
The VLDB Journal (1999) 8: 25–43 The VLDB Journal
c© Springer-Verlag 1999

The intrinsic problems of structural heterogeneity
and an approach to their solution

Theo Härder1, Günter Sauter2, Joachim Thomas3

1 University of Kaiserslautern, Department of Computer Science, 67653 Kaiserslautern, Germany; e-mail: haerder@informatik.uni-kl.de
2 Daimler-Benz AG, Research & Technology, Dept. CAE-Research (FT3/EK), 89013 Ulm, Germany; e-mail: guenter.sauter@dbag.ulm.DaimlerBenz.com
3 UBS AG, Hochstr. 16, 4002 Basel, Switzerland; e-mail: joachim.thomas@ubs.com

Edited by R. King. Received May 13, 1997 / Accepted August 18, 1998

Abstract. This paper focuses on the problems that arise
when integrating data from heterogeneous sources in a sin-
gle, unified database view. At first, we give a detailed anal-
ysis of the kinds of structural heterogeneity that occur when
unified views are derived from different database systems.
We present the results in a multiple tier architecture which
distinguishes different levels of heterogeneity and relates
them to their underlying causes as well as to the map-
ping conflicts resulting from the view derivation process.
As the second essential contribution, the paper presents our
approach to a mapping language solving the identified con-
flicts. The main characteristics of the language are its de-
scriptiveness, its capability to map between schemas writ-
ten in the relational, object-oriented, ER, or EXPRESS data
model, and its facilities for specifying user-defined update
operations on the view that are to be propagated to the data
sources. Finally, we briefly discuss how this mapping in-
formation is employed to convert queries formulated with
respect to the integrated view, into database operations over
the heterogeneous data sources.

Key words: Heterogeneity – Legacy systems – Mapping
language – Schema integration – Schema mapping – Updat-
able views

1 Introduction

The approach discussed in this paper resulted from research
on a uniform product data model, which has been carried
out at Daimler-Benz Research in Ulm/Germany in the past
few years. For Daimler-Benz, just like for many other man-
ufacturing companies, the increasing demand for flexibility
and variety of product palettes calls for a uniform system
environment permitting global consistency of product data
as well as inter-operability among all participating data-
processing subsystems. For example, geometrical product
data, supported by CAD systems, and their corresponding
logical bill-of-material structure, administered by data man-
agement systems, must be maintained in a single environ-
ment in order to provide a quick overview of as well as

fast access to all relevant data associated with certain prod-
uct lines. Even the introduction of new systems requires the
inter-operation with or, at least, the access to so-called legacy
systems. Together with cross-platform exchange of informa-
tion via the World Wide Web, the demand for integrating
the data of multiple databases (DBs) is strongly increasing.

Data integration, often applied in reverse engineering
processes for legacy data sources, must consider organi-
zational as well as technical requirements. Data modeling
should be up to today‘s needs, which primarily means that
the definition of integrated views should be unbiased by
the intricacies and peculiarities of legacy data sources. Of-
ten, inter-organizational data definition standards govern the
composition of views in accordance with given design prin-
ciples. Furthermore, data sources to be integrated are de-
scribed by heterogeneous schemas and frequently come from
multiple organizations (cross-organizational data access). As
a consequence, integrated view definitions preexist (e. g.,
by inter-organizational agreements), that is, the definition of
views must be decoupled from their mapping and execution.
This is one reason why, for example, SQL is no viable solu-
tion. Another reason is the potential heterogeneity between
source schemas and view schema. View definition languages
based on a single data model cannot bridge heterogeneity.
Hence, a language is needed to map between the integrated
view definition and data source schemas. In this paper, we
propose such amapping languagesupporting separately the
definition of view mappingandview executionmechanisms.

In Sect. 2, we will compare the related work to our sub-
ject and focus on the goal of our paper. The first contribution
of this paper is to present a detailed analysis of heterogene-
ity based on our exploration of data representations in the
automotive industry (cf. Sect. 3). Section 4 surveys the prop-
erties of existing approaches to view languages and reveals
their shortcomings which serve to justify our own approach.
Our proposal to a schema mapping language is presented in
Sect. 5 and is called BRIITY (mapping language bridging
heterogeneity). Finally, a short description of the execution
model of our mapping language is given in Sect. 6, before
we conclude our work in Sect. 7.

26 T. Härder et al.: Problems and solution approaches to structural heterogeneity

2 Related work and our goal

There are two general types of problems that impede inter-
operability, which is defined as the capability ofheteroge-
neoussystems to cooperate. Firstly, the schemas of the DBs
to be integrated might strongly differ (structural heterogene-
ity, including incomplete coverage of data types and possibly
different data models) and cannot be replaced by homoge-
neous alternatives. One of the main characteristics of legacy
systems is either the absence of a conceptual schema or
its strong similarity to the internal schema. Most applica-
tion programs require high-speed access to data which often
calls for unnormalized schemas that are tuned for specific
access profiles. As a consequence, the structures of schemas
differ with the applications and their access characteristics.
However, migrating to a new system generation that would
allow to reimplement applications in a more uniform way
and that would abstract as far as possible from details of the
physical data representation is often highly uneconomical.
Legacy systems are usually intertwined into the information-
processing infrastructure being queried via hand-coded in-
terfaces by application programs and related systems. An
atomic switch to powerful successors is therefore an expen-
sive and delicate undertaking. Another argument against this
strategy is the relatively low frequency of accesses to those
systems.

The second problem type impeding system coupling in a
straightforward way isheterogeneity of semantics. The DB
design is influenced by the needs of a particular application
to optimize run-time performance. Analogously, integrity
constraints are often embedded, distributed, and replicated
within application programs, thereby preventing a uniform,
system-enforced control of the data semantics. As a result,
at the level of the DB schema only a partial description of
the application semantics is conceivable. Hence, capturing
all aspects of semantics cannot necessarily be conducted in
an automatic way.

Many papers with varying technical depth have been
published. They present a taxonomy of heterogeneity
[BCN91, BHP92, BLN86, CS91, DKMRS93, Du94, GSC96,
KCGS95, KS91, KS96, MR93, PBE95]1 and discuss ap-
proaches of how an integrated view of heterogeneous data-
bases can be provided for an application. Besides referring
to practical applications, the current paper goes beyond these
publications by establishing a classification of structural het-
erogeneity according to its causes and the mapping complex-
ity resulting from it.

In general, aspects ofstructural heterogeneityand issues
of schema integration are reflected in the architecture of fed-
erated database systems (FDBSs, [SL90]). The key idea is
the translation of schemas captured in heterogeneous data
models into so-called component schemas written in a com-
mon data model. The latter schemas, resp. views on these
schemas, are then integrated into the federated schema.

Early approaches to FDBSs are the so-called DB gate-
ways, mostly provided by commercial software vendors (cf.
Sect. 2.1). The arrival of the object-oriented methodologies
brought about the design of wrapper-based approaches using
encapsulated access to source data (cf. Sect. 2.2). In contrast

1 See [Sa96b] for a comprehensive listing of papers on heterogenitiy.

to wrappers, schema-mapping languages serve to explicitly
define the inter-relationship between source and target infor-
mation (cf. Sect. 2.3).

There are several approaches dealing withheterogeneity
of semantics. They are either based on automatic analysis
of semantics [BHP94, Du94, GLN92, KFMRN96, SGN93,
SPD92, ZHKF95] or on human expertise. The latter pro-
posals comprise reverse engineering methodologies [An94,
CMS94, HTJC93, PB94, VA95] and enrichment of the DB
itself [SSR94]. However, in our experience, the basic as-
sumption underlying any kind of automatism, i. e., having a
schema with expressive names and a low degree of inter-
relationships among entities, is wishful thinking in most
practical environments. Furthermore, the enriched schemas
that are generated are most often not formally related to
the corresponding original DBs. Proposals to enrich the
databases themselves might be promising, but tend to make
large DBs even larger.

We have chosen the international (ISO) standard for the
exchange of product model data (STEP, [IS94a]) as the ba-
sis for common schema structures and reference terms. This
standard defines the object-oriented data model EXPRESS
[IS94b], the access interface SDAI [IS96a], and a set of
standardized schemas representing various application do-
mains. For example, the schema described in [IS98a] repre-
sents bill-of-material structures in the automotive industry.
The main advantage of this approach is to have not only a
common data model as a basis for schema integration, but
also a common schema structuring with semantics defined
in ISO documents. This is particularly helpful when inte-
grating DBs containing complex bill-of-material structures
of different companies.

