### **Artificial Intelligence**



# Generative Al, Agentic Al, and Physical Al

1141AI09 MBA, IM, NTPU (M5276) (Fall 2025) Tue 2, 3, 4 (9:10-12:00) (B3F17)





Accredited





**Institute of Information Management, National Taipei University** 

https://web.ntpu.edu.tw/~myday



# **Syllabus**



Week Date Subject/Topics

- 1 2025/09/09 Introduction to Artificial Intelligence
- 2 2025/09/16 Artificial Intelligence and Intelligent Agents;
  Problem Solving
- 3 2025/09/23 Knowledge, Reasoning and Knowledge Representation; Uncertain Knowledge and Reasoning
- 4 2025/09/30 Case Study on Artificial Intelligence I
- 5 2025/10/07 Machine Learning: Supervised and Unsupervised Learning; The Theory of Learning and Ensemble Learning

# **Syllabus**



#### Week Date Subject/Topics

6 2025/10/14 NVIDIA Fundamentals of Deep Learning I: Deep Learning; Neural Networks

7 2025/10/21 NVIDIA Fundamentals of Deep Learning II:
Convolutional Neural Networks;
Data Augmentation and Deployment

8 2025/10/28 Self-Learning

9 2025/11/04 Midterm Project Report

10 2025/11/11 NVIDIA Fundamentals of Deep Learning III:

Pre-trained Models; Natural Language Processing

# **Syllabus**



#### Week Date Subject/Topics

- 11 2025/11/18 Case Study on Artificial Intelligence II
- 12 2025/11/25 Computer Vision and Robotics
- 13 2025/12/02 Generative AI, Agentic AI, and Physical AI
- 14 2025/12/09 Philosophy and Ethics of AI and the Future of AI
- 15 2025/12/16 Final Project Report I
- 16 2025/12/23 Final Project Report II

# Generative Al, Agentic Al, and Physical Al

# Outline

- Generative Al
- Agentic Al
- Physical AI (Robotics)

### Generative AI, Agentic AI, Physical AI

#### **Physical AI**

Self-driving cars General robotics

#### **Agentic Al**

Coding assistants
Customer service
Patient care

#### **Generative Al**

Digital marketing Content creation

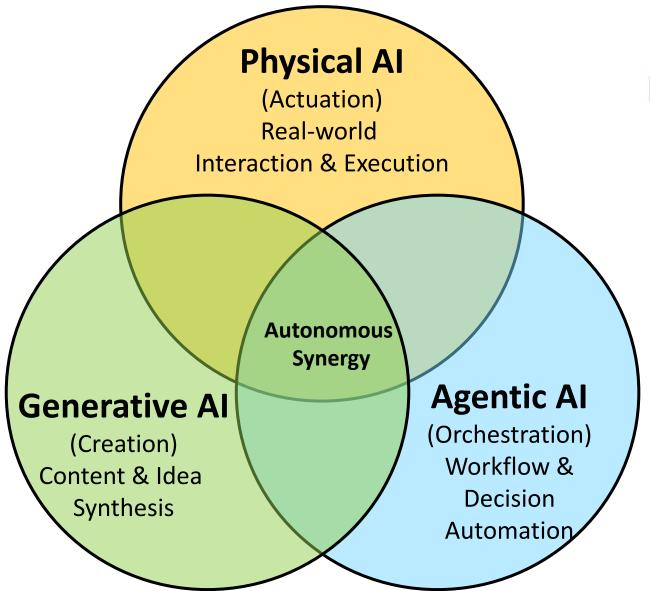
#### **Perception Al**

Speech recognition
Deep recommender systems
Medical imaging

#### 2012 AlexNet

Deep learning breakthrough

### Generative AI, Agentic AI, Physical AI

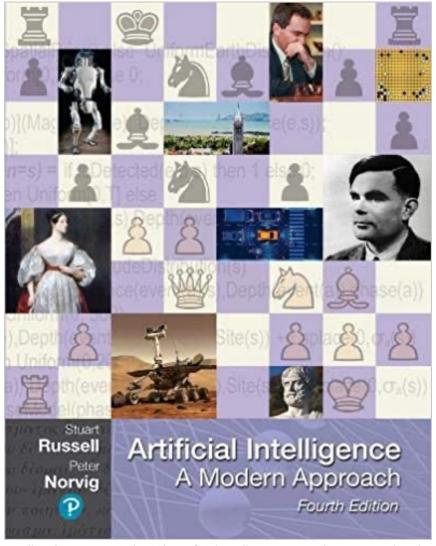


New Economic Paradigm Shift: From Creation to Execution

#### Stuart Russell and Peter Norvig (2020),

### Artificial Intelligence: A Modern Approach,

4th Edition, Pearson



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

# Artificial Intelligence: A Modern Approach

- 1. Artificial Intelligence
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- 5. Machine Learning
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of Al

# **Artificial Intelligence:** Communicating, perceiving, and acting

### **Artificial Intelligence:**

### 6. Communicating, Perceiving, and Acting

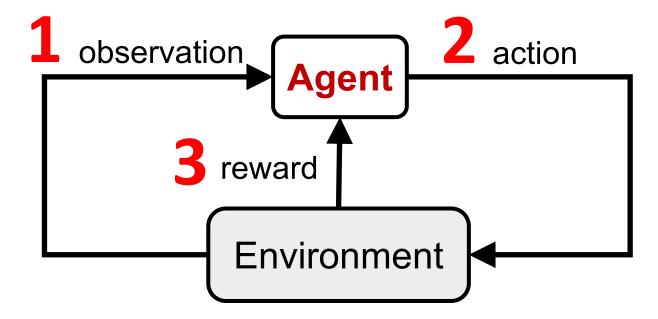
- Natural Language Processing
- Deep Learning for Natural Language Processing
- Computer Vision
- Robotics

# Reinforcement Learning (DL)

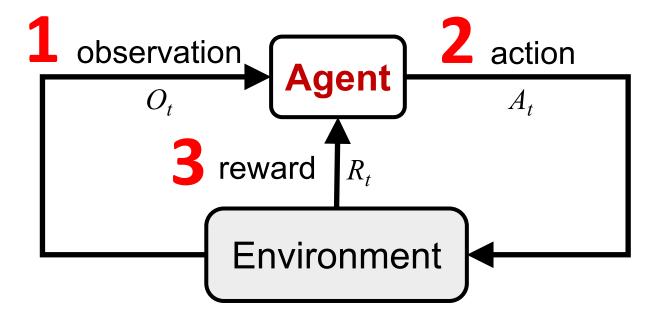
Agent

Environment

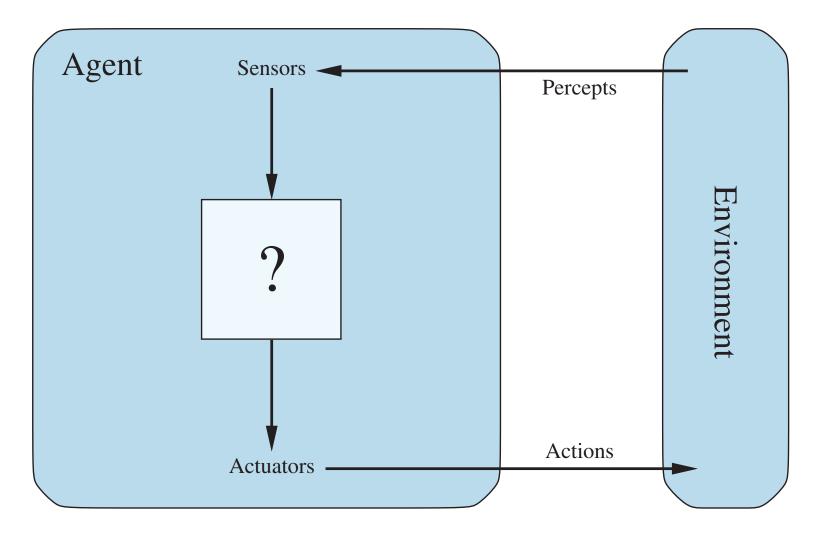
# Reinforcement Learning (DL)



# Reinforcement Learning (DL)



# Agents interact with environments through sensors and actuators



# Al Acting Humanly: The Turing Test Approach

(Alan Turing, 1950)

- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)
  - Deep Learning (DL)
- Computer Vision (Image, Video)
- Natural Language Processing (NLP)
- Robotics

### 4 Approaches of Al

2.

Thinking Humanly:
The Cognitive
Modeling Approach

3.

Thinking Rationally:
The "Laws of Thought"
Approach

1.

Acting Humanly:
The Turing Test
Approach (1950)

4.

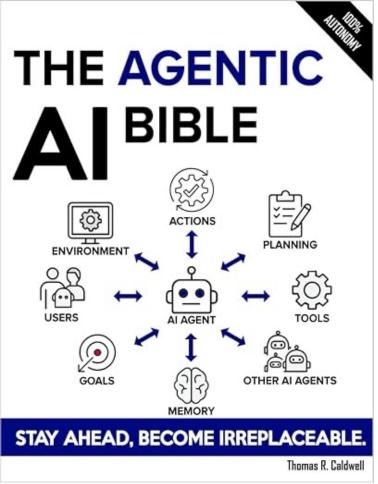
Acting Rationally:
The Rational Agent
Approach

#### Thomas R. Caldwell (2025),

### The Agentic Al Bible:

The Complete and Up-to-Date Guide to Design, Build, and Scale Goal-Driven, LLM-Powered Agents that Think, Execute and Evolve,

**Independently published** 





# Generative Al-Driven ESG Report Generation Technology

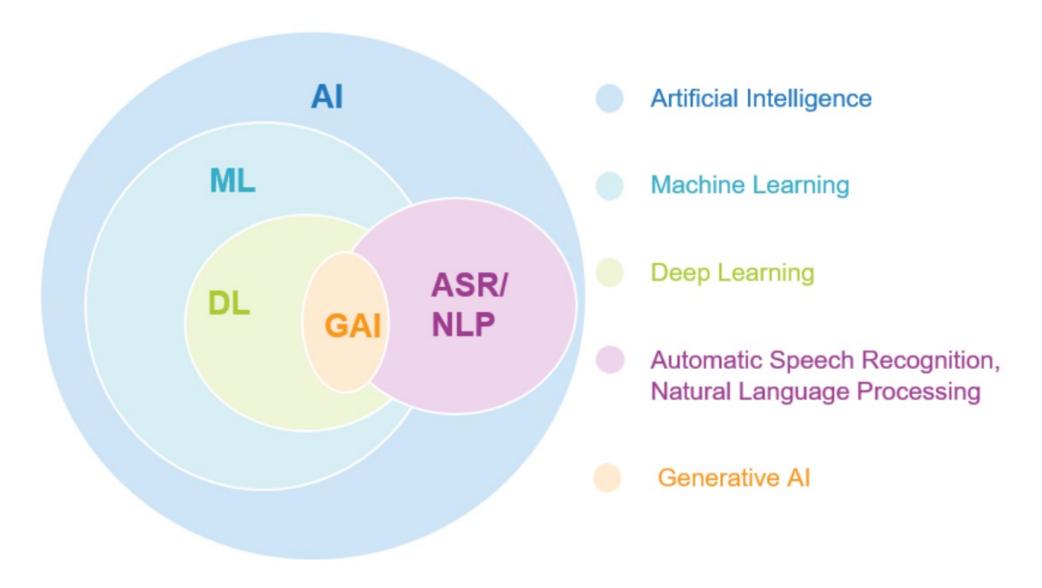
Industrial Technology Research Institute (ITRI), Fintech and Green Finance Center (FGFC, NTPU), NTPU-113A513E01, 2024/03/01~2024/12/31



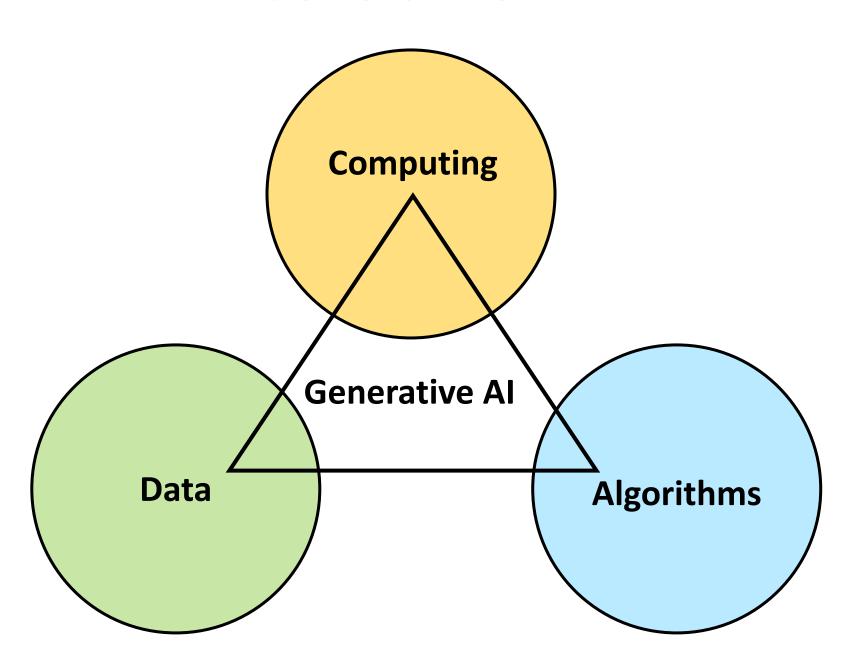
# Innovative Agentic Al Technology for Autonomous ESG Report Generation

Industrial Technology Research Institute (ITRI), Fintech and Green Finance Center (FGFC, NTPU), NTPU-114A513E01, 2025/03/01~2025/12/31

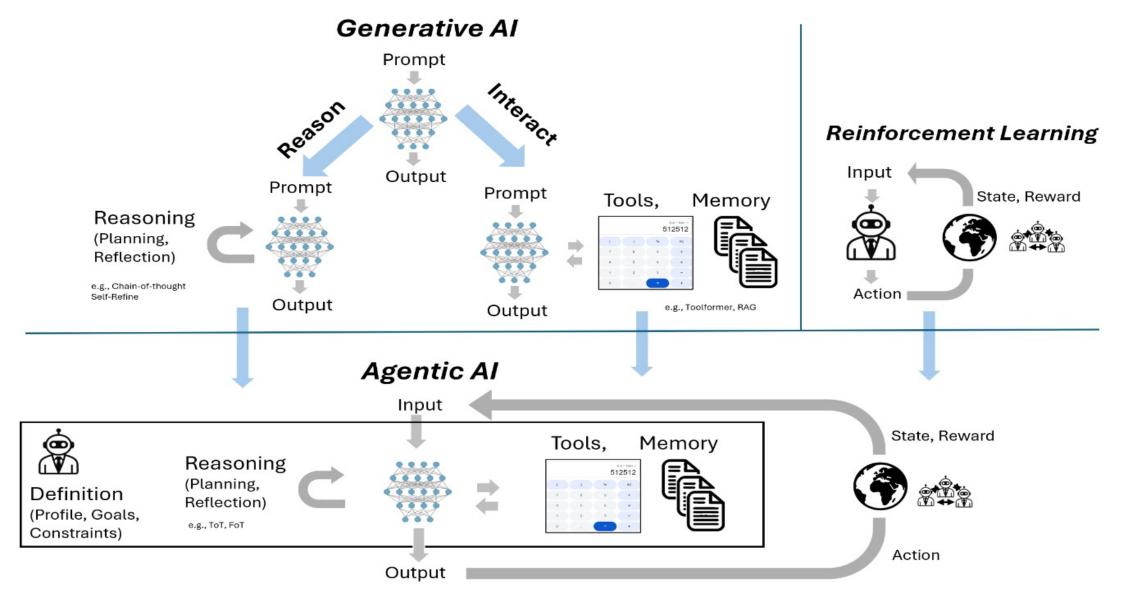
# Al, ML, DL, Generative Al



### **Generative Al**

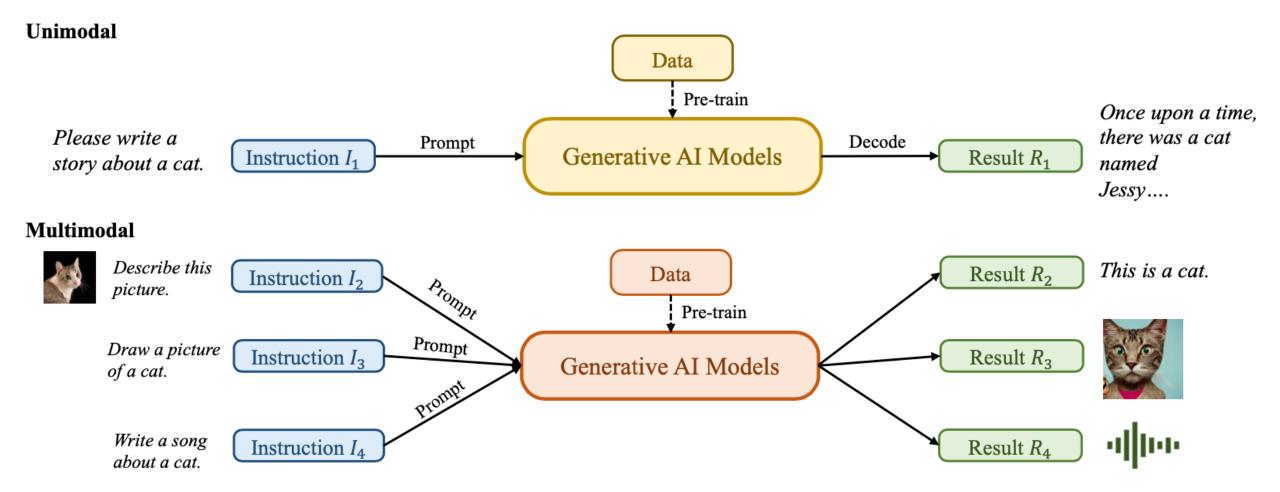


# From Generative AI to Agentic AI

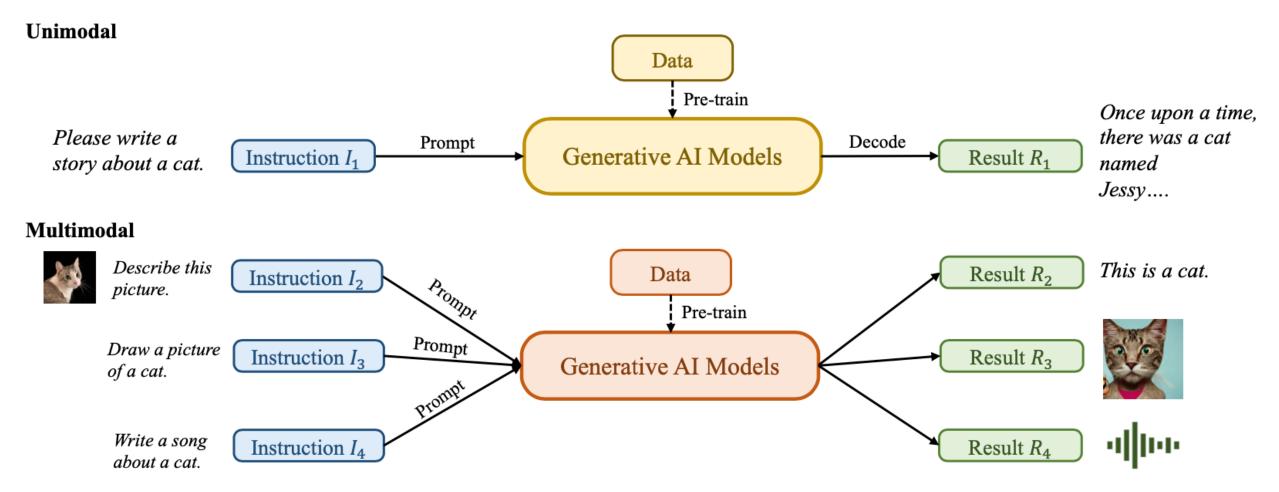


# Generative Al Text, Image, Video, Audio **Applications**

# **Generative AI (Gen AI) AI Generated Content (AIGC)**

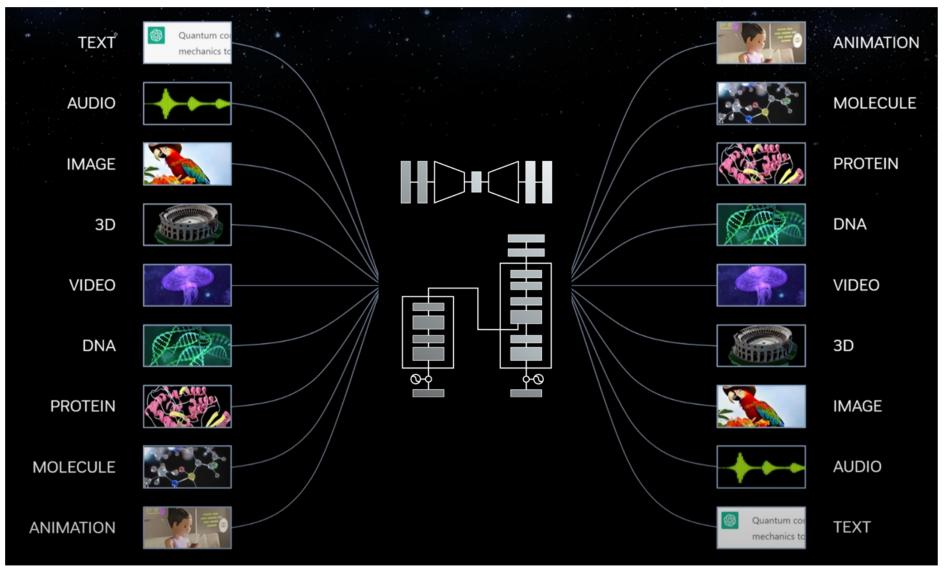


# **Generative AI (Gen AI) AI Generated Content (AIGC)**

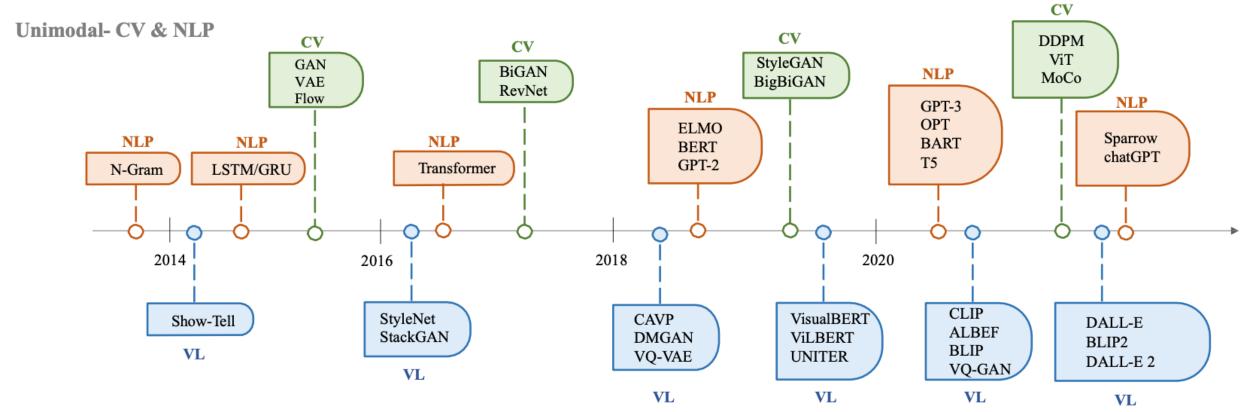


### **Modular Modalities**

#### Where Can The Transformer Fit?

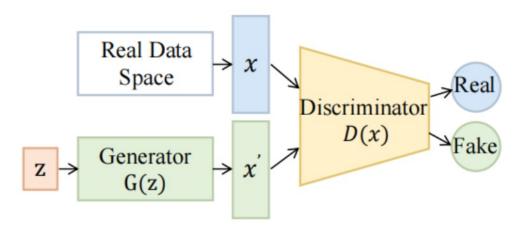


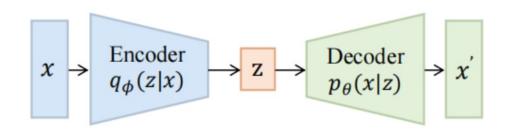
# The history of Generative Al in CV, NLP and VL



