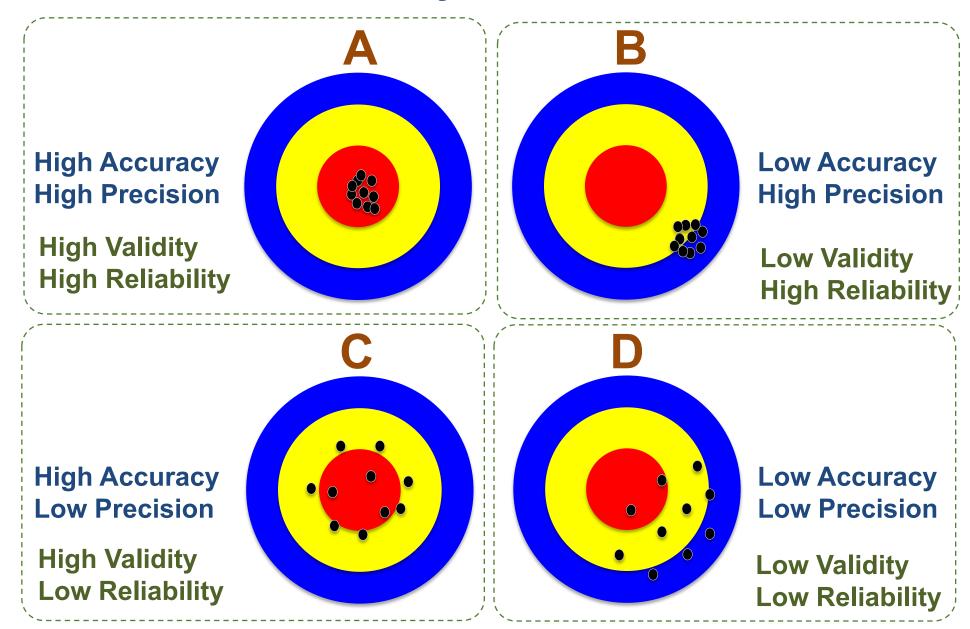
Reliability



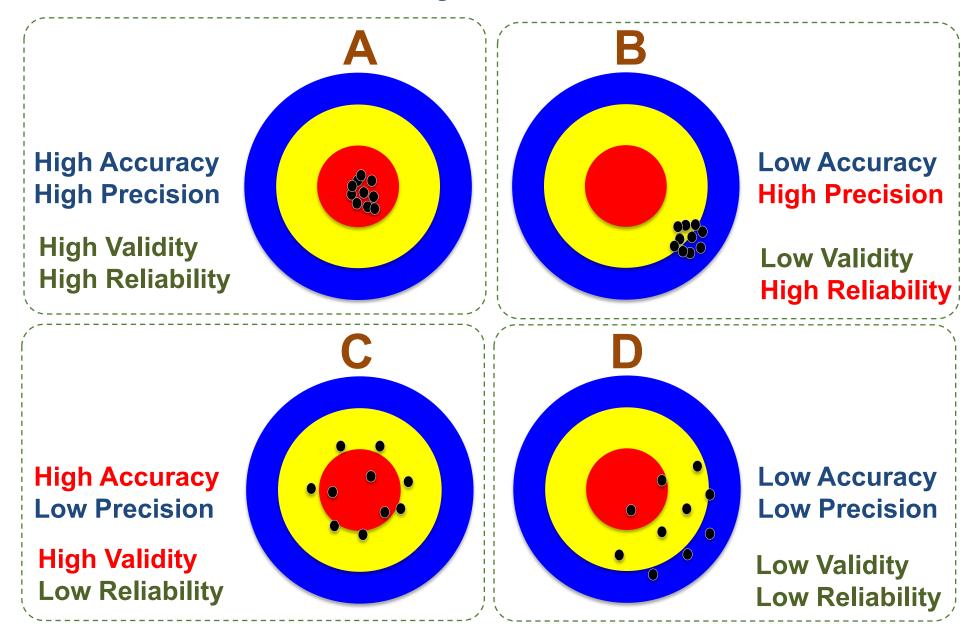
Accuracy vs. Precision



Accuracy vs. Precision



Accuracy vs. Precision



Confusion Matrix

for Tabulation of Two-Class Classification Results

True/Observed Class

Positive

Negative

 $Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$

Positive

True Positive Count (TP)

False

Negative

False Positive Count (FP)

 $True\ Positive\ Rate = \frac{TP}{TP + FN}$

 $True\ Negative\ Rate = \frac{TN}{TN + FP}$

Count (FN)

True Negative Count (TN)

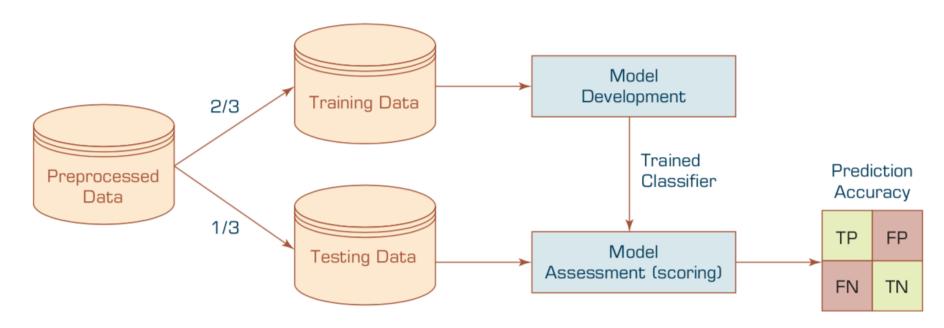
 $Precision = \frac{TP}{TP + FP}$ $Recall = \frac{TP}{TP + FN}$

Sensitivity =True Positive Rate

Specificity =True Negative Rate

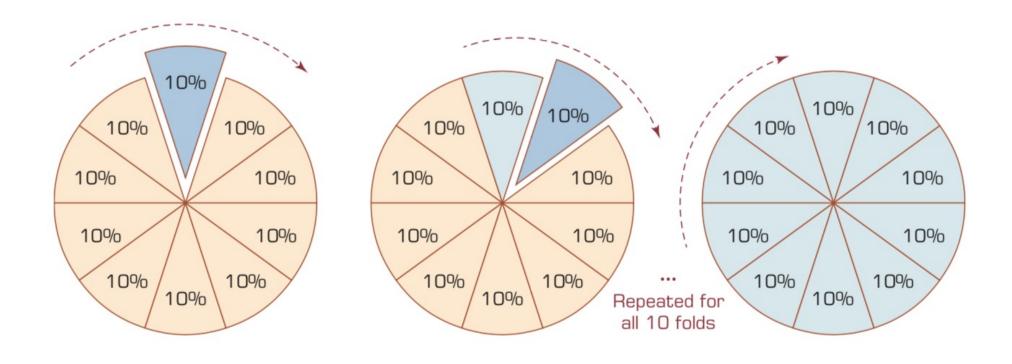
Estimation Methodologies for Classification

- Simple split (or holdout or test sample estimation)
 - Split the data into 2 mutually exclusive sets training (~70%) and testing (30%)

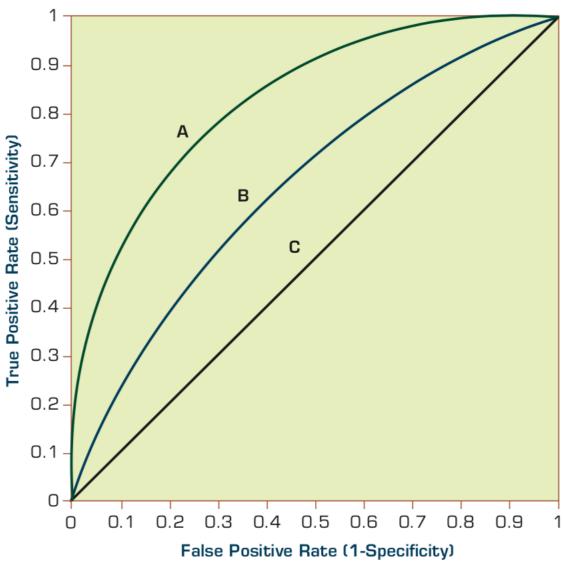


• For ANN, the data is split into three sub-sets (training [~60%], validation [~20%], testing [~20%])

k-Fold Cross-Validation

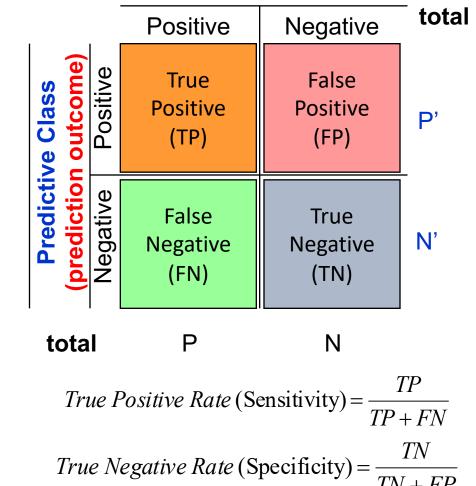


Estimation Methodologies for Classification Area under the ROC curve



True Class

(actual value)



 $False Positive Rate = \frac{FP}{FP + TN}$

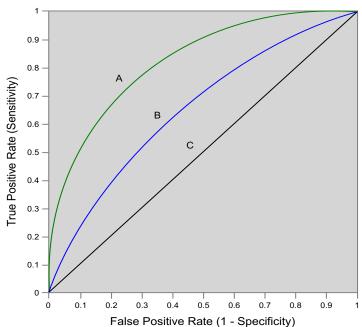
False Positive Rate (1-Specificity) = $\frac{FP}{FP + TN}$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

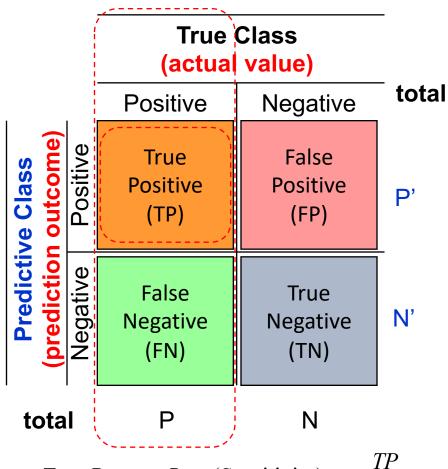
$$True\ Positive\ Rate = \frac{TP}{TP + FN}$$

$$True\ Negative\ Rate = \frac{TN}{TN + FP}$$

$$Precision = \frac{TP}{TP + FP}$$
 $Recall = \frac{TP}{TP + FN}$



Source: http://en.wikipedia.org/wiki/Receiver operating characteristic



True Positive Rate (Sensitivity) =
$$\frac{TP}{TP + FN}$$

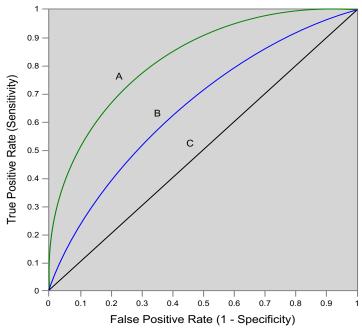
Sensitivity

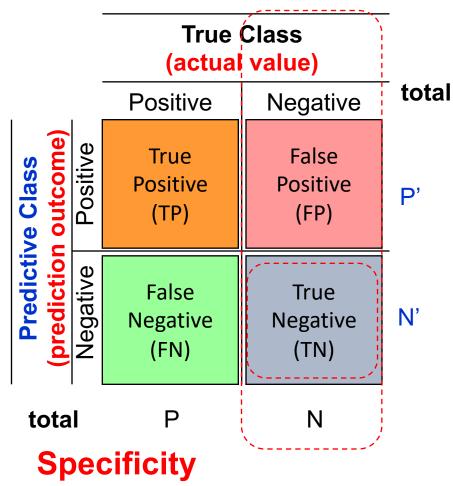
- = True Positive Rate
- = Recall
- = Hit rate

$$= TP/(TP + FN)$$

$$True\ Positive\ Rate = \frac{TP}{TP + FN}$$

$$Recall = \frac{TP}{TP + FN}$$

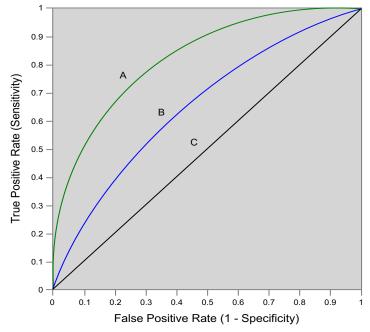




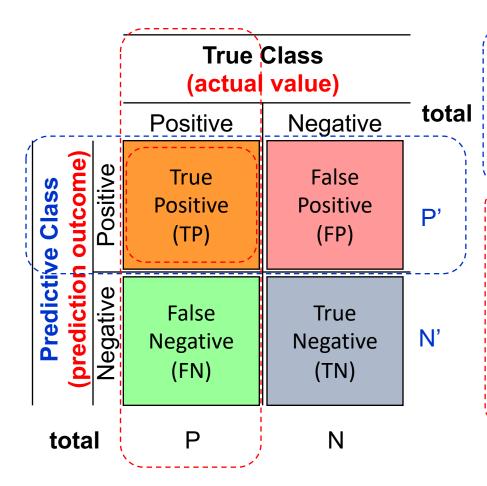
- = True Negative Rate
- = TN / N
- = TN / (TN + FP)

True Negative Rate (Specificity) =
$$\frac{TN}{TN + FP}$$
False Positive Rate (1-Specificity) = $\frac{FP}{FP + TN}$

$$True\ Negative\ Rate = \frac{TN}{TN + FP}$$



Source: http://en.wikipedia.org/wiki/Receiver operating characteristic



Precision

= Positive Predictive Value (PPV)

$$Precision = \frac{TP}{TP + FP}$$

Recall

- = True Positive Rate (TPR)
- = Sensitivity
- = Hit Rate

$$Recall = \frac{TP}{TP + FN}$$

F1 score (F-score)(F-measure)

is the harmonic mean of precision and recall

$$= 2TP / (P + P')$$

$$= 2TP / (2TP + FP + FN)$$

$$F = 2*\frac{precision*recall}{precision+recall}$$

TP 72 37 109 (FN) 200 100 100 TPR = 0.63

Recall

= True Positive Rate (TPR) = True Negative Rate

= Sensitivity

= Hit Rate

= TP / (TP + FN)

= TN / N

= TN / (TN + FP)

$$Recall = \frac{TP}{TP + FN}$$

True Negative Rate (Specificity) =
$$\frac{TN}{TN + FP}$$
= $\frac{FP}{TN + FP}$

$$FPR = 0.28$$

False Positive Rate (1-Specificity) =
$$\frac{FP}{FP + TN}$$

$$PPV = 0.69$$

=63/(63+28)
=63/91

=63/(63+28)
$$Precision = \frac{TP}{TP+FP}$$
 Precision = Positive

= Positive Predictive Value (PPV)

$$F1 = 0.66$$

$$= 2*(0.63*0.69)/(0.63+0.69)$$

$$= (2 * 63) / (100 + 91)$$

$$= (0.63 + 0.69) / 2 = 1.32 / 2 = 0.66$$

$$ACC = 0.68$$

$$= (63 + 72) / 200$$

 $= 135/200 = 67.5$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$F = 2* \frac{precision*recall}{precision+recall}$ F1 score (F-score) (F-measure)

is the harmonic mean of precision and recall

$$= 2TP / (P + P')$$

$$TPR = 0.63$$

$$FPR = 0.28$$

$$F1 = 0.66$$

$$= 2*(0.63*0.69)/(0.63+0.69)$$

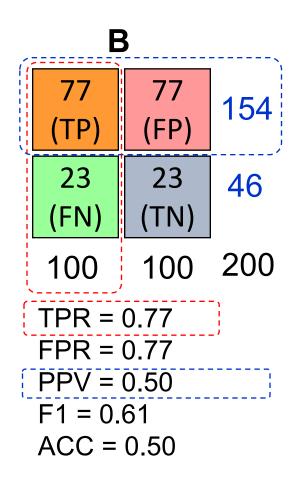
$$= (2 * 63) / (100 + 91)$$

$$= (0.63 + 0.69) / 2 = 1.32 / 2 = 0.66$$

$$ACC = 0.68$$

$$= (63 + 72) / 200$$

$$= 135/200 = 67.5$$



Recall

= True Positive Rate (TPR)

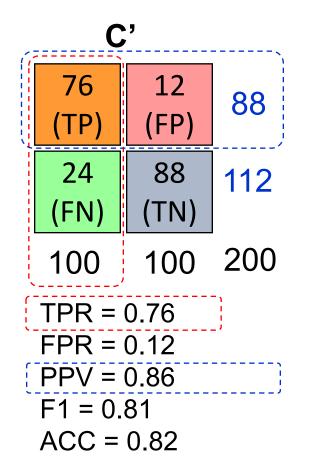
$$Recall = \frac{TP}{TP + FN}$$

- = Sensitivity
- = Hit Rate

Precision

= Positive Predictive Value (PPV) $Precision = \frac{TP}{TP + FP}$

,	C		
11111	24	88	112
	(TP)	(FP)	112
	76	12	88
	(FN)	(TN)	
	100	100	200
(-	TPR =	0.24)
· -	FPR =		, ,
L.	PPV =		j
	F1 = 0.	22	
	ACC =	0.18	



Recall

$$Recall = \frac{TP}{TP + FN}$$

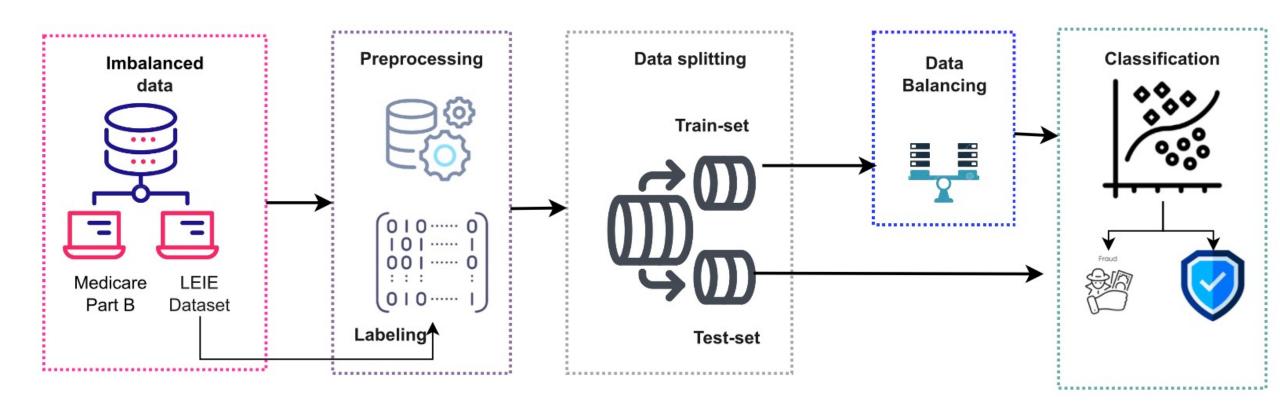
- = Sensitivity
- = Hit Rate

Precision

= Positive Predictive Value (PPV)
$$Precision = \frac{TP}{TP + FP}$$

Architecture for healthcare fraud detection based on SMOTE-ENN

Synthetic Minority Over-sampling technique with Edited Nearest Neighbors (SMOTE-ENN)

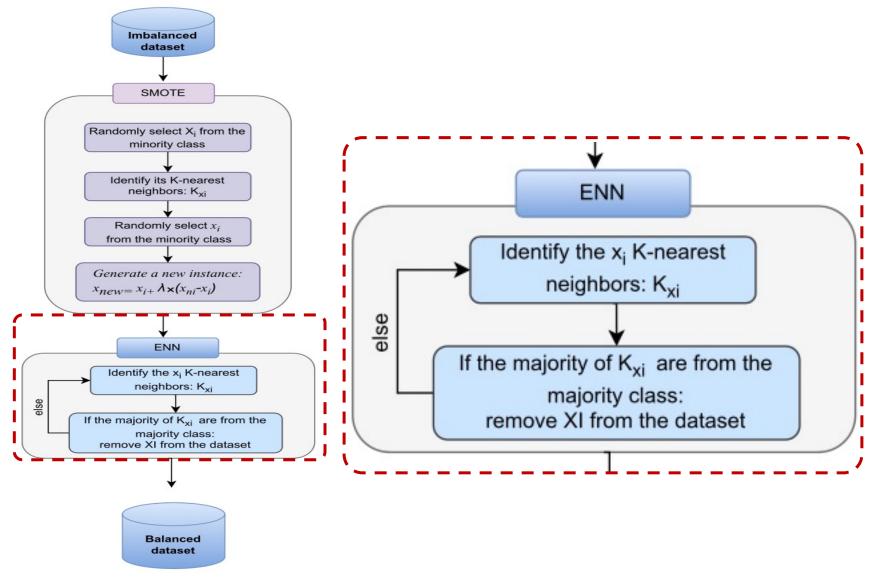


Medicare Fraud Detection Through Machine Learning: Addressing Class Imbalance

Ref	Dataset	ML Methods	Data Balancing Method	Evaluation
[21]	Medicare	Logistic Regression(LR), Random For-	ROS, RUS, SMOTE, SMOTE vari-	Area Under the Curve
		est (RF), Gradient Boosting Trees	ants, ADASYN	(AUC) = 0.82
		(GBT)		
[20]	Medicare Part B	Naive Bayes(NB), LR, Decision Trees	RUS	AUC
		(DT), K-Nearest Neighbors (KNN),		
5007		Support Vector Machine (SVM), RF		
[22]	Medicare	Word2Vec (Skip-gram, Continuous Bag	Undersampling	AUC=0.870,
		Of Words (CBOW))		Geometric Mean
5007	26.11		DOG DIJG	(G-mean)=0.783
[23]	Medicare	Logistic Regression (LR), RF, GBT,	ROS, RUS	AUC=0.830
F1 43	TT 1:1 T	Multi-Layer Perceptron (MLP)	11 1 1 1 D 12	. 07.50
[14]	Healthcare Trans-	NB, LR, KNN, RF, Convolutional Neu-	Hybrid Resampling	Accuracy=97.58
F1.63	actions	ral Network (CNN)		ALIC 0.07
[16]	Part D Medicare	eXtreme Gradient Boosting	-	AUC= 0.97
[17]	Duagarintian	(XGBoost), RF LR, RF, Principal Component Analy-		Receiver Operating
[17]	Prescription Claims	sis(PCA)	_	Receiver Operating Characteristic (ROC)=
	Ciamis	SIS(FCA)		0.76, F1-score= 0.88
[11]	Healthcare	LR, DT, RF, XGBoost	CWS, ADASYN	AUC=0.95
[II]	insurance	LK, D1, K1, Adboost	CW3, ADASTN	ACC=0.93
[2]	Medicare	Category Boosting (CatBoost), XG-		AUC= 0.95, Area
[2]	Wiedicare	Boost, RF, Extremely Randomized	1 SECTION 1	Under the Precision-
		Trees(ET), Light Gradient Boosting		Recall Curve
		Machine (LightGBM), DT, LR, Ensem-		(AUPRC)=0.78
		ble Feature Selection		(16116)=0.76
[25]	Medicare	CatBoost, XGBoost, LightGBM, RF,	RUS	AUC=0.97,
[]		ET		AUPRC=0.92
[26]	Medicare	CatBoost, XGBoost, RF, ET	RUS	AUC=0.99
[19]	U.S. Medicare	XGBoost, RF	-	G- mean = 0.90, AUC =
				0.962
[18]	Texas Medicaid	Bayesian Belief Network(BNN)	_	F-score=0.94
[6]	Healthcare Insur-	SVM, DT, RF, MLP	_	F-score=0.95
	ance			
[24]	Healthcare Claims	Deep Autoencoders	-	precision=0.87,
10000				recall=1.00, F-
				score=0.93

SMOTE-ENN process

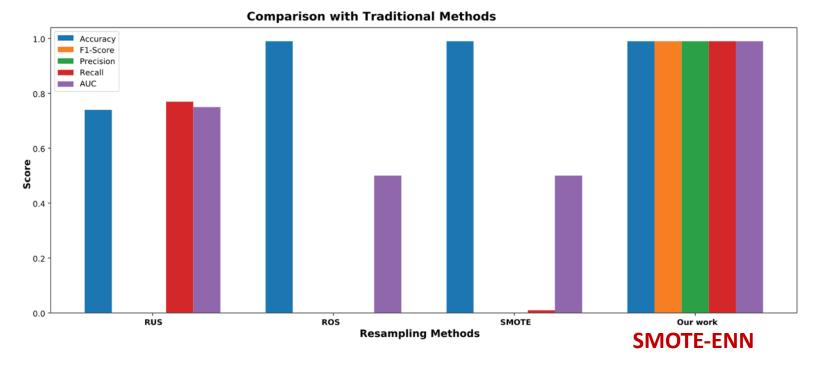
Synthetic Minority Oversampling technique with
Edited Nearest Neighbors
(SMOTE-ENN)



Synthetic Minority Over-sampling technique with Edited Nearest Neighbors (SMOTE-ENN)

Classification results using SMOTE-ENN and cross-validation

Classifier	Accuracy	F1-Score	Precision	Recall	AUC
LR	0.65	0.65	0.69	0.67	0.73
DT	1.00	1.00	0.99	1.00	0.95
RF	0.95	0.95	0.95	0.95	0.99
XGBoost	0.96	0.96	0.96	0.96	0.99
Adaboost	0.65	0.64	0.70	0.67	0.68
LGBM	0.91	0.91	0.90	0.91	0.97



Classifier	Accuracy	F1-Score	Precision	Recall	AUC
RUS	0.74	0.00	0.00	0.77	0.75
ROS	0.99	0.00	0.00	0.00	0.50
SMOTE	0.99	0.00	0.00	0.01	0.50
Our work	0.99	0.99	0.99	0.99	0.99

SMOTE-ENN

ML Evaluation of Imbalanced Dataset: Ensemble Learning and Data Augmentations (DA)

Data augmentation	Ensemble model	Accuracy (Best, Std)	F1 (Best, Std)	AUC (Best, Std)
Yeast-v6				
Borderline-SMOTE	LightGBM	98.490(98.653, 0.150)	99.230(99.314, 0.077)	76.668(76.751, 0.077)
No augmentation	Stacking-I	98.185(98.653, 0.320)	99.076(99.315, 0.165)	69.757(76.579, 3.658)
SVM-SMOTE	AdaBoost	98.072(98.653, 0.466)	99.015(99.314, 0.240)	75.577(80.253, 2.014)
ROS	Stacking-I	97.997(98.822, 0.415)	98.977(99.401, 0.214)	74.884(76.837, 2.607)
Borderline-SMOTE	Voting-Soft	97.949(98.653, 0.501)	98.951(99.314, 0.259)	75.854(80.253, 1.923)
ROS	XGBoost	97.866(98.485, 0.303)	98.908(99.227, 0.157)	76.348(76.665, 0.155)
SMOTE	Stacking-II	97.539(98.485, 0.708)	98.737(99.227, 0.370)	77.385(83.841, 2.273)
SMOTE	Voting-Hard	97.386(98.485, 0.707)	98.657(99.227, 0.370)	77.607(83.841, 2.492)
SMOTE-ENN	Random Forests	92.917(97.306, 1.932)	96.273(98.618, 1.048)	73.380(78.962, 1.694)
RUS	Stacking-II	87.345(94.444, 3.405)	93.087(97.093, 2.014)	81.085(88.581, 3.112)

Machine Learning: **Unsupervised Learning:** Cluster Analysis, **Market Segmentation**

Machine Learning: Data Mining Tasks & Methods

Data Mining Tasks & Methods

Unsupervised Learning: Cluster Analysis, Market Segmentation

Prediction Decision Trees, Neural Networks, Support Classification Supervised Vector Machines, kNN, Naïve Bayes, GA Linear/Nonlinear Regression, ANN, Regression Supervised Regression Trees, SVM, kNN, GA Autoregressive Methods, Averaging Time series Supervised Methods, Exponential Smoothing, ARIMA Association Market-basket Apriori, OneR, ZeroR, Eclat, GA Unsupervised Expectation Maximization, Apriori Unsupervised Link analysis Algorithm, Graph-Based Matching Apriori Algorithm, FP-Growth, Unsupervised Sequence analysis Graph-Based Matching Segmentation Clustering k-means, Expectation Maximization (EM) Unsupervised Outlier analysis k-means, Expectation Maximization (EM) Unsupervised

Data Mining Algorithms

Learning Type

Segmentation

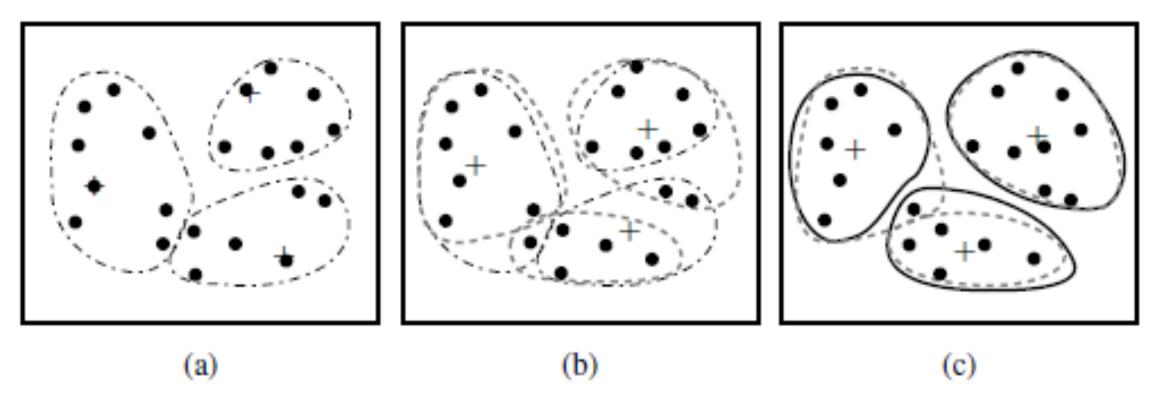
Example of Cluster Analysis

Point	Р	P(x,y)
p01	a	(3, 4)
p02	b	(3, 6)
p03	С	(3, 8)
p04	d	(4, 5)
p05	е	(4, 7)
p06	f	(5, 1)
p07	g	(5, 5)
p08	h	(7, 3)
p09	i	(7, 5)
p10	j	(8, 5)

K-Means Clustering

Point	Р	P(x,y)	m1 distance	m2 distance	Cluster
p01	a	(3, 4)	1.95	3.78	Cluster1
p02	b	(3, 6)	0.69	4.51	Cluster1
p03	С	(3, 8)	2.27	5.86	Cluster1
p04	d	(4, 5)	0.89	3.13	Cluster1
p05	е	(4, 7)	1.22	4.45	Cluster1
p06	f	(5, 1)	5.01	3.05	Cluster2
p07	g	(5, 5)	1.57	2.30	Cluster1
p08	h	(7, 3)	4.37	0.56	Cluster2
p09	i	(7, 5)	3.43	1.52	Cluster2
p10	j	(8, 5)	4.41	1.95	Cluster2
	m1	(3.6	7, 5.83)		
	m2	(6.7	5, 3.50)		

- Used for automatic identification of natural groupings of things
- Part of the machine-learning family
- Employ unsupervised learning
- Learns the clusters of things from past data, then assigns new instances
- There is not an output variable
- Also known as segmentation



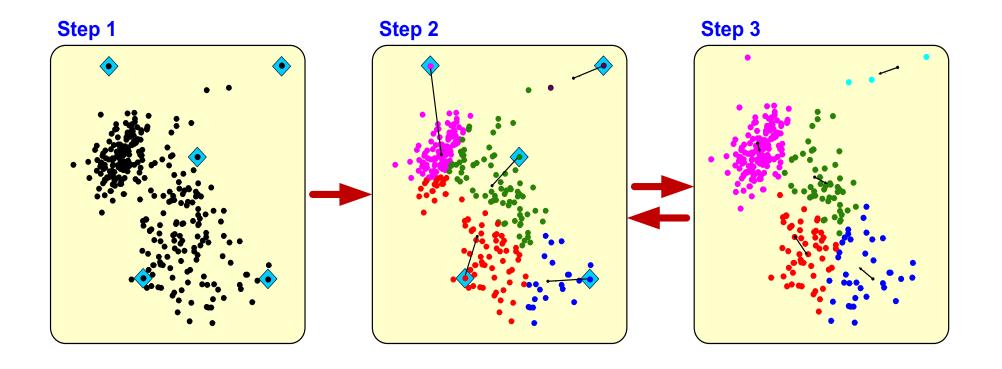
Clustering of a set of objects based on the *k-means method.* (The mean of each cluster is marked by a "+".)