The goal of our approach is to overcome structural het-
erogeneity using standards and well-defined concepts as far
as possible. Semantic heterogeneity is only considered as far
as STEP is concerned. The main contribution of this paper
is the analysis of structural heterogeneity and its solution.
We outline existing approaches to this subject in more detail
in the following subsections2 and will show that mapping
definition languages are most appropriate with respect to
our application scenario. Thus, the discussion of the various
approaches to such languages will be refined (cf. Sect. 4)
according to our requirements, i. e., according to the types
of conflicts to be solved. We conclude this section by a brief
description of our goal (cf. Sect. 2.4).

2.1 Database gateways

Early approaches to inter-operability among heterogeneous
DBs were based on so-called DB gateways. They were de-
signed to provide access from a database application devel-
oped for a specific DBS to a DB managed by a different DBS
on the same or perhaps another platform. Such gateways of-
fer little or no transparency concerning gateway interfaces
and locations. Furthermore, applications that need to refer
to data from different sources cannot rely on system support

2 We exclude so-called “universal storage” approaches, because they re-
quire to convert and store all data in an integrated system that is tailored
to provide a unified view of data of different types [B197, RS97].

T. Härder et al.: Problems and solution approaches to structural heterogeneity 27

for establishing a homogenized view of the data and are bur-
dened by all processing steps to fetch, unify, and relate the
heterogeneous data, e. g., by join operations. DB gateways
are mainly used to migrate legacy systems (hierarchical, net-
work, or relational DBs) to new (relational) environments or
for interfacing relational DBs of different vendors.

The approaches sketched in the following are more ad-
vanced in the sense that they provide unified data views and
DB operations (a uniform API) as though all data reside in
a single local DB, when, in fact, some or all of the involved
data are distributed over remote heterogeneous data sources.
However, the approaches differ considerably concerning the
variety of data sources to be included, the complexity of
view definition, and run-time optimizations of view deriva-
tion.

2.2 Approaches using wrappers

As the spectrum of data systems increases and the data types
to be integrated become more and more complex, it becomes
inappropriate for applications to have direct access to data
and to their representation. Note that there is a growing de-
mand to have integrated access to a variety of data reposito-
ries ranging from relational over non-relational DBs to non-
database sources, including spread sheets, text-processing
documents, electronic mail, images, etc.

For such a wide spectrum of data sources with even
higher degrees of heterogeneity, special middleware sys-
tems embody an alternative to an integrated view of het-
erogeneous legacy data without changing how or where the
data is stored. [Bl97] characterizes such systems as “uni-
versal access” systems. While providing a common inter-
face to new applications, such middleware systems achieve
powerful query services for heterogeneous data by means of
so-called wrappers [BE96] or data providers [Bl97]. These
mechanisms encapsulate the underlying data and mediate be-
tween the data sources and the middleware. Since the native
query support of these sources is so different in expressive
power (varying from simple file scans to join operations on
complex objects or media-specific search facilities), it is im-
possible to perform accesses through a standard interface.
Hence, the middleware system approach to homogenized
views on heterogeneous sources (heterogeneous views for
short) necessarily has to exploit the query and access capa-
bilities of the participating legacy systems. Encapsulation,
however, has to be achieved by writing wrappers for every
type of data source to be included (existing wrappers could
be made available in a special library). Since the middleware
system is offering tools for the creation of wrappers and for
their integration, some kind of standardization is enforced,
thereby enabling extensibility.

OLE DB [Bl97] aims at providing a “universal access”
facility for business applications. It is based on an infras-
tructure for encapsulated access to the original data sources,
the so-called data providers. Its unifying abstraction for data
access is therowset, representing a stream of values from
a data provider. For simple “flat” data providers with no
querying capability, data is easily exposed in a tabular form.
More powerful data providers are instructed to accept com-
mands and derive rowsets as a result of their “inner” query

processing. Although OLE DB does not include a generic,
middleware-based query-processing facility to be dynami-
cally used for the combination of lower level result rowsets,
a protocol can be defined by which a middleware component
(service provider) and data providers can interact to do the
job.

The use of an object-oriented interface (based on the
ODMG-93 data model including some extensions [Ca96])
for accessing heterogeneous data in a variety of existing
data repositories, including databases, files, as well as mul-
timedia objects, is explored in the Garlic Project [Ca+95].
Since multimedia types do not lend themselves to schema
mapping, the unified access to the different data sources re-
lies on the use of wrappers, too. Compared to OLE DB, the
Garlic middleware takes a much more generic approach to
query planning, where “the wrapper and the middleware dy-
namically negotiate the wrapper’s role in answering a query”
[RS97].

In contrast to mapping definition languages, the use of
wrappers tries to encapsulate the various heterogeneous data
and therefore masks many problems of structural and seman-
tic heterogeneity (or shifts them to the wrapper writers). In
this approach, there is no distinction between a description
model and an execution model. That is, the mapping spec-
ification and the mapping execution are hard-coded in the
wrappers, which disallow for the use of optimizations. More-
over, updates of data sources, although possible in principle,
are usually not considered. However, the clear separation of
data sources accessed via wrapper interfaces and the role
of the middleware as an intermediary makes this approach
easily extensible.

2.3 Advanced approaches to schema mapping

Schema-mapping approaches permit a separate view defini-
tion “independent” of the source schemas. As a consequence,
they require an explicit mapping specification, that is, rules
describing the derivation of target data from source data
(and vice versa). Obviously, such an approach can provide
more flexibility in terms of renaming, source assignment,
multi-source correspondences, etc. Moreover, by delegating
the mapping task to DB experts, the complexities of the
source schemas3 can be kept transparent for the user. As
motivated above, these languages have to bridge between
potentially poorly defined schemas and, as a consequence,
have to make explicit and to document hidden semantics.
Such an explicit specification allows to better understand and
control the inter-relationship between the target and source
schemas, as well as the data correspondences among the
source schemas.

Although many papers have been published on this sub-
ject [AB91, AR90, Ba95, CL92, Ha95, KC95, KCGS95,
KDN90, Ke91, KLK91, PGU96, SPD92, SST92, TC94], a
satisfactory approach has not been proposed so far. Hence, a
language which offers solutions to all problems of structural
heterogeneity (Sect. 3) in a formal and understandable way,

3 The source schemas we referenced have about 200 entities. An ‘item’
was represented by about 20 relations, each of them having 50 attributes
on the average.

28 T. Härder et al.: Problems and solution approaches to structural heterogeneity

data transfer requested by a query

T T’

S1 S2 Sn

Si→T data / schema integration

T→T’ data migration

propagation of updates

Fig. 1. Scope of heterogeneous views

maps/integrates schemas of heterogeneous data models, and
supports the update of views, is still urgently needed.

Such a language realizes a more generic kind of middle-
ware technology by distinguishing between the description
model, i. e., the mapping definition language, and its execu-
tion. However, current systems allow only limited variability
of the data sources, e. g., they can access relational DBs of
different vendors, as well as non-relational data sources such
as formatted files. The views made available to the applica-
tion are based on traditional view definition languages and
are more or less relational with SQL as an API. For example,
the product DataJoiner [IBM95], which currently supports
single-source updates, is indicative for these approaches.

2.4 Our goal

The environments we have in mind possess a known num-
ber of DB source types and do not strongly rely on access
to encapsulated data and extensibility of source types. How-
ever, they frequently need “manual” mapping support, which
includes type conversion, conditional mapping, as well as
checking and resolution of conflicting values when view at-
tributes are combined from various data sources. Moreover,
view update is an important option. These were our major
reasons for the development of a mapping definition lan-
guage.

Using the ISO standard STEP, we have a common data
model for view definition. However, STEP does not include
a mechanism to map EXPRESS views to heterogeneous
source schemas. Therefore, a mapping language bridging
between pre-existing DB schemas and the (integrated) view
schema formulated in STEP is still needed. Thus, the goal
of our work is to develop such a language that satisfies the
following main requirements.

– Integration of multiple schemas written in potentially
heterogeneous data models, i. e., mapping of data be-
tween heterogeneous schema structures

– Descriptiveness of the language, i. e., declarative map-
ping specifications.

– Immunity to technological changes, i. e., independence
of the mapping specifications from DBMS and platform
characteristics.