Multimodal – Vision Language

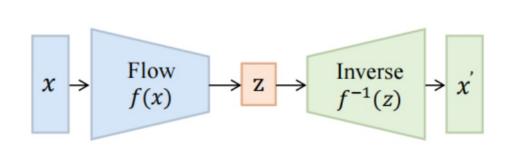
# **Categories of Vision Generative Models**

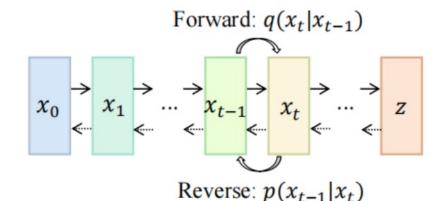




(1) Generative adversarial networks

(2) Variational autoencoders



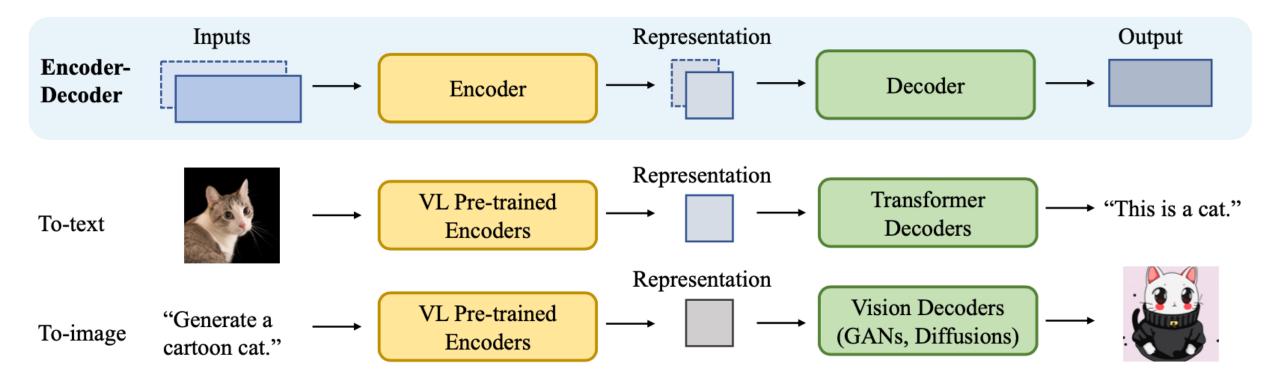


(3) Normalizing flows

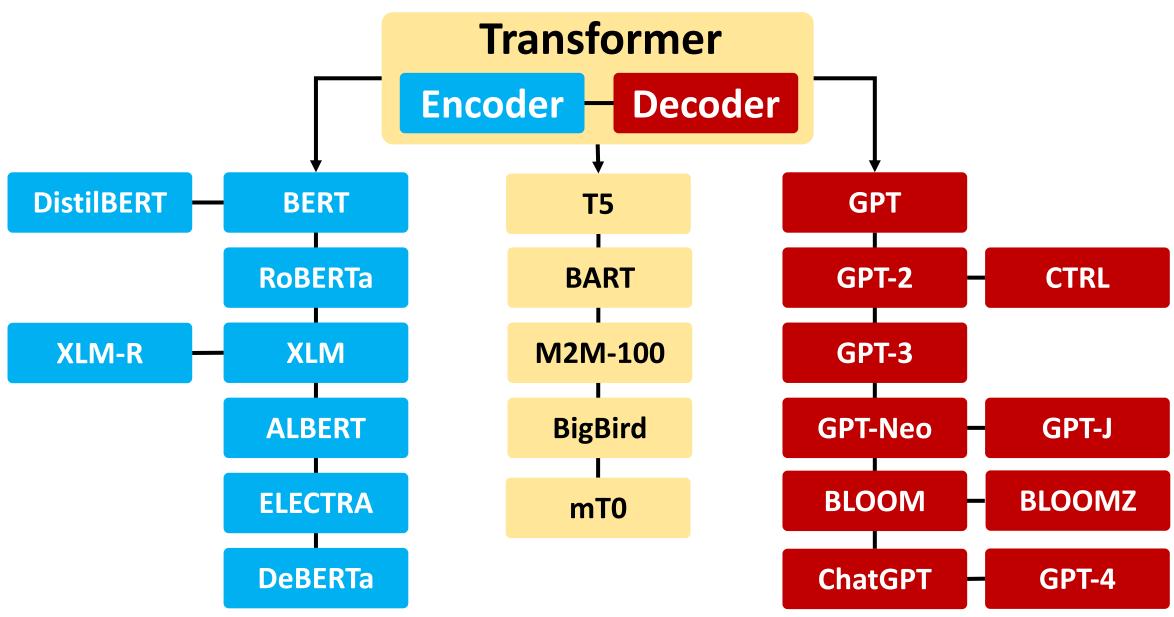
(4) Diffusion models



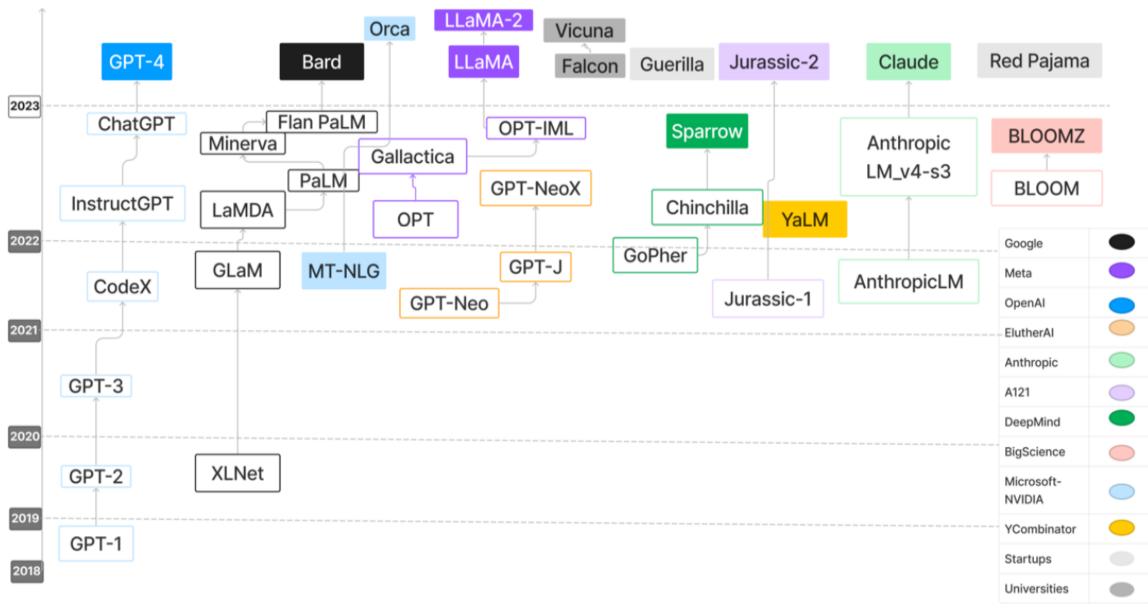




### **Transformer Models**



# Large Language Models (LLMs)



### Four Paradigms in NLP (LM)

| Paradigm                                             | Engineering                                                          | Task Relation    |
|------------------------------------------------------|----------------------------------------------------------------------|------------------|
| a. Fully Supervised Learning<br>(Non-Neural Network) | Feature<br>(e.g. word identity, part-of-speech,<br>sentence length)  | CLS TAG  LM  GEN |
| b. Fully Supervised Learning<br>(Neural Network)     | Architecture<br>(e.g. convolutional, recurrent,<br>self-attentional) | CLS TAG LM GEN   |
| Transfer Learning: Pre-training, Fine-Tuning (FT)    |                                                                      | CLS              |
| c. Pre-train, Fine-tune                              | Objective (e.g. masked language modeling, next sentence prediction)  | LM               |
| GAI: Pre-train, Prompt, and Predict (Prompting)      |                                                                      | CLS              |
| d. Pre-train, Prompt, Predict                        | Prompt (e.g. cloze, prefix)                                          | LM               |

### **Comparison of Generative AI and Traditional AI**

Feature Generative Al Traditional Al

Output type New content

Classification/Prediction

Creativity

High

Low

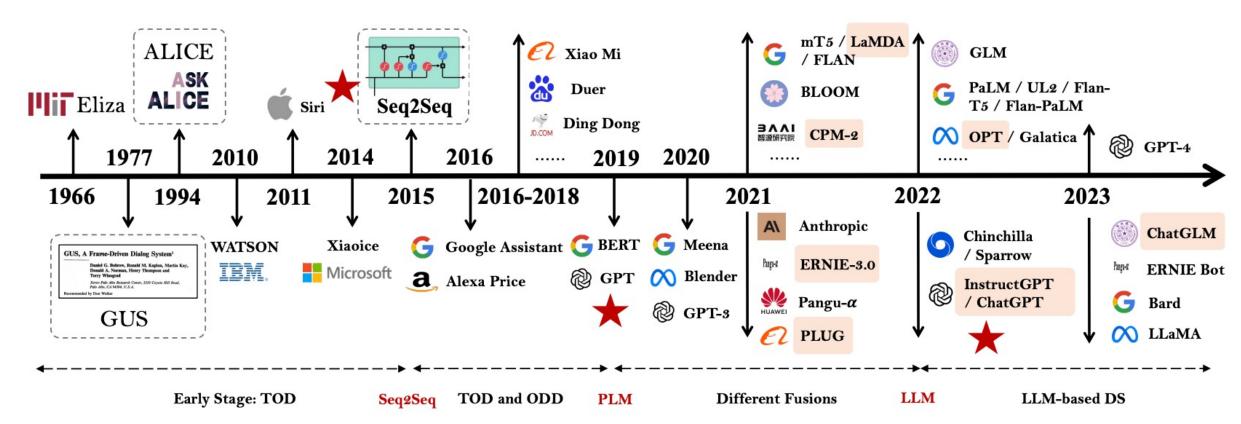
Interactivity Usually more natural Limited

# Generative Al Text, Image, Video, Audio **Applications**

#### The Development of LM-based Dialogue Systems

1) Early Stage (1966 - 2015)

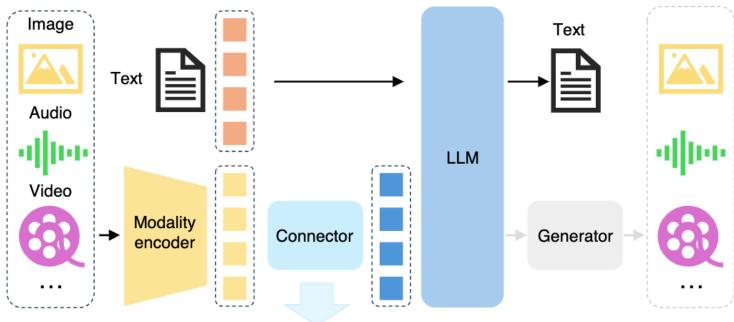
- 2) The Independent Development of TOD and ODD (2015 2019)
  - 3) Fusions of Dialogue Systems (2019 2022)
    - 4) LLM-based DS (2022 Now)



Task-oriented DS (TOD), Open-domain DS (ODD)

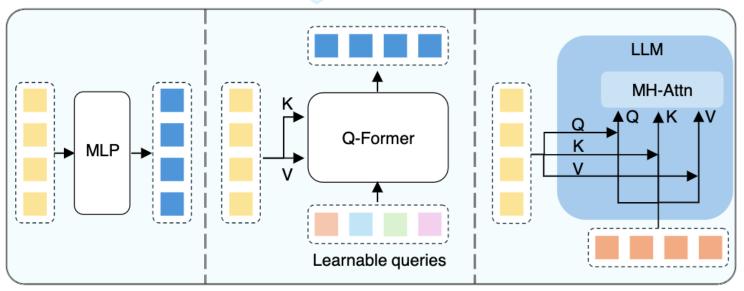
#### Multimodal Large Language Models (MLLM)





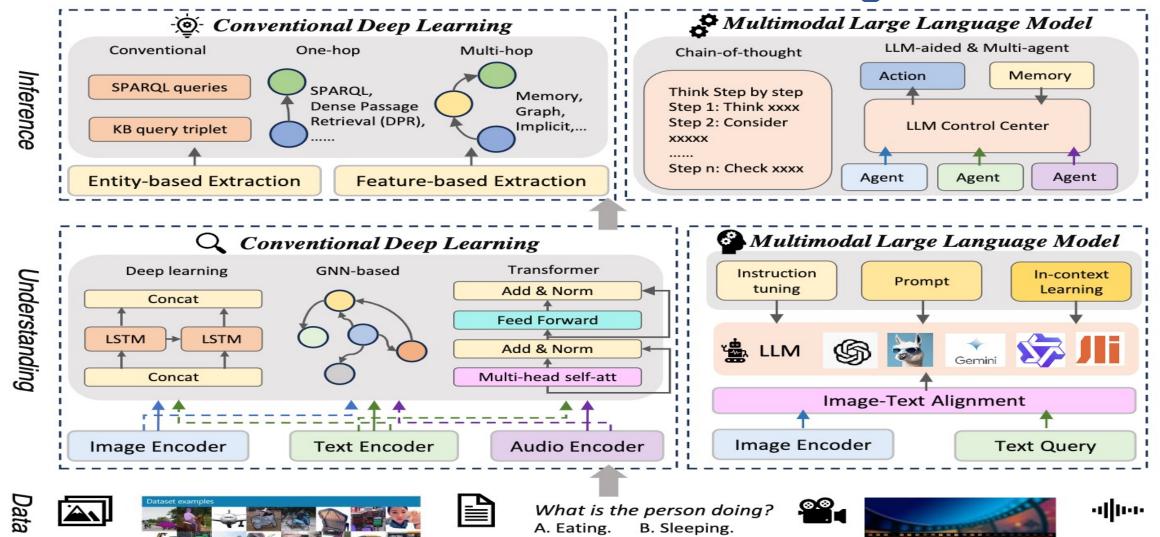
#### Multimodall LLM Three types of connectors:

- 1. projection-based
- 2. query-based
- 3. fusion-based connectors



### Multimodal Large Language Model (MLLM) for Vision Question Answering





Audio

Text

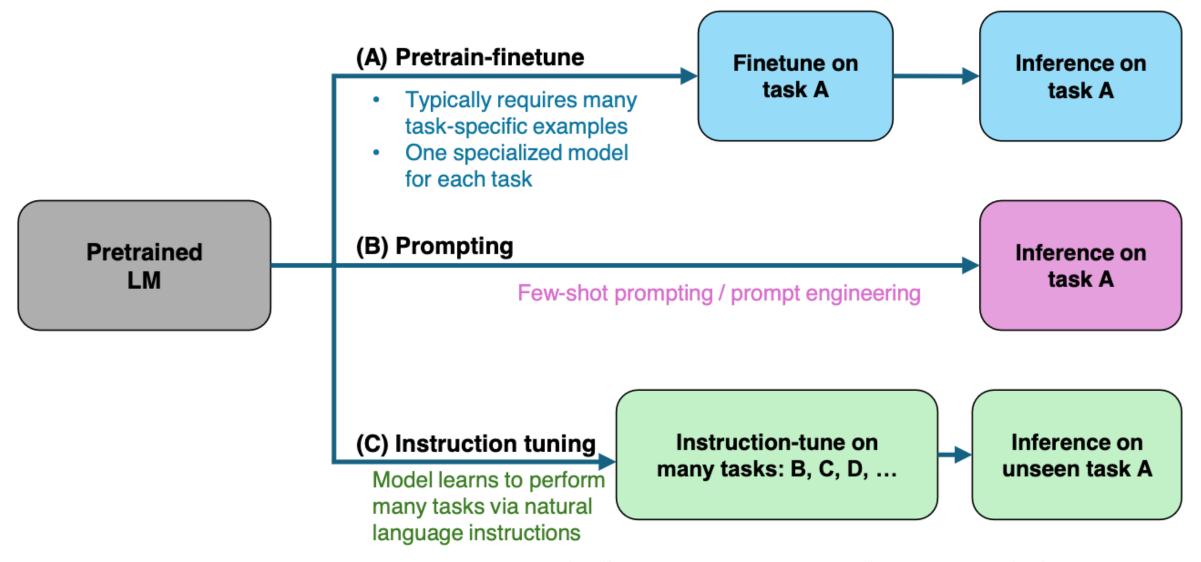
**Image** 

C. Dancing. D. Singing.

Video

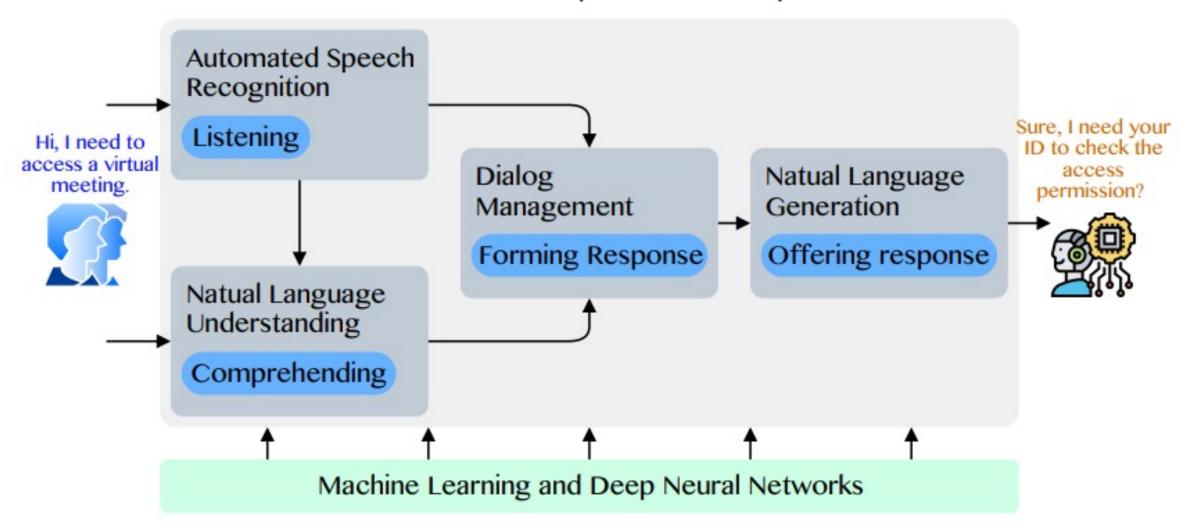
### Large Language Models (LLM) Three typical learning paradigms



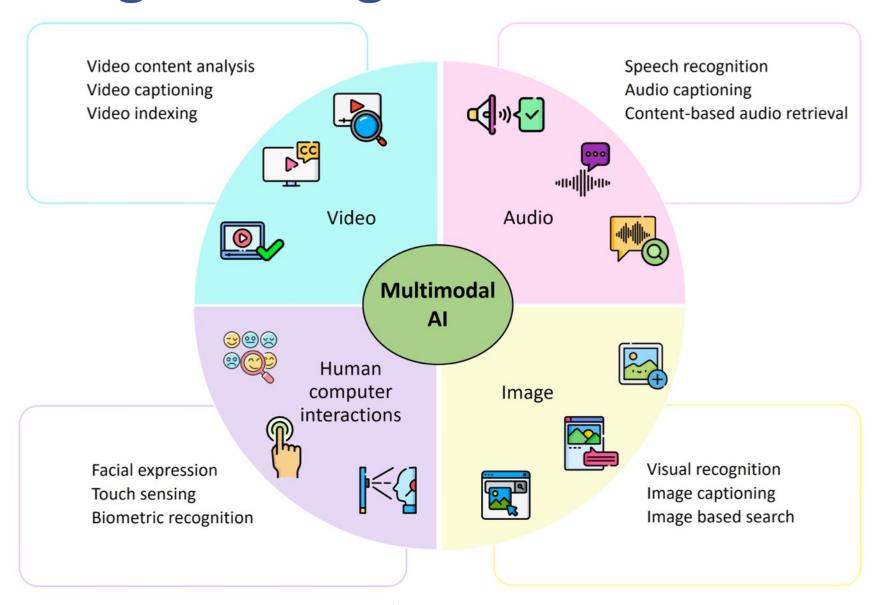


#### **Conversational Al**

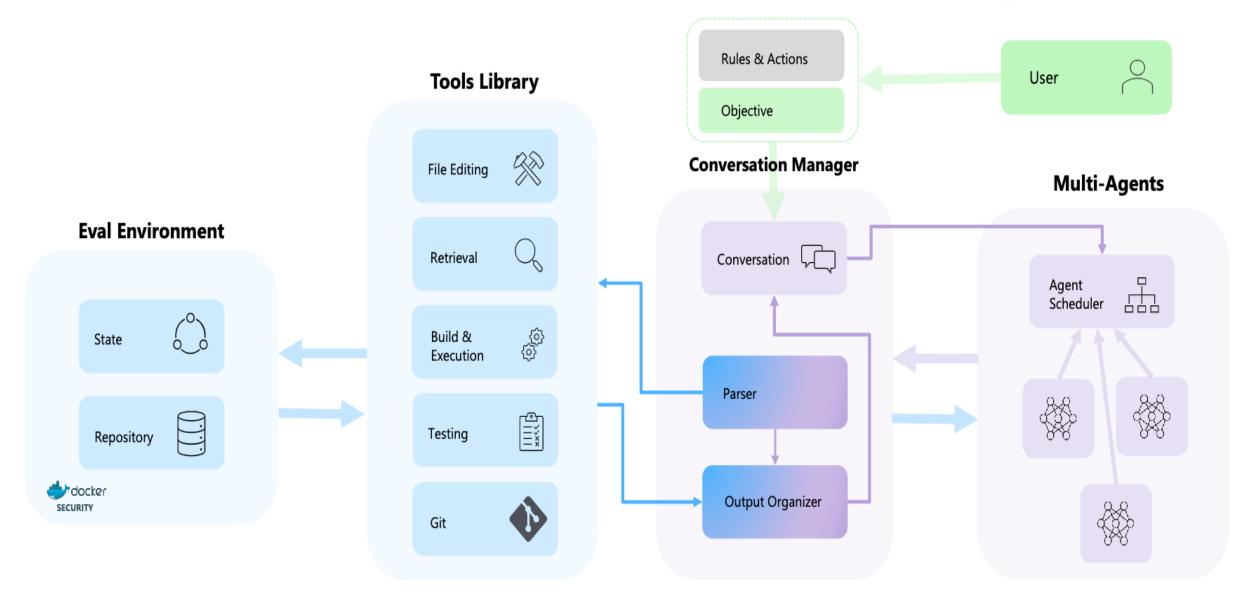
to deliver contextual and personal experience to users