- Clustering results may be used to
 - Identify natural groupings of customers
 - Identify rules for assigning new cases to classes for targeting/diagnostic purposes
 - Provide characterization, definition, labeling of populations
 - Decrease the size and complexity of problems for other data mining methods
 - Identify outliers in a specific domain (e.g., rare-event detection)

k-Means Clustering Algorithm

- *k* : pre-determined number of clusters
- Algorithm (Step 0: determine value of k)
- Step 1: Randomly generate k random points as initial cluster centers
- **Step 2:** Assign each point to the nearest cluster center
- **Step 3:** Re-compute the new cluster centers
- Repetition step: Repeat steps 2 and 3 until some convergence criterion is met (usually that the assignment of points to clusters becomes stable)

Cluster Analysis for Data Mining k-Means Clustering Algorithm



Similarity

Distance

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u>
 between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects (Cont.)

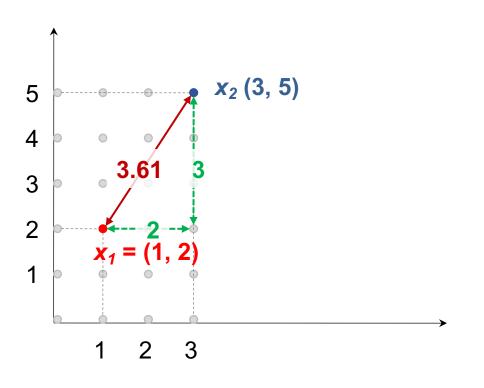
• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - $d(i,j) \ge 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$
- Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures

Euclidean distance vs Manhattan distance

• Distance of two point $x_1 = (1, 2)$ and $x_2 (3, 5)$



Euclidean distance:

=
$$((3-1)^2 + (5-2)^2)^{1/2}$$

= $(2^2 + 3^2)^{1/2}$
= $(4 + 9)^{1/2}$
= $(13)^{1/2}$
= 3.61

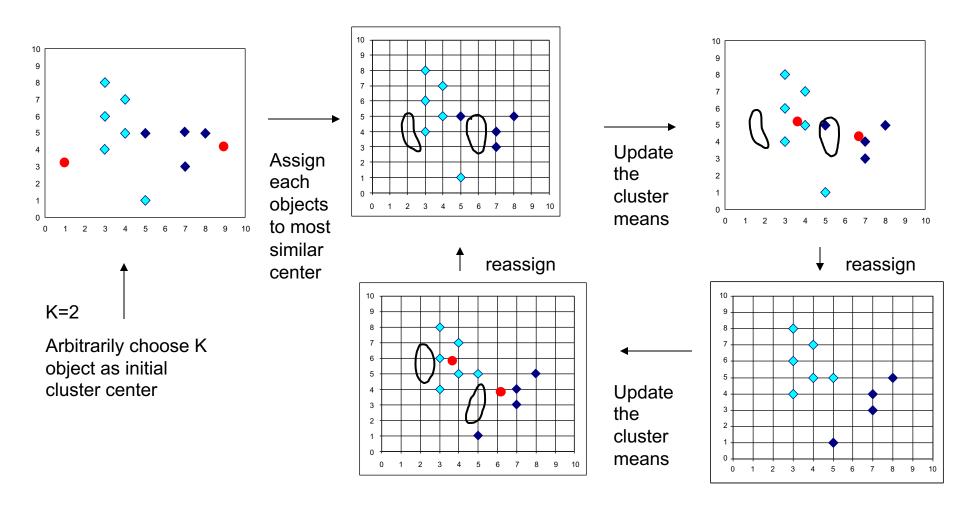
Manhattan distance:

$$= (3-1) + (5-2)$$

= 2 + 3
= 5

The K-Means Clustering Method

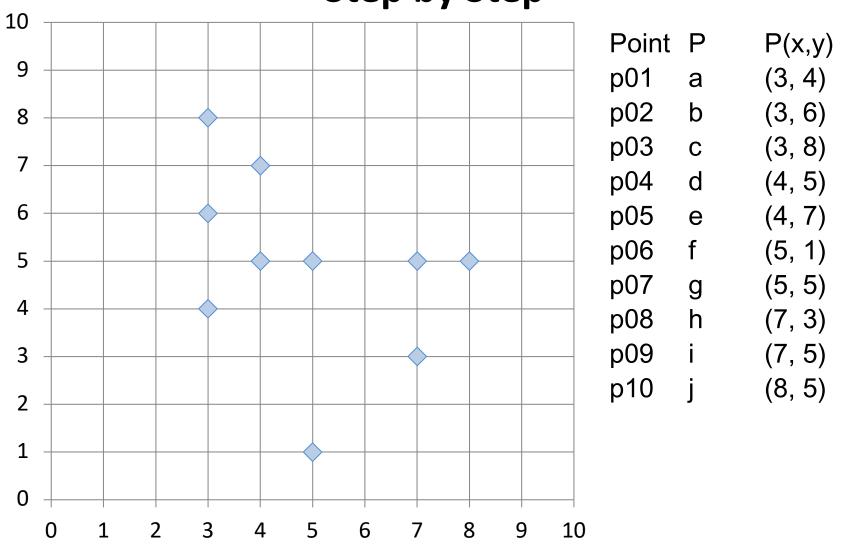
Example



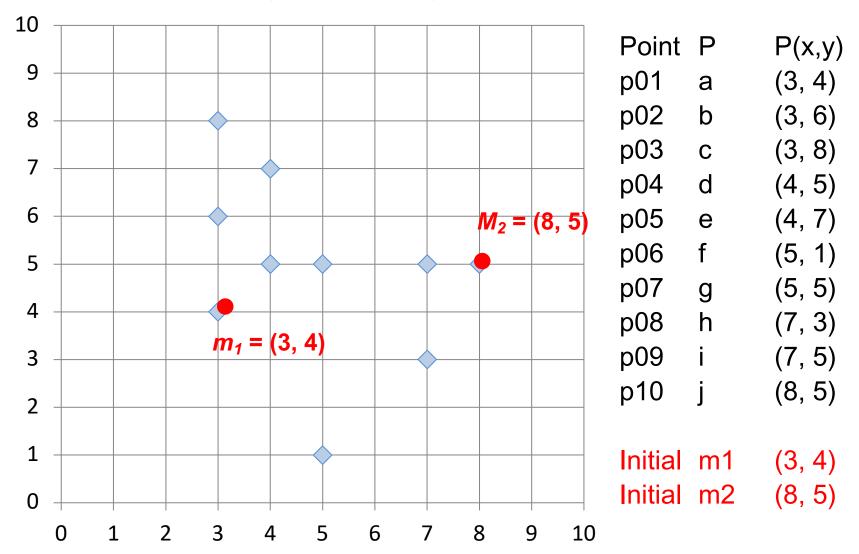
Example of Cluster Analysis

Point	Р	P(x,y)
p01	а	(3, 4)
p02	b	(3, 6)
p03	С	(3, 8)
p04	d	(4, 5)
p05	е	(4, 7)
p06	f	(5, 1)
p07	g	(5, 5)
p08	h	(7, 3)
p09	i	(7, 5)
p10	j	(8, 5)

Step by Step

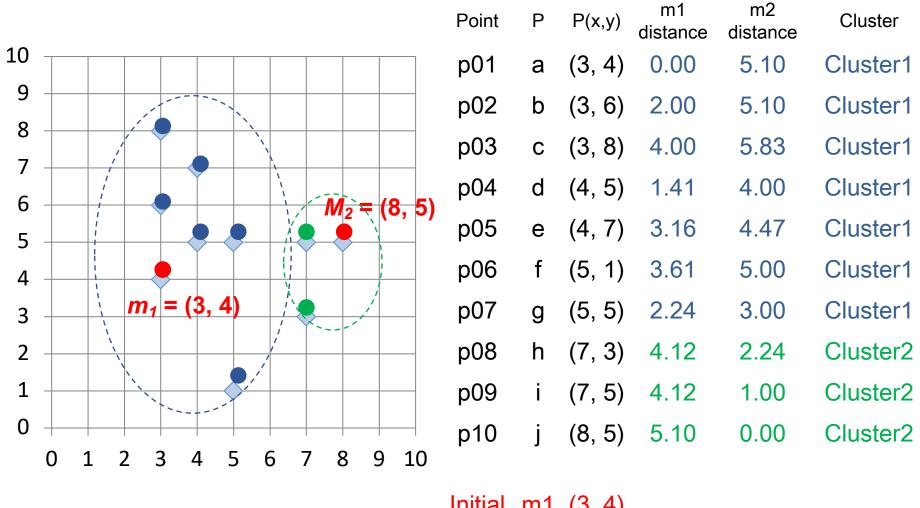


Step 1: K=2, Arbitrarily choose K object as initial cluster center



Step 2: Compute seed points as the centroids of the clusters of the current partition

Step 3: Assign each objects to most similar center

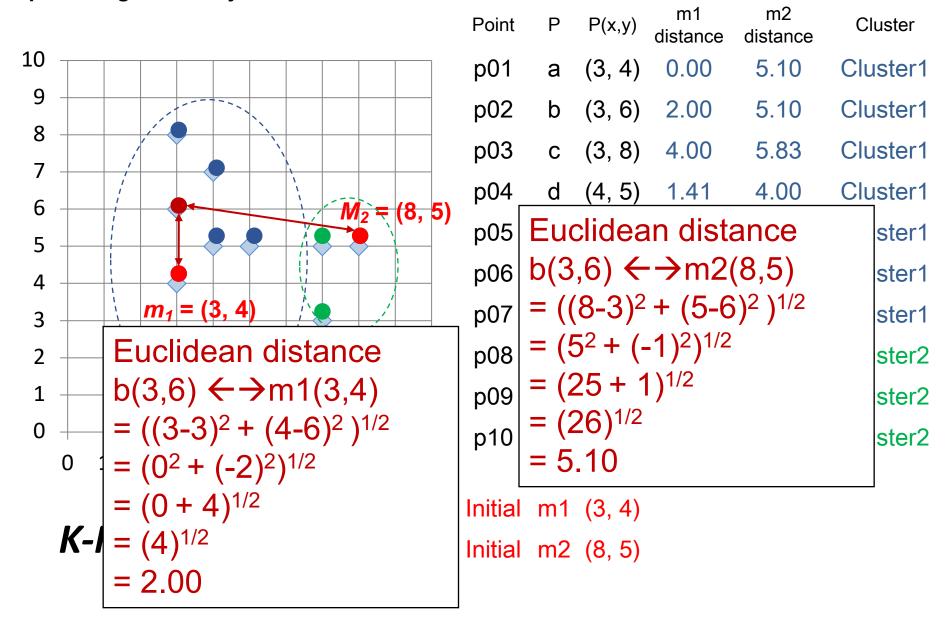


K-Means Clustering

Initial m1 (3, 4) Initial m2 (8, 5)

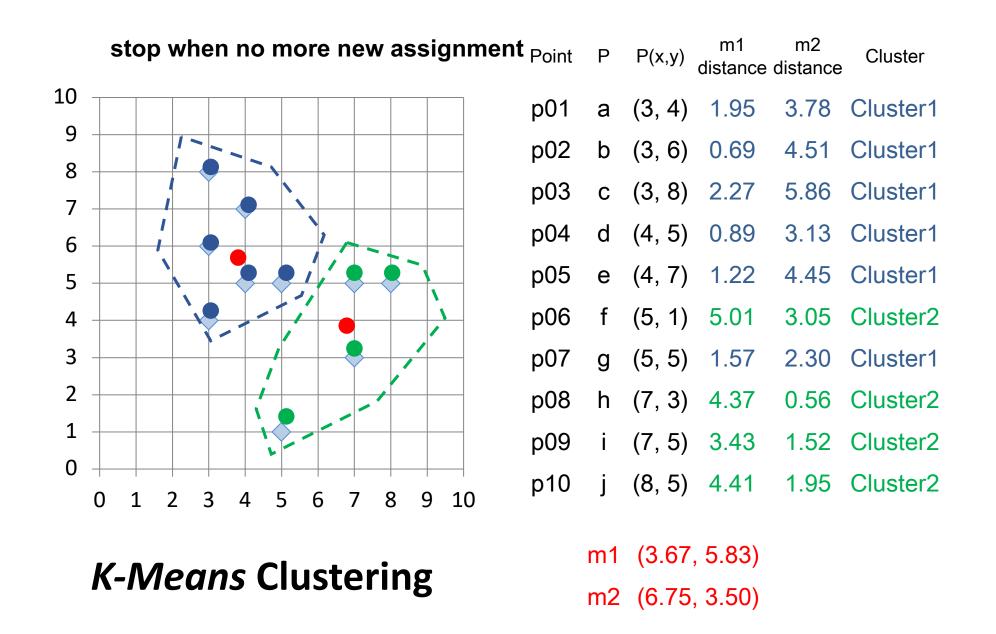
Step 2: Compute seed points as the centroids of the clusters of the current partition

Step 3: Assign each objects to most similar center

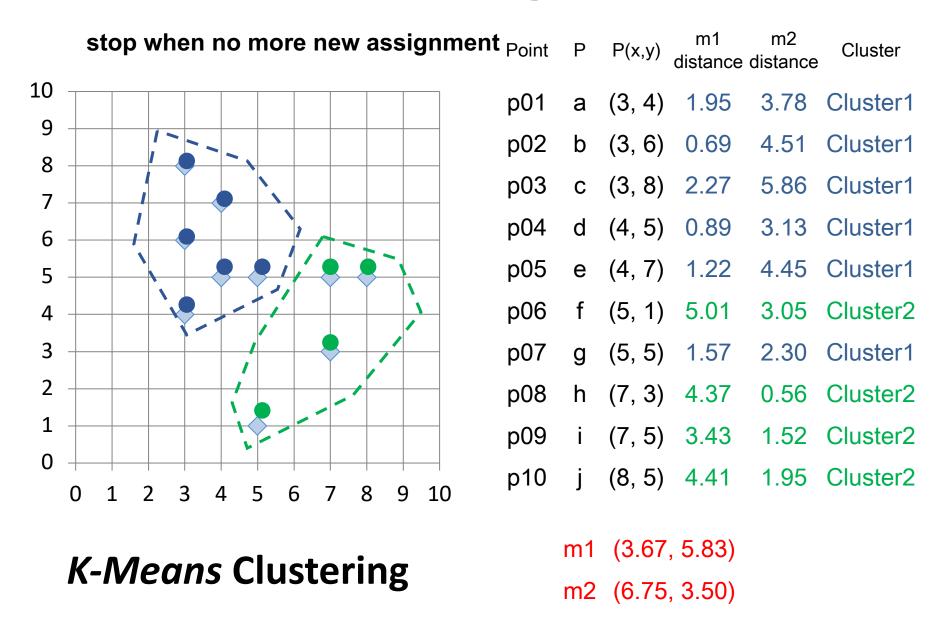


Step 4: Update the cluster means, m2 Repeat Step 2, 3, m1 Point P(x,y)Cluster distance distance stop when no more new assignment 10 1.43 4.34 Cluster1 p01 (3, 4)9 p02 (3, 6)1.22 4.64 Cluster1 8 p03 5.68 Cluster1 (3, 8)2.99 3.40 Cluster1 p04 (4, 5)0.20 6 $m_1 = (3.86, 5.$ p05 (4, 7)1.87 4.27 Cluster1 5 p06 4.29 4.06 Cluster2 (5, 1)4 $M_2 = (7.33, 4.33)$ 3 2.42 Cluster1 1.15 p07 (5, 5)2 p08 (7, 3)3.80 1.37 Cluster2 1 0.75 Cluster2 p09 (7, 5)3.14 0 p10 (8, 5)0.95 Cluster2 4.14 8 5 6 9 10 4 m1 (3.86, 5.14) **K-Means** Clustering m2 (7.33, 4.33)

Step 4: Update the cluster means, m2 Repeat Step 2, 3, m1 Point P(x,y)Cluster stop when no more new assignment 10 3.78 Cluster1 p01 1.95 (3, 4)9 p02 (3, 6)0.69 4.51 Cluster1 8 p03 5.86 Cluster1 (3, 8)2.27 (4, 5)0.89 3.13 Cluster1 p04 **(3.67, 5.88)** 6 p05 (4, 7)1.22 4.45 Cluster1 5 $M_2 = (6.75., 3.50)$ p06 (5, 1)5.01 3.05 Cluster2 4 3 p07 2.30 Cluster1 (5, 5)1.57 2 80q (7, 3)4.37 0.56 Cluster2 1 1.52 Cluster2 p09 (7, 5)3.43 0 p10 (8, 5)1.95 Cluster2 4.41 8 5 6 9 10 4 m1 (3.67, 5.83) **K-Means** Clustering m2 (6.75, 3.50)



K-Means Clustering (K=2, two clusters)

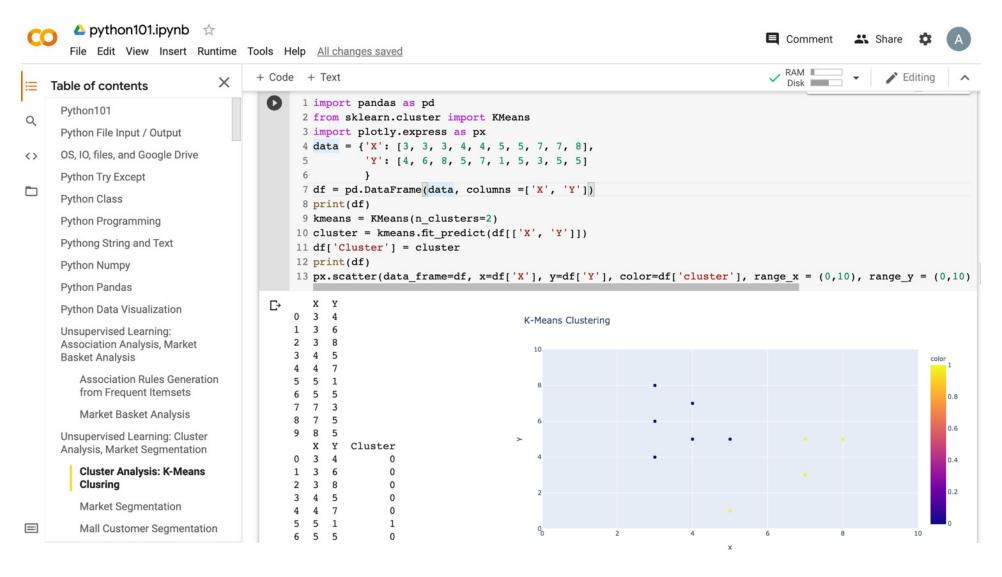


Point	Р	P(x,y)	m1 distance	m2 distance	Cluster
p01	a	(3, 4)	1.95	3.78	Cluster1
p02	b	(3, 6)	0.69	4.51	Cluster1
p03	С	(3, 8)	2.27	5.86	Cluster1
p04	d	(4, 5)	0.89	3.13	Cluster1
p05	е	(4, 7)	1.22	4.45	Cluster1
p06	f	(5, 1)	5.01	3.05	Cluster2
p07	g	(5, 5)	1.57	2.30	Cluster1
p08	h	(7, 3)	4.37	0.56	Cluster2
p09	i	(7, 5)	3.43	1.52	Cluster2
p10	j	(8, 5)	4.41	1.95	Cluster2
	m1	(3.67	(3.67, 5.83)		
	m2	(6.7	5, 3.50)		

Machine Learning: Unsupervised Learning: **Cluster Analysis** K-Means Clustering

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=2)
cluster = kmeans.fit_predict(df[['X', 'Y']])
```

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=2)
cluster = kmeans.fit_predict(df[['X', 'Y']])
```

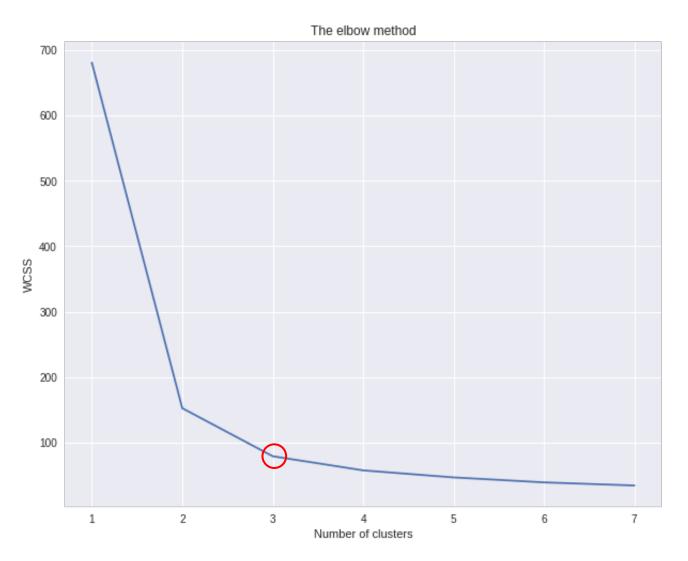
```
import pandas as pd
from sklearn.cluster import KMeans
import plotly.express as px
data = {'X': [3, 3, 4, 4, 5, 5, 7, 7, 8],
'Y': [4, 6, 8, 5, 7, 1, 5, 3, 5, 5]
df = pd.DataFrame(data, columns = ['X', 'Y'])
print(df)
kmeans = KMeans(n clusters=2)
cluster = kmeans.fit predict(df[['X', 'Y']])
df['Cluster'] = cluster
print(df)
px.scatter(data frame=df, x=df['X'], y=df['Y'],
color=df['cluster'], range x = (0,10), range y = (0,10),
title='K-Means Clustering')
```

```
1 #importing the libraries
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 %matplotlib inline
 5 import pandas as pd
 7 #importing the Iris dataset with pandas
 8 # Load dataset
 9 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
10 names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
11 df = pd.read csv(url, names=names)
12
13 array = df.values
14 | X = array[:,0:4]
15 \mid Y = array[:,4]
16
17 #Finding the optimum number of clusters for k-means classification
18 from sklearn.cluster import KMeans
19 wcss = []
20
21 for i in range(1, 8):
       kmeans = KMeans(n clusters = i, init = 'k-means++', max iter = 300, n init = 10, random state = 0)
       kmeans.fit(X)
23
       wcss.append(kmeans.inertia)
24
26 #Plotting the results onto a line graph, allowing us to observe 'The elbow'
27 plt.rcParams["figure.figsize"] = (10,8)
28 plt.plot(range(1, 8), wcss)
29 plt.title('The elbow method')
30 plt.xlabel('Number of clusters')
31 plt.ylabel('WCSS') #within cluster sum of squares
32 plt.show()
```

```
#importing the libraries
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
#importing the Iris dataset with pandas
# Load dataset
url = "https://archive.ics.uci.edu/ml/machine-
learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width',
'petal-length', 'petal-width', 'class']
df = pd.read csv(url, names=names)
array = df.values
X = array[:,0:4]
Y = array[:,4]
```

```
#Finding the optimum number of clusters for k-means
classification
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 8):
    kmeans = KMeans(n clusters = i, init = 'k-means++',
max iter = 300, n init = 10, random state = 0)
    kmeans.fit(X)
   wcss.append(kmeans.inertia )
#Plotting the results onto a line graph, allowing us to
observe 'The elbow'
plt.rcParams["figure.figsize"] = (10,8)
plt.plot(range(1, 8), wcss)
plt.title('The elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS') #within cluster sum of squares
plt.show()
```

The elbow method (k=3)



```
kmeans = KMeans(n_clusters = 3,
init = 'k-means++', max_iter = 300,
n_init = 10, random_state = 0)
y_kmeans = kmeans.fit_predict(X)
```

```
#Applying kmeans to the dataset / Creating the kmeans classifier
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
y_kmeans = kmeans.fit_predict(X)
```

```
#Visualising the clusters
plt.scatter(X[y \text{ kmeans} == 0, 0], X[y \text{ kmeans} == 0, 1], s = 100,
c = 'red', label = 'Iris-setosa')
plt.scatter(X[y \text{ kmeans} == 1, 0], X[y \text{ kmeans} == 1, 1], s = 100,
c = 'blue', label = 'Iris-versicolour')
plt.scatter(X[y \text{ kmeans} == 2, 0], X[y \text{ kmeans} == 2, 1], s = 100,
c = 'green', label = 'Iris-virginica')
#Plotting the centroids of the clusters
plt.scatter(kmeans.cluster centers [:, 0],
kmeans.cluster centers [:,1], s = 100, c = 'yellow', label =
'Centroids')
plt.legend()
```

```
#Visualising the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Iris-setosa')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Iris-versicolour')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Iris-virginica')

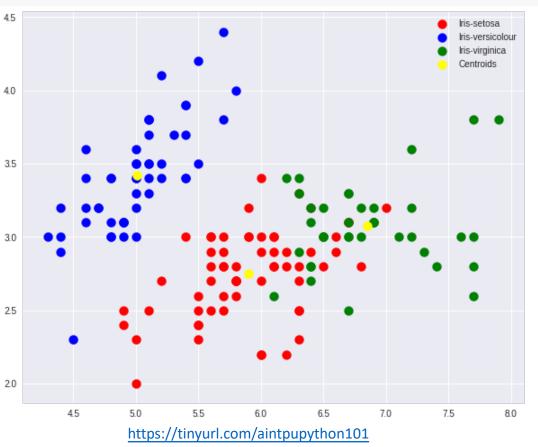
#Plotting the centroids of the clusters
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1], s = 100, c = 'yellow', label = 'Centroids')

#Plotting the centroids of the clusters
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1], s = 100, c = 'yellow', label = 'Centroids')
```