– Support of user-defined update statements having a sim-
ilar expressiveness as retrieval statements.

Since heterogeneous views can be composed in many ways,
we give some examples to characterize the possible spectrum
that should be supported by an industrial-strength mapping
language. As indicated in Fig. 1, source data (denoted byS)
typically comes from multiple sourcesSi(i = 1, . . . , n) from
which a view (the target dataT) has to be derived. Alterna-
tively, data can be transformed from one schema (sayT) to

another (T ′), e. g., to replace a legacy system. For the de-
scription of theSi, we may have a variety of schemas from
different data models, typically relational, object-oriented,
ER, and EXPRESS schemas. In our approach, we have cho-
sen EXPRESS to defineT (T ‘).

The set ofSi may be homogeneous or heterogeneous,
depending on whether or not all sources are described by a
uniform data model.

Another aspect directly determining the mapping com-
plexity is the coverage of data types describing the way
in which real-world entities are reflected in the sources to
be integrated. It is primarily influenced by two criteria, the
contents of the source schemas and their respective model-
ings. Both criteria can be subdivided into three categories:
identical, partially overlapping, and disjoint. For example, a
real-world entity might be modeled in an identical fashion in
two source schemas, the modelings might be similar (“over-
lapping”), or they might be totally different, i.ie., disjoint. If
all participating source schemas contain semantically iden-
tical object types and properties (attributes), the coverage is
said to becongruent, otherwiseincongruent. The most com-
plex case of incongruence and the only one we will refer to
subsequently is the one in which both the schema contents
and the modelings employed are partially overlapping. Con-
gruence may not only occur among data sources, but also
between a source schema and its target schema. In order to
properly distinguish those cases, we term congruence among
sourceshorizontal congruence, while that between a source
and a target is calledvertical congruence(cf. Sect. 3.1).

We exemplify the possible mapping bandwidth referring
to mapping typeS → T , i. e., the heterogeneous view con-
struction. The following list indicates mappings of increasing
complexity:

– homogeneous and congruentSi are mapped toT de-
scribed in the same (a different) data model

– homogeneous and incongruentSi are mapped toT de-
scribed in the same (a different) data model

– heterogeneous, but congruentSi are mapped toT de-
scribed in a given data model

– heterogeneous and incongruentSi are mapped toT de-
scribed in a given data model.

Another mapping aspect causing additional complexity is
the mapping cardinality. It characterizes uni-/bidirectional
mapping, i. e., whether the mapping is specified only in one
direction, like in traditional relational views fromS to T ,
or in both directions, which will be enabled by our mapping
language (see Sect. 5.4). Finally, the mappingT → T ′ sup-
ports data migration or special forms of data propagation via
DB import schemas.

In order to show how heterogeneous views can be pro-
vided and which kind of mapping problems must be solved,
we have to identify the mapping conflicts first. For this rea-

T. Härder et al.: Problems and solution approaches to structural heterogeneity 29

son, we investigate the intrinsic problems caused by the con-
struction of heterogeneous views.

3 The intrinsic problems of structural heterogeneity

Based on our experience on the mapping between hetero-
geneous schemas, primarily for bill-of-material structures,
we have identified different kinds of structural heterogene-
ity. In this section, we present a detailed classification of
structural heterogeneity according to the mapping complex-
ity they cause and arrange them in a multiple-tier representa-
tion (cf. Fig. 2)4. This figure can be interpreted as a sequence
of stairs characterizing the increasing mapping complexity
when heterogeneous views are derived. On the horizontal
axis, we have listed the features to be dealt with during the
mapping process and the sections in which they are further
described. Using the stairs in vertical direction from the left
to the right, we express the increasing complexity of the fea-
tures. The most simple case in our classification starts with
the bottom level, embodying a couple of features which can
already be encountered in the relational model. Advanced
data models provide additional concepts and issues, e. g.,
aggregation, abstraction concepts, and object identity in case
of object-oriented data models, which require more complex
mapping steps. Some of the concepts hide their semantics
or are defined procedurally (code of methods or functions),
thus diminishing the applicability of automatic mappings. In
the most complex situations, for example, ADTs (top right
corner), manual interaction may be needed to reach a se-
mantically equivalent mapping result.

In the following, we describe the different aspects in-
volved in the mapping of heterogeneous views starting with
the simplest situation. That is,

– source data isstructured and described by a single
schema,

– only one source to one targetschema has to be mapped,
– both schemas are written in ahomogeneous relational5

data model, and the mapping is onlyuni-directional, i.
e., the mapping is specified from source to target (the
so-called read-only views).

– only static aspectsare considered (i. e., no methods, no
specification of behavior, no triggers, etc.), and

– target data istransient(i. e., data is only accessible within
a single transaction and maintained on volatile storage).

The use of a more powerful data model, e. g., an object-
oriented one, introduces more advanced concepts or features
burdening the mapping process. This is illustrated in Fig. 2
by the relevant concepts to be discussed in the sequel at the
various levels of the tier representation.

Subsequently, we refer to the situation involving data or
schema information from source and target asvertical dis-

4 Please find the detailed discussion of the multiple-tier representation
in [Sa96b].

5 We use the object-oriented data model EXPRESS as the common data
model, and consequently focus in our general architecture on the mapping
between object-oriented schemas and schemas written in the relational,
an object-oriented, or the EXPRESS data model. Nevertheless, we want
to abstract from these assumptions when discussing the various kinds of
heterogeneity.

tribution, whereashorizontal distributiondenotes the partic-
ipation of multiple sources.Complex constructsare defined
to be composed of elements of multiple sources.

3.1 Basic mapping problems

The features which we describe first exist independently
of the expressiveness of the data model (relational, object-
oriented, etc.), the schema cardinality (1 : 1 or 1 :n), the
directions of mapping (uni-directional vs bi-directional), and
the power of representation (static/dynamic aspects).

a) Vertical congruence

The trivial case of heterogeneity is the one in which an
identical application domain is represented inS andT . Ad-
ditionally, schema elements might beprojectedfrom S when
deriving T . In this case, the projected information must be
added during the generation/insertion of data according to
S. Figure 3 illustrates such a scenario; it essentially leads to
the view-update problem.

In Fig. 3, the name of the person referenced by foreign
key ITEM.created by and represented asPERS.name,
is projected toT . As a consequence, in order to exploit the
primary key/foreign key relationship between
ITEM.created by andPERS.key , e. g., when propagat-
ing operations on T to operations on S,
item.created by can be used to identify the correct tu-
ple in the source relationPERS, which, in turn, hosts the
requested attributePERS.key .

b) Vertical distribution of data

It is slightly more difficult to map betweenS andT if data
is selectedinstead of having amatchingbetween both. Then,
predicates representing the selection must be defined.

c) Naming

Different naming (homonyms, synonyms) inS and T (i.
e., data type, entity6, and attribute names) as opposed to
uniform naming requires the use of renaming functions or
human interaction, e. g.,item.name andITEM.name are
synonyms (cf. Fig. 3), whereasitem.created by and
ITEM.created by are homonyms.

d) Data type correspondences

If the data types are notidentical, but only computationally
equivalent, transformation functions have to be defined, e.
g., functions to convert DM to US$. In related work, this
criterion is often further subclassified into conflicts of units,
scaling, granularity, etc.

6 In this sentence, entity stands for a class, an entity, or a relation.

30
T

.
H

ärder
et

al.:
P

roblem
s

and
solution

approaches
to

structuralheterogeneity

heterogeneous

object-oriented

durability of data transient

1:n

1:1

bi-directional

uni-directional
static aspects

schema cardinality
mapping cardinality
representation
simplest data model relational
vertical congruence identical

projecting
matching

selecting
vertical distribution of data

naming uniform
different

1:1
1:n, n:1

n:m
entity correspondences 1:1

1:n
n:1

n:m
complex source constructs isolated

dependent
isolated

dependent
complex target constructs

mapping of aggregates homomorph
nest, unnest

mapping of abstraction concepts homomorph
isomorph

object identity preserving
generating

hybrid

horizontal congruence disjoint
replicated

overlapping
horizontal distribution of data disjoint

replicated
overlapping

degree of structuring structured

semi-structured
unstructured

diversification of the data model homogeneous

dynamic aspects
EXPRESS

persistent

attribute correspondences

data type correspondences identical
computational

3.1.a

3.1.b

3.1.c

3.1.d

3.1.e

3.1.f

3.1.g

3.1.h

3.2
3.2.a

3.2.b

3.2.c

3.2.d

3.4.a

3.4.b

3.5

3.6.b

3.6.c

3.6.a

3.3
3.4

F
ig.