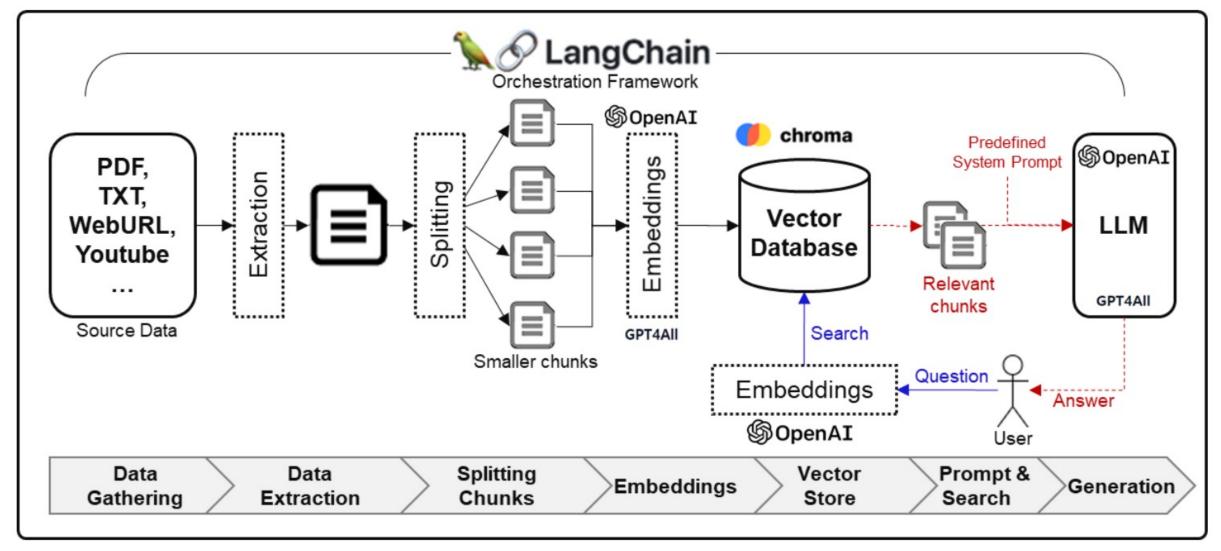
#### **Technological Integration for Multimodal AI**



#### **AutoDev: Automated Al-Driven Development**

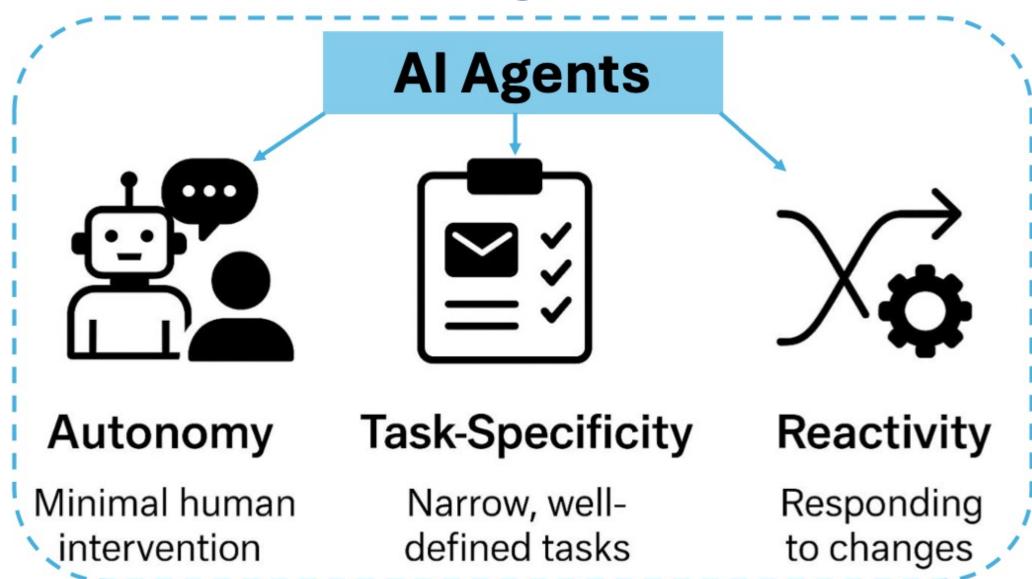


## Framework for Implementing Generative Al Services using RAG Model

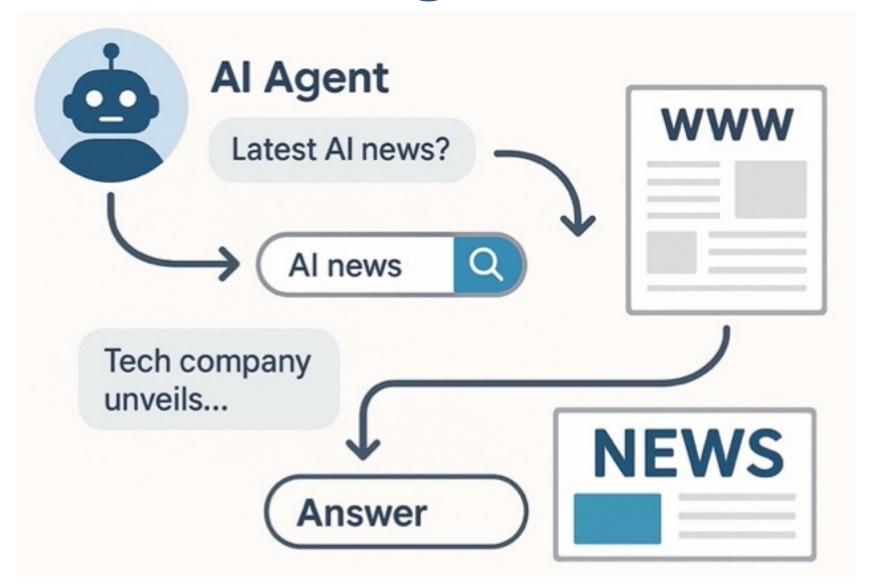


# Agentic Al

#### **Al Agents**



#### **Al Agents**



## Comparison of Generative Al and Traditional Al

Feature Generative AI Traditional AI

Output type New content

Classification/Prediction

Creativity

High

Low

Interactivity Usually more natural Limited

#### Al Agent / Agentic Al, Generative Al, Traditional Al

| Feature            | Al Agent / Agentic Al                                                                                                              | Generative AI                                                                                                                       | Traditional AI                                                                                         |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Core Concept       | To autonomously perceive its environment, make decisions, and take actions to achieve specific goals.                              | To create new, original content (text, images, code, etc.) that resembles its training data.                                        | To execute specific tasks based on pre-programmed rules or statistical patterns.                       |
| Primary Function   | Action & Goal Achievement. Executes a series of tasks to complete an objective (e.g., "Book me a flight to Taipei next Tuesday."). | Creation & Synthesis. Creates novel outputs in response to a prompt (e.g., "Write a poem about rain.").                             | Classification & Prediction. Answers questions with a known range of outcomes (e.g., "Is this spam?"). |
| Decision Making    | Based on a continuous loop: Perceive -> Plan -> Act. It reasons about its goal, breaks it down, and executes steps.                | Based on probabilistic patterns learned from massive, unstructured datasets. It predicts the next most likely word, pixel, or note. | Based on explicitly programmed logic (if-then rules) or learned patterns from structured data.         |
| Key Characteristic | Autonomous & Goal-Oriented. Proactively takes steps and can adapt its plan based on new information.                               | Creative & Probabilistic. Can produce a wide variety of unique outputs from the same prompt.                                        | Deterministic & Logic-Based. Given the same input, it will almost always produce the same output.      |

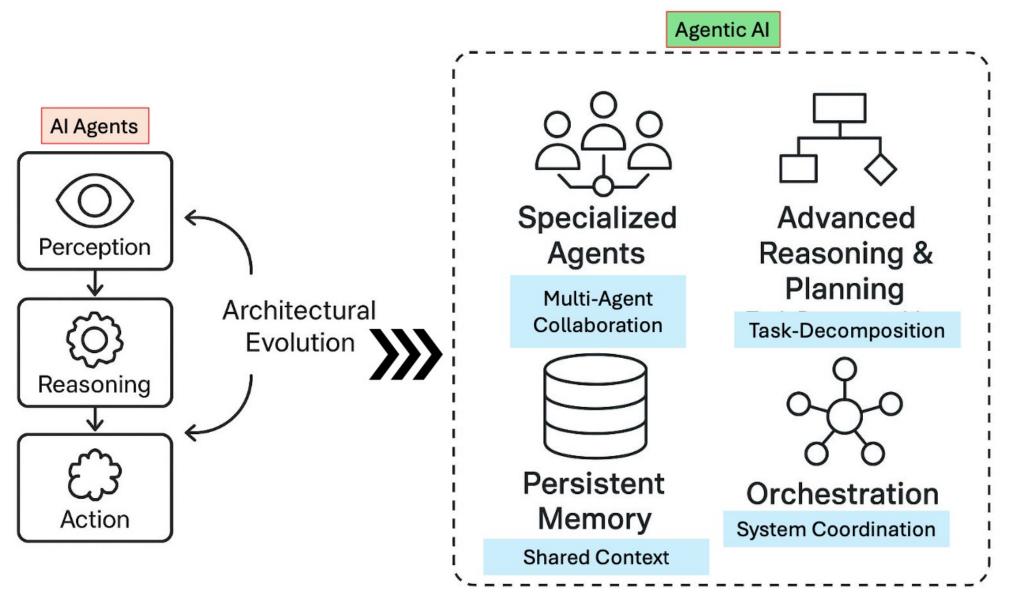
#### Al Agent / Agentic Al, Generative Al, Traditional Al

| Feature                   | Al Agent / Agentic Al                                                                                                             | Generative AI                                                                                                        | Traditional AI                                                                                                     |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Interaction<br>Model      | Proactive & Interactive. Actively observes its environment (digital or physical) and takes actions to change it.                  | Responsive. Engages in a dialogue or responds to a user's prompt to generate content.                                | Reactive. Responds to a direct input or query. It doesn't act on its own.                                          |
| Example<br>Technologies   | Architectural frameworks like ReAct (Reason + Act), and systems that combine LLMs with tools and memory.                          | Large Language Models (LLMs) like GPT-4, Diffusion Models (for images), Generative Adversarial Networks (GANs).      | Expert systems, decision trees, linear regression, traditional machine learning (ML) models.                       |
| Common Use<br>Cases       | Self-driving cars, autonomous trading bots, smart assistants that manage calendars, customer service agents that process refunds. | ChatGPT, Google Gemini, Midjourney (image generation), Copilot (code generation), music composition.                 | Spam filters, chess engines, recommendation systems (e.g., Netflix), credit scoring, medical diagnosis from scans. |
| Relationship to<br>Others | An architecture or system that often uses Generative AI to reason and Traditional AI for specific subtasks to accomplish a goal.  | Can serve as the "brain" or reasoning engine for an Al Agent, enabling it to understand, plan, and generate actions. | The foundation for modern AI. Its techniques can be components within larger AI systems.                           |

#### Al Agents vs Agentic Al

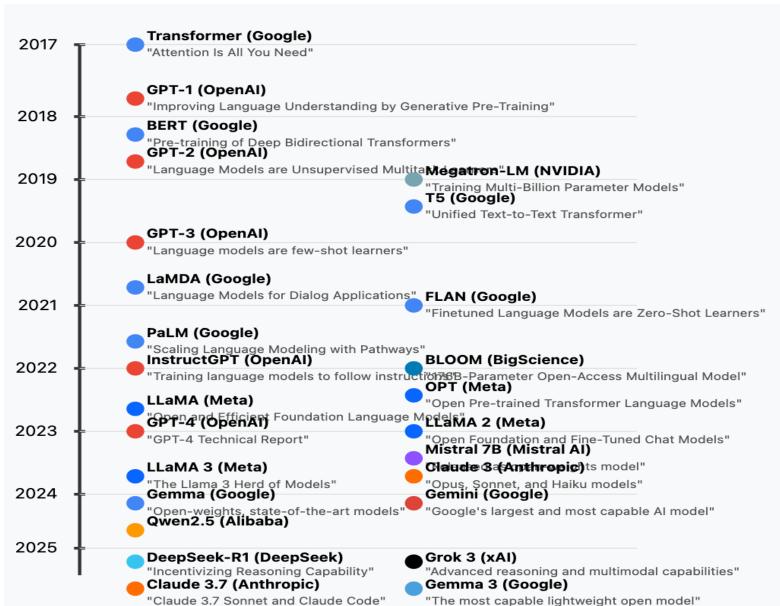
| Feature                 | Al Agents                                                           | Agentic Al                                                                                |
|-------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Definition              | Autonomous software programs that perform specific tasks.           | Systems of multiple AI agents collaborating to achieve complex goals.                     |
| Autonomy Level          | High autonomy within specific tasks.                                | Broad level of autonomy with the ability to manage multi-step, complex tasks and systems. |
| Task Complexity         | Typically handle single, specific tasks.                            | Handle complex, multi-step tasks requiring coordination.                                  |
| Collaboration           | Operate independently.                                              | Involve multi-agent information sharing, collaboration and cooperation.                   |
| Learning and Adaptation | Learn and adapt within their specific domain.                       | Learn and adapt across a wider range of tasks and environments.                           |
| Applications            | Customer service chatbots, virtual assistants, automated workflows. | Supply chain management, business process optimization, virtual project managers.         |

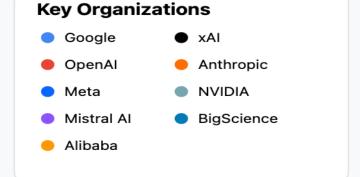
#### Al Agents vs Agentic Al



# Al Agents and Large Multimodal Agents (LMAs)

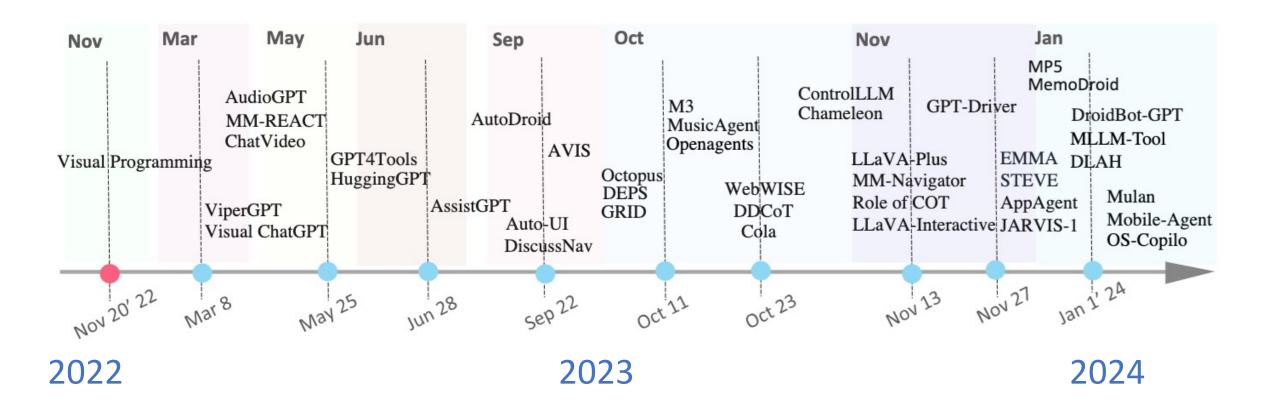
#### Generative AI LLMs (2017-2025)



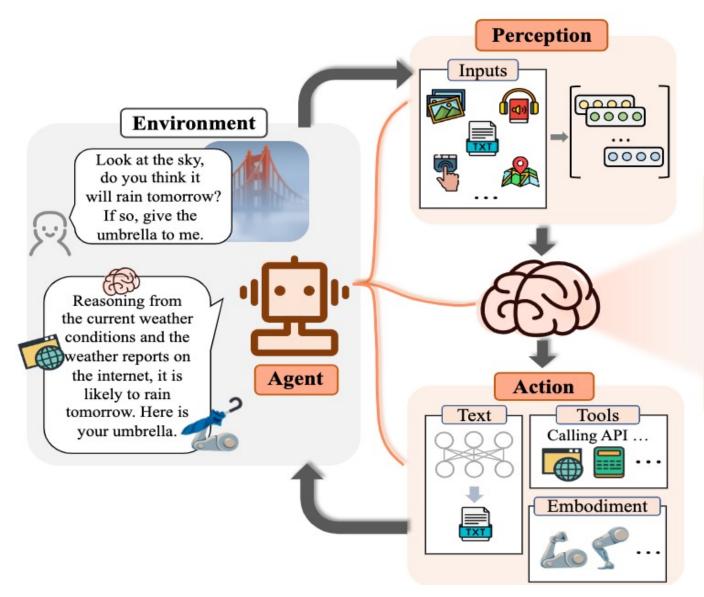




#### LLM-powered Multimodal Agents Large Multimodal Agents (LMAs)



#### Large Language Model (LLM) based Agents

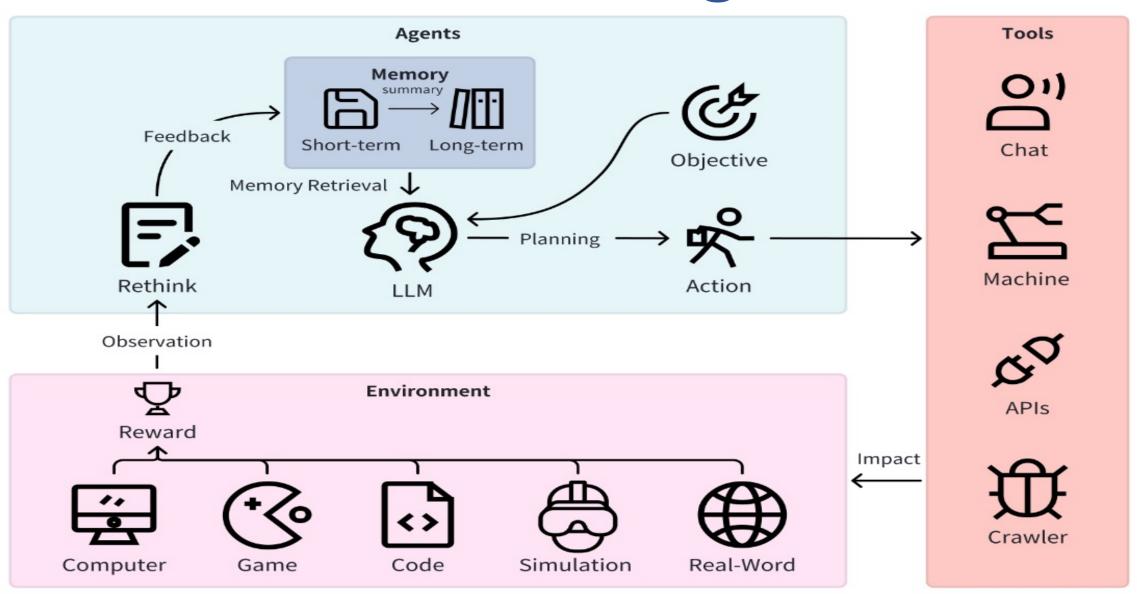




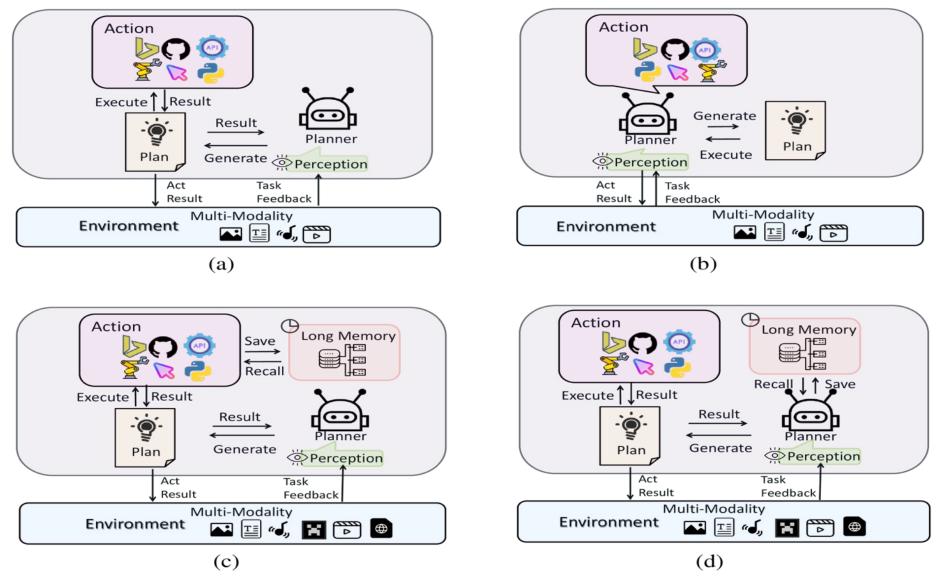
#### **LLM-based Agents**

- Definition: Al agents that use Large Language Models as their core decision-making mechanism
- Key Features:
  - Natural language interface
  - Vast knowledge base
  - Ability to understand context and nuance
  - Generalize to new tasks with minimal additional training