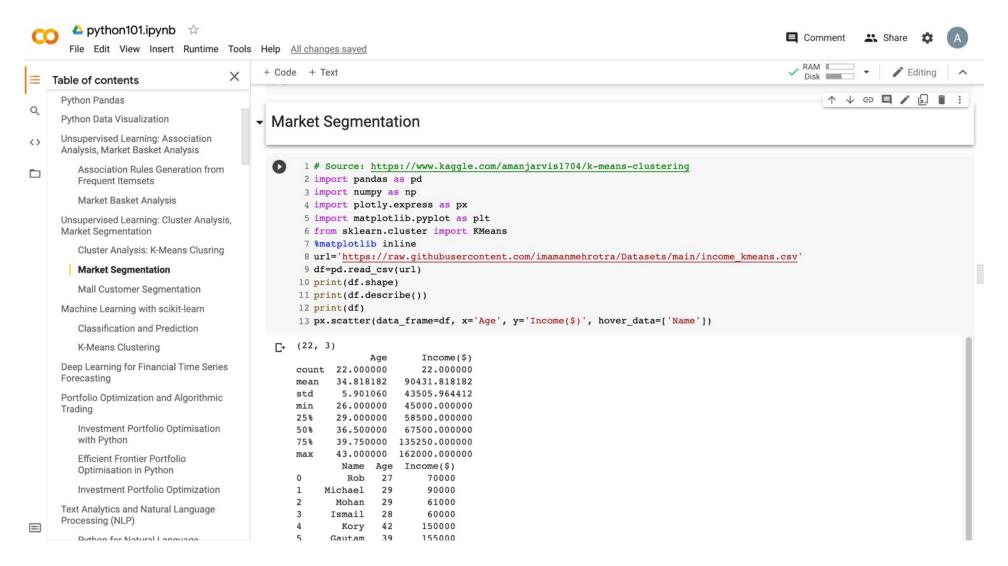
```
#Applying kmeans to the dataset / Creating the kmeans classifier
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
y_kmeans = kmeans.fit_predict(X)

#Visualising the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Iris-setosa')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Iris-versicolour')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Iris-virginica')

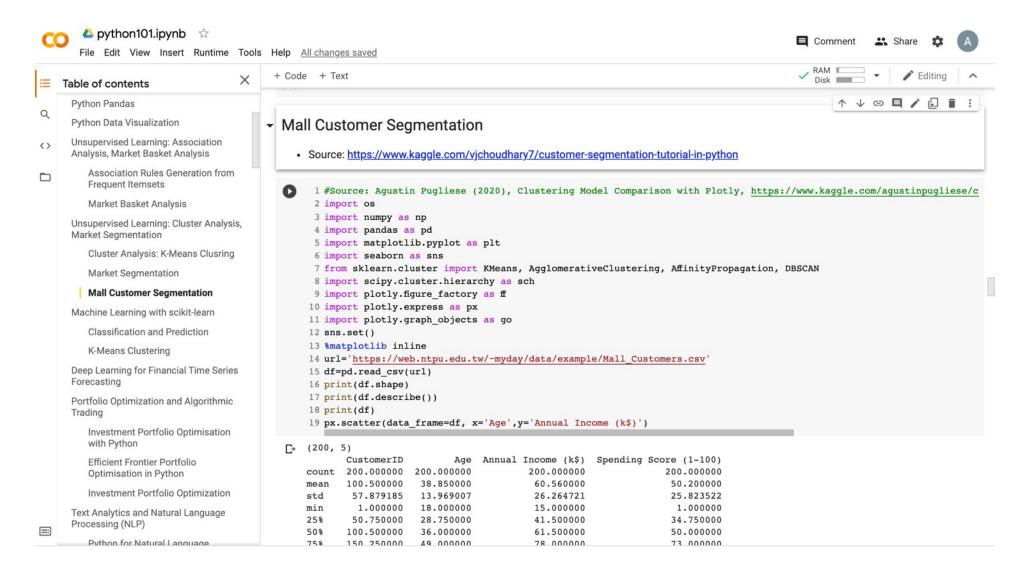
#Plotting the centroids of the clusters
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1], s = 100, c = 'yellow', label = 'Centroids')
plt.legend()
```



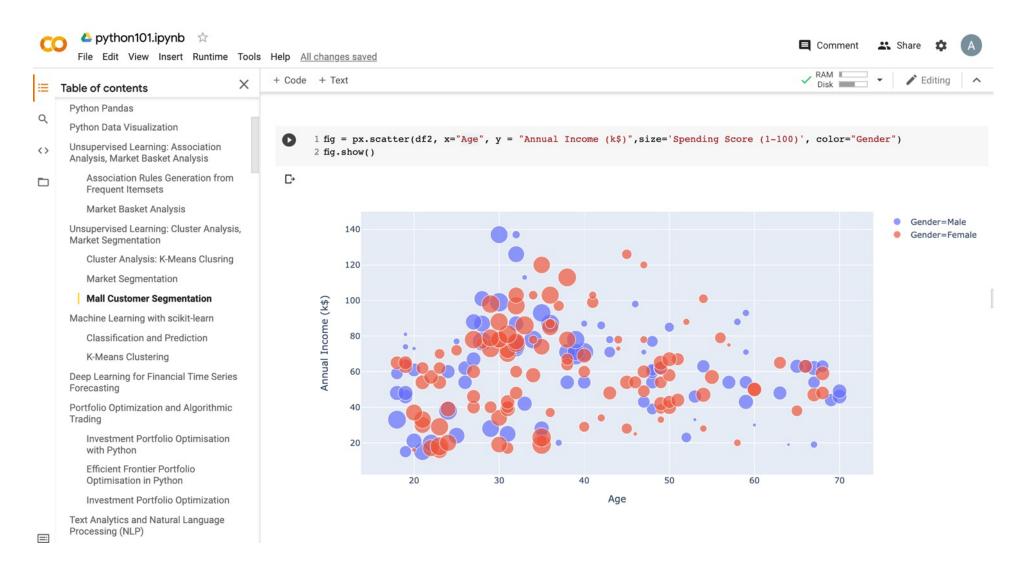
Market Segmentation



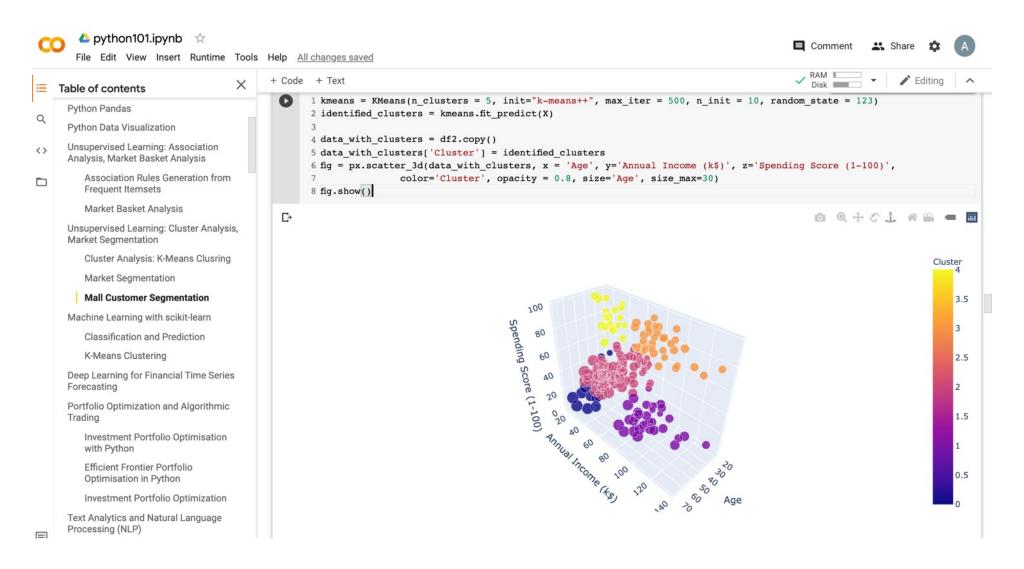
Mall Customer Segmentation



Mall Customer Segmentation



Mall Customer Segmentation

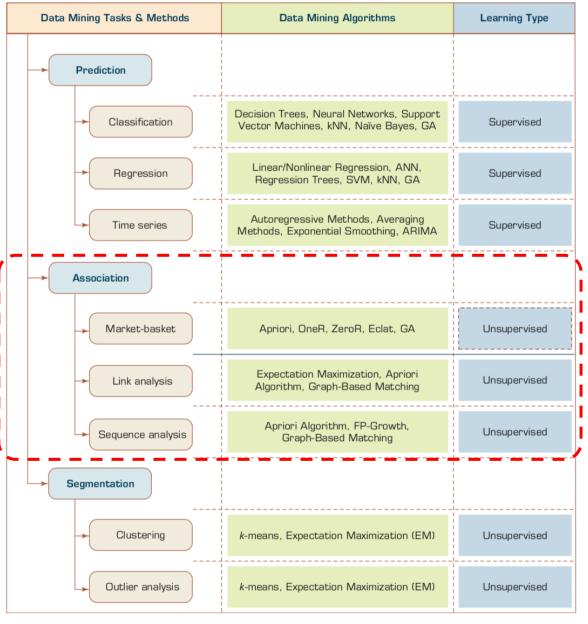


Machine Learning: **Unsupervised Learning:** Association Analysis, **Market Basket Analysis**

Machine Learning: Data Mining Tasks & Methods

Unsupervised Learning:
Association Analysis
Market-basket

Association

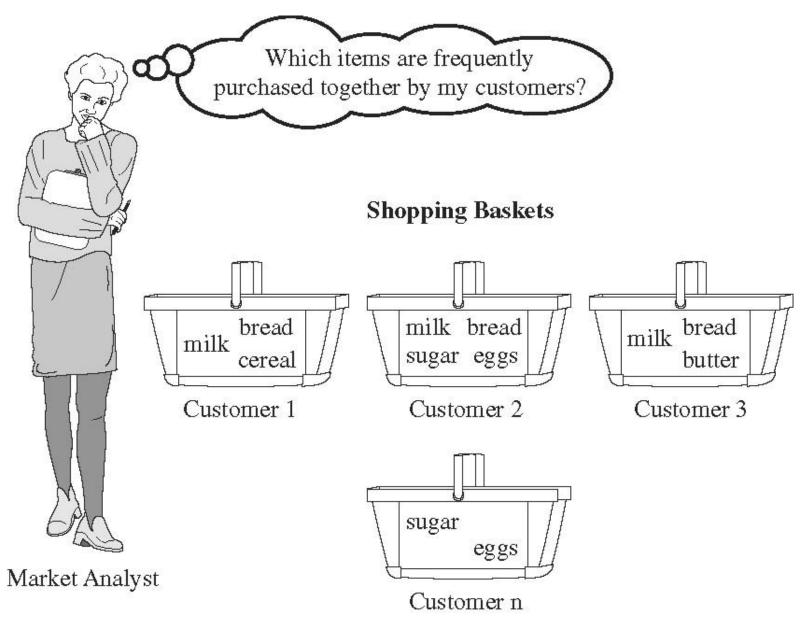


Transaction Database

Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
T04	A, B, D
T05	A, B, C, E
T06	A, C
T07	B, C, D
T08	B, D
T09	A, C, E
T10	B, D

Association Analysis

Market Basket Analysis



Python mlxtend Association Rules

```
# !pip install mlxtend
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent patterns import apriori
from mlxtend.frequent patterns import association rules
dataset = [['A', 'B', 'D'],
        ['A', 'C', 'D'],
        ['B', 'C', 'D', 'E'],
        ['A', 'B', 'D'],
        ['A', 'B', 'C', 'E'],
        ['A', 'C'],
        ['B', 'C', 'D'],
        ['B', 'D'],
        ['A', 'C', 'E'],
        ['B', 'D']]
te = TransactionEncoder()
te ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te ary, columns=te.columns )
frequent itemsets = apriori(df, min support=0.2, use colnames=True)
association rules (frequent itemsets, metric="confidence", min threshold=0.8)
```

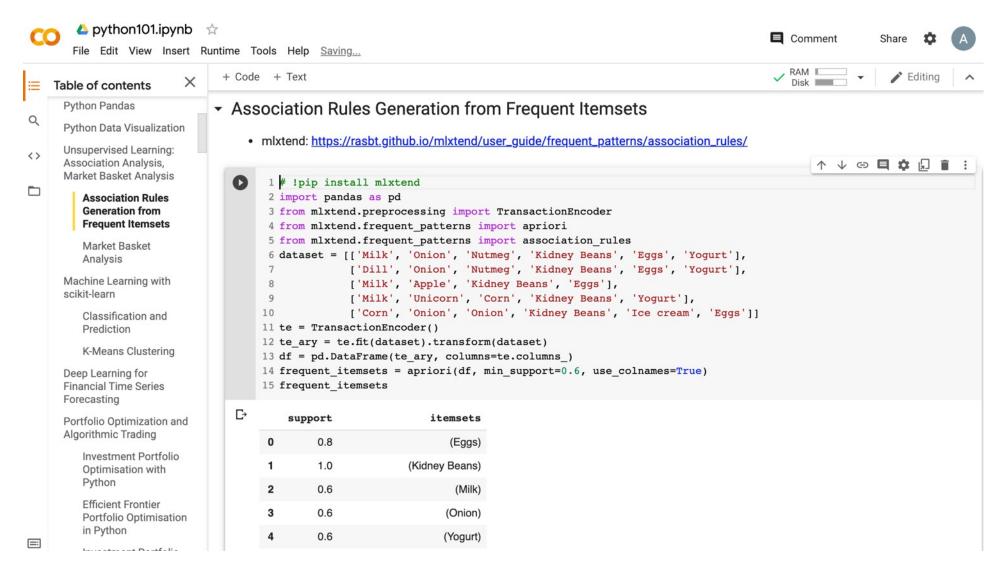
Python mlxtend Association Rules

```
1 # !pip install mlxtend
 2 import pandas as pd
 3 from mlxtend.preprocessing import TransactionEncoder
 4 from mlxtend.frequent patterns import apriori
 5 from mlxtend.frequent patterns import association rules
 6 dataset = [['A', 'B', 'D'],
            ['A', 'C', 'D'],
            ['B', 'C', 'D', 'E'],
           ['A', 'B', 'D'],
           ['A', 'B', 'C', 'E'],
           ['A', 'C'],
        ['B', 'C', 'D'],
13
    ['B', 'D'],
14
         ['A', 'C', 'E'],
15
            ['B', 'D']]
16 te = TransactionEncoder()
17 te ary = te.fit(dataset).transform(dataset)
18 df = pd.DataFrame(te ary, columns=te.columns)
19 frequent itemsets = apriori(df, min support=0.2, use colnames=True)
20 rules = association_rules(frequent_itemsets, metric="confidence", min threshold=0.8)
21 rules
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(B)	(D)	0.7	0.7	0.6	0.857143	1.224490	0.11	2.1
1	(D)	(B)	0.7	0.7	0.6	0.857143	1.224490	0.11	2.1
2	(E)	(C)	0.3	0.6	0.3	1.000000	1.666667	0.12	inf
3	(E, A)	(C)	0.2	0.6	0.2	1.000000	1.666667	0.08	inf
4	(E, B)	(C)	0.2	0.6	0.2	1.000000	1.666667	0.08	inf

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



! pip install mlxtend from mlxtend.frequent_patterns import apriori from mlxtend.frequent_patterns import association_rules frequent_itemsets = apriori(df, min_support=0.6, use_colnames=True)

```
1 # ! pip install mlxtend
 2 import pandas as pd
 3 from mlxtend.preprocessing import TransactionEncoder
 4 from mlxtend.frequent patterns import apriori
 5 from mlxtend.frequent patterns import association rules
 7 dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
             ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
              ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
              ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
              ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]
13 te = TransactionEncoder()
14 te ary = te.fit(dataset).transform(dataset)
15 df = pd.DataFrame(te ary, columns=te.columns)
16 frequent itemsets = apriori(df, min support=0.6, use colnames=True)
17
18 frequent itemsets
```

```
# ! pip install mlxtend
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent patterns import apriori
from mlxtend.frequent patterns import association rules
dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
        ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
        ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
        ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
        ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]
te = TransactionEncoder()
te ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te ary, columns=te.columns )
frequent itemsets = apriori(df, min support=0.6,
use colnames=True)
frequent itemsets
```

frequent_itemsets = apriori(df,
min_support=0.6,
use_colnames=True)

	support	itemsets
0	0.8	(Eggs)
1	1.0	(Kidney Beans)
2	0.6	(Milk)
3	0.6	(Onion)
4	0.6	(Yogurt)
5	0.8	(Eggs, Kidney Beans)
6	0.6	(Onion, Eggs)
7	0.6	(Milk, Kidney Beans)
8	0.6	(Onion, Kidney Beans)
9	0.6	(Yogurt, Kidney Beans)
10	0.6	(Onion, Eggs, Kidney Beans)

association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Eggs)	(Kidney Beans)	0.8	1.0	0.8	1.00	1.00	0.00	inf
1	(Kidney Beans)	(Eggs)	1.0	0.8	0.8	0.80	1.00	0.00	1.000000
2	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
3	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000
4	(Milk)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
5	(Onion)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
6	(Yogurt)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
7	(Onion, Eggs)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
8	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
9	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000
10	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf
11	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000

```
rules =
association_rules(frequent_itemsets,
metric="lift", min_threshold=1.2)
rules
```

0	<pre>rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.2) rules</pre>											
₽		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction		
	0	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf		
	1	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000		
	2	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf		
	3	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000		
	4	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf		
	5	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000		

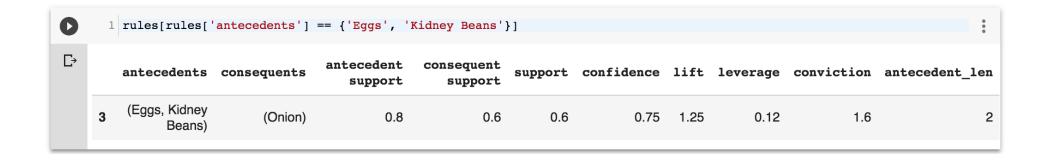
```
rules["antecedent_len"] =
rules["antecedents"].apply(lambda x: len(x))
rules
```

	<pre>rules["antecedent_len"] = rules["antecedents"].apply(lambda x: len(x)) rules</pre>											
]→		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	antecedent_ler	
	0	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf	1	
	1	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	1	
	2	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf	2	
	3	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	2	
	4	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf	1	
	5	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	1	

```
rules[ (rules['antecedent_len'] >= 2) &
    (rules['confidence'] > 0.75) &
        (rules['lift'] > 1.2) ]
```

0	<pre>1 rules[(rules['antecedent_len'] >= 2) & 2</pre>									
₽	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	antecedent_len
	2 (Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.0	1.25	0.12	inf	2