2.M
ultiple-tier

architecture
of

heterogeneity

T. Härder et al.: Problems and solution approaches to structural heterogeneity 31

rel_db
item

name
created_by

target

ITEM

name created_by

PERS

key name

primary key /
foreign key
relationship

Fig. 3. Projection of information

CABLE

ID

cable

end_1
end_2

oo_dbtarget

ID_of_end_1

end_of_cable

ID
ID_of_end_2

Fig. 4. Instance-dependent mapping

e) Attribute correspondences

If attributes correspond on a 1 :n or ann : 1 basis instead of
1 : 1, attributes must be concatenated or split, respectively.
Often, this mapping is defined to be conditional, i. e., one
attribute corresponds to a specific attribute under a certain
condition and to (an)other attribute(s) under different con-
ditions. If attributes have to be mapped on ann : m basis,
the conversion functions might become even more compli-
cated. For example, if the geometry of a rim is represented
in T by three points of a circular line and inS by the center
and the radius of the rim, complex mathematical operations
must be applied. In addition, integrity constraints have to be
specified to guarantee the same mapping, i. e., one single
arrangement of the three points inT from the same source
information.

f) Entity correspondences

Permitting ann : 1 correspondence between entities6 in S
andT instead of 1 : 1 relationships requires the identification
of different source entities in the view definition of the tar-
get entity. Another problem arises by 1 :n correspondences
between entities inS and T . In this case, many target in-
stances might be mapped to one single source instance, and
the criterion to distinguish between the target instances is
only available in another target instance referencing them.
This problem is called instance-dependent mapping and is
illustrated in Fig. 47.

Mappingend of cable to CABLErequires to distin-
guish between mapping end of cable.ID to
CABLE.ID of end 1 or CABLE.ID of end 2. Thus,
this mapping is dependent on the path along which
end of cable is referenced by cable. This problem be-
comes even worse if all instances ofend of cable are
generated first, and the complex instances ofcable are
generated afterwards.

If an n : m correspondence at the entity level is allowed,
all the problems of the 1 :n andn : 1 cases have to be dealt
with.

7 In this example, we use object-oriented schemas. Obviously, the same
can be modeled in the relational data model having the same effects.

g) Complex source constructs

Allowing for dependentsource entities/instances instead of
isolatedsource entities means that an entity ofT must be
collected from multiple (heterogeneous) entities ofS. That
is, the specification of joins in the relational data model and
path expressions in object-oriented data models is required.

h) Complex target constructs

Two problems arise whendependenttarget entities6 must
be generated instead ofisolatedtarget entities. The relation-
ships to be built might deviate from the corresponding rela-
tionships in the source, e. g., the direction of relationships
might be inverted. Furthermore, the connection between two
target entities referencing each other has to be established by
specifying the link between the two entity identifiers (IDs)
and the referencing attribute resp. the index position of a set-
valued attribute. The identifier of the referenced entity might
have to be specified in terms of source constructs (IDs, path
expressions, primary key/foreign key relationships, etc.). In
particular, such an approach is required, if the instantiation
of target entities has to be more flexible. For example, con-
sider Fig. 5. If all persons according to the target schema
are retrieved first and then all items are instantiated, each
instance ofperson to be connected to some item has to be
identified. Thus, information about the connection between
a specific item and its approving person, which is available
in the source DB, must be evaluated, i. e., the path between
ITEM andPERSONin the example below.

In Fig. 5, three inter-connected entities inS (resp. two
relations having primary key/foreign key relationships in a
relational schema) have to be mapped to a complex ob-
ject in T . In object-oriented source schemas, the entity
ITEM-PERS represents a relationship object and in the rela-
tional data model a relationship table. This mapping example
is typical for the kind of specifications encountered during
our explorations.

3.2 Enhanced mapping problems

The relational data model has less expressive power than
object-orienteddata models and, consequently, causes less
mapping problems. Object-oriented data models have the

32 T. Härder et al.: Problems and solution approaches to structural heterogeneity

PERSON

id

ITEM-PERS

item
pers

item

name
approved_by person

name

ITEM

name

oo_dbtarget

Fig. 5. Network mapping7

WORKING_AREA

head

working_area

head
title

oo_db
target

subjects: LIST
budget
staff

budgets: LIST
staff: SET

Fig. 6. Nest and unnest

following additional concepts [At+89]: OID, complex ob-
jects (i. e., use of references instead of values to ‘connect’
related objects and aggregates), abstraction concepts (gener-
alization, overriding, overloading), as well as concepts defin-
ing behavior (e. g., methods). We discuss problems accord-
ing to these aspects in the following subsections.

a) Mapping of aggregates

Aggregates might be mapped in ahomomorphicway, i. e.,
target and source set-valued attributes have the same ele-
ment type (e. g., char) and the same nesting of constructor
types (e. g., LIST OF LIST OF char). If the set-valued at-
tributes have different constructor types, this might cause
some loss of semantics in the target schema: the ordering of
elements specified in a LIST cannot be defined in a SET.
If the corresponding attributes do not have the same depth
of nesting, thenestresp.unnestoperation must be applied.
This situation is illustrated in Fig. 6.

We assume our source schema to contain an entity
WORKINGAREAhaving the single-valued attributehead ,
the set-valued attributestitle and budget whose ele-
ments are related according to their index positions, and
the set-valued attributestaff representing those employ-
ees that work on all areas, i. e., on all elements of the at-
tribute title . The target schema contains the correspond-
ing entity working area having the same attributes, but
all single-valued. Thus, this scenario might be represented by
the source instance (“Sauter”,(“heterogeneity”,“mapping”),
(5,10),(“Scḧafer”)) and by the target instances (“Sauter”,
“heterogeneity”,5,“Scḧafer”) and (“Sauter”,“mapping”,10,
“Schäfer”).

b) Mapping of abstraction concepts

If abstraction concepts are not mapped in ahomomorphicbut
an isomorphicway (due to, e. g., mismatch of expressiveness
in source and target data models), the precise abstraction se-
mantics usually cannot be preserved during the translation
process. For example, the distinction between customers and
employees might be represented by two subtypes of super-
type person , or, alternatively, it might be represented by

different attribute values (i. e., “customer” or “employee”)
in another schema. Entity vs attribute or attribute vs value
conflicts also belong to this category.

c) Object identity

At first sight, the case in which object identities (OIDs) or
primary keys ofS are to bepreservedin T seems straight-
forward. However, if ann : m (n < m) instance correspon-
dence betweenS and T is encountered, it is not possible
to establish a mapping based on this premise8. In contrast,
generatingtarget identities whenever an instance is created
allows more powerful mappings, but requires to document
the correspondence between target and source identities. A
hybrid mechanism would allow for both techniques.

d) Advanced type system

The EXPRESS data model introduces advanced concepts
with respect to the type system such as so-called abstract su-
pertypes (which cannot be instantiated), additional types (e.
g., so-called SELECT types), advanced subtype constraints,
etc. [IS94b]. As a consequence, more powerful mapping
mechanisms are needed to resolve those conflicts.

3.3 Directions of mapping

In the preceding discussions, we assumed that the mapping is
specified onlyuni-directionally, i. e., fromS to T . If both di-
rections are specified in one mapping statement, i. e., retrieve
operations as well as update operations (bi-directionally), the
well-known view-update problems come into play. Consider
Fig. 3, for example. If the key of the person is projected, an
update on the name of the person according toT cannot be

8 Source IDs cannot be used in a preserving way whenn instances in
S must be mapped tom > n instances inT , since the number of IDs to
be generated (m) is greater than the IDs available (n). Hence, ann : m
(n < m) correspondence between entities inS and T is not a necessary
condition for this type of conflict, but one potential cause.

T. Härder et al.: Problems and solution approaches to structural heterogeneity 33

automatically transformed into a corresponding operation ac-
cording toS. The modification operation inT could mean
that a creator of a set of items changed his/her name (in
which case the name of the person (PERS.name) should
be changed inS), or it might indicate that a different person
was named creator of those items (implying that the refer-
ences to the person who created the items should be changed
(ITEM.created by)).