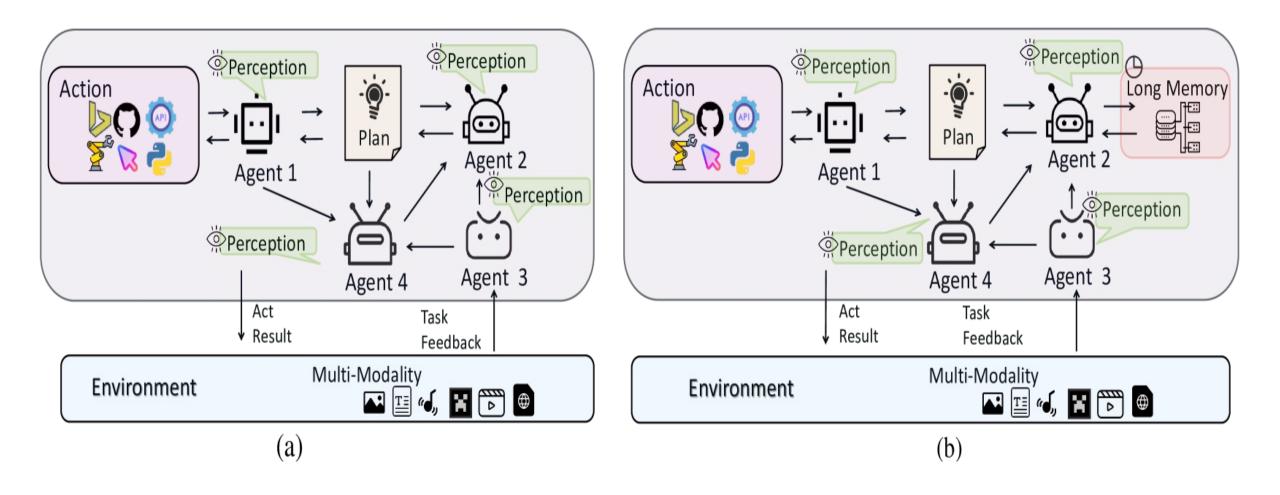
#### **LLM-based Agents**



#### Large Multimodal Agents (LMA)



#### Large Multimodal Agents (LMA)



#### **Agentic AI Cloud Architecture**

#### **Microservices and Serverless Architecture**

Containers (Docker, Kubernetes)
Serverless platforms (AWS Lambda, Google Cloud Functions)

#### **APIs and Tooling Integration via MCP**

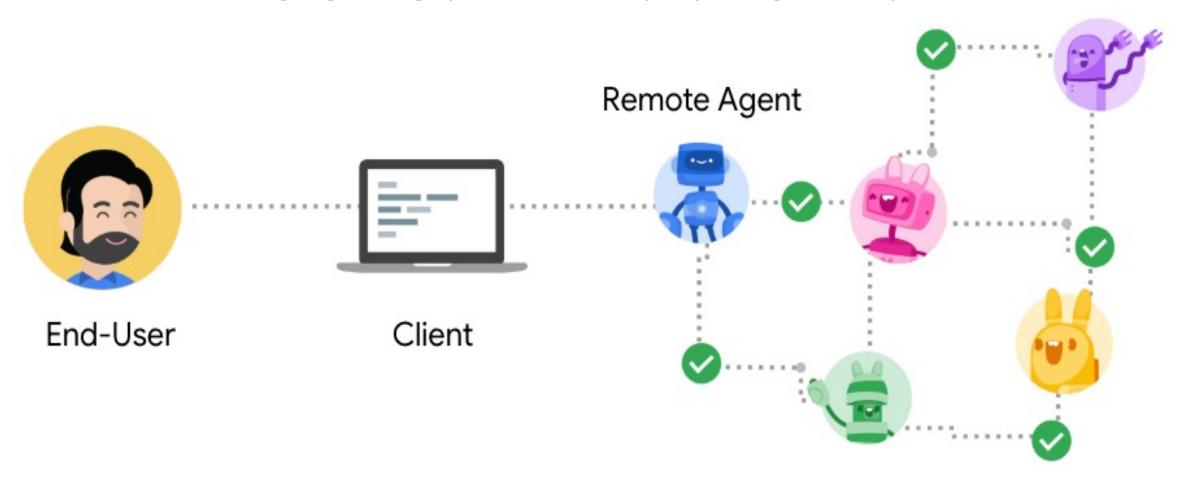
Agents access tools (e.g., databases, APIs, CRMs, payment gateways)
using Model Context Protocol (MCP)
Enhances tool-using behavior of LLM agents

#### **Tools and Frameworks**

LangChain, AutoGen, CrewAI: for orchestrating LLM agents Anthropic's MCP, Google's A2A: communication protocols Vector DBs (Pinecone, Weaviate): for agent memory

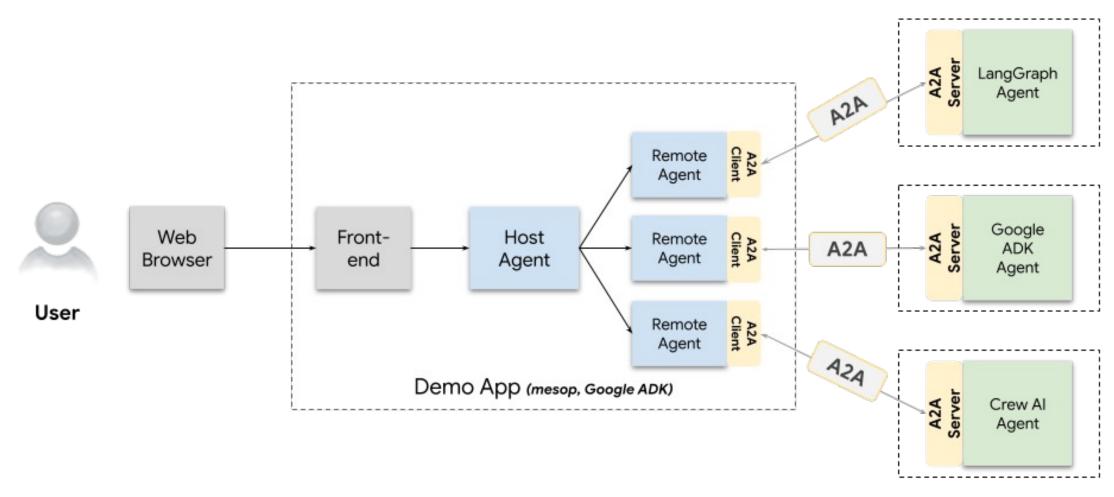
#### Agent2Agent Protocol (A2A)

An open protocol enabling Agent-to-Agent interoperability, bridging the gap between opaque agentic systems



#### **A2A Demo Web App**

#### Agents talking to other agents over A2A



#### A2A

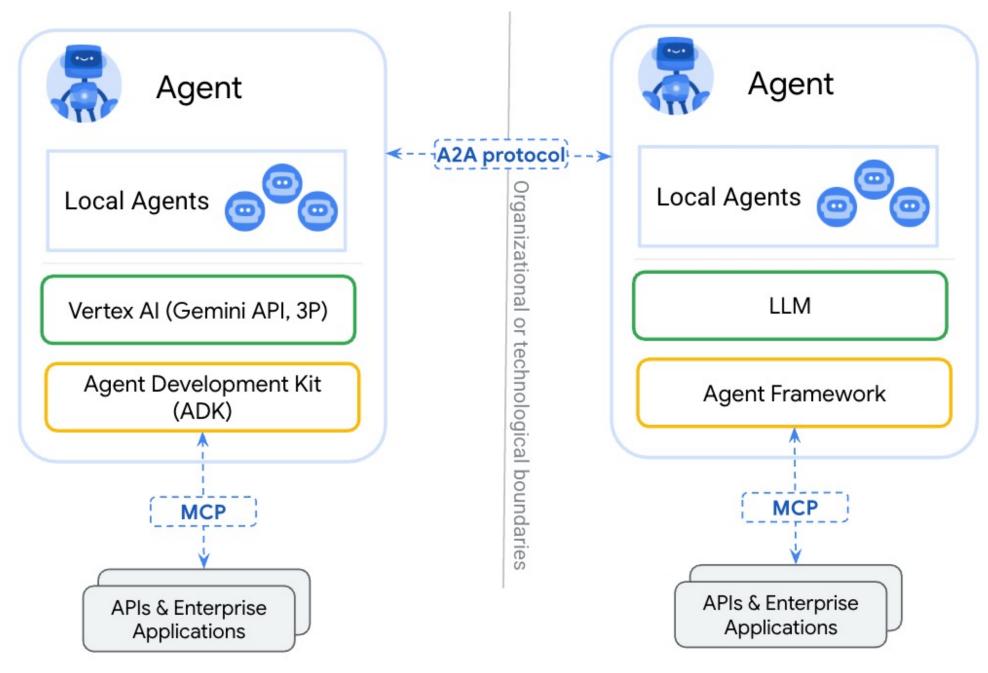
(Agent2Agent Protocol)

for agent-agent collaboration

#### **MCP**

(Model Context Protocol)

for tools and resources

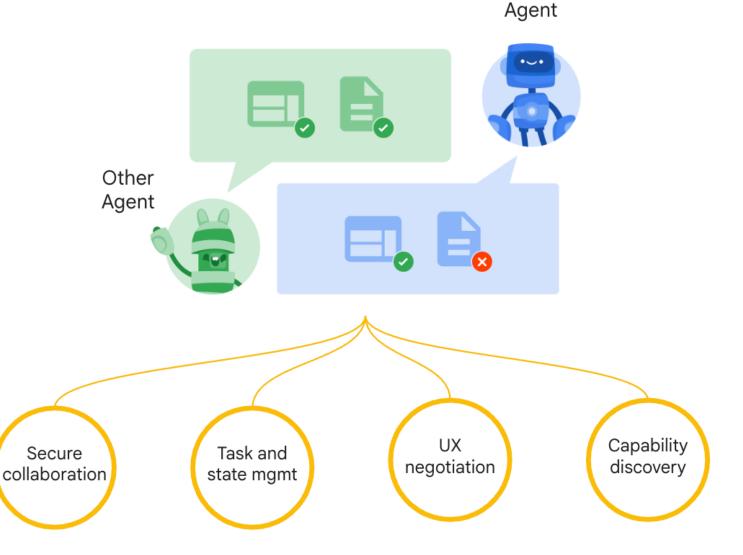


#### Google A2A (Agent2Agent Protocol)

**Seamless Agent Collaboration** 

**Simplifies Enterprise**Agent Integration

**Supports Key Enterprise Requirements** 

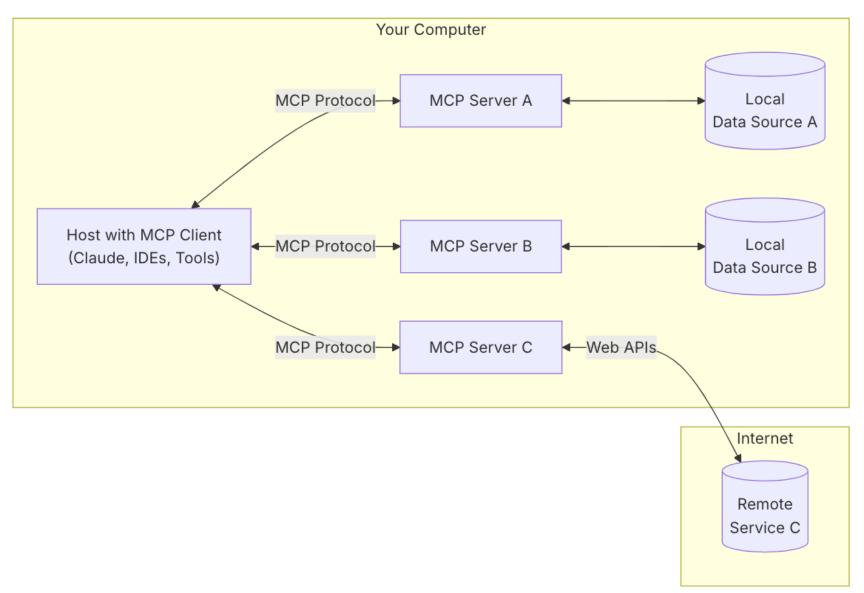


Google

#### **MCP (Model Context Protocol)**

MCP is a open protocol that standardizes how applications provide context to LLMs.

MCP: USB-C port for AI applications.



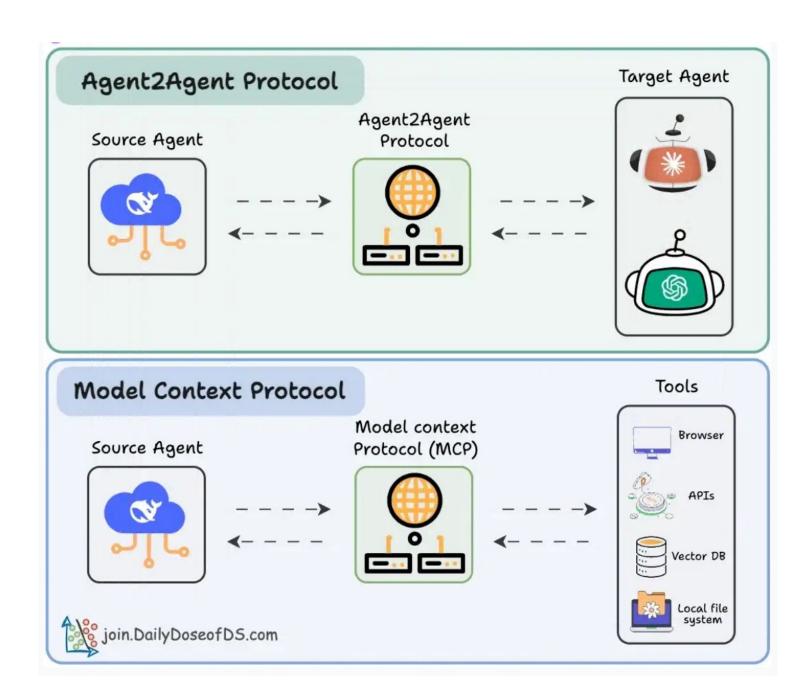
#### MCP and A2A

- MCP (Model Context Protocol) for tools and resources
  - Connect agents to tools, APIs, and resources with structured inputs/outputs.
  - Google ADK supports MCP tools. Enabling wide range of MCP servers to be used with agents.
- A2A (Agent2Agent Protocol) for agent-agent collaboration
  - Dynamic, multimodal communication between different agents without sharing memory, resources, and tools
  - Open standard driven by community.
  - Samples available using Google ADK, LangGraph, Crew.AI

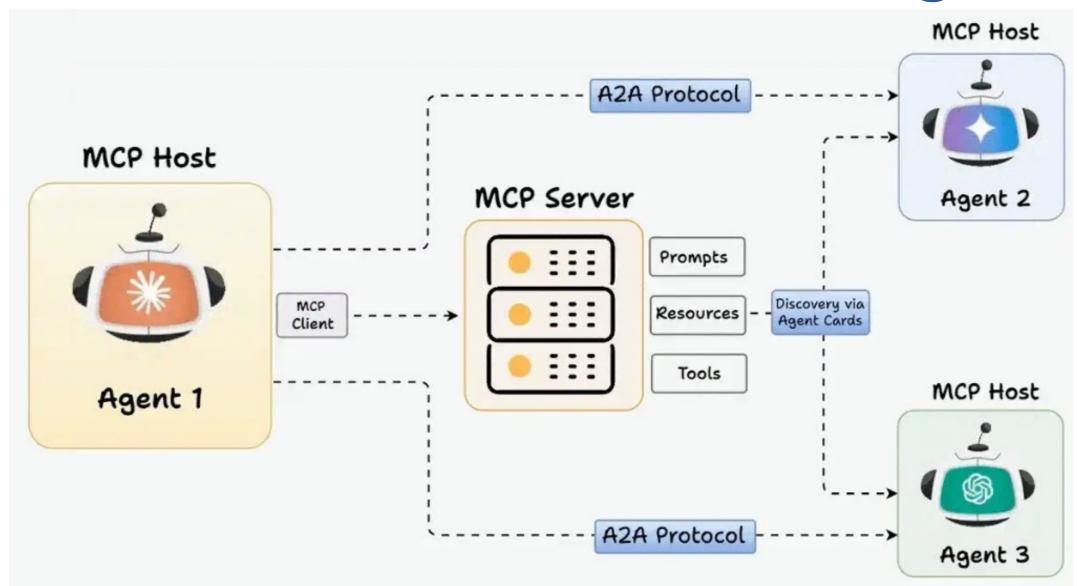
# Agentic applications require both A2A and MCP

A2A allows agents to connect with other agents and collaborate in teams.

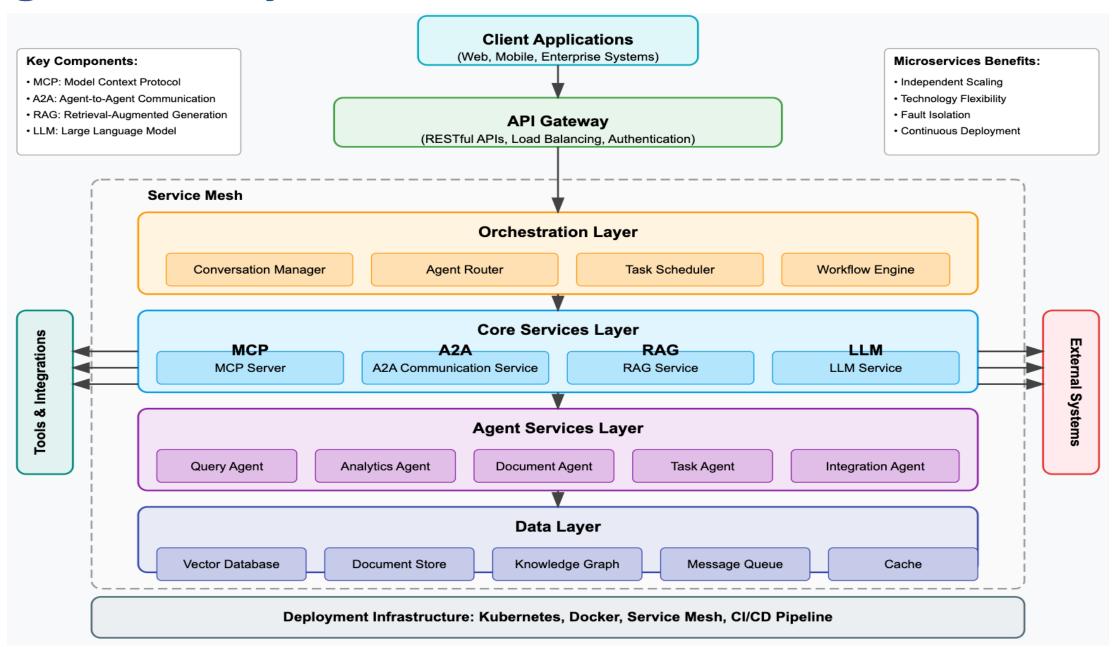
MCP provides agents with access to tools



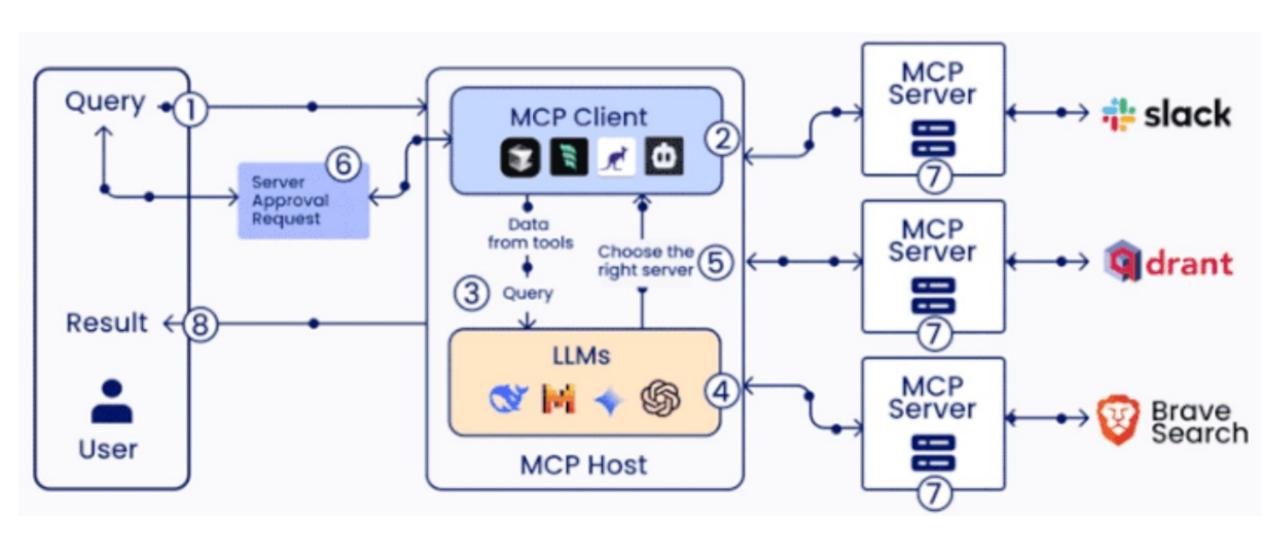
#### MCP and A2A Protocol for AI Agents



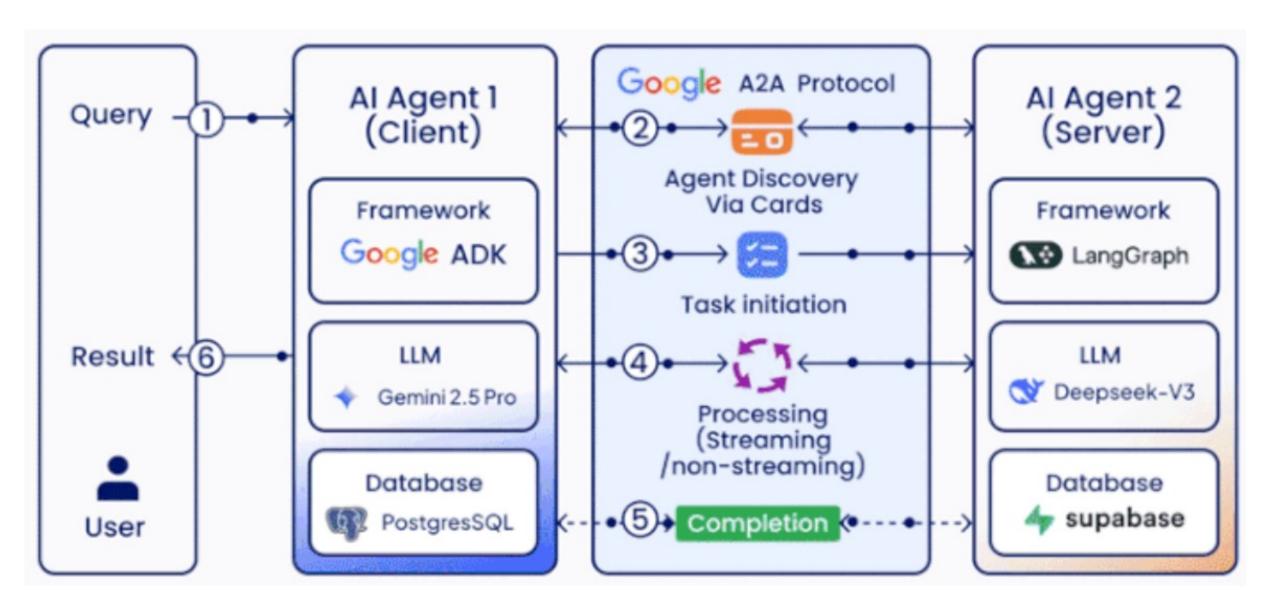
#### **Agentic AI System with Microservices Architecture**