```
rules[rules['antecedents'] ==
{'Eggs', 'Kidney Beans'}]
```



The Theory of Learning

The Theory of Learning

- Computational Learning Theory
 - Probably Approximately Correct (PAC) Learning
 - Vapnik-Chervonenkis (VC) Dimension
 - Bias-Variance Trade-off
- Overfitting and Underfitting
 - Avoid overfitting:
 Regularization, Cross-Validation

What is Learning in Machine Learning?

- Learning involves finding patterns from data to make predictions.
- Performance is measured through generalization to unseen data.
- Three paradigms of learning:
 - Supervised Learning (e.g., classification, regression)
 - Unsupervised Learning (e.g., clustering, dimensionality reduction)
 - Reinforcement Learning (e.g., learning through rewards)

The Theory of Learning

- How can we be sure that our learned hypothesis will predict well for previously unseen inputs?
 - How do we know that the hypothesis h is close to the target function f
 if we don't know what is?
- How many examples do we need to get a good h?
- What hypothesis space should we use?
- If the hypothesis space is very complex, can we even find the best h or do we have to settle for a local maximum?
- How complex should h be?
- How do we avoid overfitting?

Computational Learning Theory

- Intersection of AI, statistics, and theoretical computer science.
- Any hypothesis that is seriously wrong will almost certainly be "found out" with high probability after a small number of examples.

Probably Approximately Correct (PAC) Learning

- Any hypothesis that is consistent with a sufficiently large set of training examples is unlikely to be seriously wrong.
- PAC learning algorithm:
 - Any learning algorithm that returns
 hypotheses that are probably approximately
 correct.

Probably Approximately Correct (PAC) Learning

- PAC Learning provides a way to understand generalization
- Key Components:
 - Error threshold (ε)
 - Confidence level (1 δ)
- Example: Linear models are PAC-learnable with enough data

Linear function

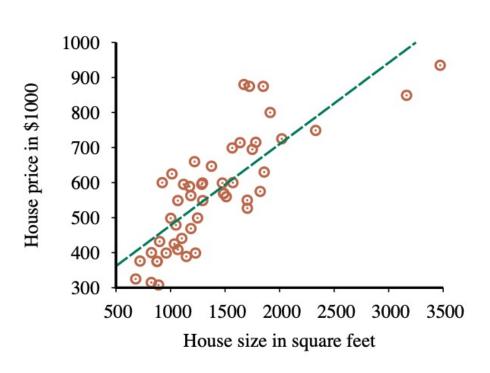
$$y = f(x)$$

$$y = w_1 x + w_0$$

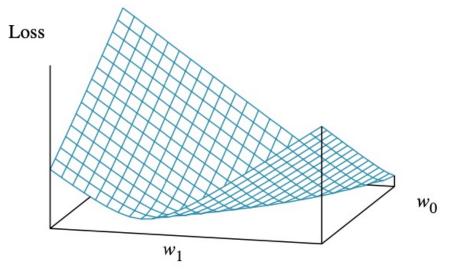
$$h_w(x) = w_1 x + w_0$$

Linear Regression Weight Space

$$h_w(x) = w_1 x + w_0$$



 $w^* = \operatorname{argmin}_{w} \operatorname{Loss}(h_{w})$



y = 0.232 x + 246

Loss function for Weights (w_1, w_0)

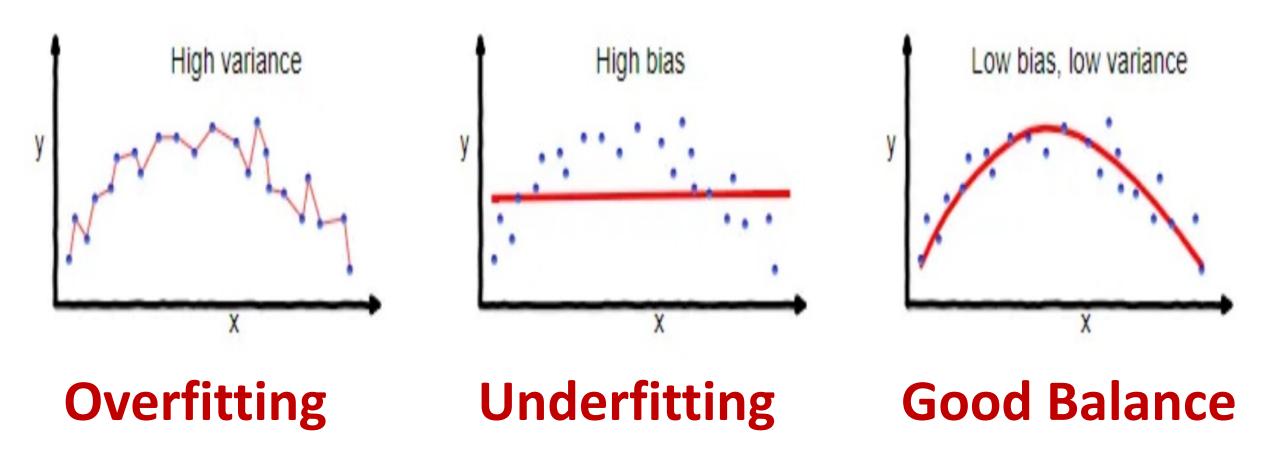
Vapnik-Chervonenkis (VC) Dimension

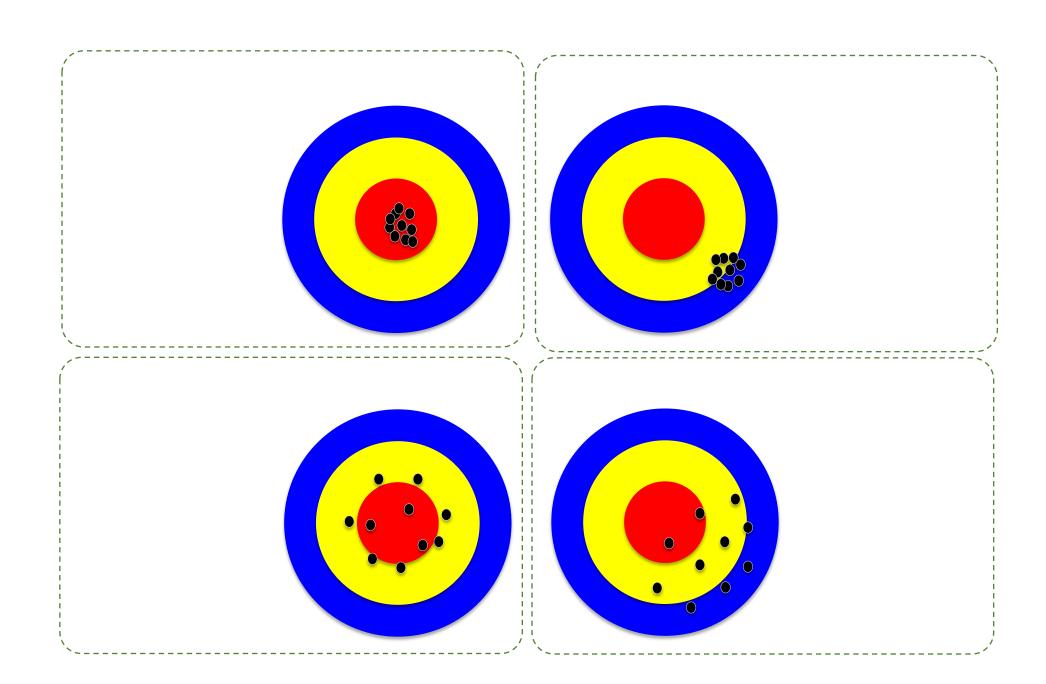
- VC Dimension measures a model's capacity to fit various patterns
- Higher VC Dimension
 Higher model complexity
- Balancing model complexity helps improve generalization

Bias-Variance Trade-off

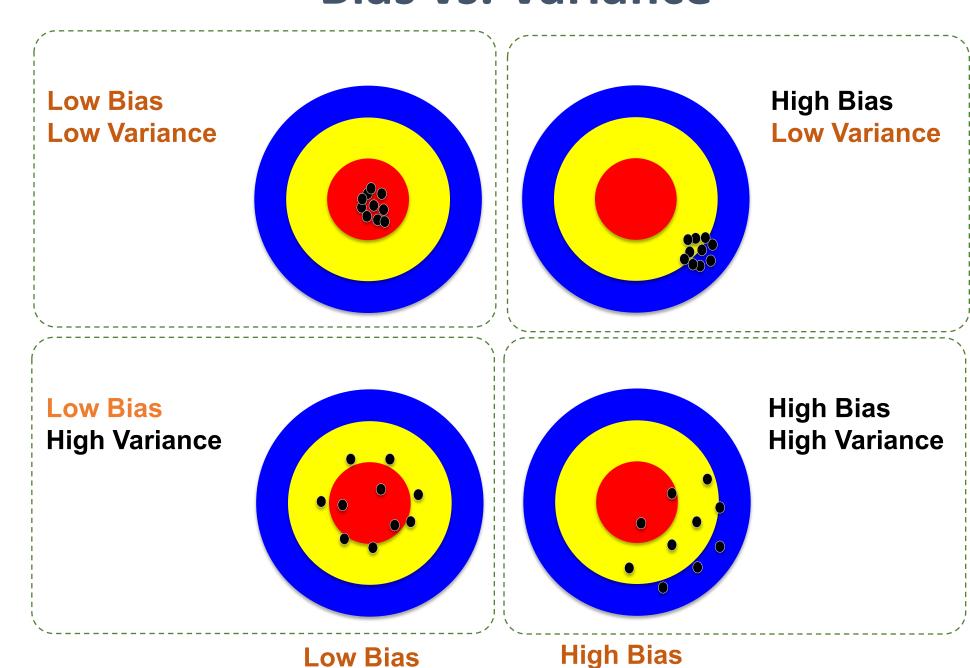
- Bias: Error due to simple models (e.g., linear models)
- Variance: Error from models too sensitive to noise (e.g., deep trees)
- Bias-Variance Trade-off:
 - Low bias-high variance: Risk of overfitting
 - High bias-low variance: Risk of underfitting
- Selecting the right model balances bias and variance

Overfitting vs. Underfitting





Bias vs. Variance



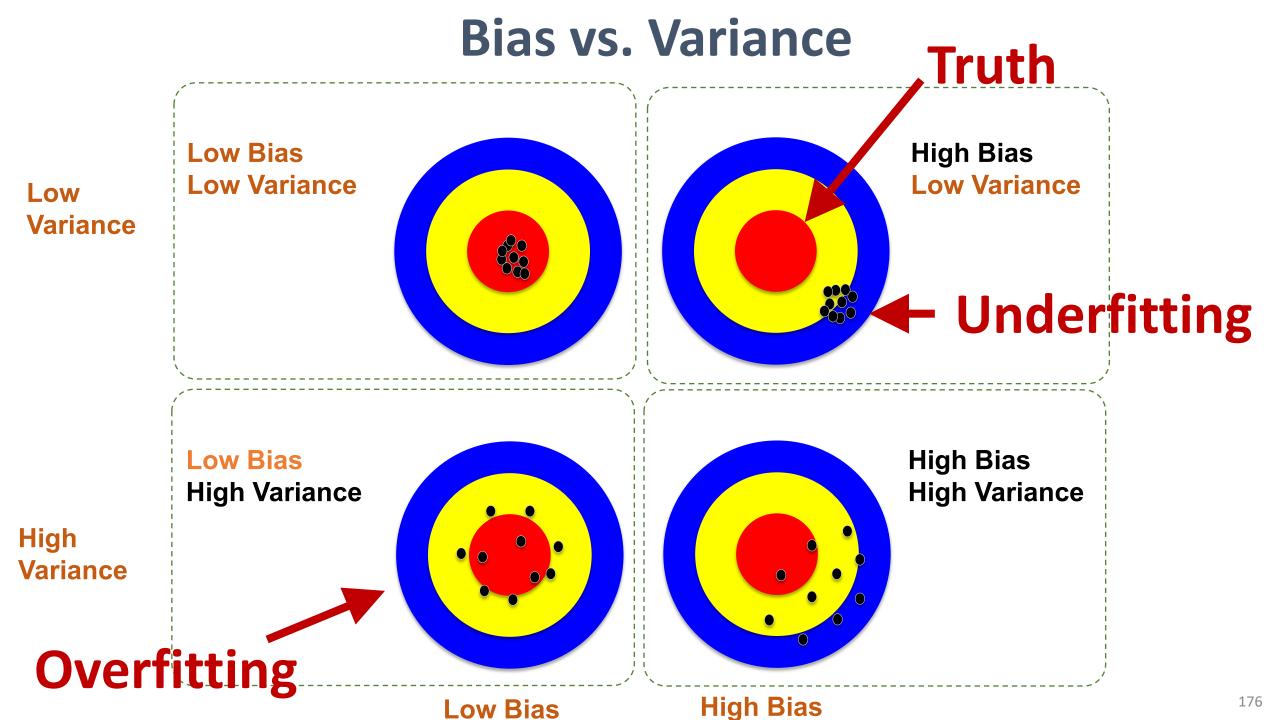
Low

High

Variance

Variance

175



Bias vs. Variance

Low Bias High Bias Low Variance Low Variance Low Accuracy High Accuracy High Precision High Precision Low Bias High Bias High Variance High Variance High Accuracy Low Accuracy Low Precision Low Precision

Low Bias

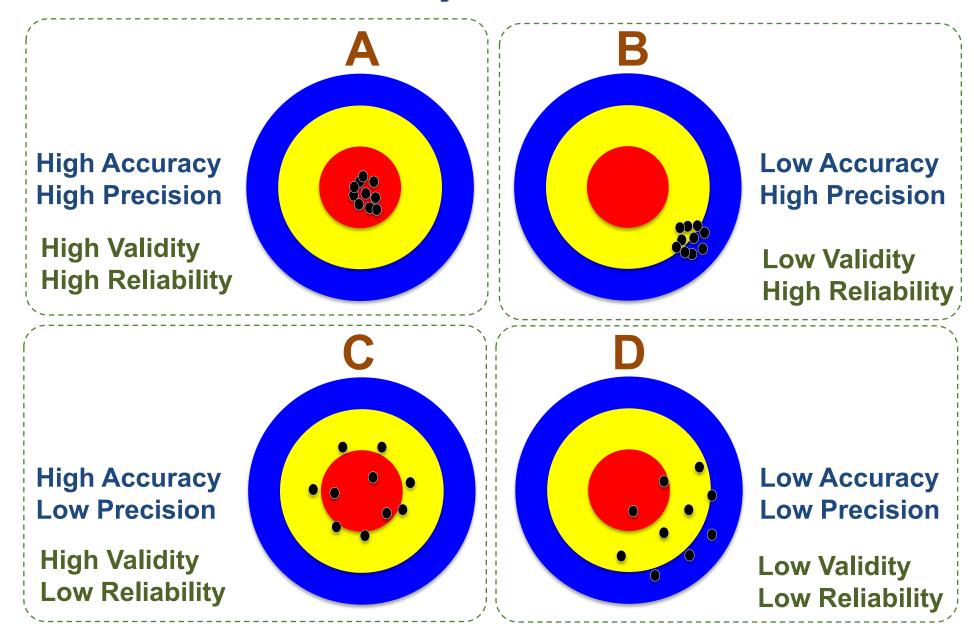
High Bias

High Variance

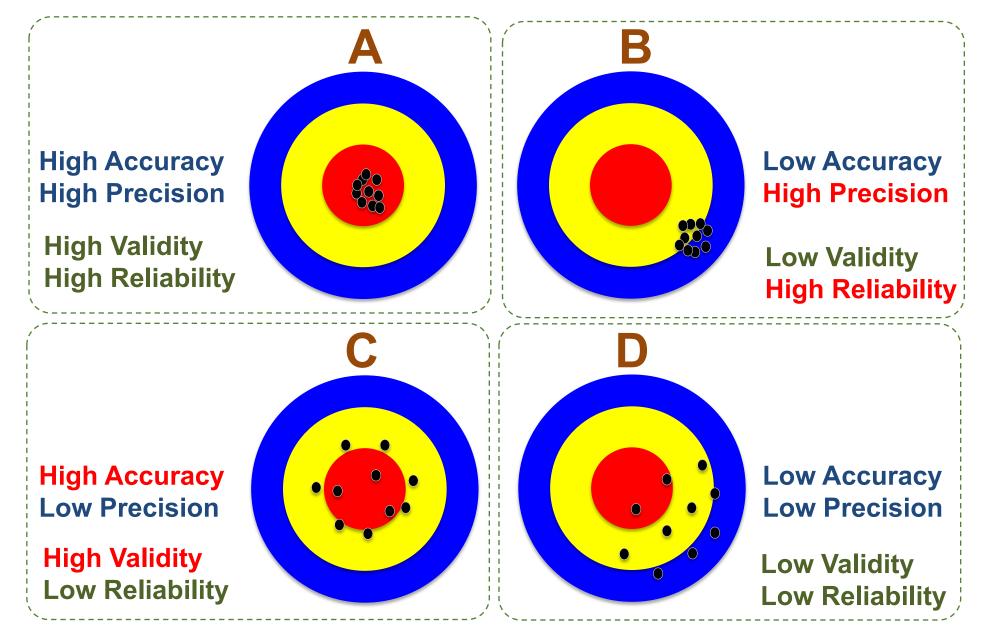
Low

Variance

Accuracy vs. Precision



Accuracy (Validity) vs. Precision (Reliability)



Learning Theory

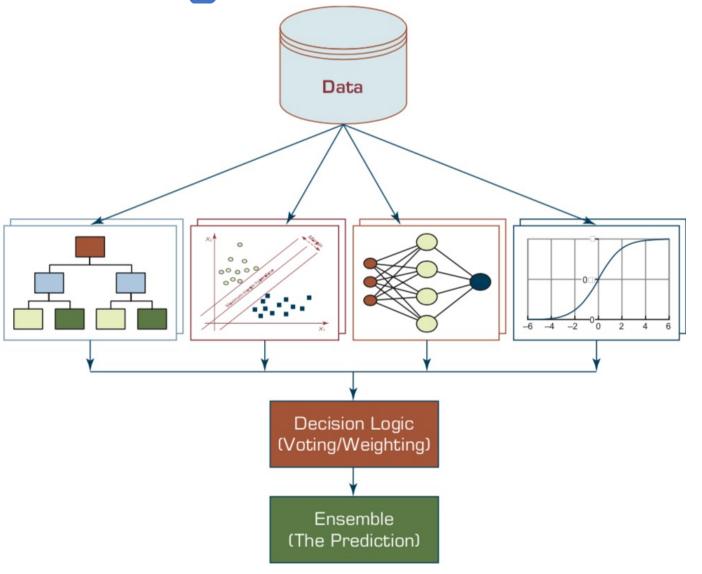
- PAC Learning:
 - Focuses on generalization
- •VC Dimension:
 - Measures model capacity and impacts generalization
- Bias-Variance Trade-off:
 - Helps in model selection and tuning

Ensemble Learning

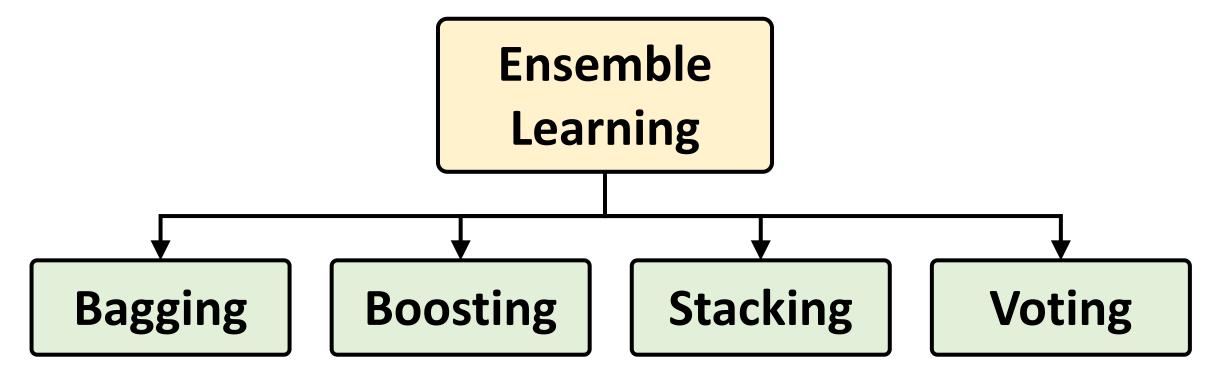
Ensemble Learning

•Select a collection, or ensemble, of hypotheses, $h_1, h_2, ..., h_n$, and combine their predictions by averaging, voting, or by another level of machine learning.

Ensemble Models Heterogeneous Ensemble



Ensemble Learning: Bagging, Boosting, Stacking, Voting



Ensemble Learning

- Base model
 - individual hypotheses
 - • $h_1, h_2, ..., h_n$
- Ensemble model
 - hypotheses combination

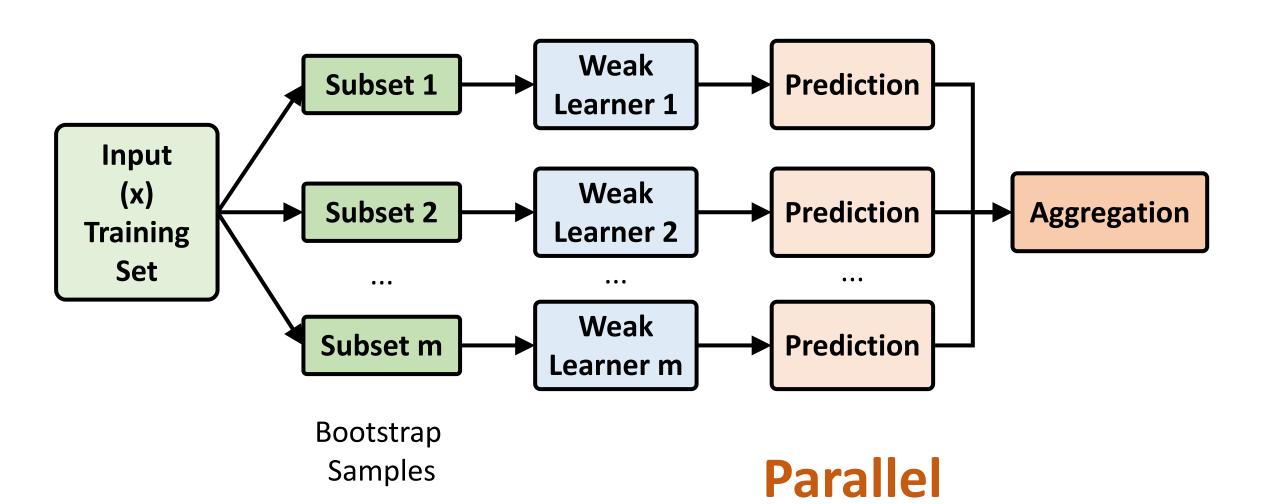
Why Ensemble Learning

- Reduce bias
- Reduce variance

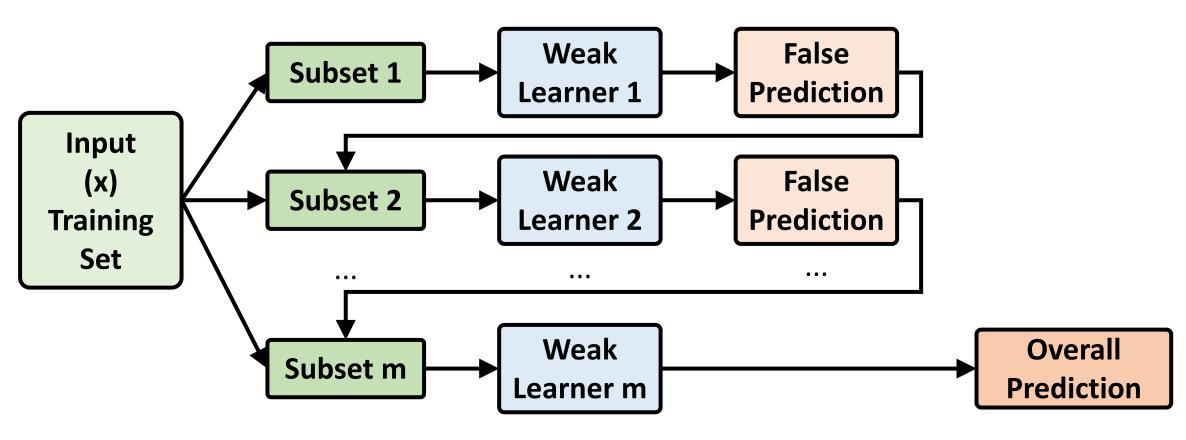
Ensemble Learning

- Bagging
 - Random Forests (RF)
- Boosting
 - Gradient Boosting, XGBoost, LightGBM, CatBoost
- Stacking
- Online learning

Ensemble Learning: Bagging (Bootstrap Aggregation)

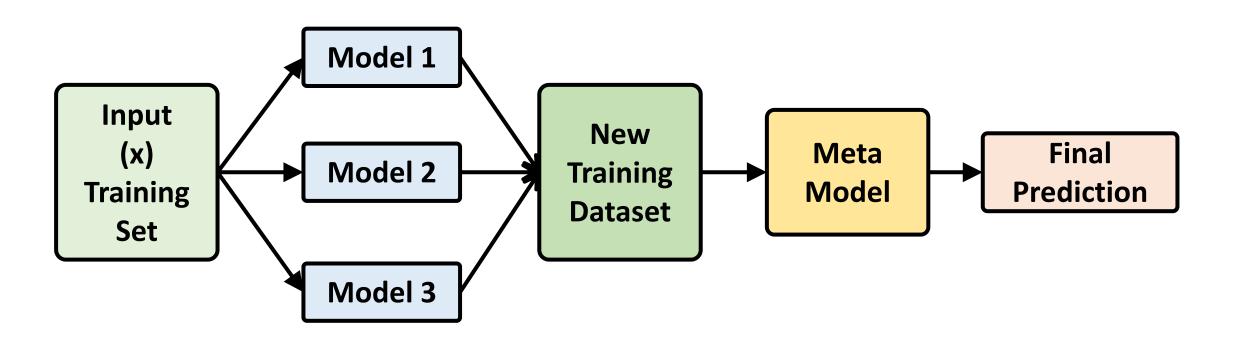


Ensemble Learning: Boosting

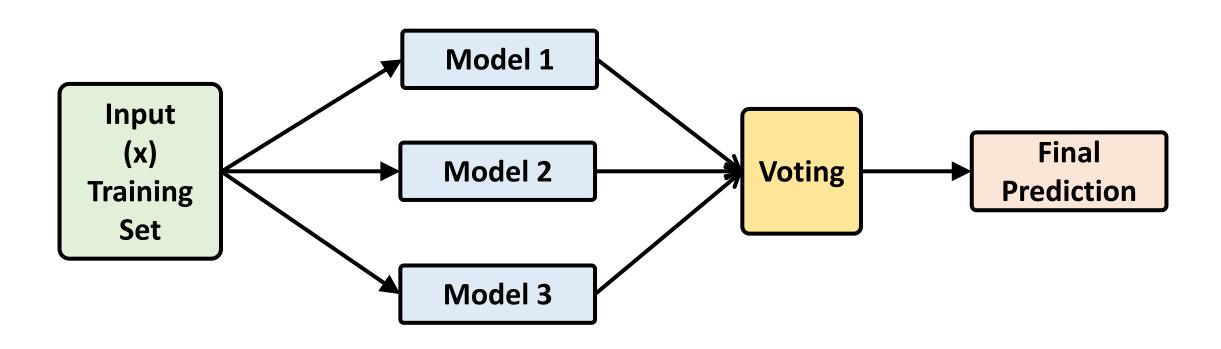


Sequential

Ensemble Learning: Stacking



Ensemble Learning: Voting



Ensemble Learning: Bagging

- Bagging
 - Generate distinct training sets by sampling with replacement from the original training set.
- Classification:
 - Plurality Vote (Majority Vote)
- Regression:
 - Average

Ensemble Learning: Random forests

- Random forest model is a form of decision tree bagging in which we take extra steps to make the ensemble of trees more diverse, to reduce variance.
- The key idea is to randomly vary the attribute choices (rather than the training examples)

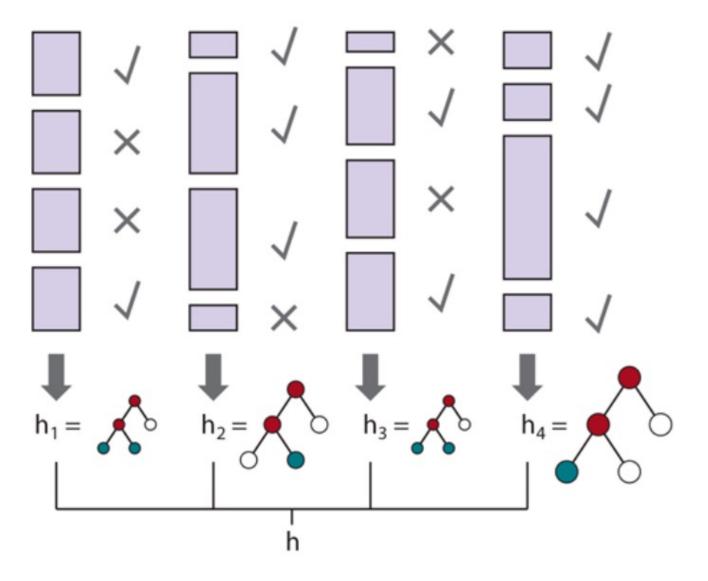
Ensemble Learning: Random forests

- Extremely randomized trees (ExtraTrees)
 - Use randomness in selecting the split point value
 - for each selected attribute, we randomly sample several candidate values from a uniform distribution over the attribute's range

Ensemble Learning: Boosting

- Boosting
 - The most popular ensemble method
- Weighted training set

Ensemble Learning: Boosting



Ensemble Learning: Gradient boosting

- Gradient boosting
 - Gradient boosting is a form of boosting using gradient descent
- Gradient boosting machines (GBM)
- Gradient boosted regression trees (GBRT)
- Popular method for regression and classification of factored tabular data

Ensemble Learning: Stacking

Staking

 Stacked generalization combines multiple base models from different model classes trained on the same data.

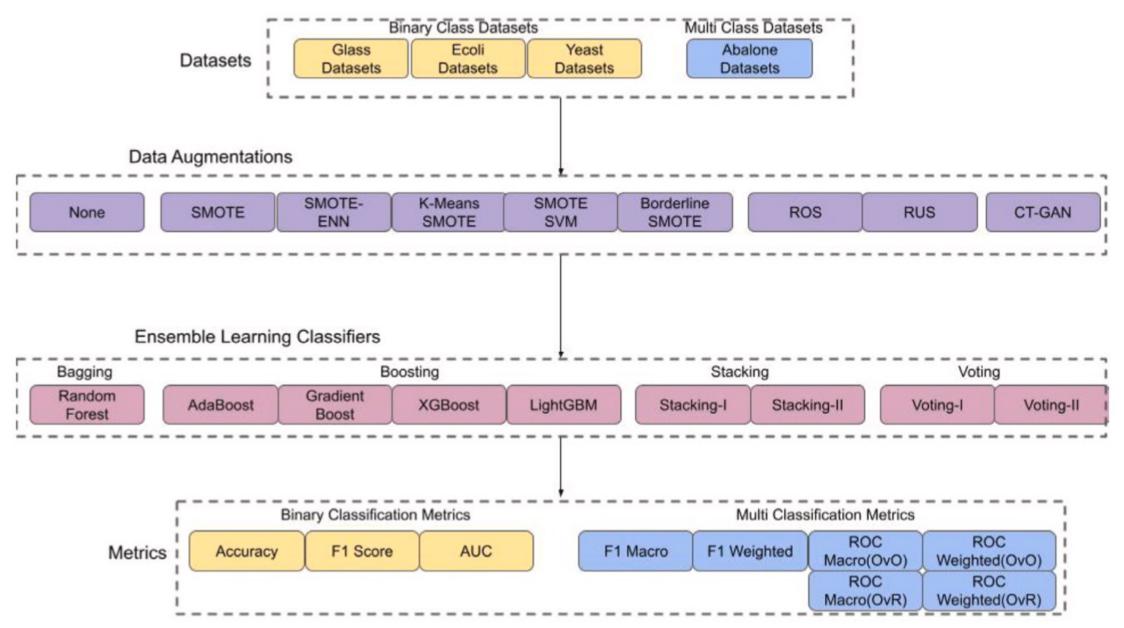
Bagging

 Combines multiple base models of the same model class trained on different data.

Ensemble Learning:Online learning

- Online learning
 - Data are not i.i.d.
 (independent and identically distributed)
 - •An agent receives an input x_i from nature, predicts the corresponding y_i and then is told the correct answer.

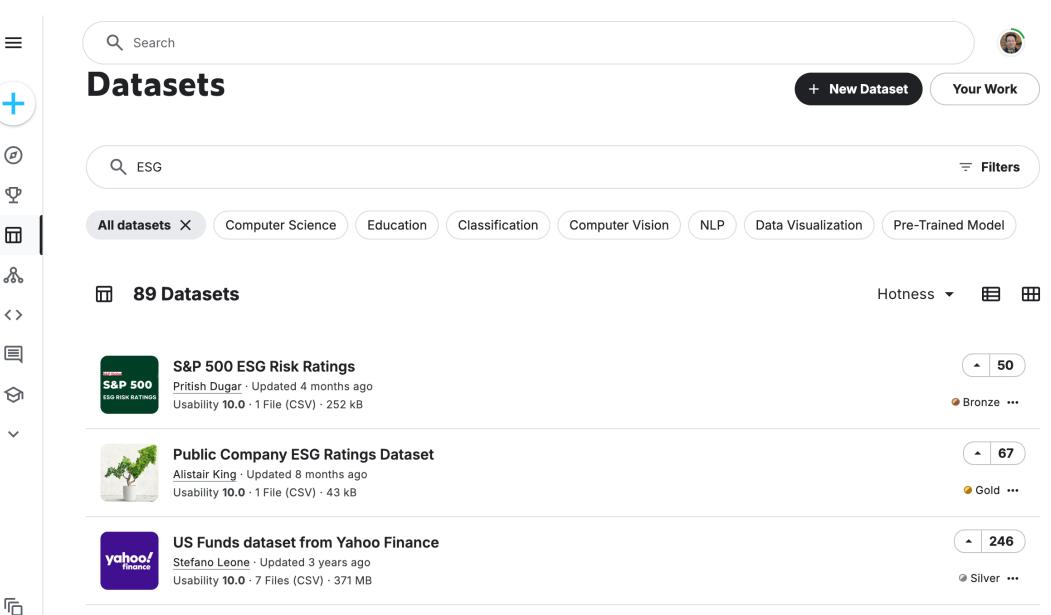
Ensemble Learning and Data Augmentations (DA)



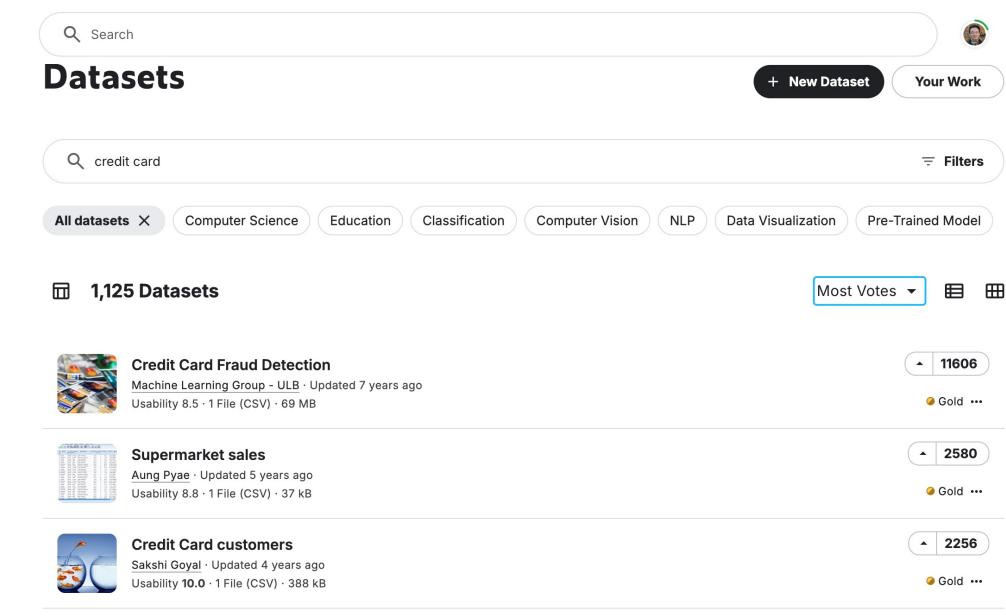
ML Evaluation of Imbalanced Dataset: Ensemble Learning and Data Augmentations (DA)

Data augmentation	Ensemble model	Accuracy (Best, Std)	F1 (Best, Std)	AUC (Best, Std)
Yeast-v6				
Borderline-SMOTE	LightGBM	98.490(98.653, 0.150)	99.230(99.314, 0.077)	76.668(76.751, 0.077)
No augmentation	Stacking-I	98.185(98.653, 0.320)	99.076(99.315, 0.165)	69.757(76.579, 3.658)
SVM-SMOTE	AdaBoost	98.072(98.653, 0.466)	99.015(99.314, 0.240)	75.577(80.253, 2.014)
ROS	Stacking-I	97.997(98.822, 0.415)	98.977(99.401, 0.214)	74.884(76.837, 2.607)
Borderline-SMOTE	Voting-Soft	97.949(98.653, 0.501)	98.951(99.314, 0.259)	75.854(80.253, 1.923)
ROS	XGBoost	97.866(98.485, 0.303)	98.908(99.227, 0.157)	76.348(76.665, 0.155)
SMOTE	Stacking-II	97.539(98.485, 0.708)	98.737(99.227, 0.370)	77.385(83.841, 2.273)
SMOTE	Voting-Hard	97.386(98.485, 0.707)	98.657(99.227, 0.370)	77.607(83.841, 2.492)
SMOTE-ENN	Random Forests	92.917(97.306, 1.932)	96.273(98.618, 1.048)	73.380(78.962, 1.694)
RUS	Stacking-II	87.345(94.444, 3.405)	93.087(97.093, 2.014)	81.085(88.581, 3.112)

Kaggle Datasets for Machine Learning



Kaggle Datasets for Machine Learning



 \equiv

+

0

 Φ

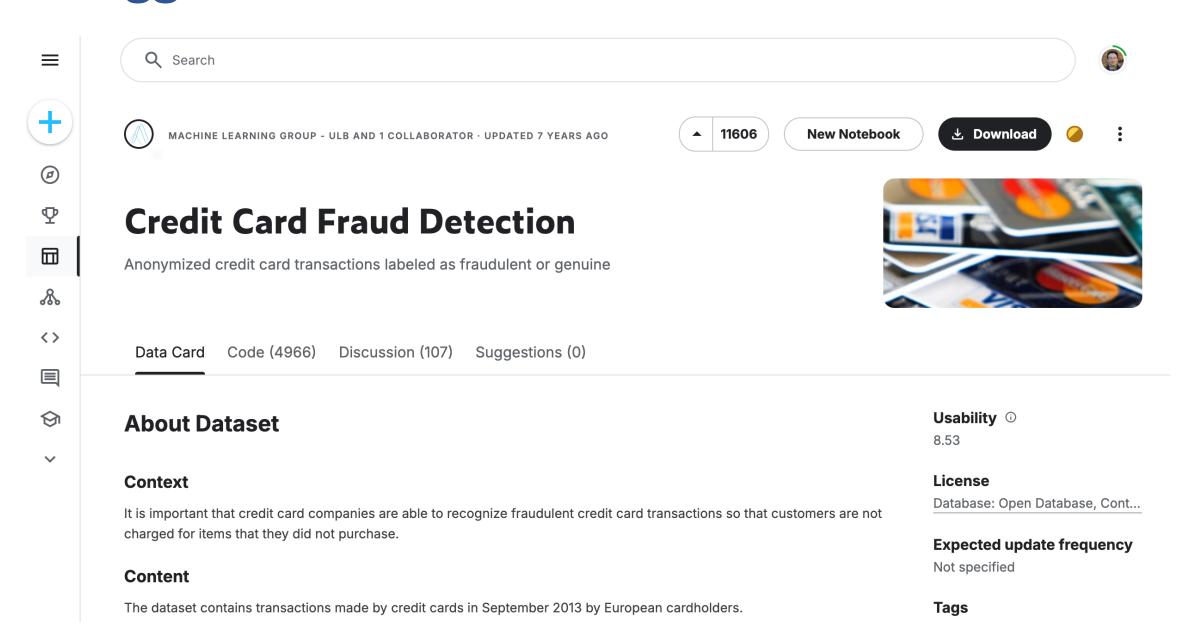
&

<>

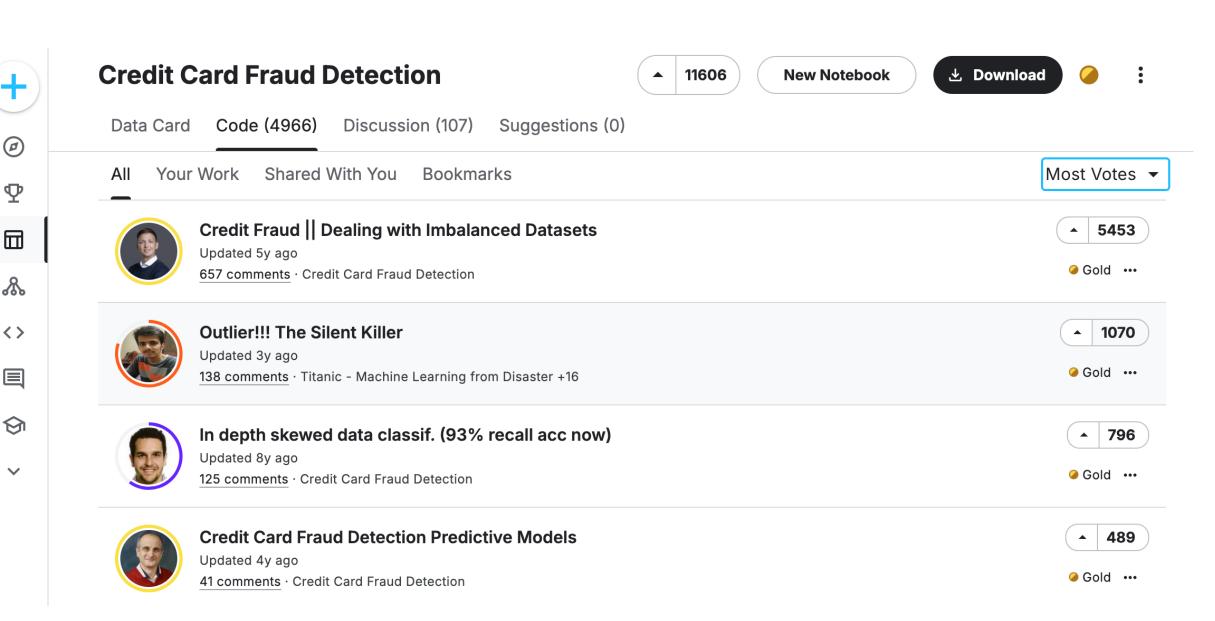
 Θ

V

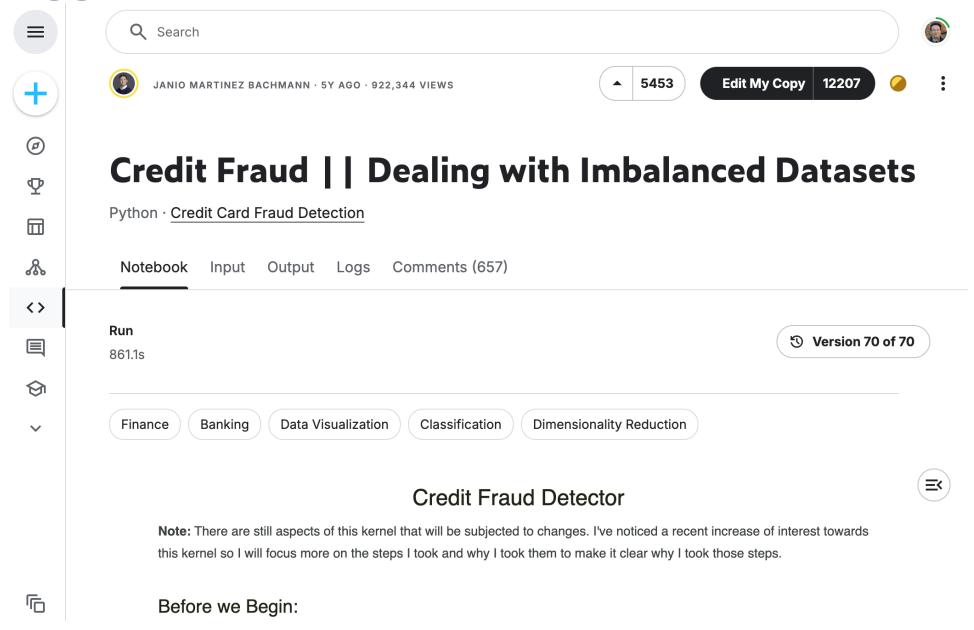
Kaggle Datasets: Credit Card Fraud Detection



Kaggle Code: Credit Card Fraud Detection