Another kind of problem arises if the mapping corre-
sponding to Fig. 4 is specified in the opposite way, i. e.,
from T to S. This type of conflict resembles the so-called
check-in dependencies. Let us assume that one instance of
end of cable is transient, so that data must be saved
to non-volatile storage media. This check-in procedure is
a legal operation according to the target schema, because
values are assigned to all attributes of all entities to be
flushed out. It is, however, not a legal operation according
to the source schema, because the criterion to decide how
to mapend of cable.ID (to CABLE.ID of end 1 or
CABLE.ID of end 2) is missing.

3.4 Schema cardinality

So far, we considered the mapping ofone target to one
source schema. Constructing one target schema frommany
source schemas, calledschema integration, requires to com-
bine schema information as well as data that are both dis-
tributed over the sources. In this scenario, the following
cases can be distinguished.

a) Horizontal congruence

As outlined in Sect. 2.4, where we defined the notion of
congruence, source schemas and their application domains
might be disjoint, identical, or overlapping. If schema in-
formation is identical in the sources, semantically equiva-
lent entities might possess different identities (the so-called
entity-identification problem) or they might be represented
differently in the sources. For both cases, consistency among
the sources has to be guaranteed. In general, the probability
of heterogeneous structures in the schemas rises with the
number of schemas to be connected. If information isover-
lapping among the sources, the complete information in the
target schema is not available in some sources. The prob-
ability of encountering different identities for one and the
same source entity is even higher, because information is
projected among the sources.

b) Horizontal distribution of data

Data might be distributed in areplicated, disjoint, or over-
lapping way. If the data is replicated, the same problems
occur as if schema information is replicated (see above). If
the data is distributed in adisjoint way over the sources,
predicates must be defined how to propagate the data asso-
ciated to a target instance to the different sources. If the data
is overlappingamong the sources, data has to be assembled
during the integration process to generate target instances.

3.5 Diversification of the data model

The main problem ofheterogeneousdata models is to pre-
serve the semantics while transforming the data to a seman-
tically poorer data model. For example, the abstraction con-
cepts aggregation and association provided by some object-
oriented data models are not supported by the relational data
model. As a consequence, there is a shift from one level of
data model constructs towards a lower level of abstraction,
namely towards schema elements such as attribute values.
Obviously, the latter kind of representation is dependent
on the DB designer resp. design methodology. As a con-
sequence, it is defined less semantically clear.

3.6 Further problems

In the following, we briefly discuss problems not addressed
specifically by our mapping language. Nevertheless, as will
become clear from the subsequent discussions, those prob-
lems have to be kept in mind when defining a schema map-
ping.

a) Durability of data

If the target data is maintainedpersistently, change detection
and consistency among source and target data must be sup-
ported. Furthermore, guaranteeing inter-transactional corre-
spondence of instance IDs betweenT andS might become
a difficult task, in particular, if some data ofS is extracted
from an archive. In Sect. 5, we will show that this criterion
does not influence the constructs of our mapping language.
The research area on persistently maintained target data is
addressed by the work on materialized views, data ware-
housing, and data migration.

b) Dynamic aspects

Up to now, we have concentrated on static aspects of the data
model. The mapping becomes more complicated ifdynamic
aspectsare to be considered as well. In this case, the corre-
spondence between side effects of functions, return values of
methods, time, programming languages, etc. has to be doc-
umented. On one hand, the behavior of arbitrary programs
cannot be derived automatically. On the other hand, despite
the wide range of methodologies to specify dynamics, such
as Petri-nets, ECA rules, methods, etc., it is impossible to
find a single representation that allows to capture general as-
pects of dynamics in both a precise and sufficiently abstract
way. For these reasons, dynamic aspects are not considered
by mapping languages yet.

c) Degree of structuring

In the following discussions, we focus oncompletely struc-
tured data, i. e., data whose representation can be fully han-
dled by a “DBS-style” data model. As a consequence of this
property, generic DB operations suffice to access those data.

34 T. Härder et al.: Problems and solution approaches to structural heterogeneity

However, depending on the applications that serve as sources
for the mapping, the associated data may besemi-structured
(e. g., in the form of application-specific data types (ADTs)
or HTML files) [Wi95] or evenunstructured, i. e., basically
stored in what in DB terms is called an LOB.

While it is no problem to provide the mere data in
T , supporting adequate access functionality becomes more
complex the less structured the source data are. To illus-
trate this, just consider completely unstructured source data.
Without any knowledge of the source application, access to
those data can only be provided based on LOBs and their
generic access facilities (essentially string operations). Of-
fering more sophisticated access routines requires to encap-
sulate the sources by “wrappers” that serve as interfaces to
the data.

In summary, the degree of structuring of source data in-
dicates how the overall complexity of mapping is distributed
on the tasks of mapping data or mapping functionality. With
decreasing structure of source data, the effort is shifted from
data mapping to operational mapping (encapsulation). In the
extreme case of completely unstructured data, nothing can
be done about data mapping, and encapsulation becomes in-
dispensable.

4 Related approaches to schema mapping
and view definition languages

So far, we have discussed and classified the mapping con-
flicts resulting from the construction of heterogeneous views.
Before we present our own solution to cope with these map-
ping conflicts, the language BRIITY, we briefly sketch view
definition languages proposed in the literature. These ap-
proaches to schema integration resp. view definition can
be divided into the following categories: logic-based views,
procedural languages, and declarative-language approaches.

Although logic-based views as proposed in [KLK91] are
specified in a declarative way, it is controversial whether
or not a mapping specification based on (first-order) logic
is intuitively understandable. Furthermore, only minor con-
flicts are solved, such as different naming, heterogeneous
attribute correspondences, integration of multiple relational
schemas, and update capabilities. A fundamental drawback
to be found in all logic-based approaches is the fact that
they do not consider the propagation of update operations
on views. Although such operational constructs are not part
of “pure” first-order logic, they are essential to obtain a prac-
tically relevant as well as commercial-strength language for
view definitions.

Procedural languages [KFMRN96, Ke91] are very pow-
erful and may include explicit data type mappings. However,
the larger the schemas to be mapped, the more unreadable
and unclear the complete mapping specification will be. Fur-
thermore, the procedural description restricts the execution
of the mapping, in particular the creation of target instances,
which is mostly determined in a specific ordering. Obvi-
ously, this strategy might cause problems in applications
having large schemas.

Declarative-language approaches are easier to under-
stand, more flexible to use, and more suitable to be opti-
mized at run time. Some approaches are logic-oriented and

solve only minor problems [KLK91, PGU96]. The so-called
assertion-based approaches [SPD92, KC95] provide power-
ful and data-model-independent mappings. There are many
languages which are based on traditional relational or object-
oriented views and which are extended for schema integra-
tion [AB91, KCGS95, Ba95, Ha95, SST92, CL92, TC94,
KDN90, AR90]. However, all these approaches do not sup-
port the explicit specification of update operations, i. e., the
well-known view-update problems cannot be solved by those
languages. Consequently, updating the essential parts of inte-
grated views, which are defined by joining source elements,
is restricted. In [BSKW91, SST92], mechanisms are pro-
posed which allow for the specification of updatable views
under the assumption of object-preserving operations, which
is too restrictive with respect to our requirements (heteroge-
neous entity correspondences). Most of these language ap-
proaches do not support nest/unnest operations, nor target
object inter-relationships. To the best of our knowledge, in-
tegrity constraints to be evaluated during the mapping, e. g.,
to address the problem of conflicting/missing source data,
are not within the scope of those languages.

5 The mapping language BRIITY

Our approach is designed to avoid the deficiencies de-
scribed before and to permit the flexible specification of
bi-directional mappings. The key characteristics of BRI-
ITY are its power with respect to the number of mapping
conflicts solved, its descriptiveness, its immunity to tech-
nological changes, and its support of user-defined update
statements having a similar expressiveness as retrieval state-
ments. In this section, we highlight the general structure of
our language by referring to the mapping specification of
Example 1. It defines the mapping for the example depicted
in Fig. 3.

5.1 Overall structure of a mapping specification

A mapping specification starts with basic definitions that lay
the foundations for the subsequent mapping rules, i. e., the
names of the source(s) and the target schema involved, as
well as type-specific mappings betweenS andT . The essen-
tial part of such a specification is theENTITY MAPPING
section which relates target entities6 and their attributes on
one side to source constructs on the other side. The last sec-
tion of a mapping specification (omitted in Example 1) pro-
vides means to declare additional integrity constraints such
as check-in dependencies (cf. Sect. 3). Before discussing the
ENTITY MAPPINGsection in detail, we will give a brief
overview of the overall constituents of a mapping specifica-
tion.