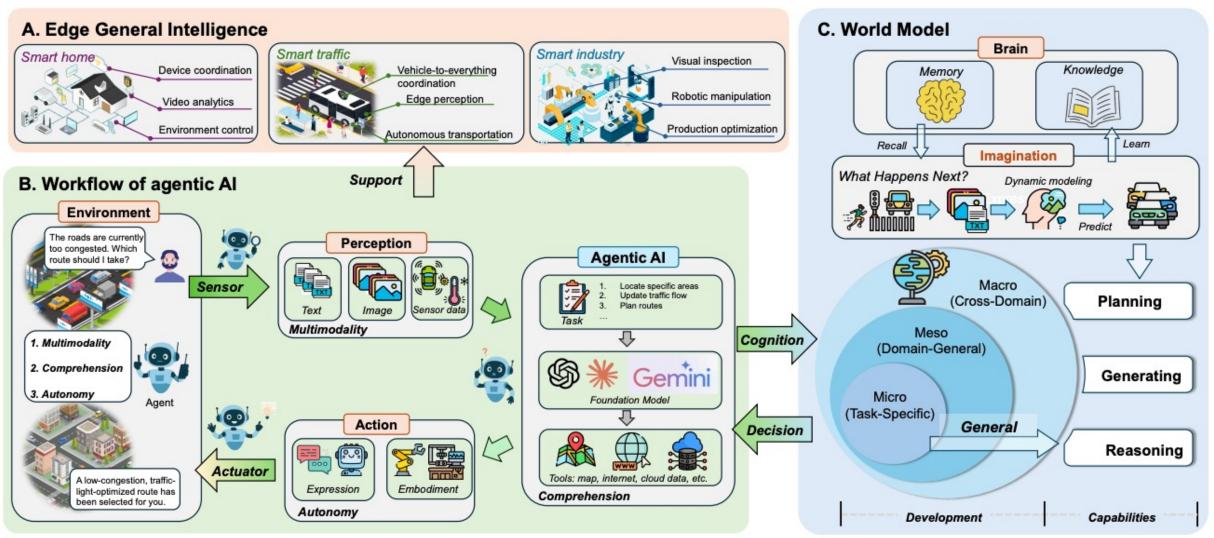
#### **MCP (Model Context Protocol)**



#### **A2A (Agent2Agent Protocol)**

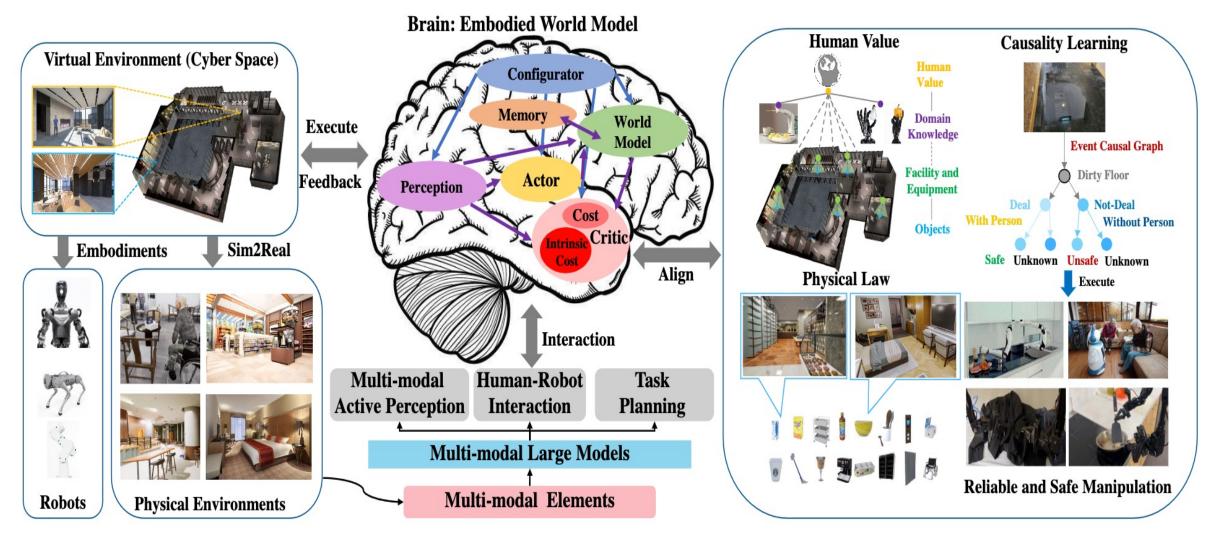


## Agentic AI and World Model for Edge General Intelligence

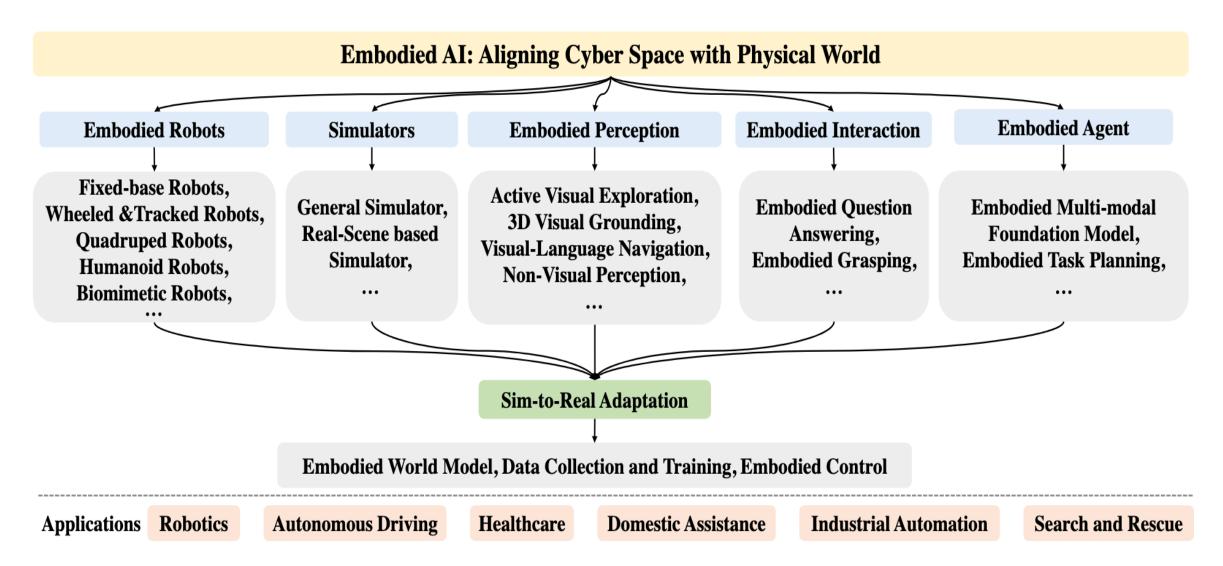


# Physical Al (Robotics)

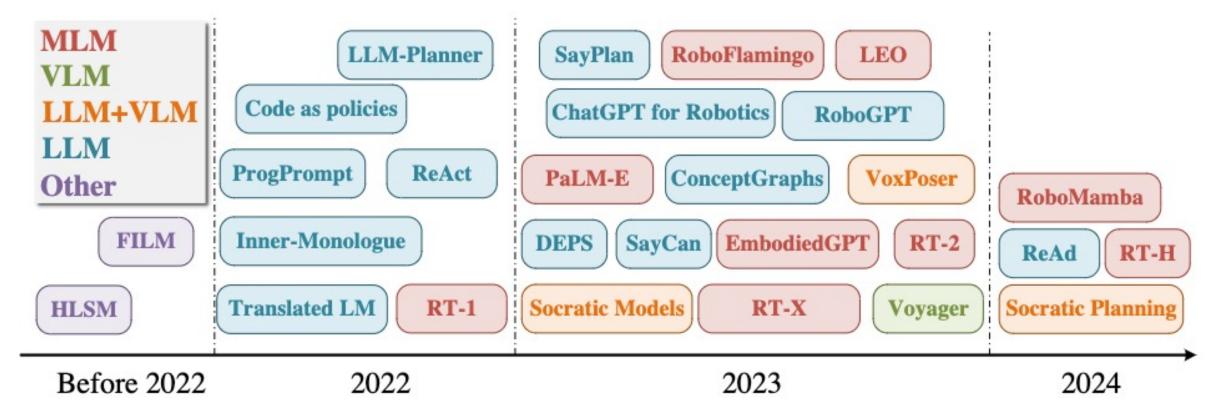
## Framework of the Embodied Agent based on MLMs and WMs



## **Embodied Al**



## **Embodied Agents**



MLM: Multimodal Language Model, which directly perceive the world and control the embodiment VLM: Visual-Language Model with the outer policy models

LLM + VLM: LLM-based agent that perceives the world utilizing the VLM, and LLM means the Large-Language Model with visual context and outer policy models.

## **Boston Dynamics: Spot**

Automate sensing and inspection, capture limitless data, and explore without boundaries.



## **Boston Dynamics: Atlas**

The world's most dynamic humanoid robot

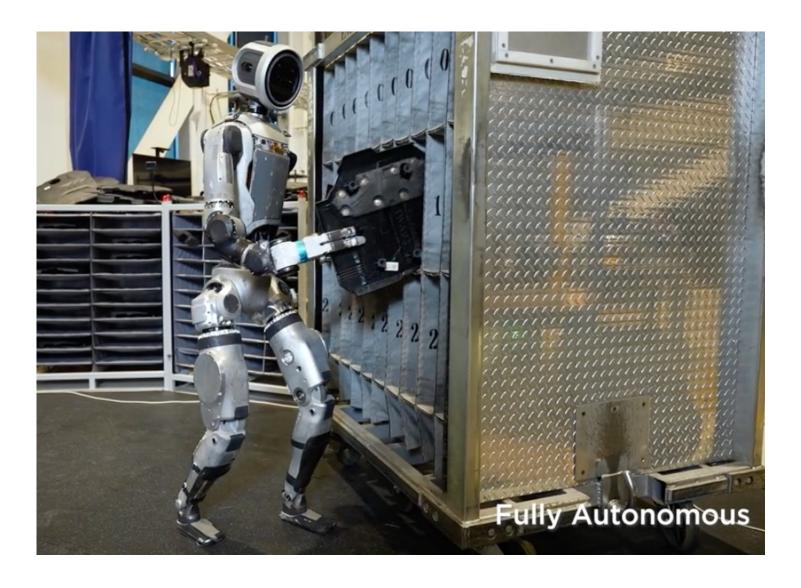
Atlas is a research platform designed to push the limits of whole-body mobility



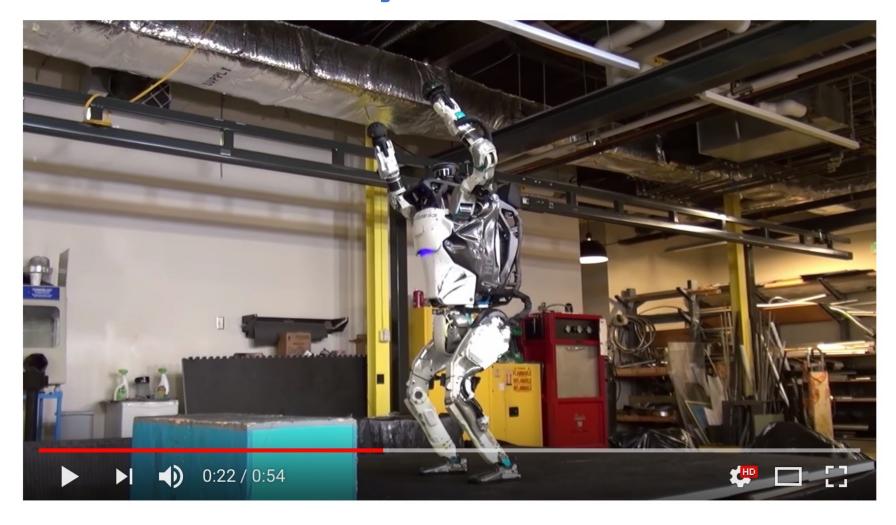
## **Boston Dynamics: Atlas Goes Hands On**

Atlas uses a machine learning (ML) vision model to detect and localize the environment fixtures and individual bins.

The robot uses a specialized grasping policy and continuously estimates the state of manipulated objects to achieve the task.



## **Boston Dynamics: Atlas**



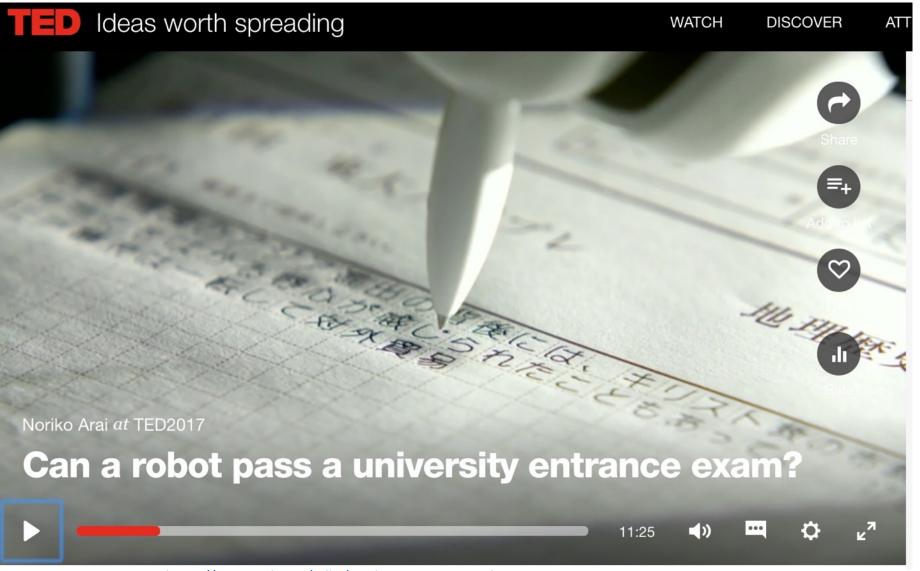
#13 ON TRENDING
What's new, Atlas?

## **Humanoid Robot: Sophia**



### Can a robot pass a university entrance exam?

Noriko Arai at TED2017



### **Embodied Robots**

- (a) Fixed-base Robots (Franka Emika Panda)
- (b) Wheeled Robots (Jackal robot)
- (c) Tracked Robots (iRobot PackBot)







(d) Quadruped Robots(Boston Dynamics Spot)

(e) Humanoid Robots (Tesla Optimus)





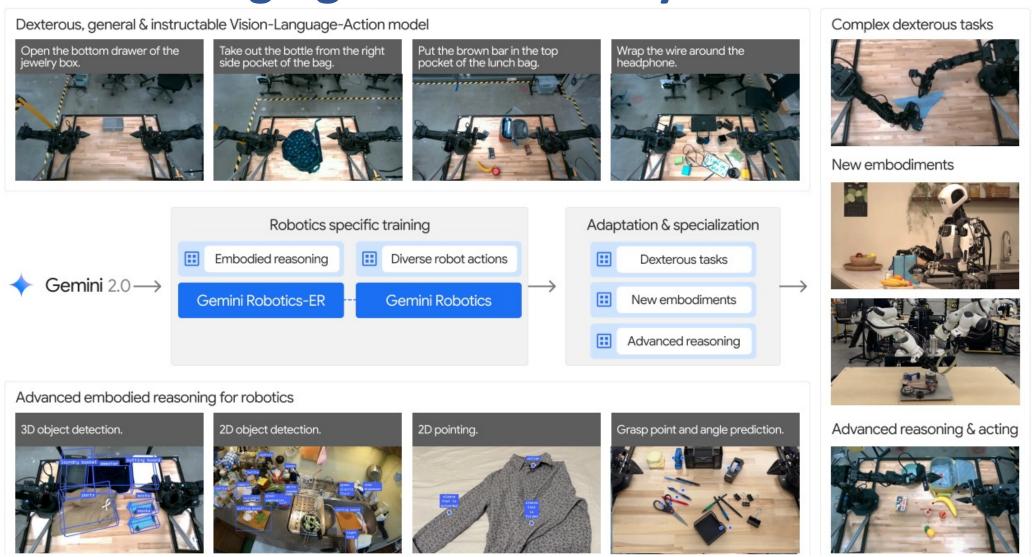
(f) Biomimetic Robots







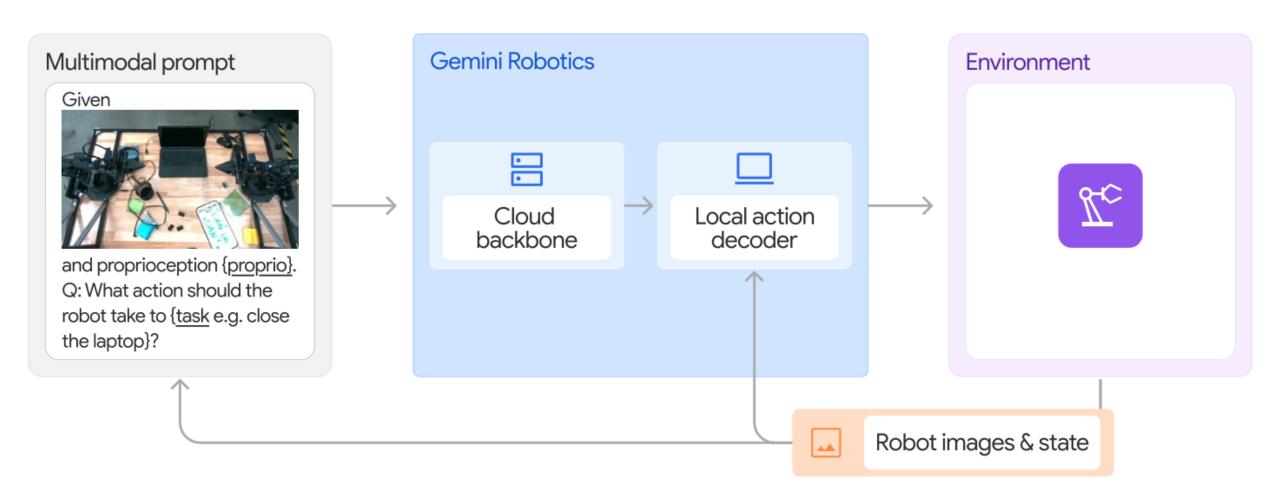
## Gemini Robotics: Bringing Al into the Physical World



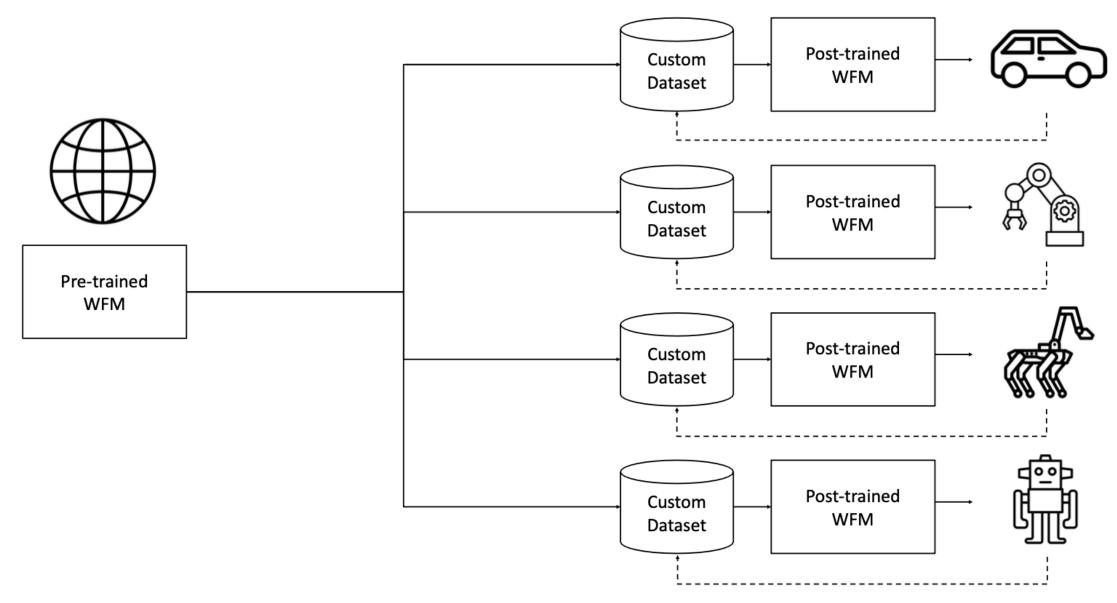
Source: Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montserrat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna et al.(2025)

"Gemini robotics: Bringing ai into the physical world." arXiv preprint arXiv:2503.20020 (2025).