Kaggle Code: Credit Card Fraud Detection



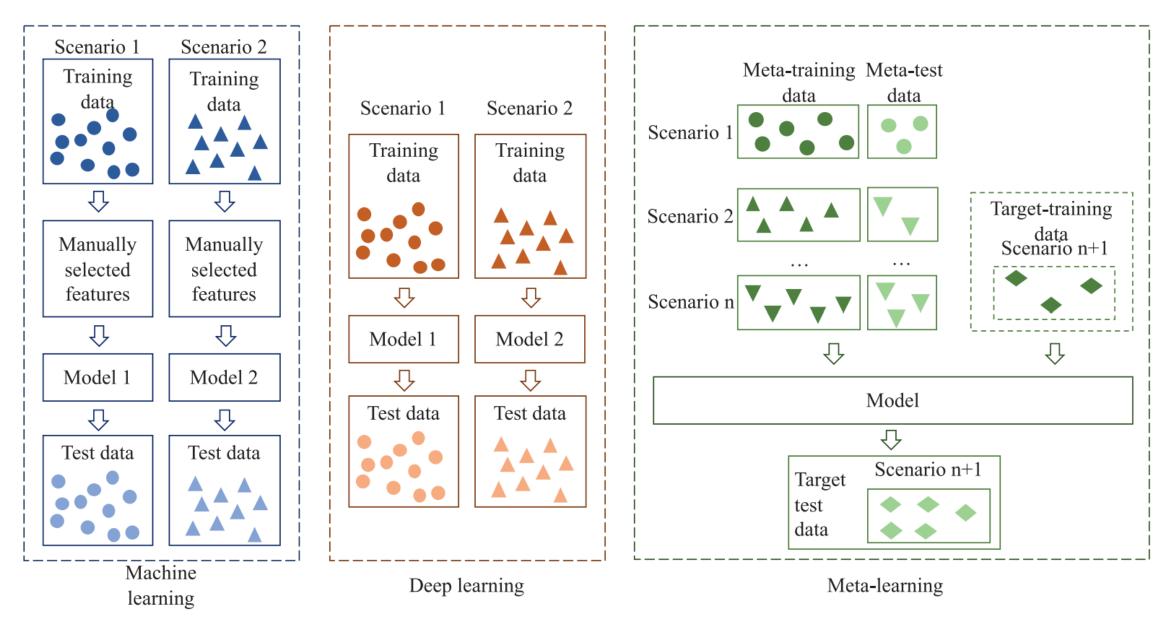
Meta Learning: Learning to Learn

Deep Learning Transfer Learning Few-Shot Learning Meta Learning

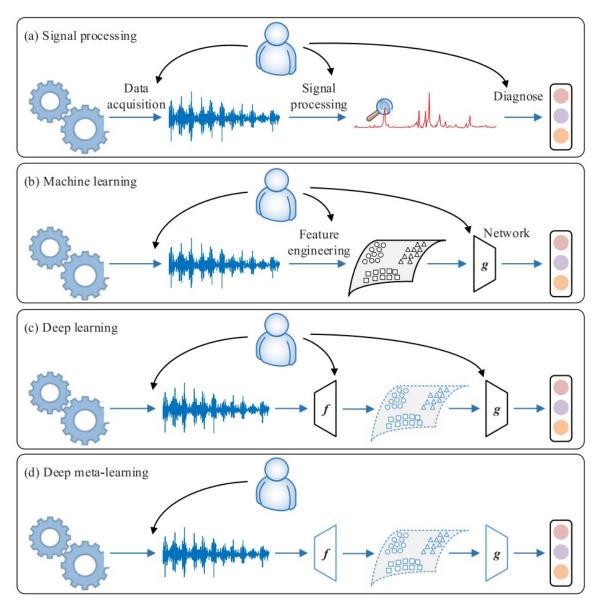
Deep Learning, Transfer Learning, Few-Shot Learning, Meta Learning

- Deep Learning
 - Transfer Learning
 - Pre-training, Fine-Tuning (FT)
- Meta Learning: Learning to Learn
- Few-Shot Learning (FSL)
- One-Shot Learning (1SL)
- Zero-Shot Learning (OSL)(ZSL)

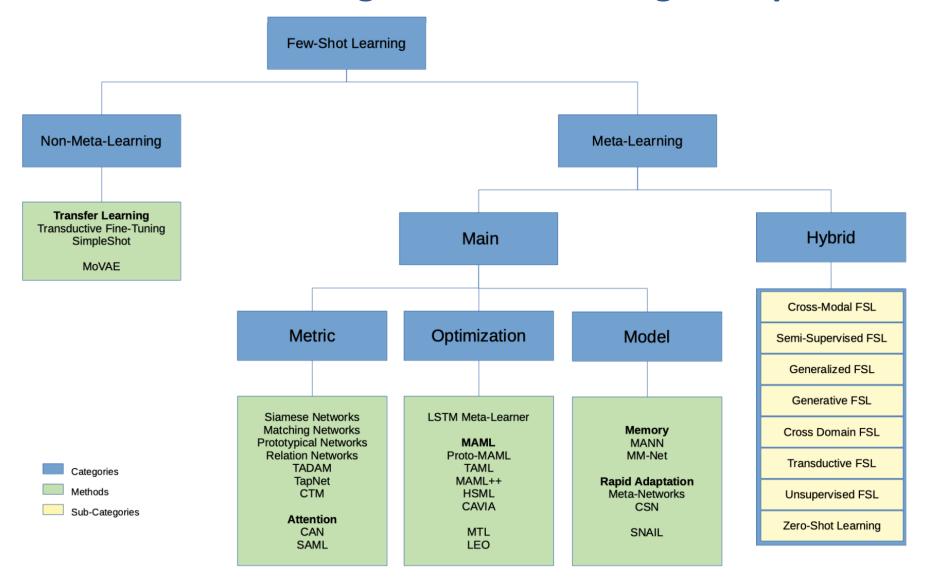
Machine Learning, Deep Learning, Meta Learning



Machine Learning, Deep Learning, Meta Learning



Few-Shot Learning (FSL) and Meta Learning Machine learning from few training examples



Meta Learning, Transfer Learning, Ensemble Learning, Continual Learning, Multi-Task Learning

Features	Method					
	Meta-learning	Transfer learning	Ensemble learning	Continual learning	Multi-task learning	Hierarchical Bayesian models
Learning from prior experience		\checkmark	Х	\checkmark	Х	\checkmark
Relationship between source tasks	No limitation	Related	Same	Task streams	Related	Related
Relationship between source tasks and target tasks	No limitation	Related	Same	Related	Related	Related
Considering the requirements of the target task	\checkmark	X	X	X	X	X

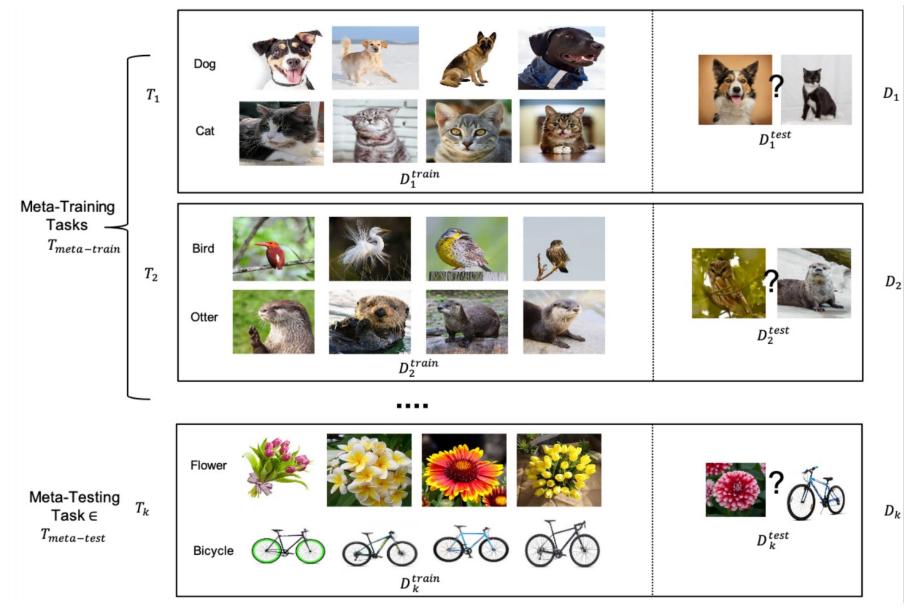
Meta-Learning and Few-shot Learning Notations and Terms

Optimization-based		Metric-based		
Meta-learning		Meta-learning		
Notation A	Term A	Notation B	Term B	
\mathcal{D}_i^{train}	Training set for task \mathcal{T}_i	S_i	Support Set for task \mathcal{T}_i	
\mathcal{D}_{i}^{i}	Test set for task \mathcal{T}_i	Q_i	Query Set for task \mathcal{T}_i	
$\mathcal{D}_{meta-train}$	Meta-training set	\mathcal{D}_{train}	Training Set	
$\mathcal{D}_{meta-test}$	Meta-testing set	\mathcal{D}_{test}	Test Set	

Meta-Learning Symbols

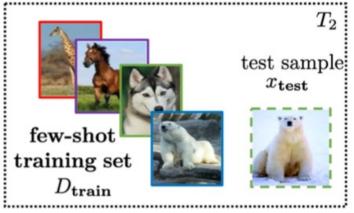
Symbol	Meaning
$\overline{\mathcal{T}_i}$	Task i
${\cal L}$	Loss function
(x_k,y_k)	Input-Output pair
$egin{aligned} (x_k,y_k)\ f_{ heta} \end{aligned}$	Model (function) with parameters θ
$g_{ heta_1}$	Embedding function
d_{θ_2} or d	Distance function
g_{ϕ}^{-}	Meta-Learning model with parameters ϕ
$P_{ heta}(y x)$	Output probability of y for input x using model parameters θ
$k_{ heta}(x_1,x_2)$	Kernel function measuring similarity between two vectors x_1 and x_2
σ	Softmax function
lpha,eta	Learning rates
w	Weights
\mathbf{v}_c	Prototype of class c
C	Set of classes present in S
S^c	Subset of S containing all elements (x_k, y_k) such that $y_k = c$
\oplus	Concatenation operator
B	Number of batches (X_b, Y_b) sampled in inner-loop for a randomly sampled task \mathcal{T}_i
I	Number of tasks \mathcal{T}_i sampled in inner-loop
J	Number of outer-loop iterations

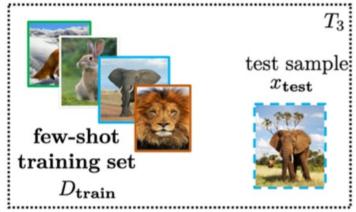
Meta-Learning Example Setup



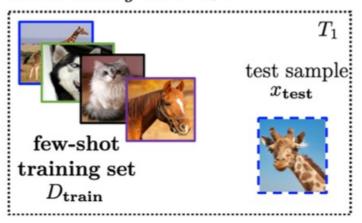
Few-Shot Learning (FSL) Solving the FSL problem by meta-learning

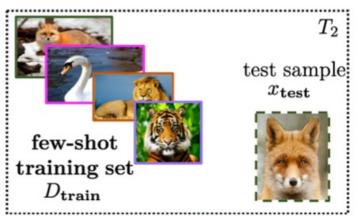
meta-training tasks T_s 's





meta-testing tasks T_t 's





. . .

Meta-learning

Each task mimics the few-shot scenario, and can be completely non-overlapping. Support sets are used to train; query sets are used to evaluate the model

Training Task 1

Training Task 2 ··

Test Task 1 ...

News

Music

Medical

Support Set:

Only_[O] France_[LOC] and_[O] Britain_[LOC] backed_[O] Fischler_[PER]'s_[O] proposal_[O].

Query Set:

Adrian_[PER] Warner_[PER] has_[O] lived_[O] in_[O] Brussels_[LOC] since_[O] 1996_[O].

Labels: {PER, PER, O, O, O, LOC, O, O}

Support Set:

Play_[O] rap_[album] album_[album] one_[album] by_[O] Gene_[artist] Vincent_[artist].

Query Set:

Add_[O] Rosemary_[artist] Clooney_[artist] to_[O] pura_[playlist] vida_[playlist] playlist_[O].

Labels: {O, artist, artist, O, playlist, playlist, O}

Support Set:

Patient_[O] received_[O] combivent_[DRUG]
nebs_[Dosage Form/Route], solumedrol_[DRUG]
125mg_[AMOUNT] IV_[Dosage Form/Route]
x1_[Dosage Frequency].

Query Set:

She was given a dose of levaquin this morning.

Labels: {O, O, O, AMOUNT, AMOUNT, O, DRUG, TIME, TIME}

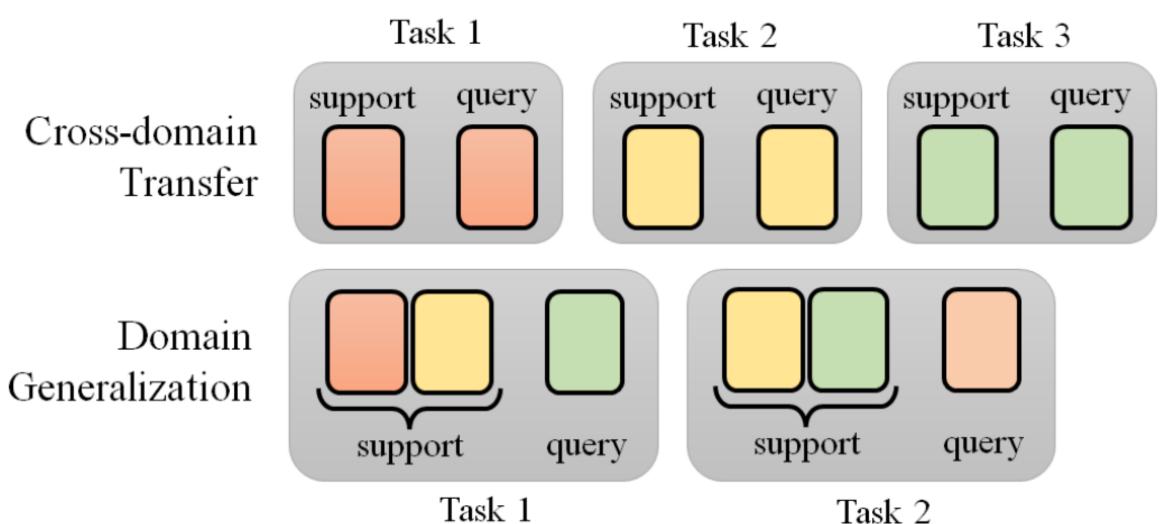
Meta-Task Learning (MTL)

Transfer Learning Strategy for Meta-Learning

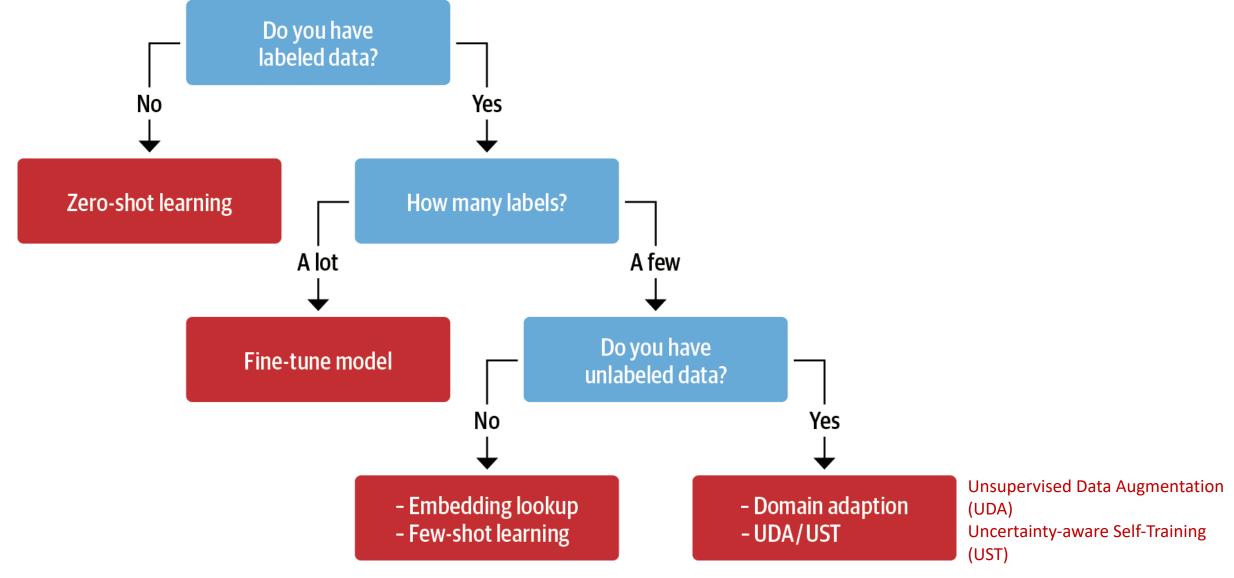
large-scale training		meta-training	meta-test	
Transfer Learning		task ₁ nodel ₁	$task_2$ $model_1 + FT$	
Meta-Learning	task ₁ model ₁	$model_N$	task _{N+1} model _{N+1}	
Meta-Transfer Learning	task model	$task_{1} \\ model + SS_{1} + FT_{1}$ $task_{N} \\ model + SS_{N} + FT_{N}$	$\frac{task_{N+1}}{model + SS_N + FT_{N+1}}$	

Meta Learning

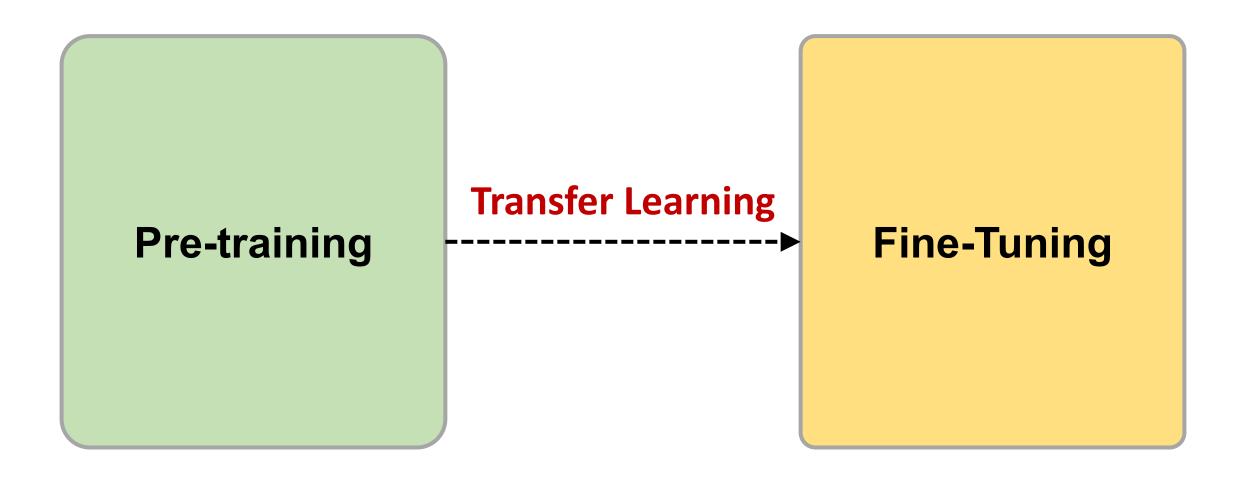
The task construction of cross-domain transfer and domain generalization



Transfer Learning, Fine-tuning, Few-shot learning



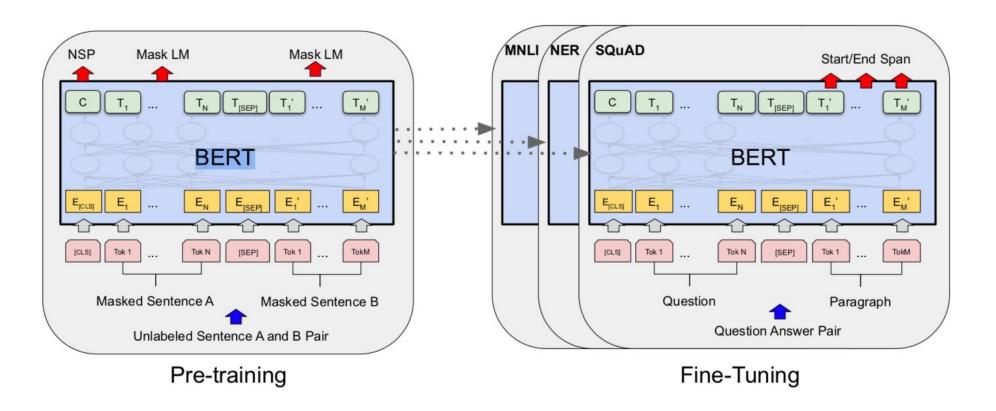
Transfer Learning



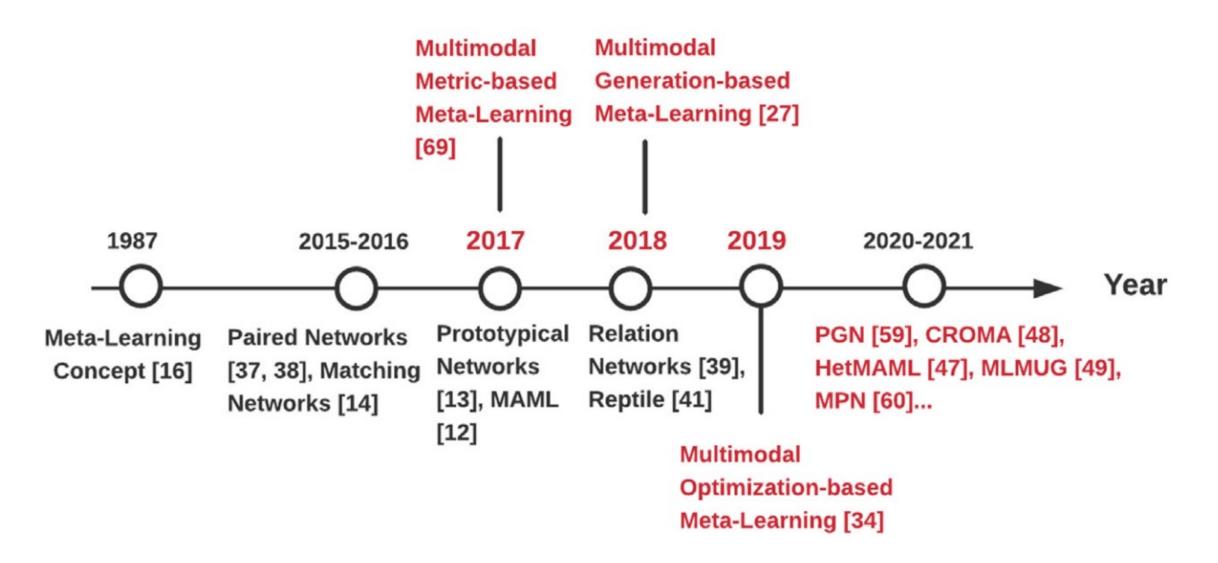
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)

Overall pre-training and fine-tuning procedures for BERT



Meta Learning



Meta Learning

Year	Achievement	Ref.
1987	(1) A new framework of "learning how to learn" with self-referential learning was proposed. The neural networks in self-referential learning can regard their weights as inputs and update them continuously.	[34,35]
	(2) Based on the conventional neural network, two types of wights were used to connect the neurons. Each type of weight presents a different learning speed.	
1990	A synaptic learning rule, which is biologically plausible, was proposed to automatically study the learning rules.	[36]
1993	A chain of meta-networks was introduced to improve the learning capacity of a recurrent neural network for a dynamic environment.	[37]
1995	A framework was proposed to optimize the learning rule within a parametric learning rule space.	[38]
1996	An improved self-referential model was proposed. Time ratios were used to measure the effects of learning processes on the later learning processes.	[39]
1998	The term "Learning to learn" was proposed to equally represent the concept of meta-learning.	[40]
2001	Gradient descent methods were firstly used in meta-learning instead of evolutionary methods, which were widely used in previous research.	[41,42]
2003	A biologically plausible meta-reinforcement learning algorithm was proposed to tune the parameters of the meta-learning model dynamically and adaptively.	[43]
2004	A new perspective of meta-learning was proposed: exploring the interaction between the learning mechanism and the specific contexts to which the mechanism applies.	[9]
2008	The zero-data learning problem was addressed.	[44]
2010-2012	The breakthrough of deep neural networks marks the beginning of the era of meta-learning.	[45-47]
2013	The relationship between transfer learning and meta-learning was described.	[48]
2016	A meta-learning algorithm named gradient descent by gradient descent was proposed.	[49]
2017	(1) MAML was proposed.	[50,51]
	(2) A doctoral thesis systematically introduced the concept of meta-learning and corresponding methods.	
2018	Reptile, an improved version of MAML, was proposed.	[52]
2019	The Capsule network provides a new method to improve the learning capacity of meta-learning, especially in computer vision.	[53]
2020	Combining auto-encoder and capsule network to focus on the zero-shot learning problem.	[54]

Meta-learning Approaches

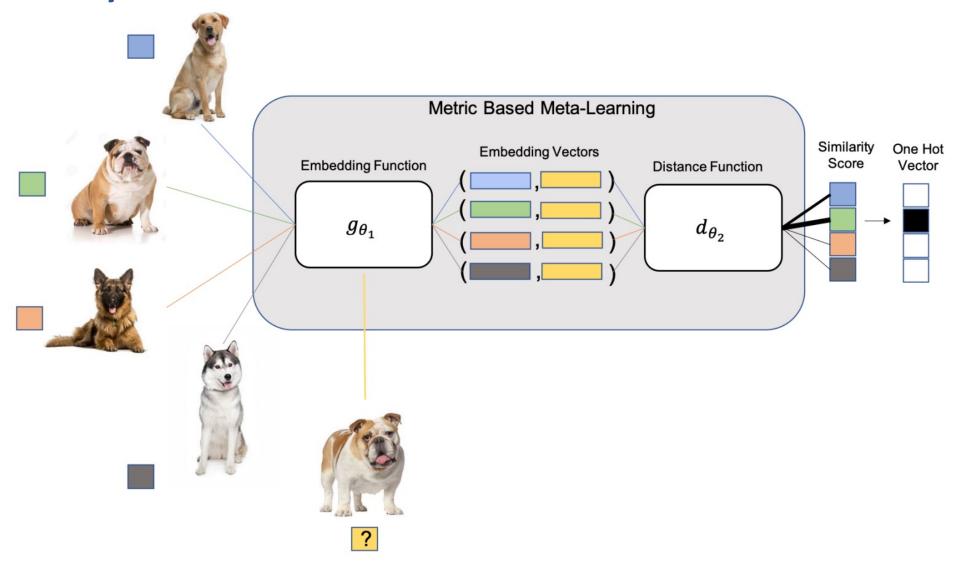
	Metric-based	Optimization-based	Model-based
Key idea	Metric Learning [19]	Gradient Descent	Memory; RNN
How $P_{\theta}(y x)$ is modeled?	$\sum_{(x_k,y_k)\in S} k_{\theta}(x,x_k)y_k,$	$P_{\theta^{'}}(y x),$ where $\theta^{'}=g_{\phi}(\theta,S)$	$f_{ heta}(x,S).$
Advantages	Faster Inference. Easy to deploy.	Offers flexibility to optimize in dynamic environments. S can be discarded postoptimization.	Faster inference with memory models. Eliminates the need for defining a metric or optimizing at test.
Disadvantages	Less adaptive to optimization in dynamic environments.	Optimization at inference is undesirable for real-world deployment.	Less efficient to hold data in memory as S grows.