Overall declarations and mapping of data types

In theMAPPEDSCHEMASsection (line 2–4), one target and
one or more source schemas are identified by the name of

9 Without loss of generality, we will disregard giving syntax definitions
of our language because of space limitations. Interested readers may refer
to [Sa96a].

T. Härder et al.: Problems and solution approaches to structural heterogeneity 35

1: BEGIN
2: MAPPED_SCHEMAS
3: ts := target_schema <- rel_db:= rel_db@rel_dbs@localhost;
4: END_MAPPED_SCHEMAS;
5: INCLUDE
6: LIB /usr/users/sauter/libstring.a;
7: INC string.h;
8: END_INCLUDE;
9: TYPE_MAPPING

10: MAP ts.DM <- rel_db.US$;
11: ts.DM <- 0.67 * rel_db.US$;
12: rel_db.US$ <- 1.5 * ts.DM;
13: END_MAP;
14: END_TYPE_MAPPING;
15: ENTITY_MAPPING
16: MAP item <- _item := rel_db.ITEM, _pers:= rel_db.PERS;
17: ON_RETRIEVE
18: name <- _item.name;
19: created_by <- _pers.name;
20: IDENTIFIED_BY(_item.name,_pers.key);
21: WHERE (_item.created_by = _pers.key);
22: ON_UPDATE ...
23: ON_INSERT ...
24: ON_DELETE ...
25: END_MAP;
26: END_ENTITY_MAPPING;
27: END.

Example 1. General structure of a mapping specification9

the corresponding DB, DBS, and the host ID. If the target
data is transient instead of persistently stored in a DB, the
name of the target schema can also be a file name.

Data types and functions defined in some programming
language that are related to the mapping process itself and
that, for this reason, cannot be attributed toS or T (to avoid
introducing dependencies in those schemas or to violate their
autonomy) can be imported with the help of theINCLUDE
section. For example, string manipulation functions may be
defined in a library calledlibstring.a and included via
the statement in line 6.

For a better structuring of our mapping specifications, we
separate the mappings of type-level constructs from those of
the entity level. Types (built-in or user-defined ones) are han-
dled in theTYPE MAPPINGsection. Simple mappings with-
out conversion functions consist only of the type-mapping
header as, e. g., line 10, which maps avarchar in S to a
string in T . Apart from a type-mapping header, more com-
plicated mappings also possess a type-mapping body (lines
11–13) that permits to refer to arbitrary mathematical ex-
pressions and/or (included) functions. Thus, bi-directional
conversions between data types can be defined, i. e., from
S to T (line 11), or vice versa (line 12).

ENTITY MAPPINGsection

Like the type-mapping section, the one responsible for entity
mapping consists of a header (line 16), relating one target
entity6 to one or more source entities, and a body (lines
17–25) with the detailed definition of the mapping itself.
The body is further subdivided into anON RETRIEVE, an
ON UPDATE, an ON INSERT, and anON DELETEclause.
In the ON RETRIEVE clause, the user can define how re-
trieve operations on target attributes of the corresponding
entity should be translated to DB accesses. In analogy to

Sect. 3, these operations can be basic ones to be applied
when an (integrated) view (specified in an object-oriented,
relational, or EXPRESS schema) is established on top of
a relational DBS (cf. Sect. 5.2). Alternatively, they can re-
semble advanced mapping rules for the integration of object-
oriented or EXPRESS schemas. The propagation of update
operations according to the modifications of target attributes
can be specified in theON UPDATEclause. Operations to be
executed inS after the creation/deletion of a target instance
can be defined in theON INSERT resp.ON DELETEclause.

Integrity constraints

In this section, conflict resolution support is provided for
the instance level, which may be applied when contradic-
tory, incorrect, missing, or obsolete data occur. Further-
more, mapping-specific constraints (cf. check-in dependen-
cies, Sect. 3.3) are introduced. These integrity constraints
serve to extend native DB constraints to be checked when
retrieving source data. This is particularly true for the view
integration across legacy systems, because they usually do
not have explicitly specified integrity rules. Even in current
DBSs referenced as data sources, such integrity constraints
typically disregard data dependencies to other DBSs. There-
fore, the “middleware” integrating data from those isolated
systems must incorporate mechanisms to define “global” in-
tegrity constraints or to make existing ones explicit.

We now turn to theENTITY MAPPINGsection and
its facilities for defining rules for propagating retrieval as
well as modification operations onT to the source schemas
(Sect. 5.2 to Sect. 5.4). In Sect. 5.5, we will describe those
elements of our language which address the problem of het-
erogeneous entity correspondences. Finally, Sect. 5.6 will
exemplify the constraint mechanism of BRIITY that allows

36 T. Härder et al.: Problems and solution approaches to structural heterogeneity

MAP item <- _item := rel_db.ITEM,
_pers:= rel_db.PERS;

ON_RETRIEVE
IDENTIFIED_BY (_item.name,_pers.key);
name <- _item.name;
created_by <- _pers.name;
WHERE (_item.created_by = _pers.key);

name
created_by

item

OID
SELECT _item.name, _pers.name

FROM ITEM _item, PERS _pers

WHERE _item.created_by =
_pers.key

Fig. 7. Diverse styles of the mapping language (cf. Fig. 3 and Example 1)

rel_db
target_schema item

assembly_type : STRING
ITEM

assembly_type: INTEGER
condition

1: MAP item <- _item:=rel_db.ITEM;
2: RETRIEVE
3: assembly_type <- IF (_item.assembly_type = 512) THEN “manufacturing”
4: ELSE IF (_item.assembly_type = 918) THEN “configurable”
5: ELSE ...;

Example 2. Conditional mapping

to solve the problem of check-in dependencies described in
Sect. 3.

5.2 Basic set-oriented mapping rules

A key idea of our language is to combine an object-oriented
data model with descriptive and set-oriented (i. e., relational-
style) retrieval operations. This is an important objective,
since most of our applications require object-oriented views
on relational DBSs. Suitable support of such scenarios im-
plies to represent the elements of the target schema in an
object-oriented way, whereas the corresponding retrieve op-
erations on the source(s) have to be specified in a relational-
like style, as illustrated in Fig. 7.

The overall purpose of the entity mapping is to establish
a relationship between instances inT and the corresponding
instances inS. It is thus possible to check whether source
data is already materialized inT and accessible by queries
according to the target schema. To this end, object identifiers
are assigned to all target instances. If the target schema is
an object-oriented or an EXPRESS schema like in Fig. 7,
these object identifiers (OIDs) might be made available in
the target view, whereas these target OIDs are used only
internally in relational schemas. The target OIDs to be gen-
erated or preserved depend on the correspondence of target
and source instances. This correspondence is specified in the
IDENTIFIED BY clause, as shown in Fig. 7.

The right-hand side of an entity-mapping header cor-
responds to the FROM clause of an SQL statement. The
names of the relations are prefixed by the name of the re-
lated DB. This is necessary to distinguish multiple DBs. The
right-hand side of an attribute mapping rule (like ’name
<- pers.name ’) can be compared to the projection of
an SQL statement. It even has the same expressive power as
this SQL clause ifT is specified as a relational schema. In
this case, target attributes are single-valued and do not con-
tain pointers (REF) to entities ofT . The WHEREpart of the
entity mapping corresponds exactly to the WHERE clause
of an SQL statement.

In summary, straightforward mappings between target
and source entities6, i. e., those without conversions or pred-
icates, consist only of the header of theENTITY MAPPING
section. Thus, simple problems can be solved in a simple
way by our mapping language. Moreover, as shown so far,
we support projection/selection of information, joining of
source constructs (cf. Fig. 2: dependent complex source con-
structs), renaming, and data type conversions by our map-
ping language as well.

Another problem discussed in Sect. 3 are conditional
mappings, i. e., mappings that are to be performed under
certain conditions. The language BRIITY allows to spec-
ify such conditional mappings based onIF .. THEN ..
ELSE constructs, where theTHEN and theELSE clauses
have the same power as the right-hand side of attribute map-
ping rules. Conditional mappings might occur in the case of
heterogeneous attribute correspondences that require to map
many attributes inS to one attribute inT . Another situation
is illustrated by Example 2 where, depending on the integer
value of an assembly type inS, a string representation inT
is produced.