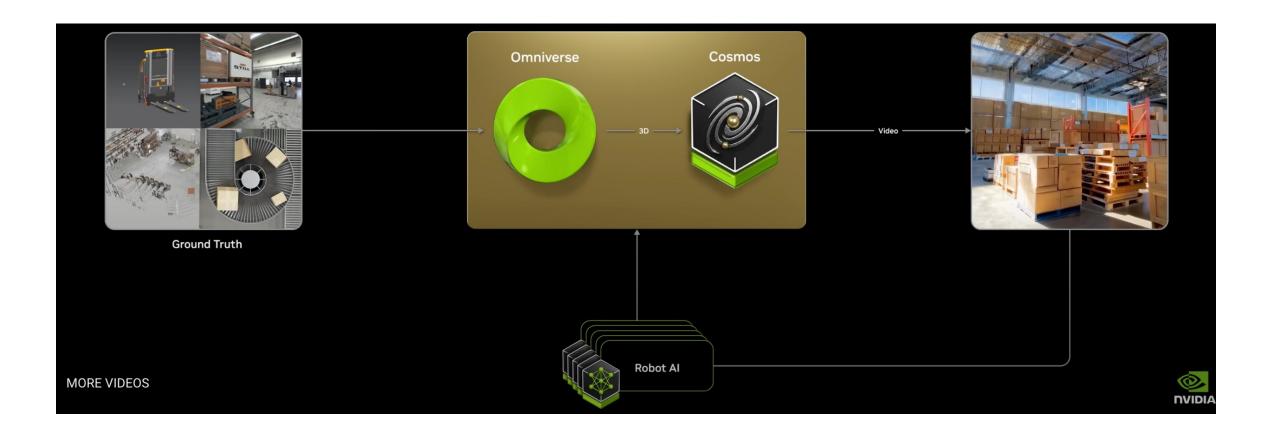
## Gemini Robotics Models: Architecture, Input and Output



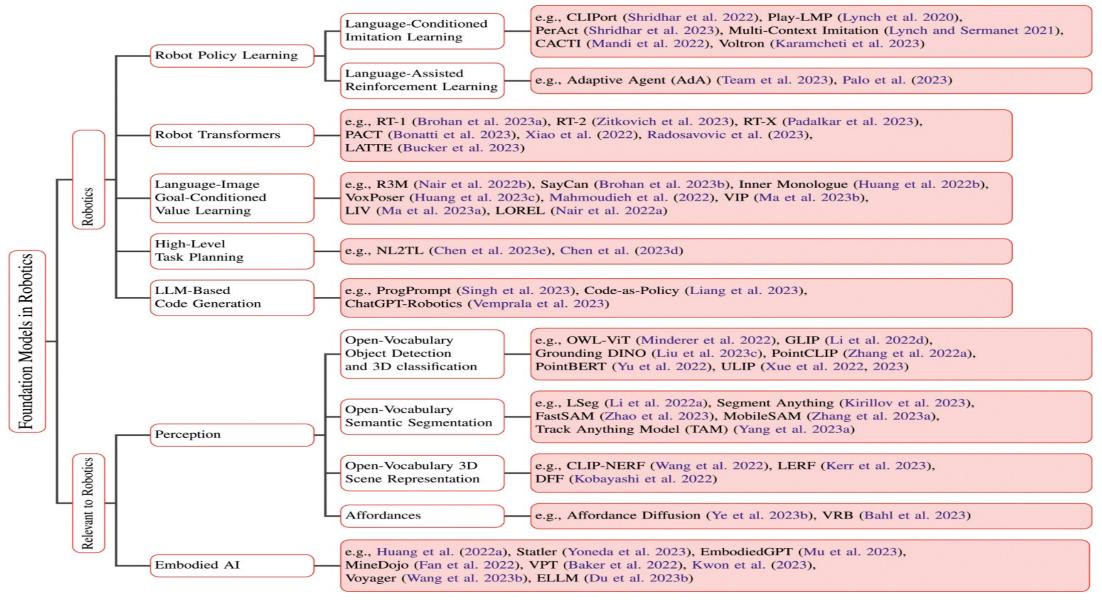
## World Foundation Model Platform for Physical Al



## NVIDIA Cosmos World Foundation Model Platform for Physical Al



### **Foundation Models in Robotics**

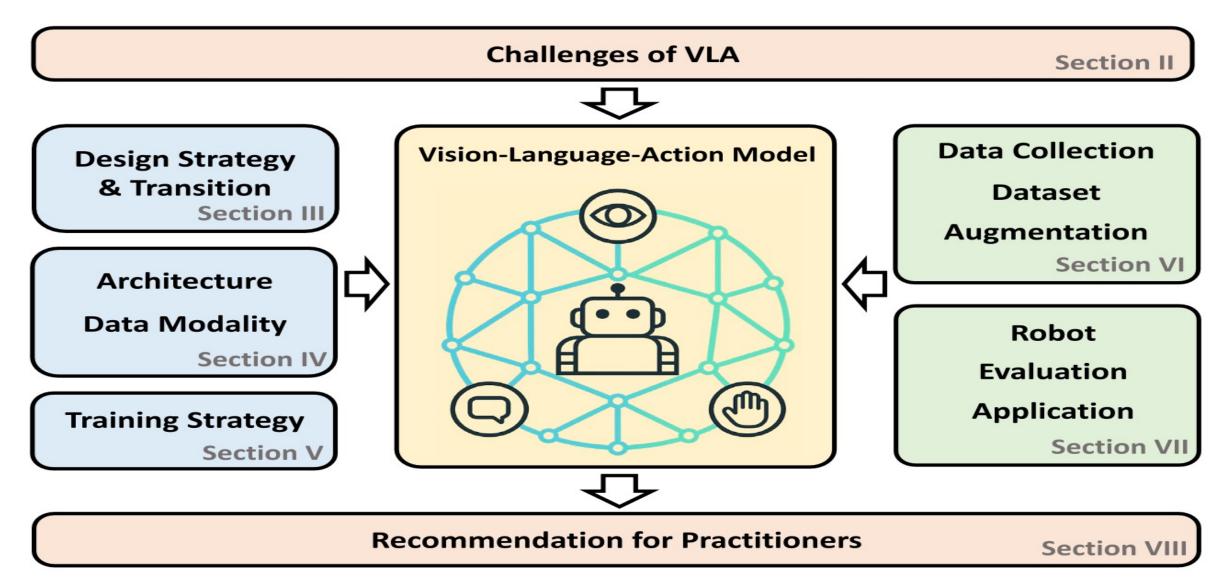


Source: Firoozi, Roya, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke Zhu et al. "Foundation models in robotics: Applications, challenges, and the future.

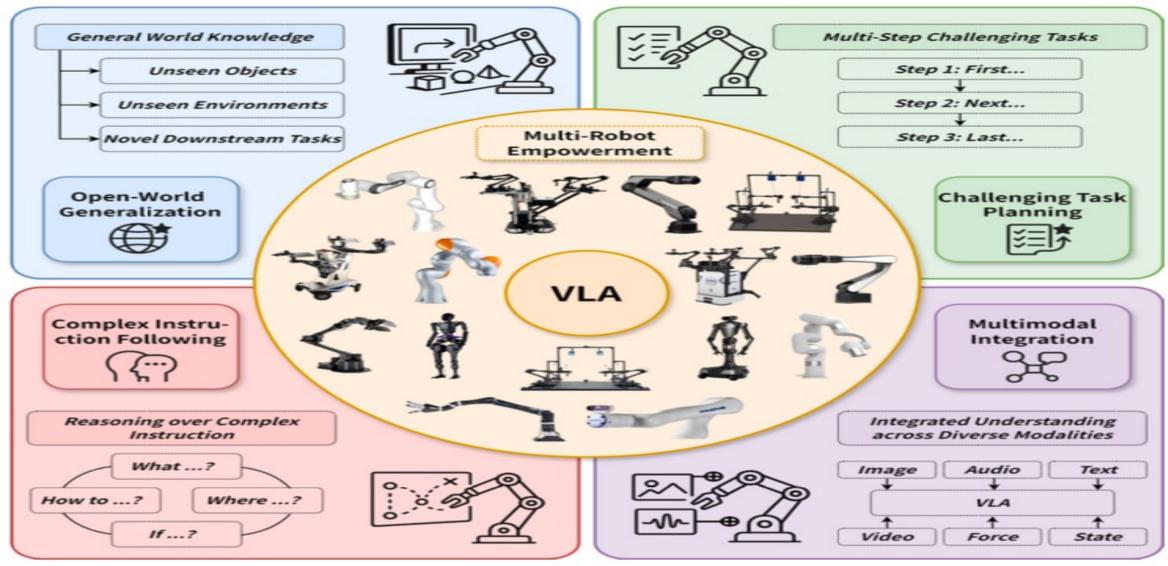
"The International Journal of Robotics Research 44, no. 5 (2025): 701-739.

# Vision Language Action (VLA) Models for Robotics

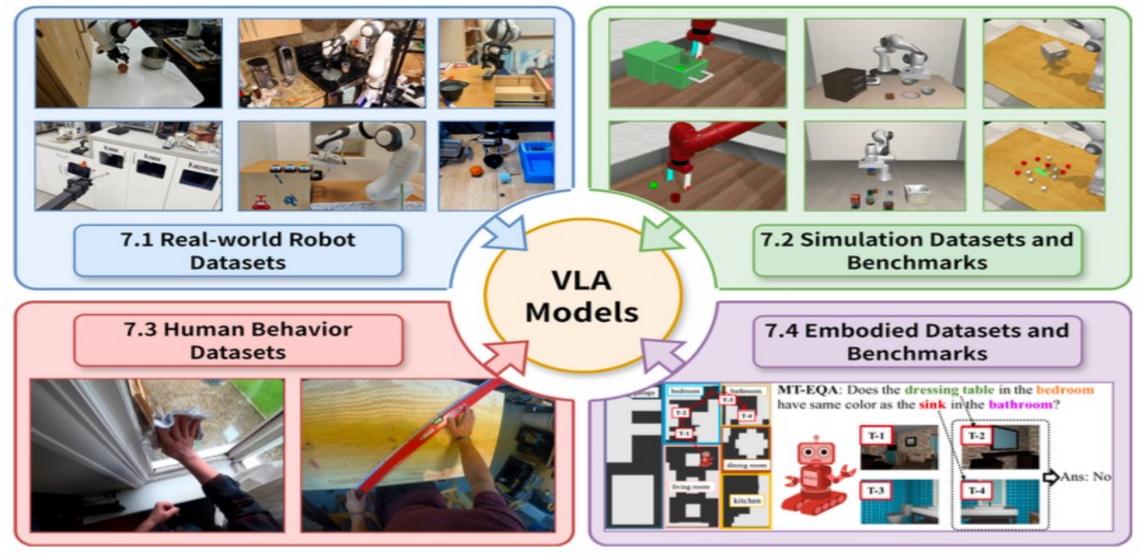
## Vision-Language-Action (VLA) Models for Robotics



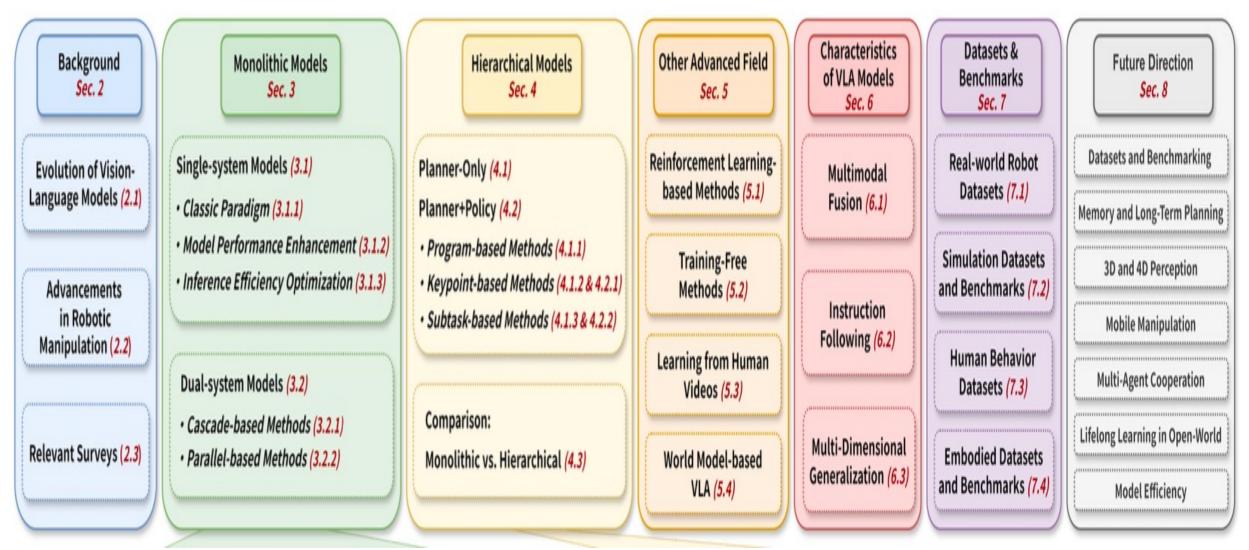
## Large VLM-based Vision-Language-Action Models for Robotic Manipulation



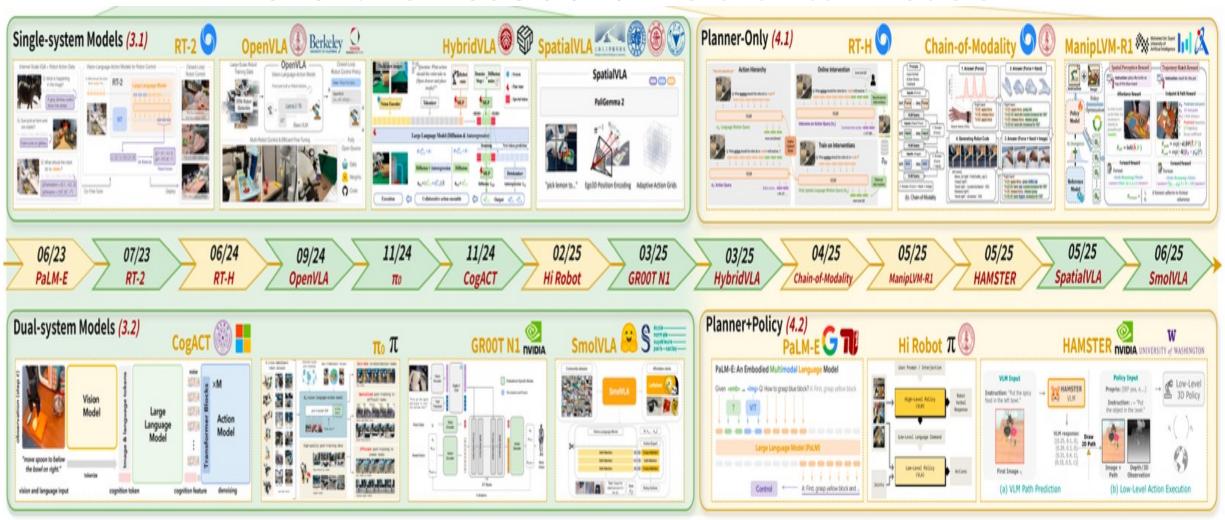
## Large VLM-based Vision-Language-Action Models for Robotic Manipulation



## Large VLM-based Vision-Language-Action Models for Robotic Manipulation



# Large VLM-based Vision-Language-Action Models for Robotic Manipulation (Timeline) Monolithic models and Hierarchical Models



## Vision Language Action Models in Robotic Manipulation

#### Vision Language Action Model

#### 4. VLA Models

4.1. VLA Architecture

4.2. State-of-the-art VLA Models

4.3. Architectural Trends

#### 6. Simulation Tools

#### 7. Applications and Evaluation

7.1. Application Domains

7.2. VLA Model Selection for Comparision

7.3. Evaluation Protocols and Finindgs

#### 8. Challanges and Future Directions

8.1. Architectural Challanges

8.2. Dataset Challanges

8.3. Simulation Challanges

8.4. Future Research Directions

#### 9. Conclusions

#### 2. Literature Search and Selection Criteria

#### 3. Background Concepts

3.1. Transformer

3.1.1. Self-Attention

3.1.2. Embedding

3.1.3. Encoder

3.1.4. Decoder

3.2. Vision Transformer

3.3. Large Language Models

3.4. Vision Language Models

#### 5. VLA Training Datasets

5.1. Dataset Formate

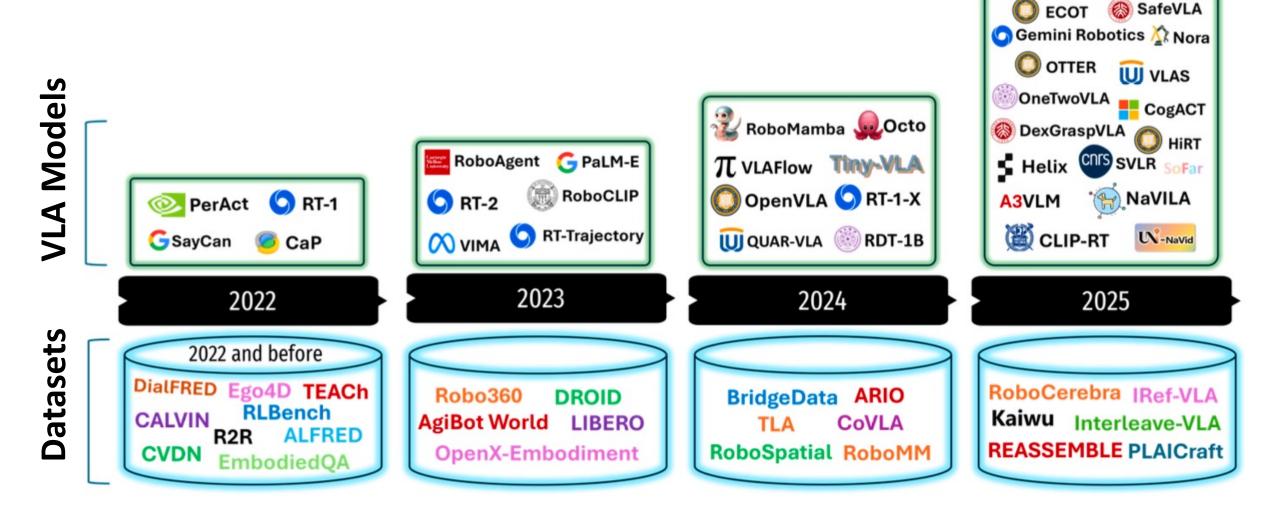
5.2. Major VLA Datasets

5.3. Benchmarking VLA Datasets

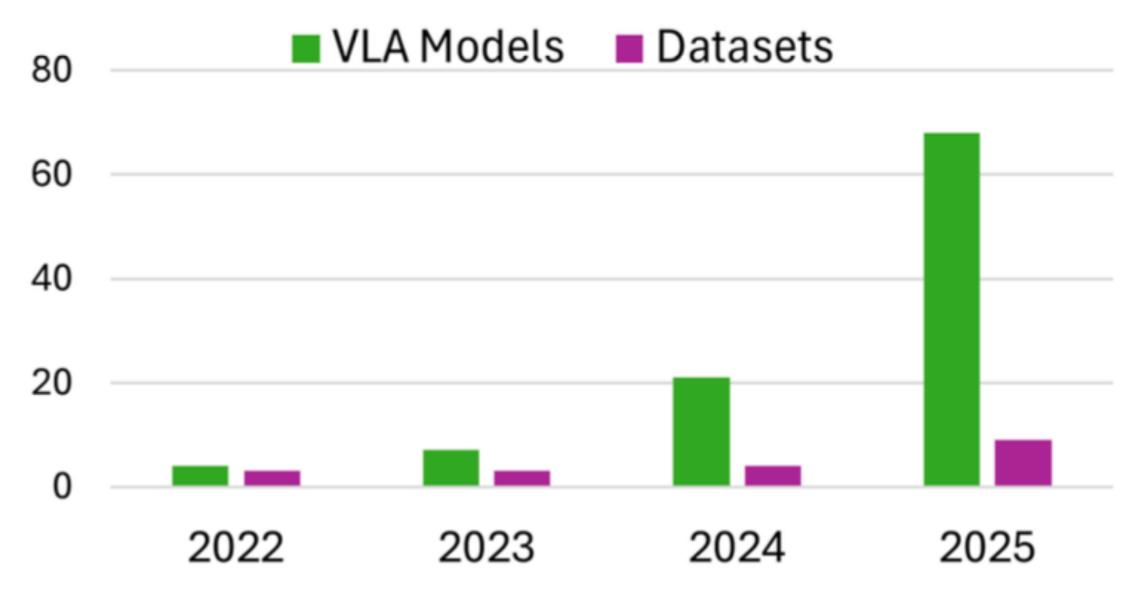
5.4. Benchmarking Analysis

### Vision Language Action (VLA) Models, Datasets

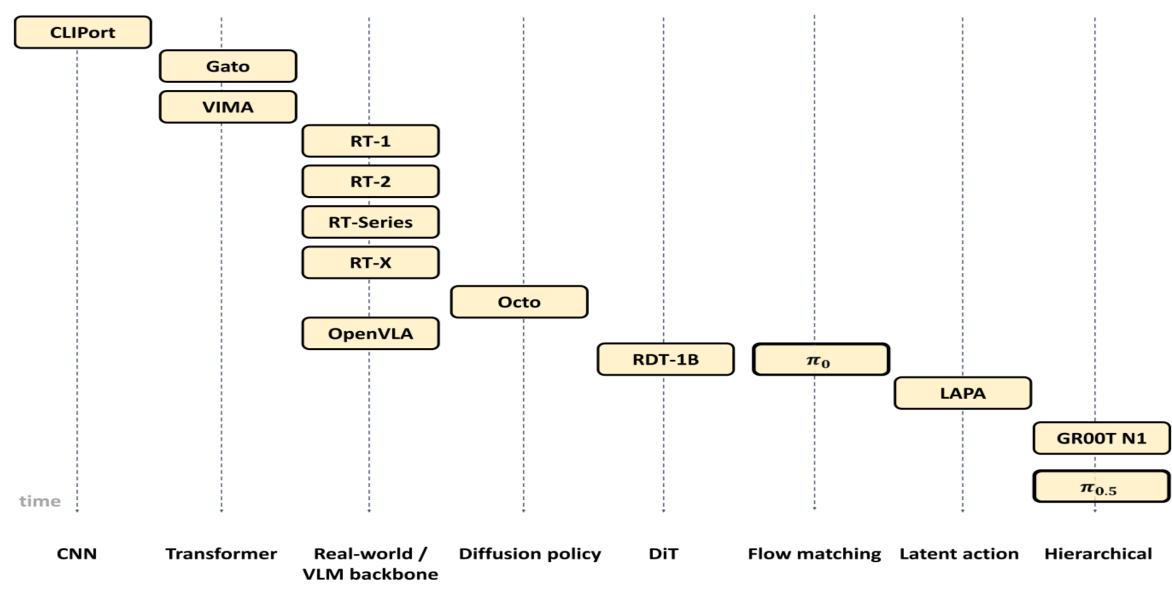
Contributing institutions: Academic (e.g., CMU, CNRS, UC, Peking Uni) Industrial Labs (e.g., Google, NVIDIA, Microsoft)



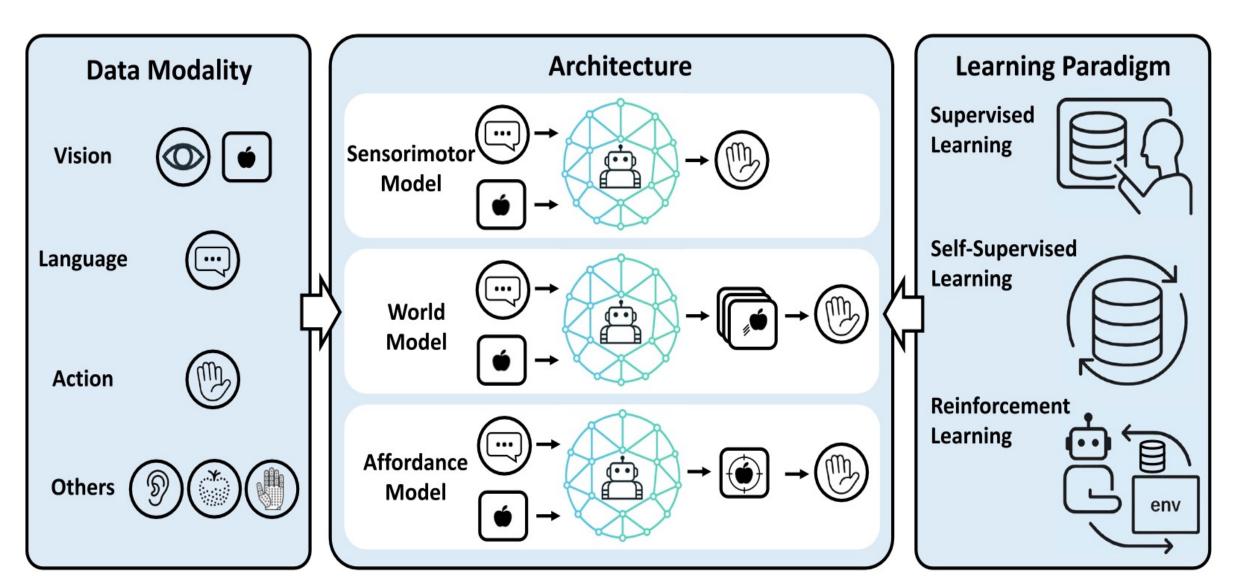
### **VLA Models and Foundational VLA Datasets**