	Computational complexity grows linearly with size of S at test.	Prone to overfitting.	Hard to design.

Meta Learning: Learning to Learn

Class	Methods	Reference	Summary
	Siamese Neural Networks	[32–36]	We show four metric-based meta-learning algorithms, focusing on feature extractors,
	Matching Networks	[37–41]	similarity metrics, and automatic algorithm selection
Metric-Based	Prototype Networks	[42–46]	However, the metric-based
			approaches are sensitive
	B 1 d 37 d 1	[45 50]	to the dataset and
	Relation Networks	[47–53]	increase the computational expenditure when the number of tasks is large.
	Memory-Augmented Neural Networks	[54–56]	We display three model-based
		[57,58]	approaches. MANN combines
			neural networks with external
			memory modules, but the
			model is complex. Meta-Net
	Meta Networks	[59–65]	is computationally intensive
			and has high memory
			requirements. SNAIL is relatively
Model Deced	Cincula Navanal Attantiva Mata Lagunan	[66, 71]	simplified, but has to
Model-Based	Simple Neural Attentive Meta-Learner	[66–71]	be optimized in terms of
			automatic parameter tuning and reducing computation.
	MAML	[72–80]	We present three methods
			of optimization-based
			meta-learning. MAML is
			relatively simple to implement,
Ontimization Passed	META ICTM	[01 06]	but the capacity of the model is limited.
Optimization-Based	META- LSTM	[81–86]	Meta-LSTM has a large
			capacity, but a complicated
			training process. Meta-SGD
	META- SGD	[87–93]	has improved capacity
		[3. 55]	but still has difficulties
			in generalization ability.

Metric-based Meta-learning

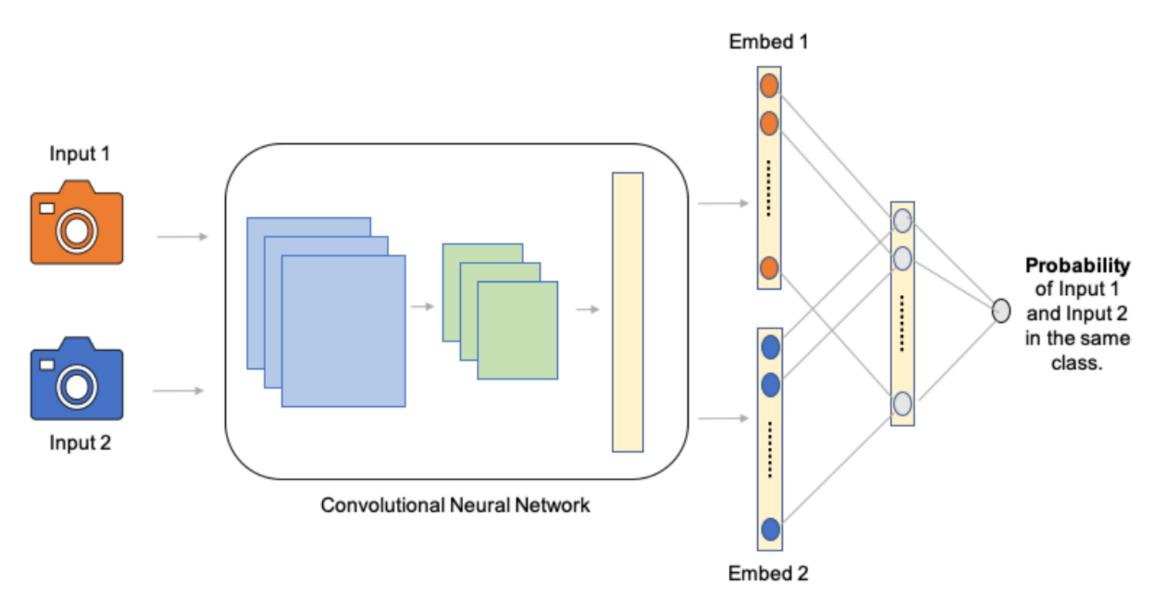
M-Way K-Shot Task (4-way-1-shot classification task)



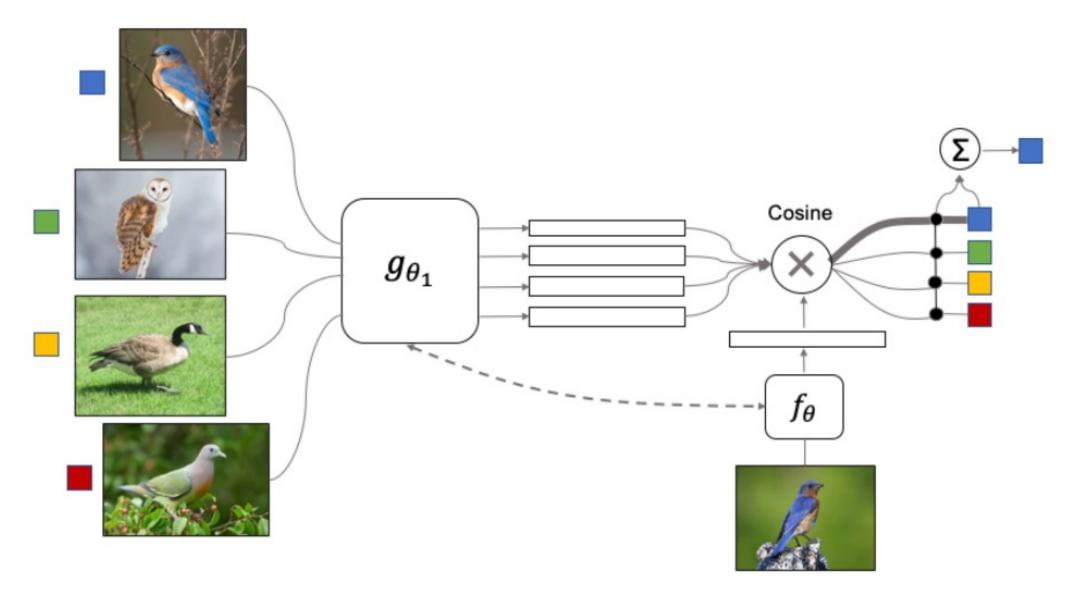
Metric-based Meta-Learning Methods

Method	T.I	$g_{ heta_1}$	$d_{ heta_2}$	Prediction	Loss
Siamese Net-	Yes	CNN	L1	$v = w \cdot d(g_{\theta_1}(x_1), g_{\theta_2}(x_2))$	$-(y\log(p) +$
works [20]				$p = \operatorname{sigmoid}(\sum_{j} v_{j})$	$(1-y)(\log(1-$
					p))
Matching Net-	Yes	CNN +	Cosine	\hat{y} =	$-\log P$
works [13]		LSTM w/	Similarity	$\sum_{k=1}^t \sigma(d(f_{\theta}(\hat{x}), g_{\theta_1}(x_k)))y_k$	
		attention		$P(y=c \hat{x}) = \hat{y}_c$	
Prototypical	Yes	CNN	Euclidean	P(y = c x) =	$-\log P$
Networks [21]				$\sigma(-d(g_{ heta_1}(x), \mathbf{v}_c))$	
Relation Net-	Yes	CNN	Learned	$r_c = d_{ heta_2}(g_{ heta_1}(x) \oplus \mathbf{v_c}))$	$\sum (r_c$ -
works [22]			by CNN		$c \in C$
					$1(y == c))^2$
TADAM [16]	No	ResNet-	Cosine /	$P_{\lambda}(y = c x) =$	$-\log P$
		12	Euclidean	$\sigma(-\lambda d(g_{ heta_1}(x,\Gamma),\mathbf{v}_c))$	
TapNet [23]	No	Resnet-12	Euclidean	P(y = c x) =	$-\log P$
				$\sigma(-d(\mathbf{M}(g_{ heta_1}(x)),\mathbf{M}(\Phi_c)))$	
CTM [24]	No	Any	Any	-	-

Convolutional Siamese Network

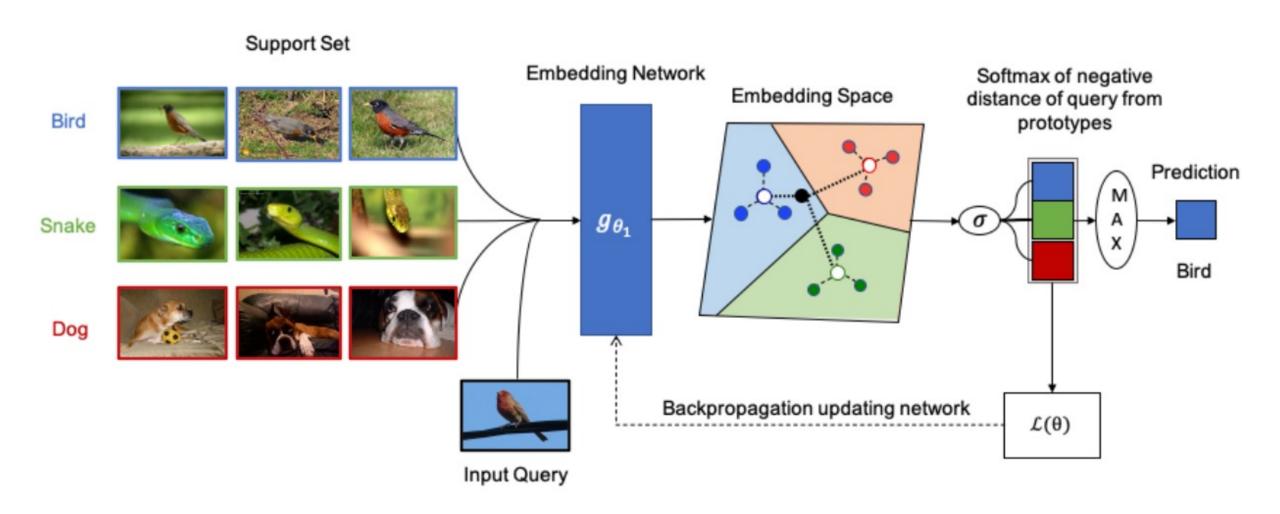


Meta Learning: Matching Networks

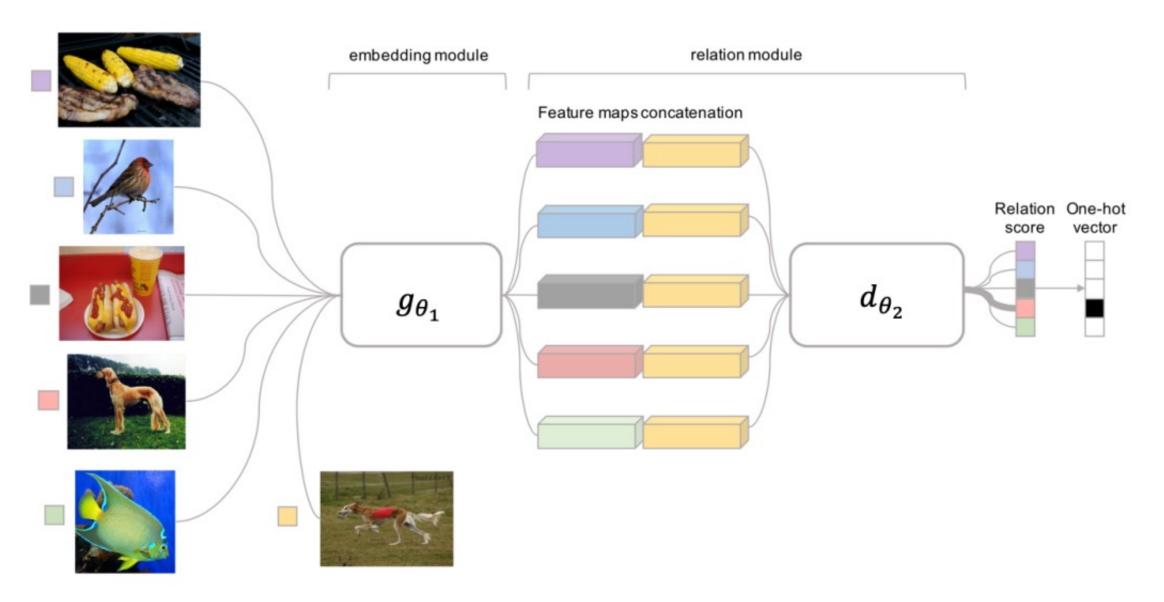


Few-shot Prototypes

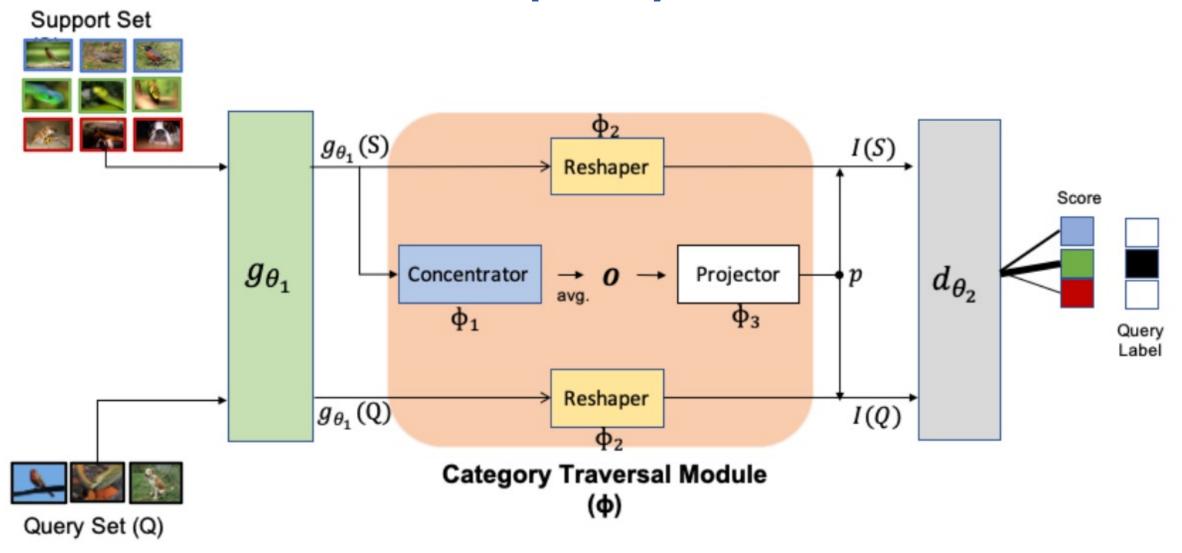
 v_c are computed as the mean of embedded support examples for each class



Meta Learning: Relation Network



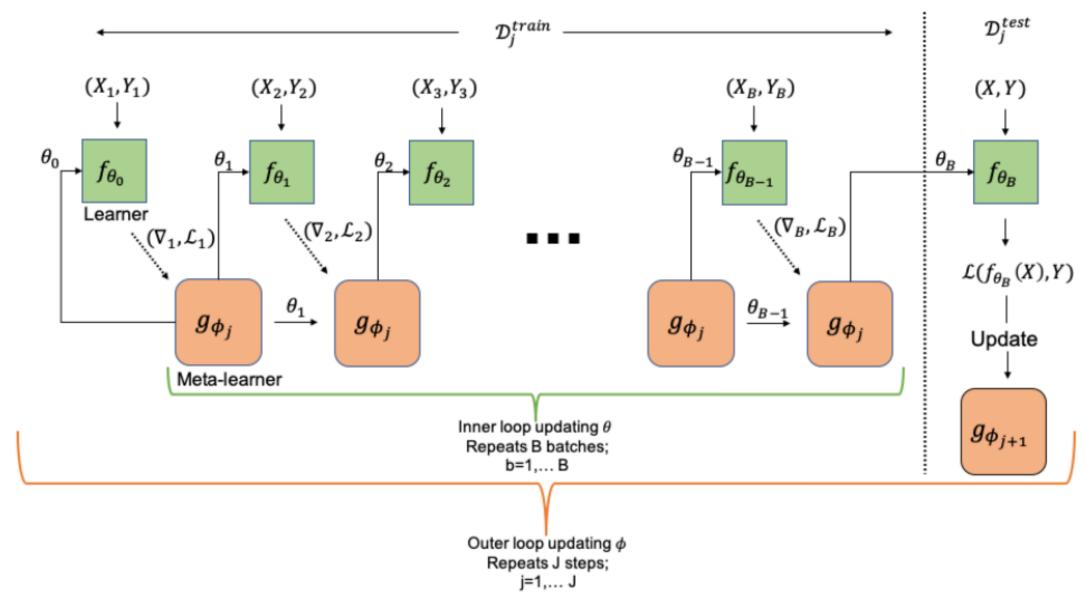
Meta Learning: Category Traversal Module (CTM)



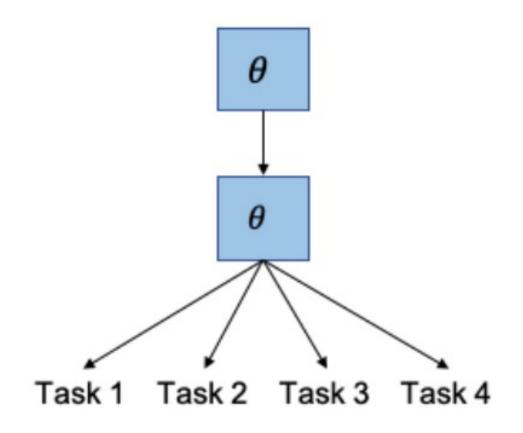
Optimization-based Meta-Learning Methods

Method	Learner	Meta-Learner
LSTM Meta-Learner [35]	Repeat $\forall b \in [1B]$ $\mathcal{L}_b \leftarrow \mathcal{L}(f(X_b; \theta_{b-1}), Y_b)$ $\theta_b \leftarrow g((\nabla_{\theta_{b-1}} \mathcal{L}_b, \mathcal{L}_b); \phi_{j-1})$	Repeat $\forall j \in [1J]$ $\mathcal{L}_{j}^{test} \leftarrow \mathcal{L}(f(X; \theta_B), Y)$ $\phi_j \leftarrow \phi_{j-1} - \alpha \nabla_{\phi_{j-1}} \mathcal{L}_{j}^{test}$
MAML [14]	$\begin{aligned} \text{Repeat} \ \forall i \in [1I] \\ \mathcal{L}_i^{train} \leftarrow \mathcal{L}(f(\mathcal{D}_i^{train}; \theta_{j-1})) \\ \theta_i^* \leftarrow \theta_{j-1} - \alpha \nabla_{\theta_{j-1}} \mathcal{L}_t^{train} \\ \mathcal{L}_i^{test} \leftarrow \mathcal{L}(f(\mathcal{D}_i^{test}; \theta_t^*)) \end{aligned}$	Repeat $\forall j \in [1J]$ $\theta_j \leftarrow \theta_{j-1} - \beta \nabla_{\theta_{j-1}} \sum_{i=1}^I \mathcal{L}_i^{test}$
MTL [37]	$\mathcal{L}_{i}^{train} \leftarrow \mathcal{L}(f(\mathcal{D}_{i}^{train}; [\theta_{j-1}, \phi_{j-1}, \Theta]))$ $\theta_{i}^{*} \leftarrow \theta_{j-1} - \alpha \nabla_{\theta_{j-1}} \mathcal{L}_{i}^{train}$ $\mathcal{L}_{i}^{test} \leftarrow \mathcal{L}(f(\mathcal{D}_{i}^{test}; \theta_{i}^{*}))$	$\theta_{j} \leftarrow \theta_{j-1} - \beta \nabla_{\theta_{j-1}} \sum_{i=1}^{I} \mathcal{L}_{i}^{test}$ $\phi_{j} \leftarrow \phi_{j-1} - \beta \nabla_{\phi_{j-1}} \sum_{i=1}^{I} \mathcal{L}_{i}^{test}$
LEO [38]	$\begin{aligned} \phi_{j-1} &= \{\phi_e, \phi_r, \phi_d, \alpha\} \\ \mathbf{z_i} &\leftarrow g(\mathcal{D}_i^{train}; [\phi_e, \phi_r, \Theta]) \\ \theta_i &\leftarrow g(\mathbf{z_i}; \phi_d) \\ \mathcal{L}_i^{train} &\leftarrow \mathcal{L}(f(\mathcal{D}_i^{train}; \theta_i)) \\ \mathbf{z_i^*} &\leftarrow \mathbf{z_i} - \alpha \nabla_{\mathbf{z_i}} \mathcal{L}_i^{train} \\ \theta_i^* &\leftarrow g(\mathbf{z_i^*}; \phi_d) \\ \mathcal{L}_i^{test} &\leftarrow \mathcal{L}(f(\mathcal{D}_i^{test}; \theta_i^*)) \end{aligned}$	$\phi_j \leftarrow \phi_{j-1} - eta abla_{\phi_{j-1}} \sum_{i=1}^I \mathcal{L}_i^{test}$

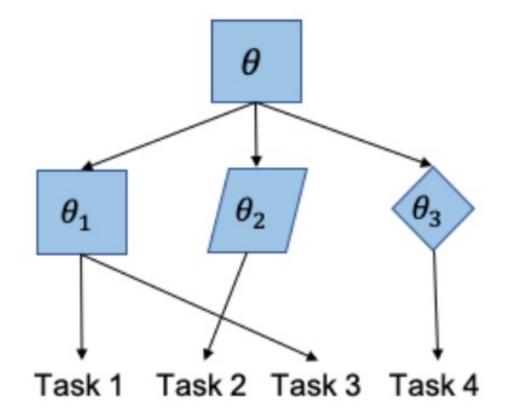
Computational Graph for the Forward Pass of the Meta-learner



Model-Agnostic Meta-Learning (MAML) Hierarchically Structured Meta-Learning (HSML)

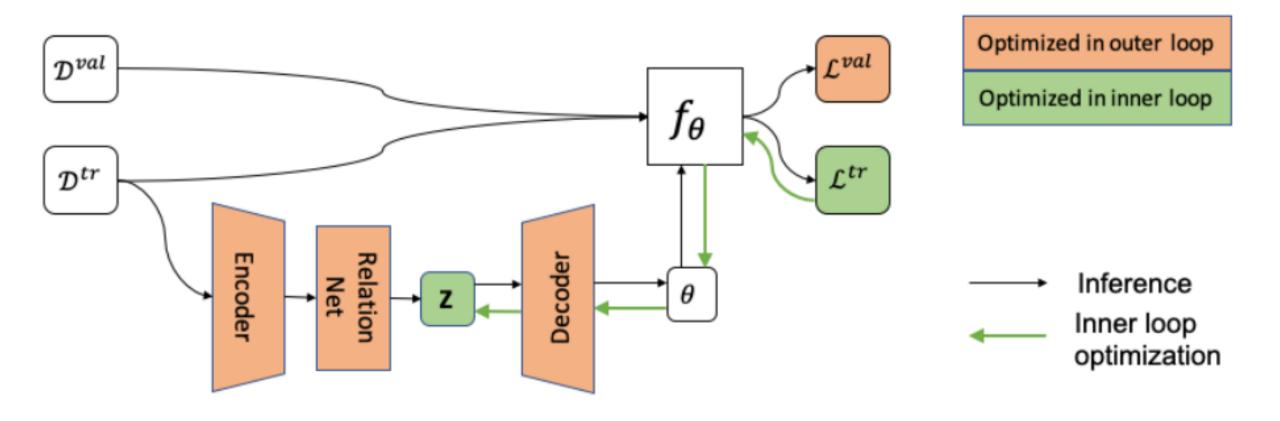


Globally Shared Initialization (MAML)

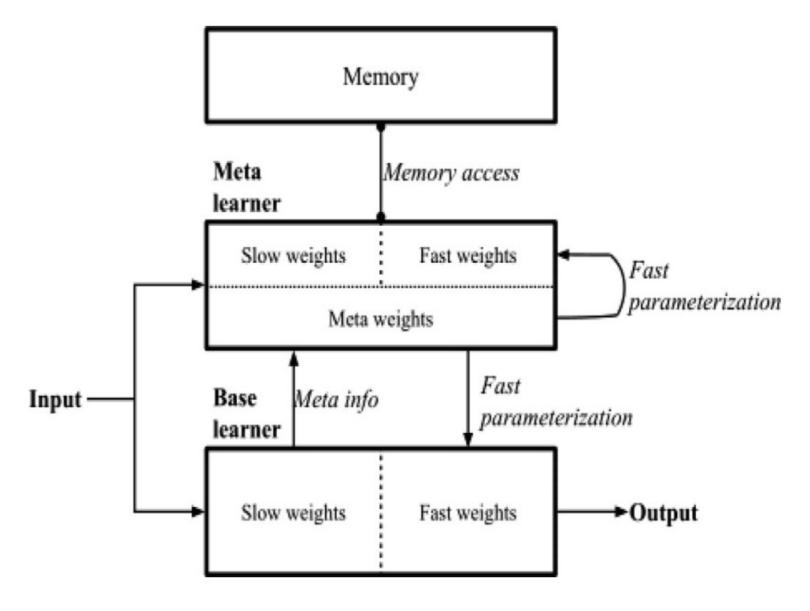


Hierarchically Clustered Initialization (HSML)

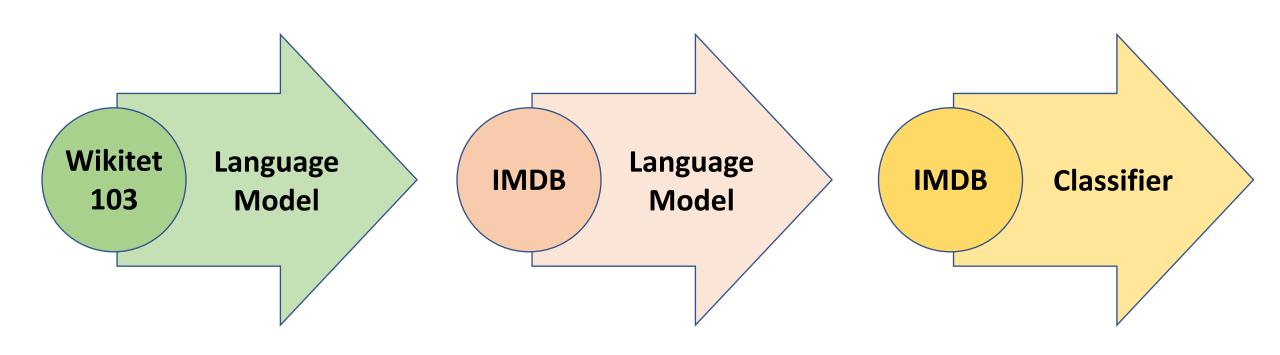
Latent Embedding Optimization (LEO)



Overall Architecture of Meta Networks



ULMFiT: 3 Steps Transfer Learning in NLP



1. Pretraining

2. Domain adaptation

3. Fine-tuning

A typical pipeline for training transformer models

with the Datasets, Tokenizers, and Transformers libraries

Datasets

Tokenizers

Transformers

Datasets

Load and process datasets

Tokenize input texts

Load models, train and infer

Load metrics evaluate models

Few-Shot Learning (FSL) Typical Scenarios

- Acting as a test bed for learning like human
- Learning for rare cases
- Reducing data gathering effort and computational cost

- Few-Shot Learning (FSL) is a sub-area in machine learning.
- Machine Learning Definition
 - A computer program is said to learn from experience E with respect to some classes of task T and performance measure P if its performance can improve with E on T measured by P.
 - Example: Image classification task (T), a machine learning program can improve its classification accuracy (P) through E obtained by training on a large number of labeled images (e.g., the ImageNet data set).

Machine Learning

task T	experience E	performance P
image classification [73]	large-scale labeled images for each class	classification
image classification [75]	large-scale labeled illiages for each class	accuracy
	a database containing around 30 million	
the ancient game of Go [120]	recorded moves of human experts and	winning rate
	self-play records	

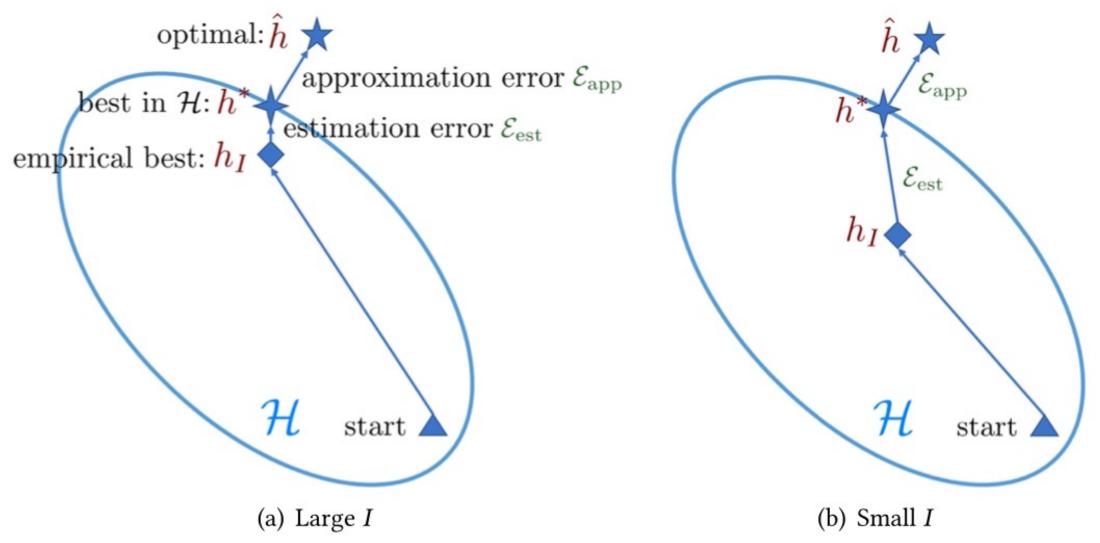
- Few-shot Learning (FSL) is a type of machine learning problems (specified by E, T, and P), where E contains only a limited number of examples with supervised information for the target T.
 - Existing FSL problems are mainly supervised learning problems.
 - Few-shot classification learns classifiers given only a few labeled examples of each class.
 - image classification
 - sentiment classification from short text
 - object recognition

- Few-shot classification learns a classifier h, which predicts label y_i for each input x_i .
- Usually, one considers the N-way-K-shot classification, in which D_{train} contains I = KN examples from N classes each with K examples

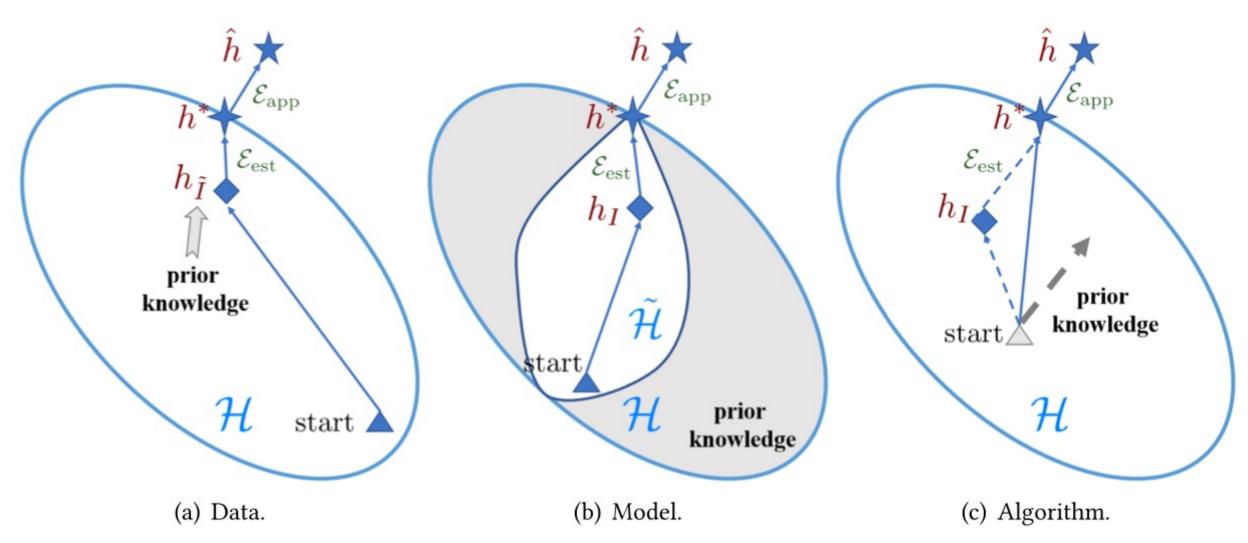
- Few-Shot Learning (FSL)
 - $K = 10 \sim 100$ examples