Up to now, we have discussed the fundamental structure
of the retrieve section and the basic operations needed to
map from a relational data model to a relational or a simple
object-oriented one. In the following, we extend our consid-
erations to the relational model including referential integrity
constraints (cf. Fig. 2: dependent target constructs), as well
as to general object-oriented data models and to EXPRESS.
By doing so, we climb the next step in the tier architecture
and discuss concepts of BRIITY to solve those problems.
We defer the discussion on how our language addresses het-
erogeneous entity correspondences to Sect. 5.5.

5.3 Complex mapping rules

The mapping of referential-integrity dependencies in rela-
tional schemas and of object networks in object-oriented
schemas is supported in BRIITY by theCASCADEDMAP
operator. As for the description of objects, we strongly ad-
here to the methodology of object-oriented concepts [At+89]

T. Härder et al.: Problems and solution approaches to structural heterogeneity 37

1: MAP item <- _item:= oo_db.ITEM, _ip:=oo_db.ITEM-PERS, _pers:=oo_db.PERSON;
2: ON_RETRIEVE
3: name <- _item .name;
4: approved_by <- CASCADED_MAP person.key

WITH_ID _item .INV(_ip:item).pers.id
5: IDENTIFIED_BY (_item .name);
6: END_MAP;

PERSON

id

ITEM-PERS

item
pers

item

name approved_by

ITEM

name

oo_dbtarget

person

key name

Example 3. Referential integrity in relational target schemas

1: MAP person <- oo_db.PERSON;
2: ON_RETRIEVE
3: name <- oo_db.PERSON.id;
4: IDENTIFIED_BY(oo_db.PERSON.id);
5: END_MAP;
6: MAP item <- _item:= oo_db.ITEM, _ip:=oo_db.ITEM-PERS, _pers:=oo_db.PERSON;
7: ON_RETRIEVE
8: name <- _item .name;
9: approved_by <- CASCADED_MAP person

WITH_ID _item .INV(_ip:item).pers.id
10: IDENTIFIED_BY (_item .name);
11: END_MAP;

Example 4. Network mapping (cf. Fig. 5)

in that the (mapping) definition of a complex object is
split into separate (mapping) definitions of the root ob-
ject itself and all referenced objects. The advantage of
this approach is that referenced entities have their own
(mapping) definitions being independent of referencing en-
tities. Referential-integrity dependencies in relational target
schemas are treated analogously. Starting from the “root”
relation, all direct integrity dependencies and, subsequently,
the transitive ones have to be defined. Thus, the mapping
of complete complex entities in general requires first the
mapping of the root entity and, subsequently, in a cascaded
way, the mapping of the referenced entities and their links.
These connections are represented by theCASCADEDMAP
operator.

If the target schema is relational, theCASCADEDMAP
operator can be used to specify referential integrity con-
straints overT . In Example 3, instead of naming the refer-
enced entity (person in Example 4), theCASCADEDMAP
operator refers to the corresponding primary key according
to the target schema (person.key).

Example 4 deals with an object-oriented target schema.
The mapping definition ofperson is not influenced by
the fact that this entity is referenced by entityitem . On
the other hand, in the mapping definition of entityitem ,
the CASCADEDMAPoperator followed by the name of the
referenced target entity (person) specifies the link be-
tween the two entity mappings ofitem andperson . This
expresses the fact that an item is related to the person
that created it. The corresponding path from the source in-
stance ofITEM along the relationship entityITEM-PERS
to PERSONis specified by means of theWITH ID clause
of the CASCADEDMAPoperator.

The INV built-in function, which is also employed in
the above example, is used to specify an inverse relation-
ship. Hence, the two target instances ofitem andperson ,
which are mapped to two source instances referencing each
other, can be linked together.

In the header of the mapping specification of subtypes,
the supertype is referenced such that the (attribute-) map-
ping definitions of the supertypes can be inherited and their
WHEREclauses can be combined. We follow this approach
until a proper mechanism for overriding/overloading has
been implemented.

The mapping between set-valued source and target at-
tributes, as well as the nest operation, are supported in BRI-
ITY by the SET, LIST , and ARRAYoperators having the
syntax shown in Definition 1.

Each operator (SET, LIST , and ARRAY) possesses a
WHEREclause. In contrast to theWHEREclause of the
ENTITY MAPPING(cf. Sect. 5.2), which selects instances
to be mapped to all attributes of the entity, theWHEREclause
of the set-valued attribute selects attribute values for a spe-
cific target attribute. TheORDERBY clause (only applicable
for the LIST and ARRAY operators) has the same seman-
tics as the ORDERBY clause in SQL statements. Grouping
of attribute elements (GROUPEDBY clause) is needed if the
nest operation has to be applied subsequently. This is shown
in the following example, in which all items (ITEM) of the
same assembly are associated to one instance ofassembly .
Therefore, all items must be grouped according to the assem-
bly they belong to.

Opposed to nest, the unnest operation maps set-valued
source attributes to multiple target instances with single-
valued attributes.

38 T. Härder et al.: Problems and solution approaches to structural heterogeneity

<set valued attribute mapping> ::=
[NEST] (LIST|SET|ARRAY) ’(’< right hand side of attr mapping or nested set valued mapping >’)’
[WHERE <DNF expression>]
[ORDER_BY <sort expression>]
[GROUPED_BY <source attr identification>].

Definition 1. Mapping of aggregates

1: MAP assembly <- _item:= rel_db.ITEM;
2: ON_RETRIEVE
3: name <- _item.assembly;
4: items <- NEST (_item.name)

GROUPED_BY(_item.assembly);

rel_db
assembly

name
items: SET OF STRING

target

ITEM

name assembly

Example 5. Nest operation

1: MAP working_area <- _wa:=oo_db.W_AREA, oo_db.PERS;
2: ON_RETRIEVE
3: FOR_ALL (_unnest_subjects := UNNEST(_wa.subjects);
4: title <- _unnest_subjects;

Example 6. Unnest operation (cf. Fig. 6)

In Example 6, aFORALL operator is employed to iterate
over theworking area subjects of a single entity inS
and to assign each element to a differenttitle entity in T .
Moreover, theFORALL operator permits to simultaneously
address several attributes (that are related to each other in
a parallel way). If attributes correspond to each other in a
nested way (cf. Sect. 3), theFORALL operators will also
have to be nested.

5.4 Rules for the propagation of updates

One of the major characteristics of BRIITY is its capability
to support update operations overT . To this end, the user
can declaratively specify mapping rules that describe source
manipulations resulting from target updates10. For this pur-
pose, BRIITY allows to define update rules (cf. Definition 2:
<updatestatement>) within the ON UPDATEclause which
can be related to single target attributes. These rules are fur-
ther subdivided into theNEW, MODIFIED, and DELETED
sections (cf. Definition 2:<updatestatementbody>) ac-
cording to the kinds of modifications on the target at-
tributes. The DB update operations listed in each section
(<assignstatement>) specify the final state the source DBs
have to reach after the modifications on the target data have
been propagated11. The advantages of using state orientation
in the update rules are the independence of update operations
from the current state of the DB, the declarative form of the
specification which permits to apply optimizations similar to
SQL, and the independence of any implementation, e. g., in
a specific programming language realizing the query transla-
tion. In particular, before propagating updates to the sources,

10 Alternatively to user-defined update operations, system-generated up-
date operations can be specified using the keyword
‘ INVERSE TO RETRIEVE’.

11 This kind of operation is used in a very similar way in the knowledge
base management system KRISYS [Ma91].

each source DB is checked for validity of the desired final
state. If this state has not yet been reached, e. g., an instance
supposed to exist does not yet exist, the appropriate opera-
tions are performed on the source DB (i. e., the instance is
created). The following definition gives an overview of the
power of the update rules.

Update rules are made up ofASSIGNstatements consist-
ing of an assignment part (following the keyword ‘ASSIGN’)
and qualification rules introduced by the keyword ‘WHERE’.
These rules delimit the sphere of processing that the update
statement will relate to. If no qualification rules are speci-
fied, the entire DB represents the initial state of the update
rule, i. e., the statements of the assignment part are executed
on the entire DB.

One fundamental construct of update rules is the (NOT)
IS INSTANCE statement. Its first argument is the name
of the entity6 required to exist in the identified DB. The
other arguments are assignments of attribute values. In ad-
dition to the IS INSTANCE statement, theIS ELEMENT
and HAS VALUEstatements can be used to specify opera-
tions on set-valued attributes or on query variables, another
key concept of the language.