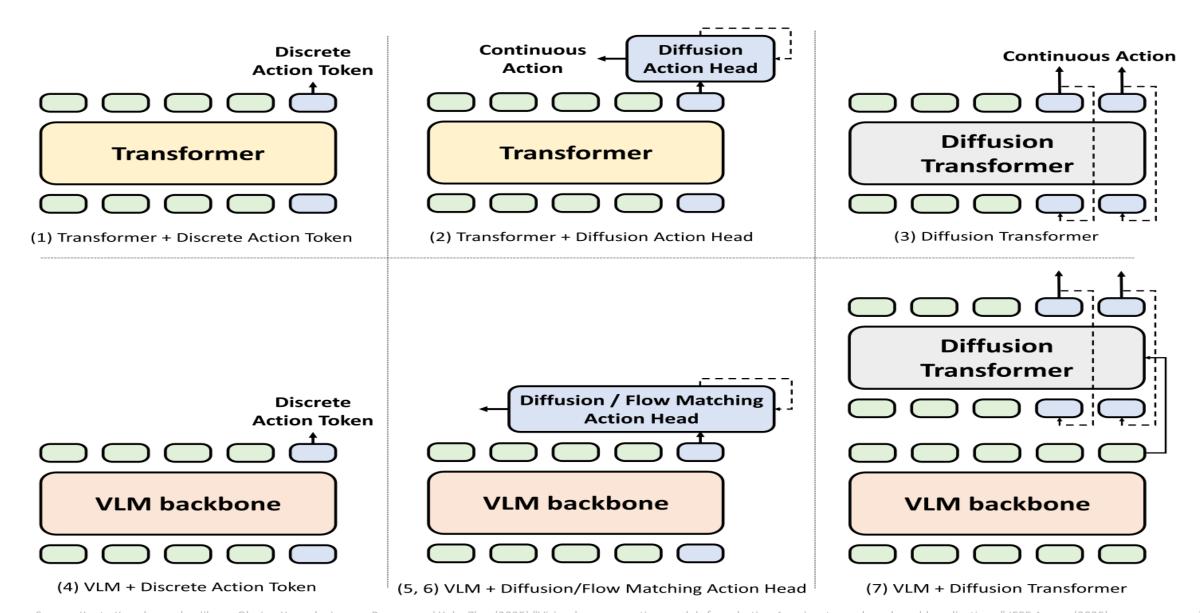
## Timeline of Vision-Language-Action (VLA) Models



## **VLA Model Components and Training Paradigms**

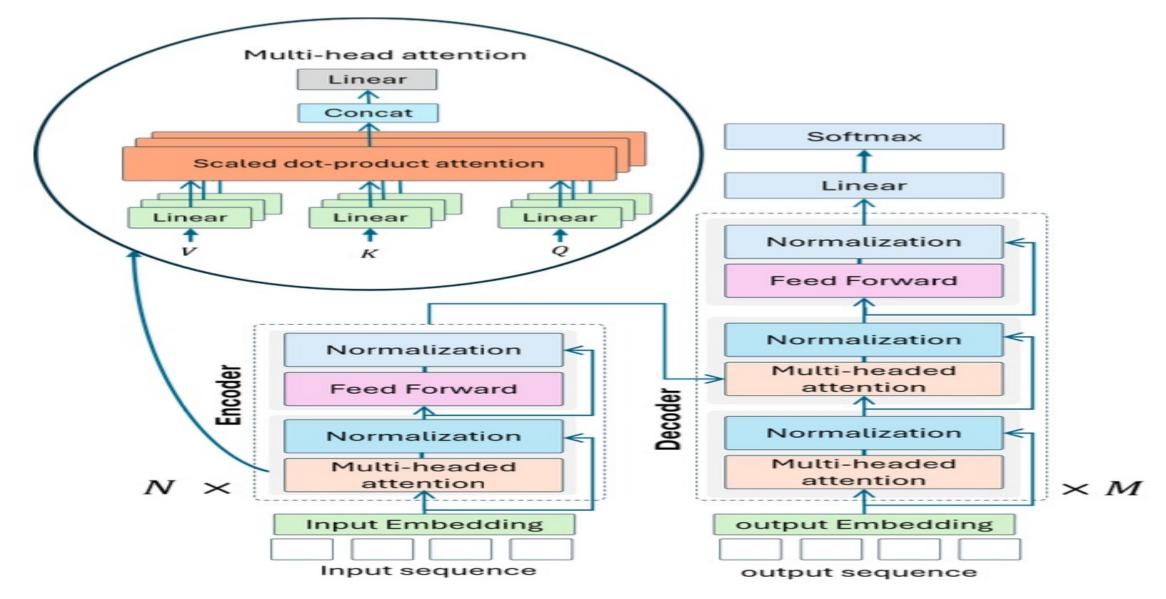


### **Architecture of Sensorimotor Models for VLA**

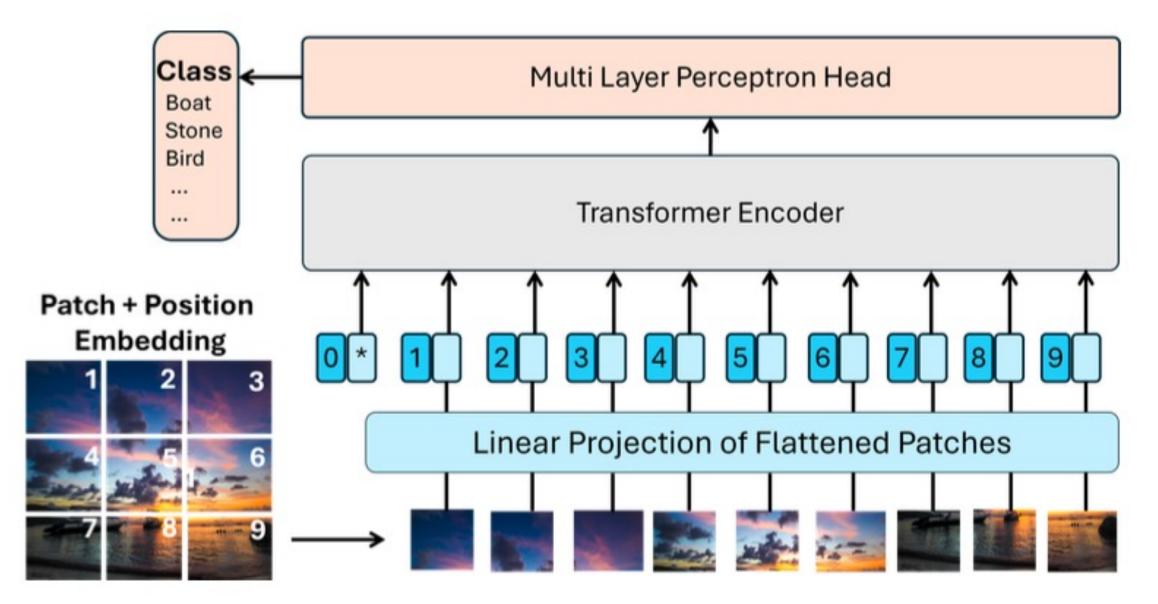


### **Transformer Architecture:**

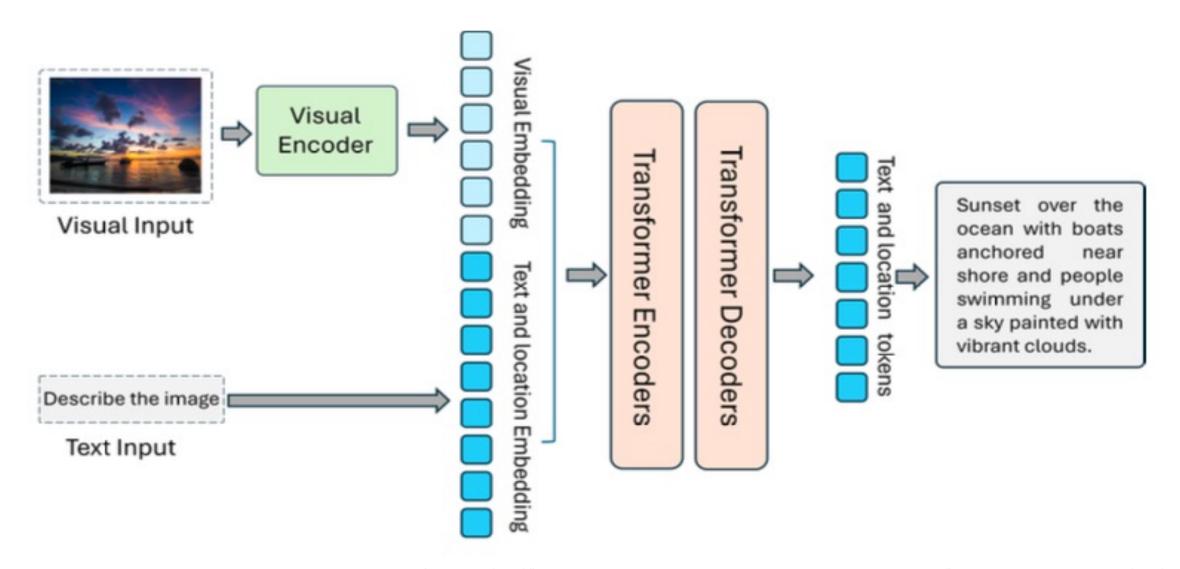
Encoder-decoder structure and the internal mechanism of multi-head attention



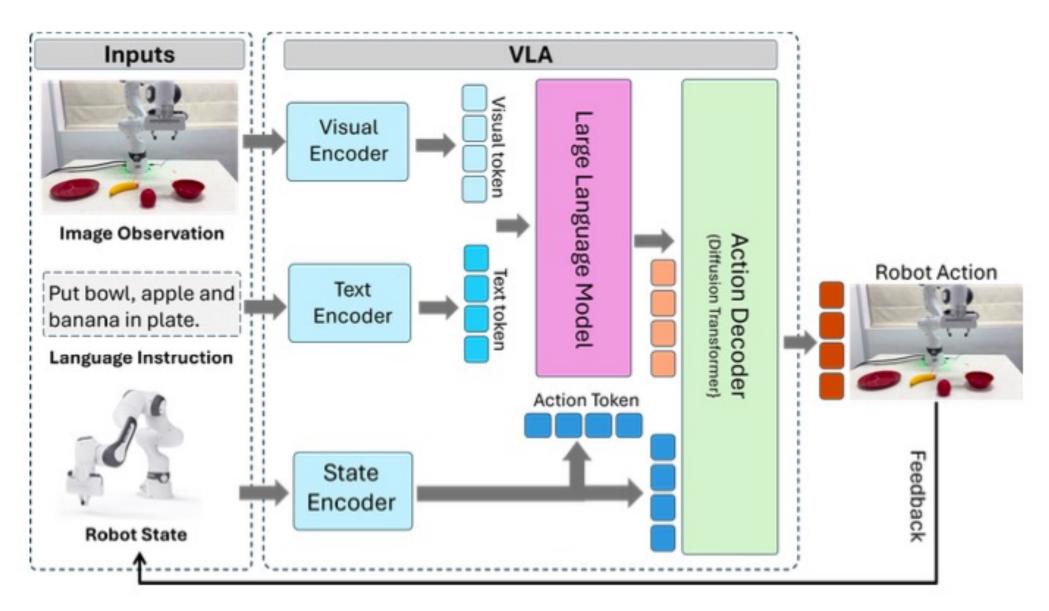
### **Architecture of the ViT**



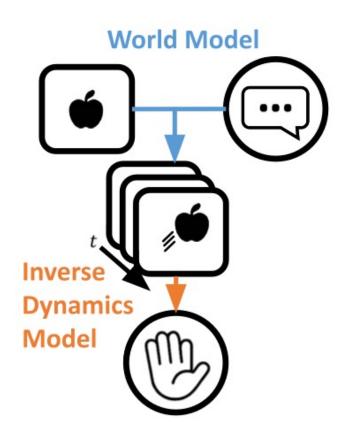
## Architecture of VLM for Image Captioning and Semantic Understanding



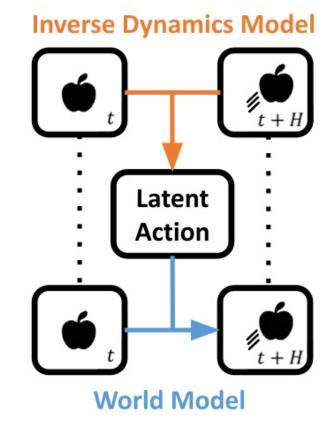
### Architecture of a VLA System for Robotic Manipulation



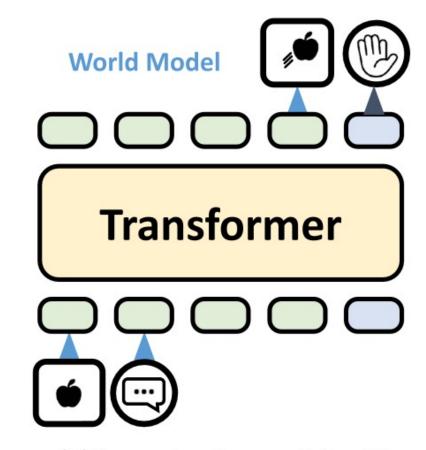
## Design Patterns for Incorporating World Models in VLA



(1) Action generation in world models

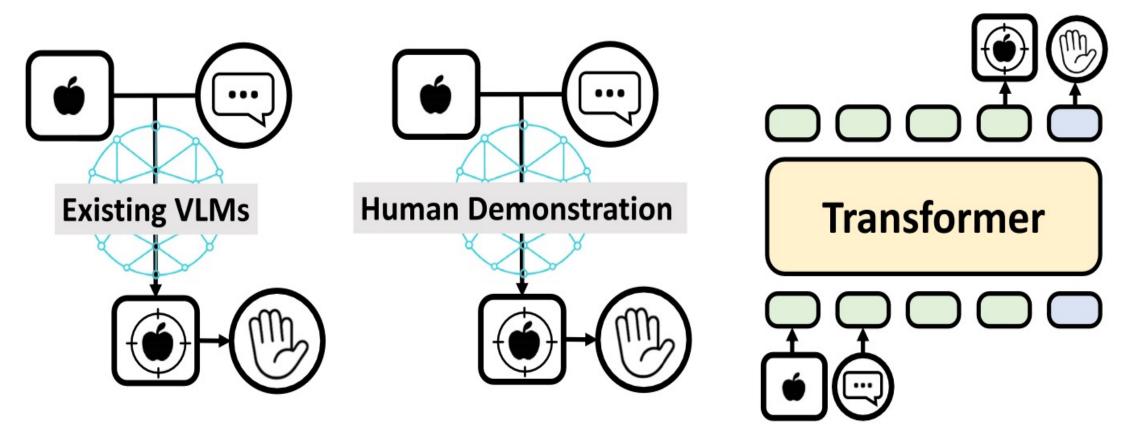


(2) Latent action generation via world models



(3) Sensorimotor models with implicit world models

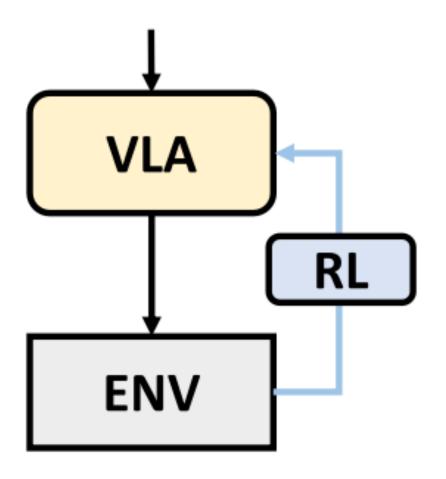
## Design Patterns for Incorporating Affordance-based Models in VLA

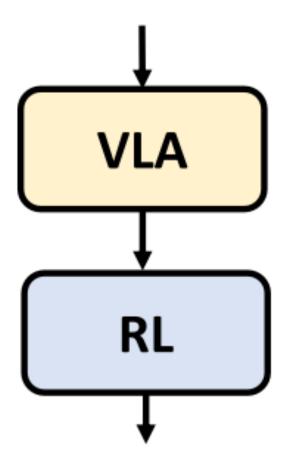


- (1) Affordance prediction and action generation using VLMs
- (2) Affordance extraction from human datasets

(3) Integration of sensorimotor models and affordance-based models

## Integrating RL with VLA Models



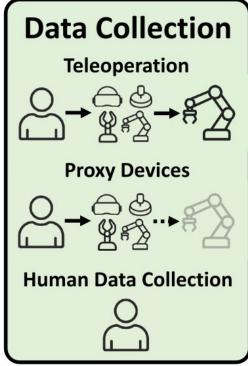


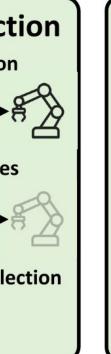
(1) Improving VLA using RL

(2) Using VLAs as high-level policies and RL for low-level control

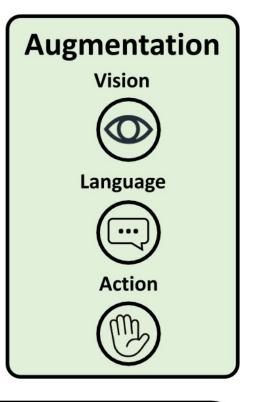
### Robots Used in VLA Research

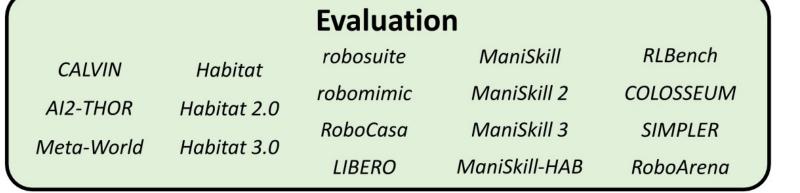




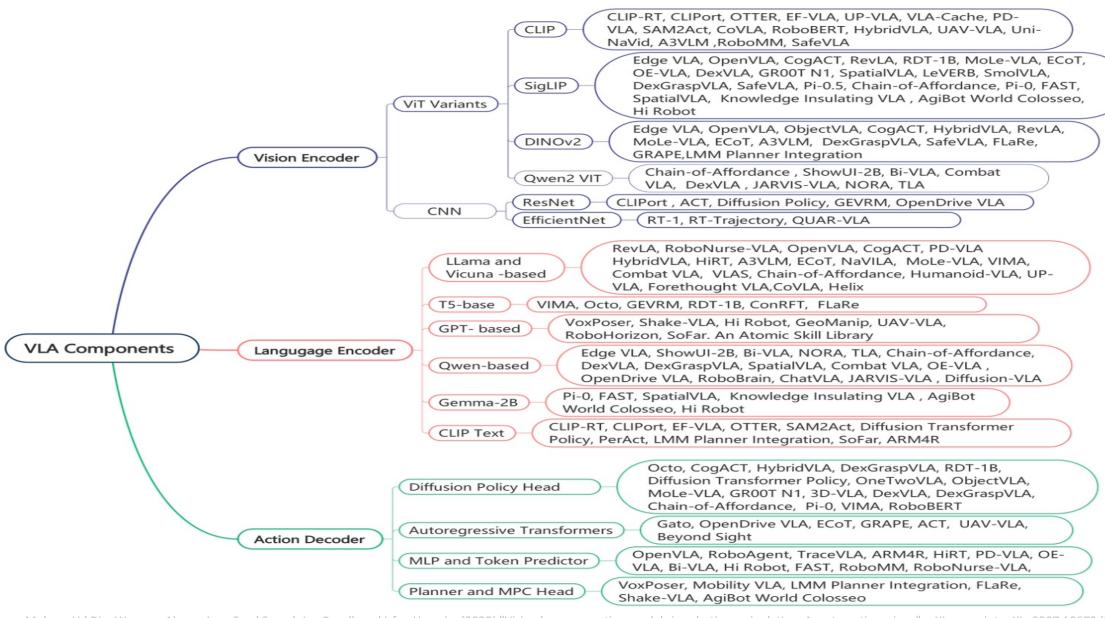


#### **Dataset Human Video Datasets** Ego4D Ego-Exo4D HOI4D ARCTIC **Simulation Datasets** RoboTurk MimicGen **Real Robot Datasets** RT-X QT-Opt BC-Z DROID