- One-Shot Learning (1SL)
 - K = 1 example
- Zero-Shot Learning (OSL)(ZSL)
 - K = 0

task T	exper	performance P	
task 1	supervised information	prior knowledge	performance i
character generation [76]	a few examples of new	pre-learned knowledge of	pass rate of visual
character generation [70]	character	parts and relations	Turing test
dmig toxicity discovery [4]	new molecule's limited	similar molecules' assays	classification
drug toxicity discovery [4]	assay	similar molecules assays	accuracy
image classification [70]	a few labeled images for	raw images of other classes,	classification
mage classification [70]	each class of the target T	or pre-trained models	accuracy

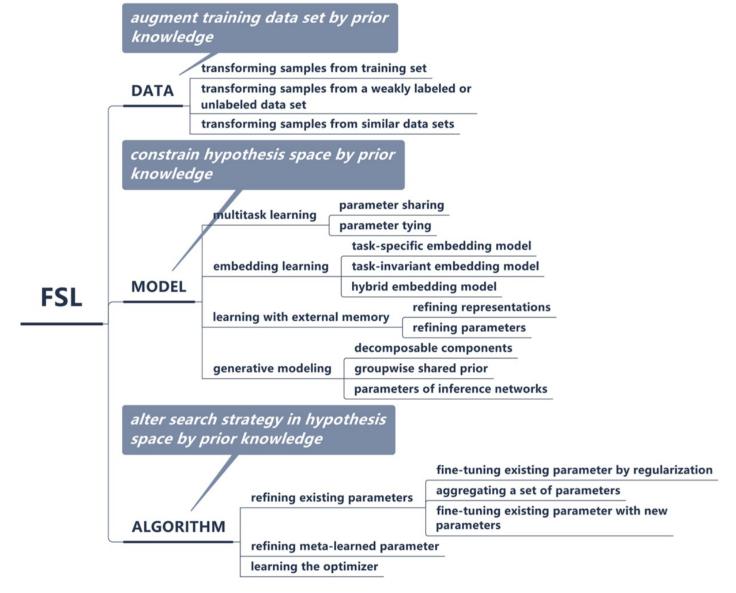
Comparison of learning with sufficient and few training samples



Different perspectives on how FSL methods solve the few-shot problem



A taxonomy of FSL methods



augment training data set by prior knowledge

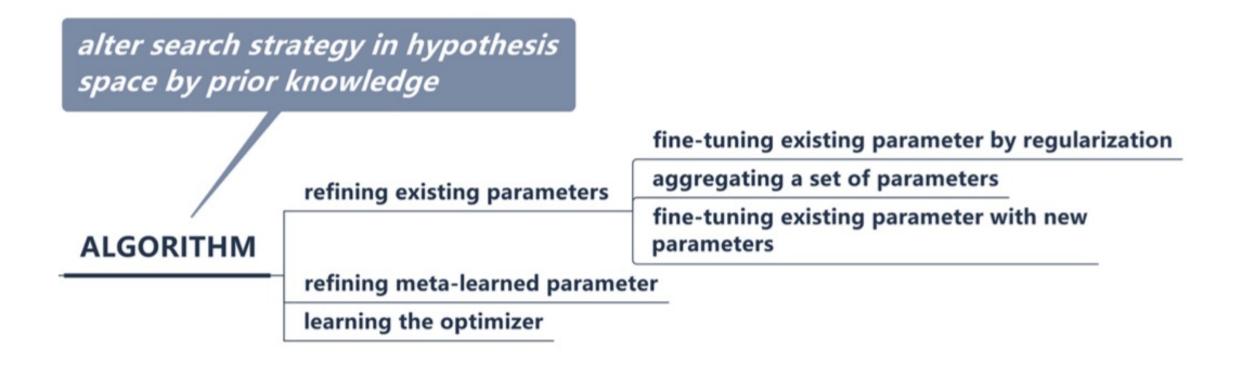
transforming samples from training set

DATA

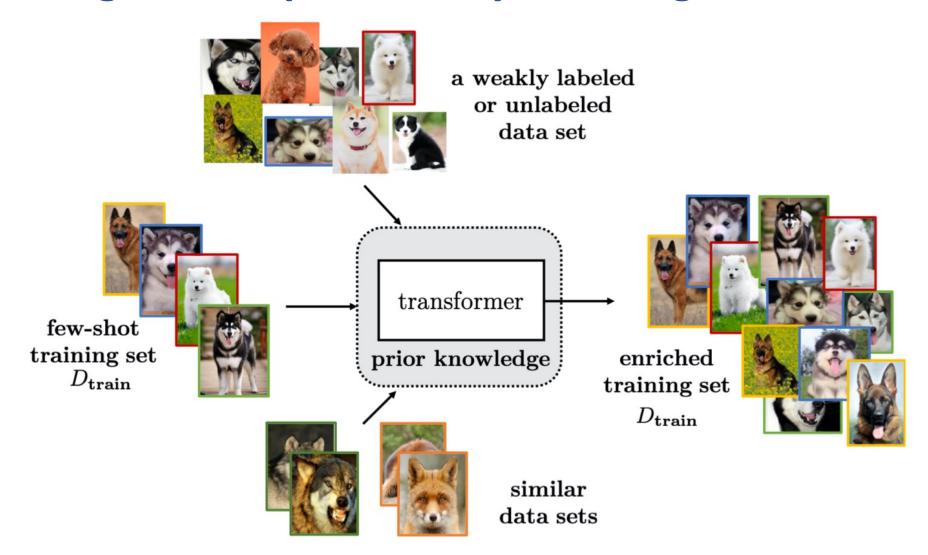
transforming samples from a weakly labeled or unlabeled data set

transforming samples from similar data sets

constrain hypothesis space by prior knowledge parameter sharing multitask learning parameter tying task-specific embedding model embedding learning task-invariant embedding model MODEL hybrid embedding model refining representations learning with external memory refining parameters decomposable components generative modeling groupwise shared prior parameters of inference networks



Few-Shot Learning (FSL) Solving the FSL problem by data augmentation



Few-Shot Learning (FSL) Characteristics for FSL Methods Focusing on the Data Perspective

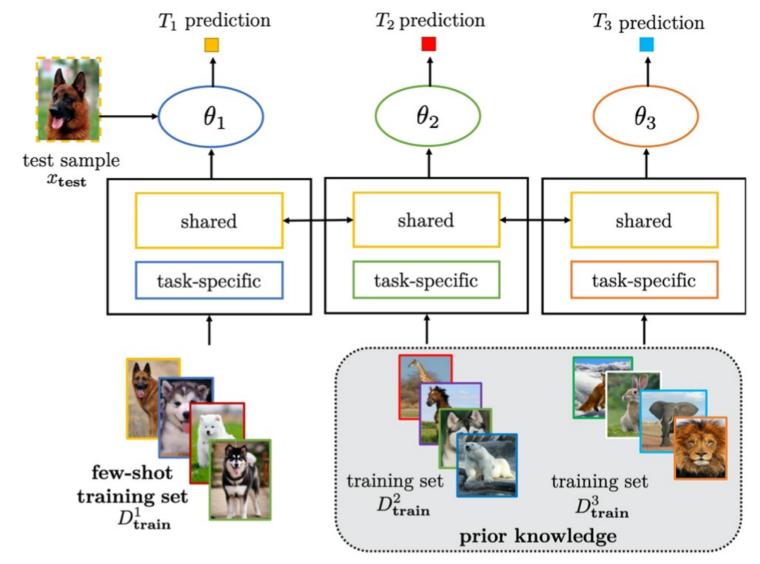
category	input (x, y)	transformer t	output (\tilde{x}, \tilde{y})
transforming samples from	original (x_i, y_i)	learned transformation	$(t(x_i), y_i)$
$D_{ m train}$		function on x_i	, , , , , , ,
transforming samples from a weakly labeled or unlabeled data set	weakly labeled or unlabeled $(\bar{x}, -)$	a predictor trained from $D_{ m train}$	$(\bar{x},t(\bar{x}))$
transforming samples from similar data sets	samples $\{(\hat{x}_j, \hat{y}_j)\}$ from similar data sets	an aggregator to combine $\{(\hat{x}_j, \hat{y}_j)\}$	$(t(\{\hat{x}_j\}), t(\{\hat{y}_j\}))$

The transformer $t(\cdot)$ takes input (x, y) and returns synthesized sample (\tilde{x}, \tilde{y}) to augment the few-shot D_{train} .

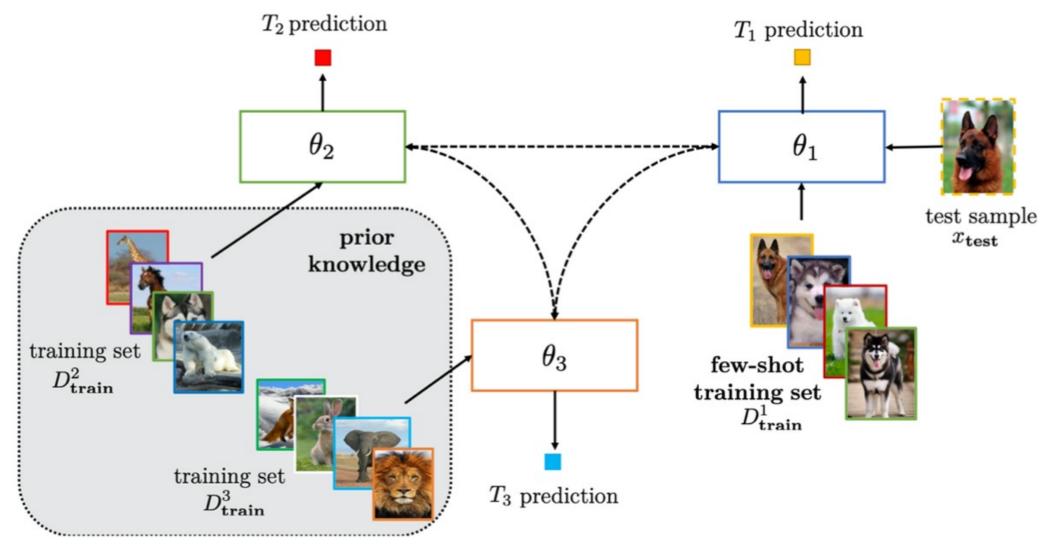
Few-Shot Learning (FSL) Characteristics for FSL Methods Focusing on the Model Perspective

strategy	prior knowledge	how to constrain ${\cal H}$	
multitask learning	other T 's with their data sets D 's	share/tie parameter	
embedding learning	embedding learned from/together with other <i>T</i> 's	project samples to a smaller embedding space in which similar and dissimilar samples can be easily discriminated	
learning with external memory	embedding learned from other T 's to interact with memory	refine samples using key-value pairs stored in memory	
generative modeling	prior model learned from other <i>T</i> 's	restrict the form of distribution	

Solving the FSL problem by multitask learning with parameter sharing



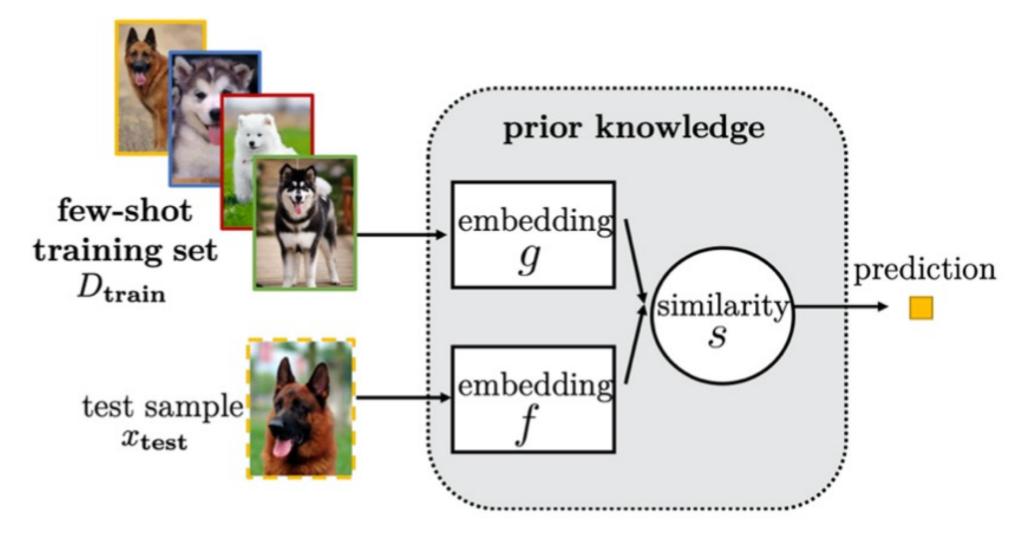
Solving the FSL problem by multitask learning with parameter tying



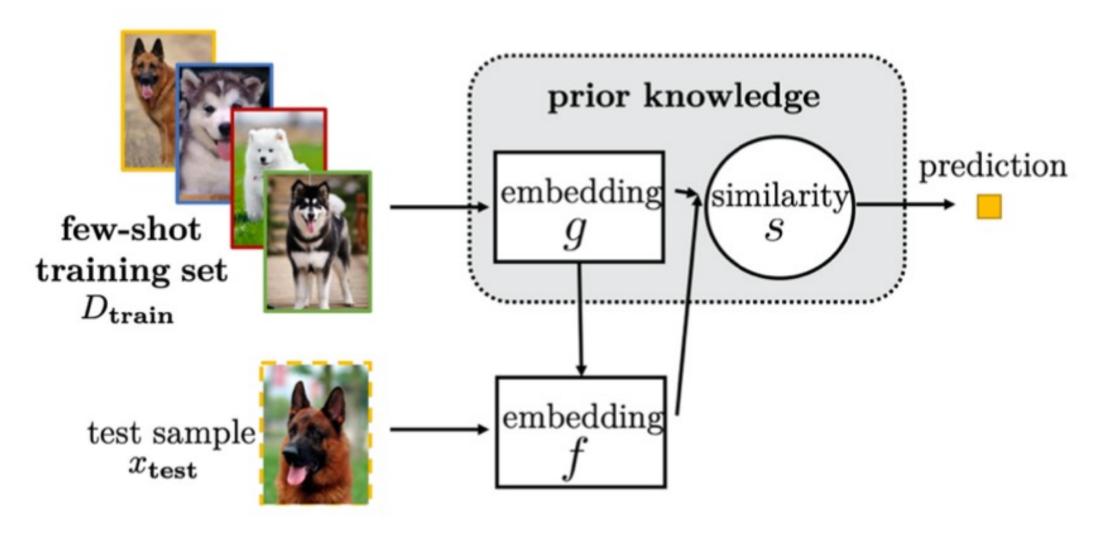
Few-Shot Learning (FSL) Characteristics of Embedding Learning Methods

category	method	embedding function f for x_{test}	embedding function g for $D_{ m train}$	similarity measure s	
task-specific	mAP-DLM/SSVM[130]	CNN	the same as f	cosine similarity	
	class relevance pseudo-metric [36]	kernel	the same as f	squared ℓ_2 distance	
	convolutional siamese net [70]	CNN	the same as f	weighted ℓ_1 distance	
	Micro-Set[127]	logistic projection	the same as f	ℓ_2 distance	
	Matching Nets [138]	CNN, LSTM	CNN, biLSTM	cosine similarity	
	resLSTM [4]	GNN, LSTM	GNN, LSTM	cosine similarity	
	Active MN [8]	CNN	biLSTM	cosine similarity	
	SSMN [24]	CNN	another CNN	learned distance	
task-invariant	ProtoNet [121]	CNN	the same as f	squared ℓ_2 distance	
tusk myunum	semi-supervised ProtoNet[108]	CNN	the same as f	squared ℓ_2 distance	
	PMN [141]	CNN, LSTM	CNN, biLSTM	cosine similarity	
	ARC [119]	LSTM, biLSTM	the same as f	-	
	Relation Net [126]	CNN	the same as f	-	
	GNN [115]	CNN, GNN	the same as f	learned distance	
	TPN [84]	CNN	the same as f	Gaussian similarity	
İ	SNAIL [91]	CNN	the same as f	-	
	Learnet [14]	adaptive CNN	CNN	weighted ℓ_1 distance	
hybrid	DCCN [162]	adaptive CNN	CNN	-	
hybrid	R2-D2 [13]	adaptive CNN	CNN	-	
	TADAM [100]	adaptive CNN	the same as f	squared ℓ_2 distance	

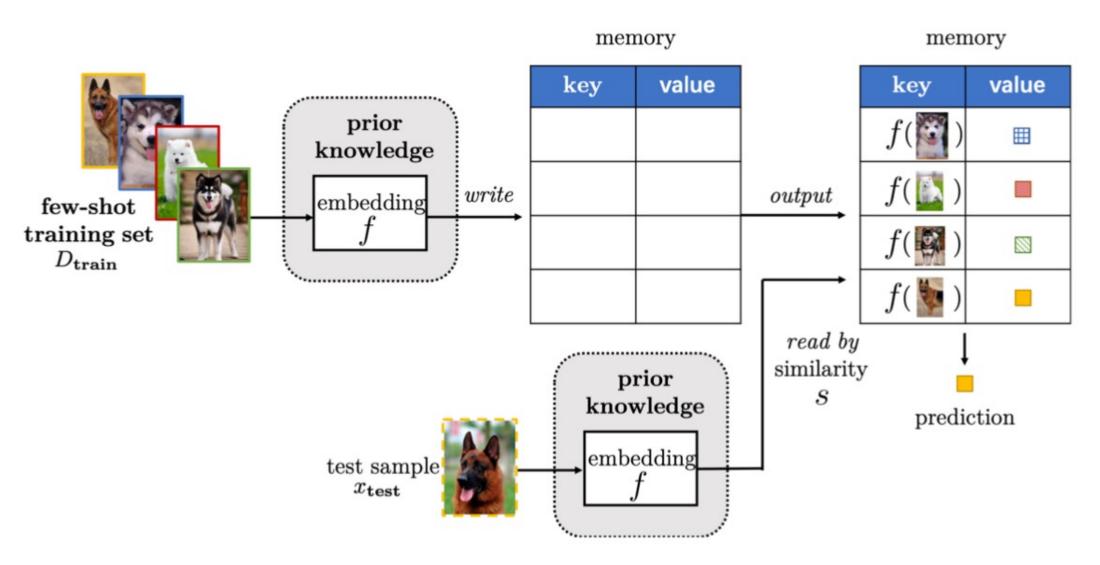
Solving the FSL problem by task-invariant embedding model



Few-Shot Learning (FSL) Solving the FSL problem by hybrid embedding model



Few-Shot Learning (FSL) Solving the FSL problem by learning with external memory

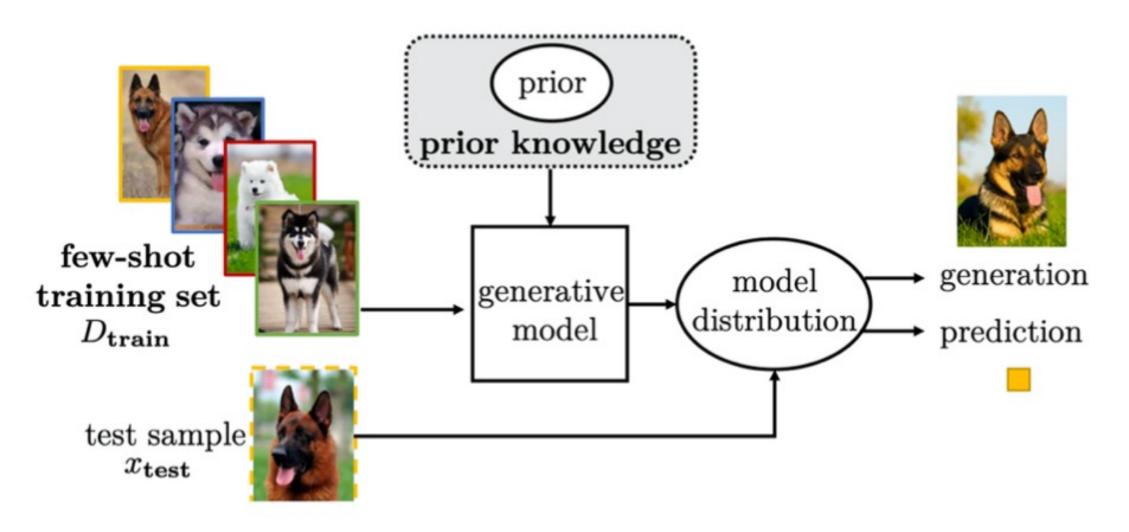


Few-Shot Learning (FSL) Characteristics of FSL Methods Based on Learning with External Memory

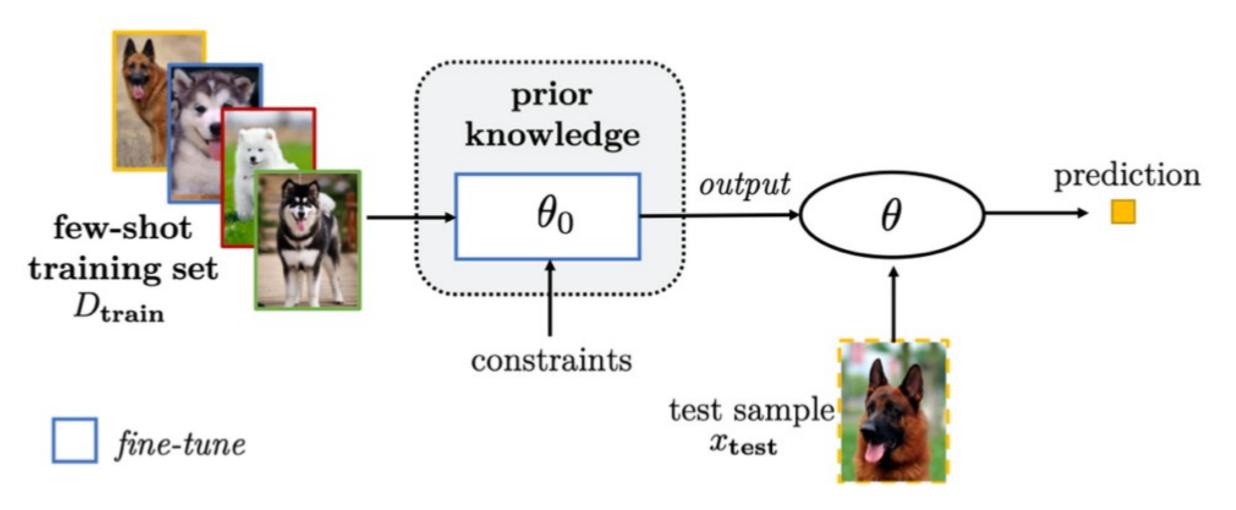
category	method		memory M	similarity s	
category	metriod	key M_{key}	value $M_{ m value}$	Similarity 3	
	MANN [114]	$f(x_i, y_{i-1})$	$f(x_i, y_{i-1})$	cosine similarity	
	APL [104]	$f(x_i)$	y_i	squared ℓ_2 distance	
refining	abstraction memory [149]	$f(x_i)$	word embedding of y_i	dot product	
representations	CMN [164]	$f(x_i)$	y_i , age	dot product	
	life-long memory [65]	$f(x_i)$	y_i , age	cosine similarity	
	Mem2Vec [125]	$f(x_i)$	word embedding of y_i , age	dot product	
refining parameters	MetaNet [96]	$f(x_i)$	fast weight	cosine similarity	
	CSNs [97]	$f(x_i)$	fast weight	cosine similarity	
	MN-Net [22]	$f(x_i)$	y_i	dot product	

Here, f is an embedding function usually pre-trained by CNN or LSTM.

Few-Shot Learning (FSL) Solving the FSL problem by generative modeling



Solving the FSL problem by fine-tuning existing parameter θ_{θ} by regularization

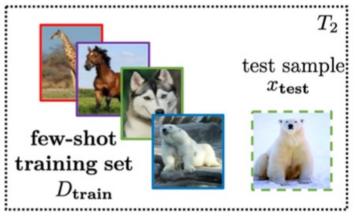


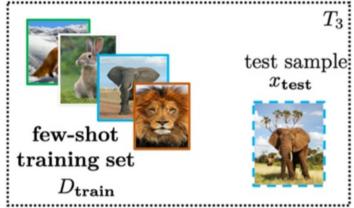
Few-Shot Learning (FSL) Characteristics for FSL Methods Focusing on the Algorithm Perspective

strategy	prior knowledge	how to search $ heta$ of the h^* in ${\cal H}$		
refining existing parameters	learned $ heta_0$	refine $ heta_0$ by $D_{ ext{train}}$		
refining meta-learned parameters	meta-learner	refine $ heta_0$ by $D_{ ext{train}}$		
learning the optimizer	meta-learner	use search steps provided by the meta-learner		

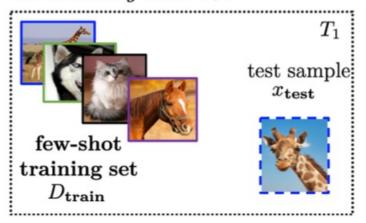
Few-Shot Learning (FSL) Solving the FSL problem by meta-learning

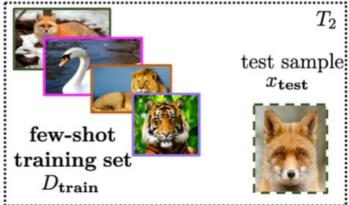
meta-training tasks T_s 's





meta-testing tasks T_t 's





Meta-learning

Each task mimics the few-shot scenario, and can be completely non-overlapping. Support sets are used to train; query sets are used to evaluate the model

Training Task 1

Training Task 2 · ·

Test Task 1 ...

News

Music

Medical

Support Set:

Only_[O] France_[LOC] and_[O] Britain_[LOC] backed_[O] Fischler_[PER]'s_[O] proposal_[O].

Query Set:

Adrian_[PER] Warner_[PER] has_[O] lived_[O] in_[O] Brussels_[LOC] since_[O] 1996_[O].

Labels: {PER, PER, O, O, O, LOC, O, O}

Support Set:

Play_[O] rap_[album] album_[album] one_[album] by_[O] Gene_[artist] Vincent_[artist].

Query Set:

Add_[O] Rosemary_[artist] Clooney_[artist] to_[O] pura_[playlist] vida_[playlist] playlist_[O].

Labels: {O, artist, artist, O, playlist, playlist, O}

Support Set:

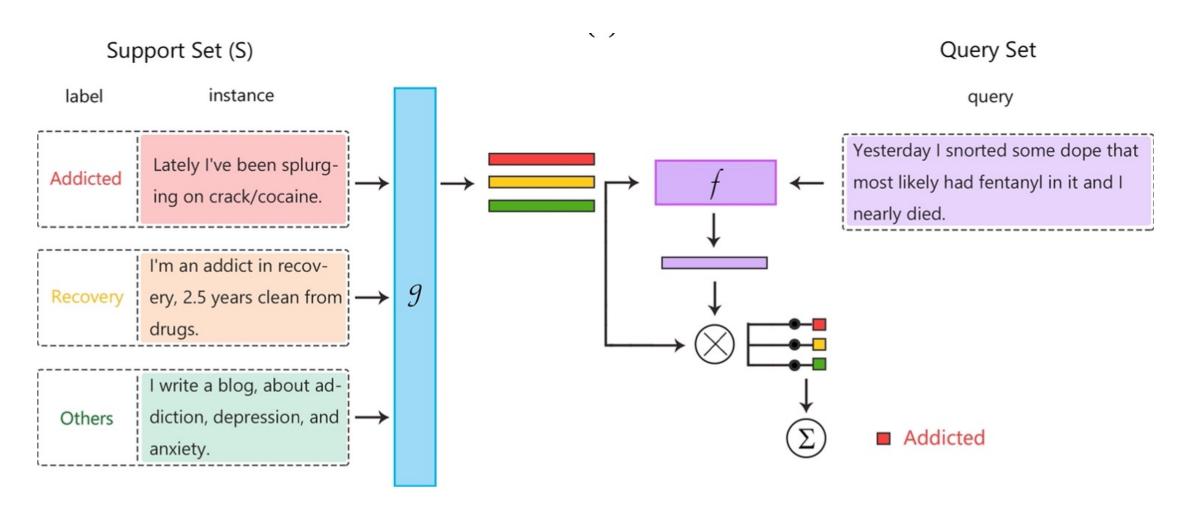
Patient_[O] received_[O] combivent_[DRUG]
nebs_[Dosage Form/Route], solumedrol_[DRUG]
125mg_[AMOUNT] IV_[Dosage Form/Route]
x1_[Dosage Frequency].

Query Set:

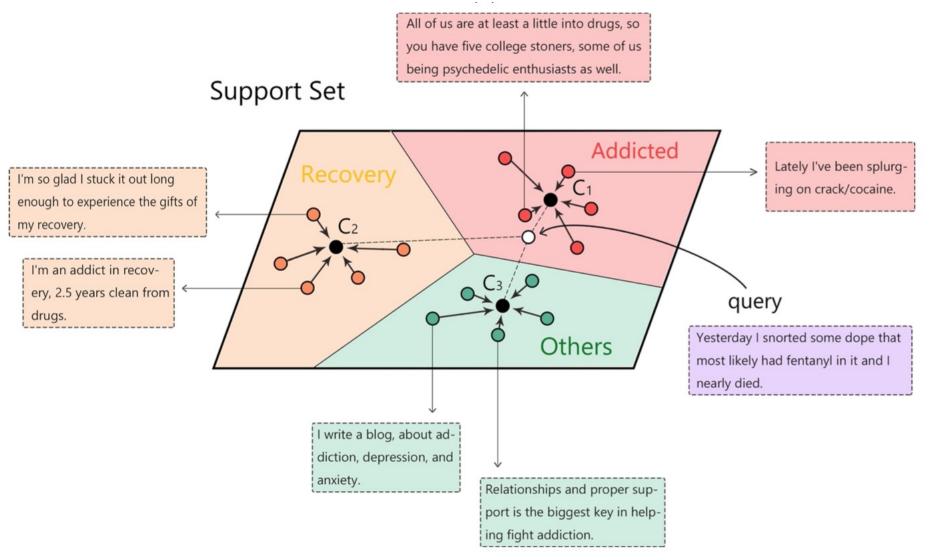
She was given a dose of levaquin this morning.

Labels: {O, O, O, AMOUNT, AMOUNT, O, DRUG, TIME, TIME}

Few-Shot Learning (FSL) Matching networks



Few-Shot Learning (FSL) Prototypical network



Few-Shot Learning (FSL) for medical text

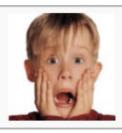
Study Year		Data source		Size of	Number of entities / classes	Entity type of	Entity type of
	Year		Research aim	training set		training domain	test domain
Alicia Lara-Clares and Ana Garcia-Serrano ⁴⁴	2019	MEDDOCAN shared task dataset ⁴⁵	NER	500 clinical cases, with no reconstruction	29	Clinical	Clinical
		BB-norm dataset from the	T. die	Original			
Ferré et al. ⁴⁶ 2019	2019	Bacteria Biotope 2019 Task ⁴⁷	Entity Normalization	dataset with no reconstruction and zero-shot	Not mentioned *	Biological	Biological
Hou et al. ⁴⁸	2020	Snips dataset ⁴⁹	Slot Tagging (NER)	1-shot and 5-shot	7	Six of Weather, Music, PlayList, Book (including biomedical), Search Screen (including biomedical), Restaurant and Creative Work.	The remaining one
Sharaf et al. ⁵⁰	2020	ten different datasets collected from the Open Parallel Corpus (OPUS) ⁵¹	Neural Machine Translation (NMT)	Sizes ranging from 4k to 64k training words (200 to 3200 sentences), but reconstructed	N/A [†]	Bible, European Central Bank, KDE, Quran, WMT news test sets, Books, European Medicines Agency (EMEA), Global Voices, Medical (ufal-Med), TED talks	Bible, European Central Bank, KDE, Quran, WMT news test sets, Books, European Medicines Agency (EMEA), Global Voices, Medical (ufal-Med), TED talks
Lu et al. ⁵²	2020	MIMIC II ²² and MIMIC III ²³ , and EU legislation dataset ⁵³	Multi-label Text Classification	5-shot for MIMIC II and III, 50-shot for EU legislation	MIMIC II: 9 MIMIC III: 15 EU legis- lation: 5	Medical	Medical

Few-Shot Learning (FSL) for medical text

Study	Year	Data source	Research aim	Size of training set	Number of entities / classes	Entity type of training domain	Entity type of test domain
Lu et al. ⁸⁰	2021	Constructed and shared a novel dataset †† based on Weibo for the research of few-shot rumor detection, and use PHEME dataset ⁸¹	Rumor Detection (NER)	For the Weibo dataset: 2-way 3-event 5-shot 9-query; for PHEME dataset: 2-way 2-event 5-shot 9-query	Weibo: 14 PHEME: 5	Source posts and comments from Sina Weibo related to COVID-19	Source posts and comments from Sina Weibo related to COVID-19
Ma et al.	2021	CCLE, CERES- correctedCRISPR gene disruption scores, GDSC1000 dataset, PDTC dataset and PDX dataset ^{‡‡}	Drug- response Predictions	1-shot, 2-shot, 5-shot and 10-shot	N/A [†]	Biomedical	Biomedical
Kormilitzin et al. 83	2021	MIMIC-III ²³ and UK-CRIS datasets ^{30,31}	NER	25%, 50%, 75% and 100% of the training set, with no reconstruction	7	Electronic health record	Electronic health record
Guo et al. ⁸⁴	2021	Abstracts of biomedicalliteratures (from relation extraction task of BioNLP Shared Task 2011 and 2019 ⁴⁷) and structured biological datasets	NER	100%, 75%, 50%, 25%, 0% of training set, with no reconstruction	Not mentioned *	Biomedical entities	Biomedical entities
Lee et al.85	2021	COVID19-Scientific ⁸⁶ , COVID19-Social ⁸⁷ (fact-checked by journalists from a website called Politi-fact.com), FEVER ⁸⁸ (Fact Extraction and Verification, generated by altering sentences extracted from Wikipedia to promote research onfact-checking systems)	Fact-Checking (close to Text Classification)	2-shot, 10-shot and 50-shot	Not mentioned *	Facts about COVID-19	Facts about COVID-19

This person is like 😁.

This person is like &.



This person is like

This was invented by Zacharias Janssen.

This was invented by Thomas Edison.

This was invented by

the Wright brothers. <EOS>

With one of these I can drive around a track, overtaking other cars and taking corners at speed

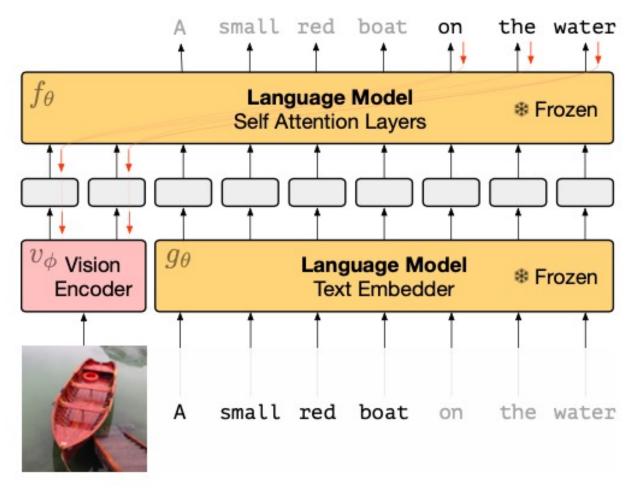
With one of these I can take off from a city and fly across the sky to somewhere on the other side of the world

With one of these I can Model Completion

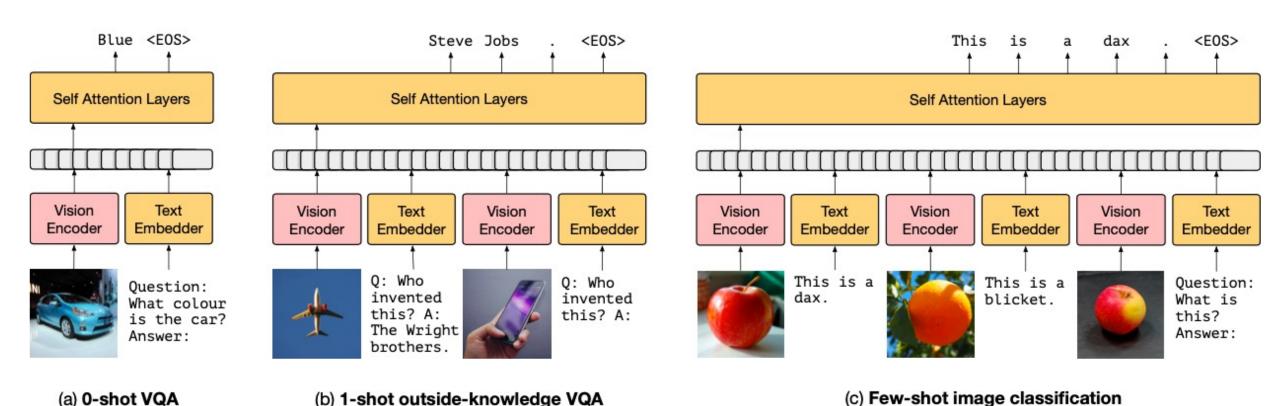
break into a secure building, unlock the door and walk right in <EOS>

Curated samples with about five seeds required to get past well-known language model failure modes of either repeating text for the prompt or emitting text that does not pertain to the image.

These samples demonstrate the ability to generate open-ended outputs that adapt to both images and text, and to make use of facts that it has learned during language-only pre-training.



Gradients through a frozen language model's self attention layers are used to train the vision encoder.



Inference-Time interface for *Frozen*. The figure demonstrates how we can support (a) visual question answering, (b) outside-knowledge question answering and (c) few-shot image classification via in-context learning.

0-repeats
0-shots
2-way
0-repeats
2-inner-shots

Task Induction

Answer with dax or blicket.

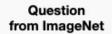
This is a blicket.

Support from ImageNet

This is a dax.

This is a blicket.

This is a dax.



Q: What is this? A: This is a

Model Completion

blicket.

(b) Fast VQA

(a) minilmageNet

0-repeats
0-shots
2-way
0-repeats
2-inner-shots



This is a blicket.

This is a dax.

This is a blicket.

This is a dax.



Q: What is the dax made of? A:

blicket (vase)

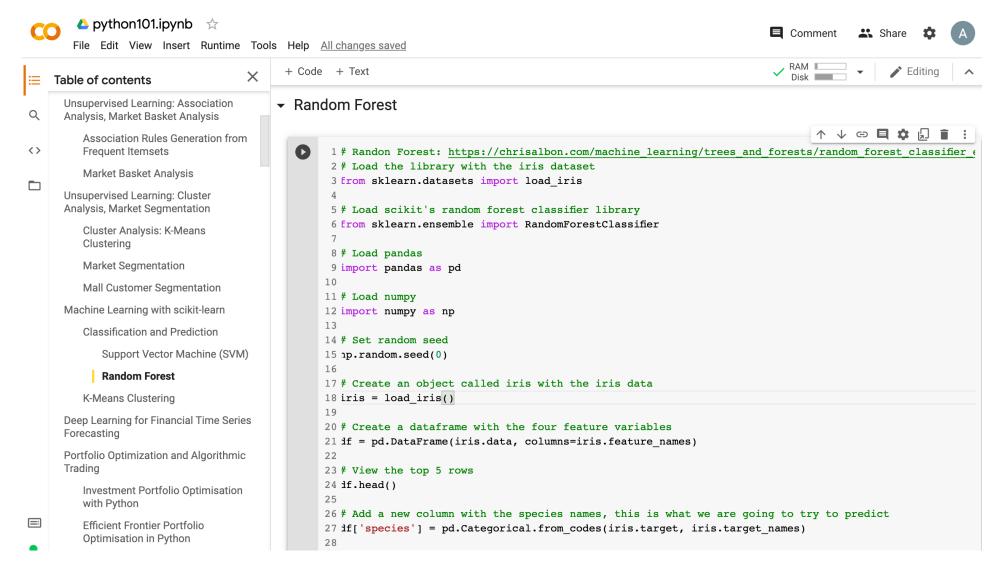
dax (table)

Model Completion

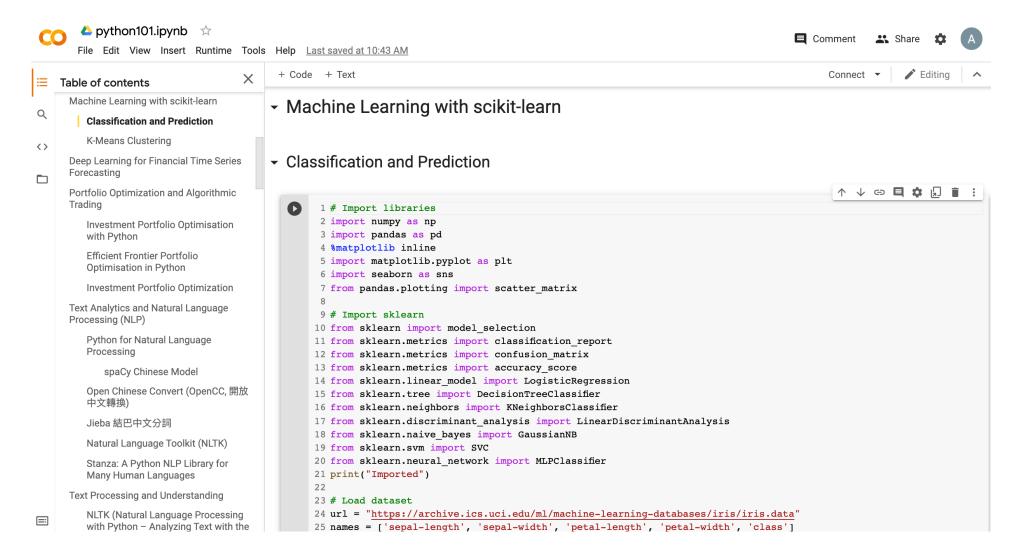
wood

Examples of (a) the Open-Ended miniImageNet evaluation (b) the Fast VQA evaluation.

Machine Learning: Ensemble Learning Random Forest



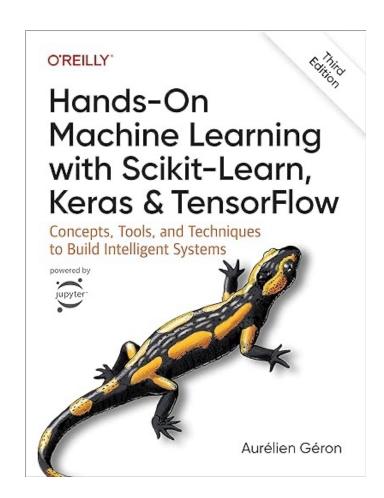
Machine Learning: Supervised Learning Classification and Prediction



Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

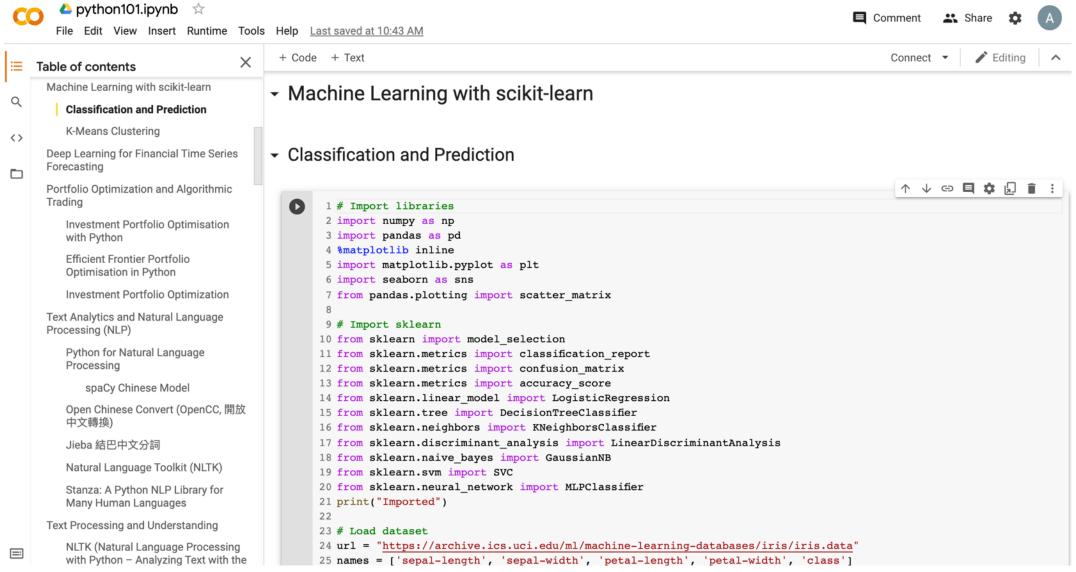
Notebooks

- 1. The Machine Learning landscape
- 2. End-to-end Machine Learning project
- 3. Classification
- 4. Training Models
- 5. Support Vector Machines
- 6. <u>Decision Trees</u>
- 7. Ensemble Learning and Random Forests
- 8. <u>Dimensionality Reduction</u>
- 9. <u>Unsupervised Learning Techniques</u>
- 10.Artificial Neural Nets with Keras
- 11. Training Deep Neural Networks
- 12. Custom Models and Training with TensorFlow
- 13. Loading and Preprocessing Data
- 14. <u>Deep Computer Vision Using Convolutional Neural Networks</u>
- 15. Processing Sequences Using RNNs and CNNs
- 16. Natural Language Processing with RNNs and Attention
- 17. Autoencoders, GANs, and Diffusion Models
- 18. Reinforcement Learning
- 19. Training and Deploying TensorFlow Models at Scale



Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



Summary

- The Theory of Learning
 - Computational Learning Theory
 - Probably Approximately Correct (PAC) Learning
- Ensemble Learning
 - Bagging: Random Forests (RF)
 - Boosting: Gradient Boosting, XGBoost, LightGBM, CatBoost
 - Stacking
 - Online learning
- Meta Learning: Learning to Learn

References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Numa Dhamani and Maggie Engler (2024), Introduction to Generative AI, Manning
- Denis Rothman (2024), Transformers for Natural Language Processing and Computer Vision Third Edition: Explore
 Generative AI and Large Language Models with Hugging Face, ChatGPT, GPT-4V, and DALL-E 3, 3rd ed. Edition, Packt
 Publishing
- Thomas R. Caldwell (2025), The Agentic AI Bible: The Complete and Up-to-Date Guide to Design, Build, and Scale Goal-Driven, LLM-Powered Agents that Think, Execute and Evolve, Independently published
- Ben Auffarth (2023), Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT and other LLMs, Packt Publishing.
- Aurélien Géron (2022), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd Edition, O'Reilly Media.
- Steven D'Ascoli (2022), Artificial Intelligence and Deep Learning with Python: Every Line of Code Explained For Readers New to AI and New to Python, Independently published.
- Nithin Buduma, Nikhil Buduma, Joe Papa (2022), Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 2nd Edition, O'Reilly Media.
- Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. (2024) "Reasoning with Large Language Models, a Survey." arXiv preprint arXiv:2407.11511.
- Madaan, Aman, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon et al. (2024) "Self-refine: Iterative refinement with self-feedback." Advances in Neural Information Processing Systems 36.