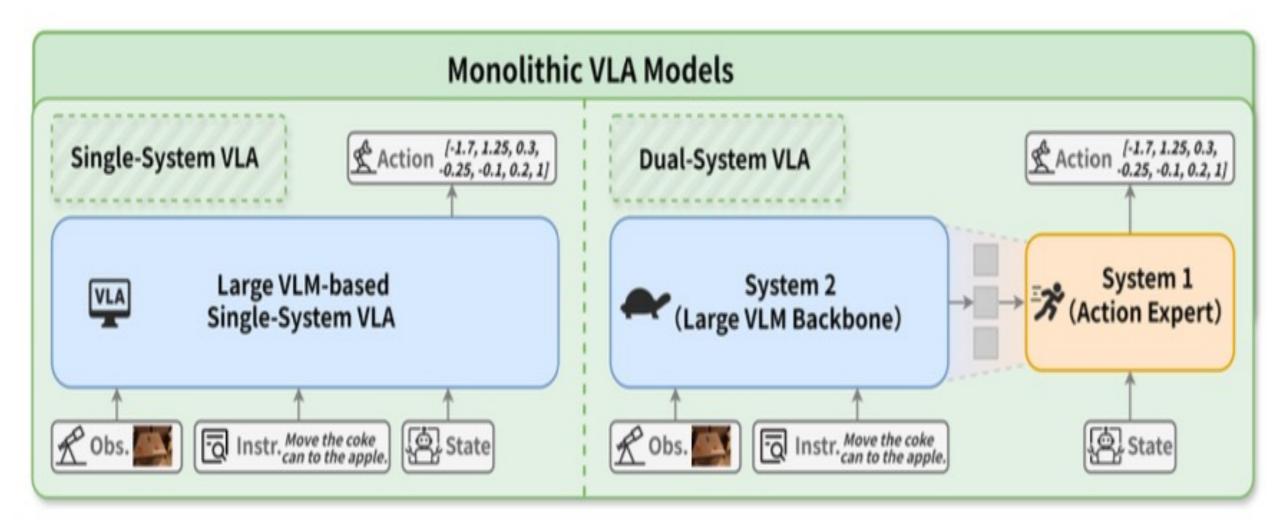




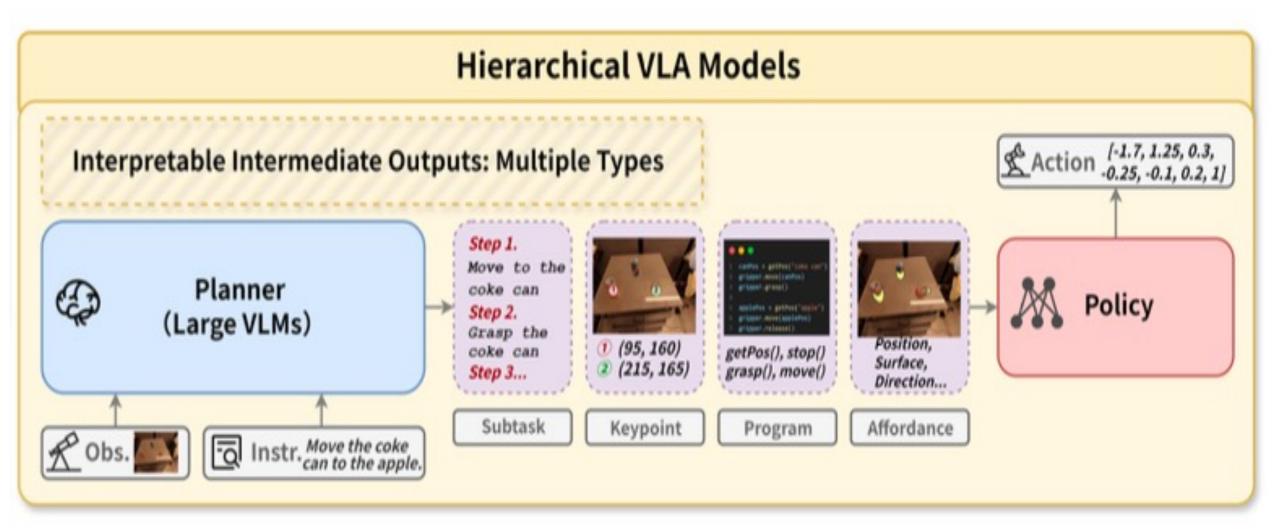
### Vision Language Action (VLA) Components



# Large VLM-based Vision-Language-Action Models Monolithic VLA Models



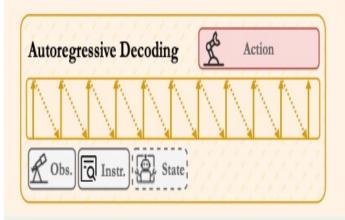
## Large VLM-based Vision-Language-Action Models Hierarchical VLA Models

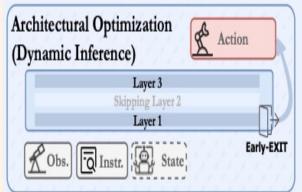


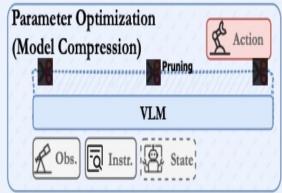
# Large VLM-based Vision-Language-Action Models Paradigms in Monolithic Single-system Models

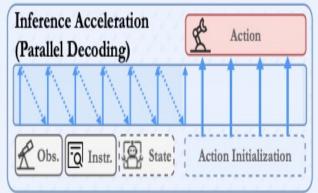
#### 3.1.1 Classic Paradigm: Autoregressive Decoding



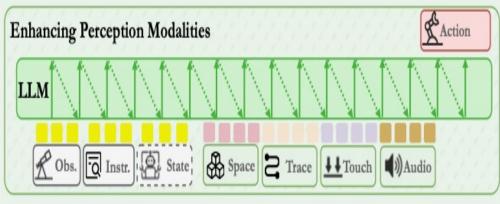


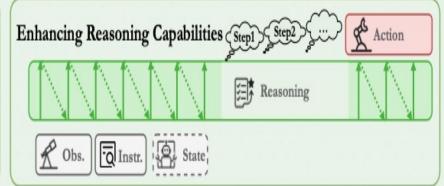






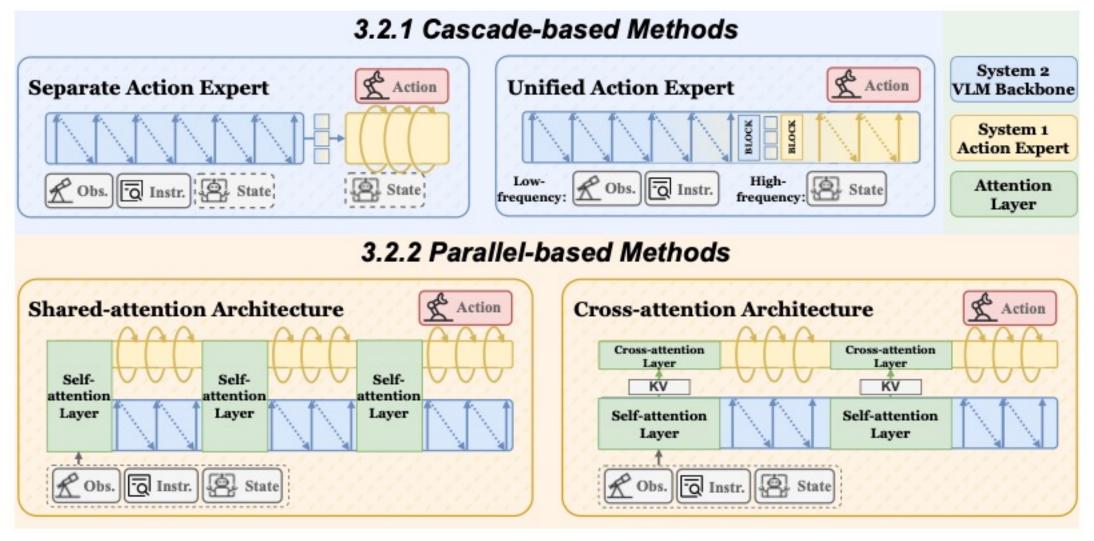
#### 3.1.2 Paradigm Derivations: Model Performance Enhancement



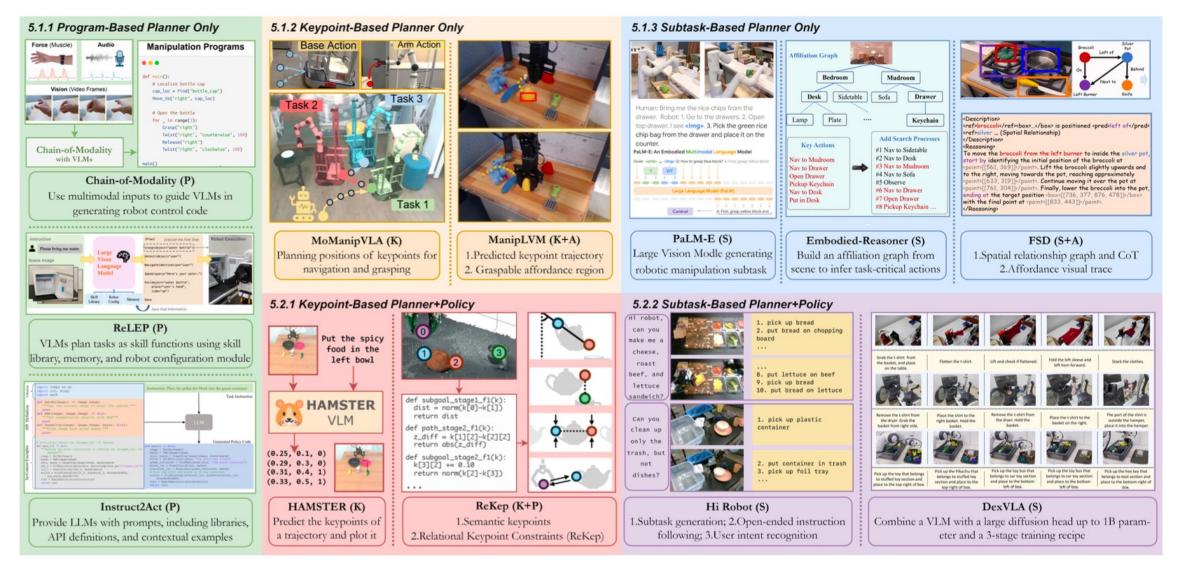




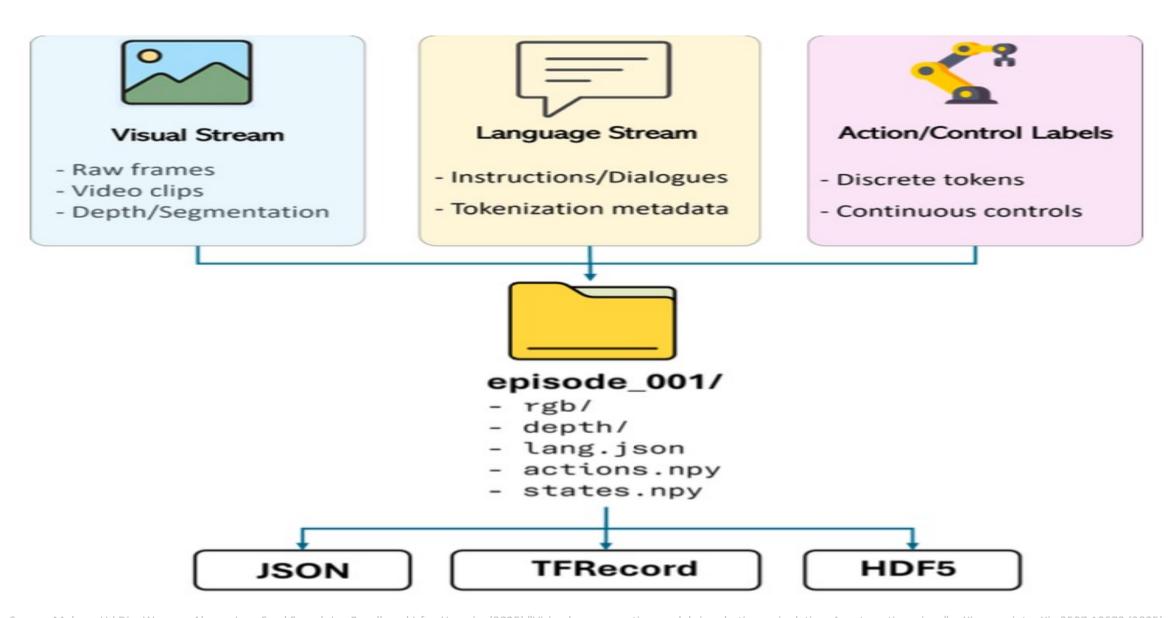
# Large VLM-based Vision-Language-Action Models Paradigms in Monolithic Dual-system Models



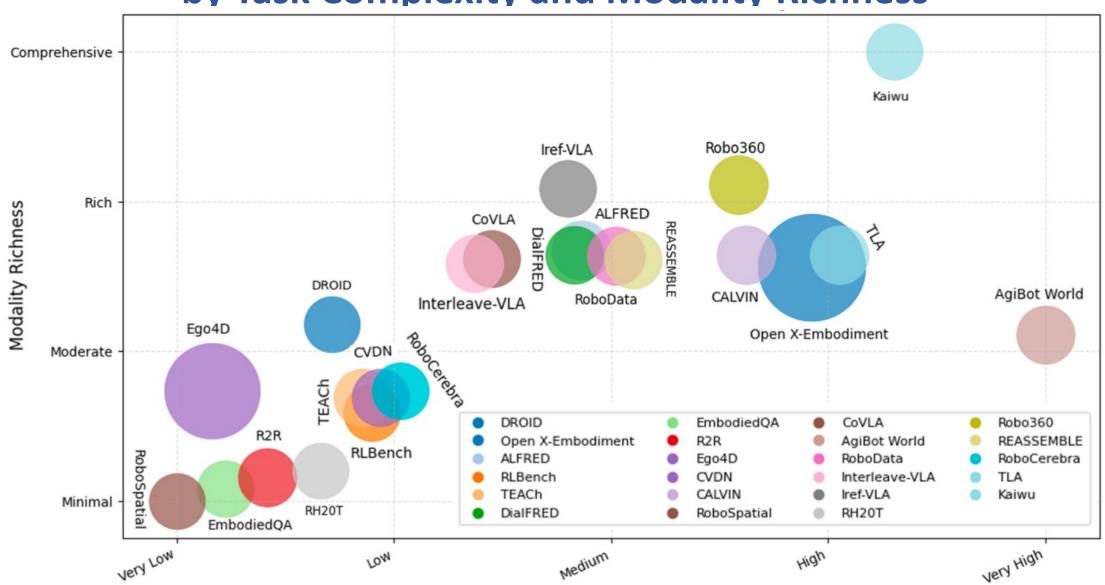
## Large VLM-based Vision-Language-Action Models Hierarchical Models



### Schematic of the Unified VLA Training Data Format



### Benchmarking VLA Datasets by Task Complexity and Modality Richness



#### Real-World Robot Datasets for VLA Research

| Name           | Episodes | Skill    | Task    | Modality       | Embodiment    | Collection        |
|----------------|----------|----------|---------|----------------|---------------|-------------------|
| QT-Opt         | 580K     | 1 (Pick) | NA      | RGB            | KUKA LBR iiwa | Learned           |
| MT-Opt         | 800K     | 2        | 12      | RGB, L         | 7 robots      | Scripted, Learned |
| RoboNet        | 162K     | NA       | NA      | RGB            | 7 robots      | Scripted          |
| BridgeData     | 7.2K     | 4        | 71      | RGB, L         | WidowX 250    | Teleop            |
| BridgeData V2  | 60.1K    | 13       | NA      | RGB-D, L       | WidowX 250    | Teleop            |
| BC-Z           | 26.0K    | 3        | 100     | RGB, L         | Google EDR    | Teleop            |
| Language Table | 413K     | 1 (Push) | NA      | RGB, L         | xArm          | Teleop            |
| RH20T          | 110K     | 42       | 147     | RGB-D, L, F, A | 4 robots      | Teleop            |
| RT-1           | 130K     | 12       | 700+    | RGB, L         | Google EDR    | Teleop            |
| OXE            | 1.4M     | 527      | 160,266 | RGB-D, L       | 22 robots     | Mixed             |
| DROID          | 76K      | 86       | NA      | RGB-D, L       | Franka        | Teleop            |
| FuSe           | 27K      | 2        | 3       | RGB, L, T, A   | WidowX 250    | Teleop            |
| RoboMIND       | 107K     | 38       | 479     | RGB-D, L       | 4 robots      | Teleop            |
| AgiBot World   | 94K      | 87       | 217     | RGB-D, L       | AgiBot G1     | Teleop            |

### Benchmarks for Vision-Language-Action Evaluation

Simulation Environments: Navigation (Nav), Manipulation (Manip), and Whole-Body Control (WBC)

| Name         | Task     | Scenes / Objects | Observation | Physics | <b>Built Upon</b> | Description         |
|--------------|----------|------------------|-------------|---------|-------------------|---------------------|
| robosuite    | Manip    | NA / 10          | RGB-D, S    | MuJoCo  | NA                | Modular             |
|              |          |                  |             |         |                   | framework, 11       |
|              |          |                  |             |         |                   | tasks               |
| robomimic    | Manip    | NA / NA          | RGB         | MuJoCo  | robosuite         | Offline learning, 8 |
|              |          |                  |             |         |                   | tasks               |
| RoboCasa     | Manip    | 120 / 2.5K       | RGB         | MuJoCo  | robosuite         | 100 kitchen tasks,  |
|              |          |                  |             |         |                   | photorealistic      |
| LIBERO       | Manip    | NA / NA          | RGB         | MuJoCo  | robosuite         | 130 tasks in 4 task |
|              |          |                  |             |         |                   | suites              |
| Meta-World   | Manip    | 1/80             | Pose        | MuJoCo  | NA                | 50 Manip tasks for  |
|              |          |                  |             |         |                   | Meta-RL             |
| LeVERB-Bench | Nav, WBC | 4 / NA           | RGB         | PhysX   | Isaac Sim         | Humanoid control    |

### Benchmarks for Vision-Language-Action Evaluation

Simulation Environments: Navigation (Nav), Manipulation (Manip), and Whole-Body Control (WBC)

| Name          | Task               | Scenes / Objects | Observation  | Physics  | <b>Built Upon</b>           | Description                  |
|---------------|--------------------|------------------|--------------|----------|-----------------------------|------------------------------|
| ManiSkill     | Manip              | NA / 162         | RGB-D, PC, S | PhysX    | SAPIEN                      | 4 tasks, 36K<br>demos        |
| ManiSkill 2   | Manip              | NA / 2.1K        | RGB-D, PC    | PhysX    | ManiSkill                   | Extended task diversity      |
| ManiSkill 3   | Nav, Manip,<br>WBC | NA / NA          | RGB-D, PC, S | PhysX    | ManiSkill 2                 | GPU-parallelized simulation  |
| ManiSkill-HAB | Manip              | 105 / 92         | RGB-D        | PhysX    | ManiSkill 3, Habitat<br>2.0 | HAB tasks from Habitat 2.0   |
| RoboTwin      | Manip              | NA / 731         | RGB-D        | PhysX    | SAPIEN                      | Dual-arm tasks               |
| Ravens        | Manip              | NA / NA          | RGB-D        | PyBullet | NA                          | 10 tabletop tasks            |
| VIMA-BENCH    | Manip              | NA / 29          | RGB, S       | PyBullet | Ravens                      | 17 multimodal prompt tasks   |
| LoHoRavens    | Manip              | 1/3              | RGB-D        | PyBullet | Ravens                      | Long-horizon planning        |
| CALVIN        | Manip              | 4 / 7            | RGB-D        | PyBullet | NA                          | Long-horizon lang-cond tasks |

### Benchmarks for Vision-Language-Action Evaluation

Simulation Environments: Navigation (Nav), Manipulation (Manip), and Whole-Body Control (WBC)

| Name          | Task       | Scenes / Objects | Observation | Physics  | <b>Built Upon</b>    | Description                       |
|---------------|------------|------------------|-------------|----------|----------------------|-----------------------------------|
| Habitat       | Nav        | 185 / NA         | RGB-D, S    | Bullet   | NA                   | Fast, Nav only                    |
| Habitat 2.0   | Nav, Manip | 105 / 92         | RGB-D       | Bullet   | Habitat              | Mobile manipulation (HAB)         |
| Habitat 3.0   | Nav, Manip | 211 / 18K        | RGB-D       | Bullet   | Habitat 2.0          | Human avatars support             |
| RLBench       | Manip      | 1/28             | RGB-D, S    | PyBullet | V-REP                | Tiered task difficulty            |
| THE COLOSSEUM | Manip      | 1 / 107          | RGB-D       | PyBullet | RLBench              | 20 tasks, 14 env variations       |
| AI2-THOR      | Nav, Manip | NA / 118         | RGB-D, S    | Unity    | NA                   | Object states, task planning      |
| CHORES        | Nav        | 191K / 40K       | RGB         | Unity    | AI2-THOR             | Shortest-path planning            |
| SIMPLER       | Manip      | 4 / 17           | RGB         | PhysX    | SAPIEN, Isaac<br>Sim | Real-to-sim evaluation            |
| RoboArena     | Manip      | NA / NA          | RGB         | Real     | NA                   | Distributed real-world evaluation |

### Summary

- Generative Al
- Agentic Al
- Physical AI (Robotics)

### References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Denis Rothman (2024), Transformers for Natural Language Processing and Computer Vision Third Edition: Explore Generative AI and Large Language Models with Hugging Face, ChatGPT, GPT-4V, and DALL-E 3, 3rd ed. Edition, Packt Publishing
- Aurélien Géron (2022), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd Edition, O'Reilly Media.
- Steven D'Ascoli (2022), Artificial Intelligence and Deep Learning with Python: Every Line of Code Explained For Readers New to AI and New to Python, Independently published.
- Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. (2022) "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors." arXiv preprint arXiv:2207.02696.
- Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. (2025) "Yolov9: Learning what you want to learn using programmable gradient information." In European Conference on Computer Vision, pp. 1-21. Springer, Cham.
- Nidhal Jegham, Chan Young Koh, Marwan Abdelatti, and Abdeltawab Hendawi. (2024) "Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors." arXiv preprint arXiv:2411.00201.
- Ranjan Sapkota, and Manoj Karkee. (2024) "Yolo11 and vision transformers based 3d pose estimation of immature green fruits in commercial apple orchards for robotic thinning." arXiv preprint arXiv:2410.19846.
- Yang Liu, Weixing Chen, Yongjie Bai, Xiaodan Liang, Guanbin Li, Wen Gao, and Liang Lin. (2024) "Aligning cyber space with physical world: A comprehensive survey on embodied ai." arXiv preprint arXiv:2407.06886.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry et al. (2021) "Learning transferable visual models from natural language supervision." In International Conference on Machine Learning, pp. 8748-8763. PMLR.
- Wonjae Kim, Bokyung Son, and Ildoo Kim. (2021) "Vilt: Vision-and-language transformer without convolution or region supervision." In International Conference on Machine Learning, pp. 5583-5594. PMLR.
- Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R. Martin, Ming-Ming Cheng, and Shi-Min Hu. (2022) "Attention mechanisms in computer vision: A survey." Computational Visual Media ,:1-38.
- Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan Zhang, and Matthias Grundmann. (2020) "Blazepose: On-device real-time body pose tracking." arXiv preprint arXiv:2006.10204.
- Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montserrat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna et al.(2025) "Gemini robotics: Bringing ai into the physical world." arXiv preprint arXiv:2503.20020 (2025).
- Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chattopadhyay et al. (2025) "Cosmos world foundation model platform for physical ai." arXiv preprint arXiv:2501.03575 (2025).
- Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke Zhu et al. (2025) "Foundation models in robotics: Applications, challenges, and the future." The International Journal of Robotics Research 44, no. 5 (2025): 701-739.
- Kento Kawaharazuka, Jihoon Oh, Jun Yamada, Ingmar Posner, and Yuke Zhu. (2025) "Vision-language-action models for robotics: A review towards real-world applications." IEEE Access (2025).
- Muhayy Ud Din, Waseem Akram, Lyes Saad Saoud, Jan Rosell, and Irfan Hussain. (2025) "Vision language action models in robotic manipulation: A systematic review." arXiv preprint arXiv:2507.10672 (2025)
- Rui Shao, Wei Li, Lingsen Zhang, Renshan Zhang, Zhiyang Liu, Ran Chen, and Liqiang Nie. (2025) "Large vlm-based vision-language-action models for robotic manipulation: A survey." arXiv preprint arXiv:2508.13073 (2025)...
- Min-Yuh Day (2025), Python 101, <a href="https://tinyurl.com/aintpupython101">https://tinyurl.com/aintpupython101</a>