ASSIGNstatements can also be used in theON INSERT
andON DELETEclauses to specify operations to be propa-
gated after the creation or deletion of target instances. Inter-
ested readers are referred to [Sa96a].

Coming back to the example shown in Fig. 3, we as-
sume the following intention for the propagation of update
operations. After the target attributeitem.created by
is initialized, the DB should contain two instances (resp. tu-
ples) ofITEM andPERSthat possess the corresponding tar-
get attribute values (i. e.,ITEM.name ← item.name and

12 <update statement body list> is a list containing a num-
ber of statements of type<update statement body> . The
same holds for<assgn stmnt list> and <assgn statement> .
<cunjunction of assgn statement expr> is a Boolean conjunc-
tion of <assgn statement expr> .

T. Härder et al.: Problems and solution approaches to structural heterogeneity 39

<updat e_c l ause> ::=
’ON_UPDATE’ (<update_statement> {’,’ <update_statement>}

| ’INVERSE_TO_RETRIEVE’ ’;’).

<update_statement> ::=
<target_attribute_id> ’OF’ <update_statement_body_list>

| <update_statement_for_set_valued_target_attributes>.

<update_statement_body> ::=
(’NEW’|’MODIFIED’|’DELETED’) ’:’ (’RESTRICTED’|’INVERSE_TO_RETRIEVE’|<assign_stmnt_list>)’;’.

<assign_statement> ::=
’ASSIGN’ <conjunction_of_assgn_statement_expr>

[’WHERE’ <where_clause_containing_bool_expr_of_assgn_statement>].

<assign_statement_expr> ::=
[’NOT_’]’IS_INSTANCE’’(’<source_entity_id>[<with_instance_id>][':'<attr_value_expr_list>]’)’
| <is_element_expr>
| <has_value_expr>.

Definition 2. Update rules12

1: ON_UPDATE created_by OF
2: NEW: ASSIGN (IS_INSTANCE(_item: name = ts.item.name, created_by = ?1) AN D
3: IS_INSTANCE(_pers: key = ?1, name = ts.item.created_by));
4: MODIFIED: ASSIGN (IS_INSTANCE(_pers: name = ts.item.created_by));
5: ASSIGN (IS_INSTANCE(_item: name = ts.item.name, created_by = ?1))
6: WHERE (IS_INSTANCE(_pers: key = ?1, name = ts.item.created_by));
7: DELETED: ASSIGN (NOT_IS_INSTANCE(_pers: key = ?1))
8: WHERE (HAS_VALUE(?1 = ASSIGNED_ID_VALUE(2)));

Example 7. Update operations (cf. Fig. 3 and Example 1)

PERS.name← item.created by), and that are linked
together (i. e.,ITEM.created by = PERS.key). The
modification of the attributeitem.created by should
be translated into DB operations so that the person who cre-
ated the item will change. An instance ofPERSmust be
created if the person does not yet exist. Removing the at-
tribute value ofitem.created by requires the deletion
of the corresponding instance inPERS. This is defined in
BRIITY as shown in Example 7.

The initialization of the target attribute is specified using
two IS INSTANCEassignments. One of them is responsible
for ensuring the existence of a tuple ofITEM, the other for
guaranteeing that aPERStuple exists (cf. Example 7, lines
2 and 3). Query variables are used to specify links between
two instances that are established under certain conditions.
In our example, the query variable?1 of line 2 is bound
in line 3 to primary key values of the relationPERS. Thus,
query variables can be used to specify joins.

For the case of a modification on the target attribute,
assignments specified for the initialization cannot be used
in general. For this reason, theON UPDATEstatement pos-
sesses theMODIFIED section. Its WHERE clauses (cf. lines
4–6) serve to bind query variables. For example, assume
that a source DB contains two tuples ofPERS, namely
(“007”,“Bond”) and (“008”,“Jones”), and one tuple ofitem ,
namely (“engine”,“007”). If the instance (“engine”,“Bond”)
in T is modified to (“engine”,“Jones”) the statements of
lines 2 and 3 do not indicate whether the primary key value
(of PERS) or the foreign key value (ofITEM) should be
changed, since the query variable?1 can be bound to two
“007” (corresponding to line 2) or “008” (corresponding to
line 3). For this reason, theWHEREclause (cf. line 6) is used
to clearly bind the query variable. In particular, if the first
assignment (cf. line 4) is omitted, theWHEREclause returns

a false condition if there does not preexist a corresponding
tuple of PERSin S which can be connected to the item.

To identify the corresponding source instance to be
deleted after removing the target attribute value, we use the
built-in function ASSIGNEDID VALUE, which returns the
value specified in theIDENTIFIED BY statement of the
same target entity. In the example above, the value of the
attribute PERS.key is needed, which is specified as the
second parameter of the correspondingIDENTIFIED BY
statement (cf. Example 1, line 20).

BRIITY supports the propagation of modifications on
set-valued target attributes by the statement shown in Defi-
nition 3.

The query variable of theFOREACHconstruct is used to
iterate on a set of elements (of the corresponding set-valued
attribute) which is defined by the condition following the
key wordWITH.

So far, we have discussed only update statements. The
same syntax (<assgn stmnt list>) is used to define
operations propagated after the insertion (ON INSERT) or
the deletion (ON DELETE) of instances inT . Due to space
limitations, these language constructs are not discussed in
further detail.

From the above considerations it should become clear
that by means of user-defined update rules some well-known
view-update problems can be solved as, for example, join
views [Sa98], e. g., modifications of the target attribute
item.created by can be propagated. As described in
Sect. 3, traditional view mechanisms do not provide capa-
bilities for the propagation of this modification.13

13 Due to space limitations, a detailed comparison between view-update
problems and solutions provided by the language is not performed. Readers
interested in updatable views are referred to [Sa98, BCL89, LA90, LS91,
KLK91, Da83, RMKDP95].

40 T. Härder et al.: Problems and solution approaches to structural heterogeneity

<update_statement_for_set_valued_target_attributes> ::=
’FOR_EACH’ <query_variable> ’WITH’ <condition_to_assign_value_to_query_var>

’OF’ <update_statement_body_list>.

Definition 3. Update rules for set-valued target attributes

1: MAP en d_of _ca bl e <- PARTITI ON _part_en d1: _c:=re l _db. CABLE,
PARTITION _part_end2: _c:=rel_db.CABLE;

2: PARTITION _part_end1:
3: ON_RETRIEVE
4: ID <- _c.ID_of_end_1;
5: IDENTIFIED_BY (_c.ID, _c.ID_of_end_1);
6: PARTITION _part_end2:
7: ON_RETRIEVE
8: ID <- _c.ID_of_end_2;
9: IDENTIFIED_BY (_c.ID, _c.ID_of_end_2);

10: END_MAP;
11: MAP cable <- _c:=rel_db.CABLE;
12: ON_RETRIEVE
13: end_1 <-CASCADED_MAP end_of_cable
14: PARTITION _part_end1
15: WITH_ID (_c.ID, _c.ID_of_end_1);
16: end_2 <-CASCADED_MAP end_of_cable
17: PARTITION _part_end2
18: WITH_ID (_c.ID, _c.ID_of_end_2);
19: IDENTIFIED_BY(_c.ID);
20: END_MAP;

Example 8. Partitions (cf. Fig. 4)

5.5 Multiple instantiation

In this section, we introduce the concept of partitions sup-
porting instance-dependent mappings and DB partitions ad-
dressing the integration of multiple DBs. The problem of
instance-dependent mappings, explained in Sect. 3 (hetero-
geneous entity correspondence), stems from the need to dis-
criminate instances of one entity (type) based only on infor-
mation of single instances. In Fig. 4, the criterion to distin-
guish between the ends of a cable is not available in either
entity representing an end of a cable, but only in the entity
representing the cable. This problem is solved by splitting
the mapping of the ends of a cable into multiple partitions,
each identified with an internal ID, as shown in Example 8.

The mapping is partitioned, so that the mapping process
can be carried out separately for each of them. That is, the
complete MAP statement is the union of all the partitions of
that statement. Thus, an instance is created for each partition
and assigned with the name of the partition to an internal ID.
In the example above, two instances ofend of cable are
created, one havingc.ID of end 1 and the other having
c.ID of end 1 as attribute values. The two instances can

be distinguished by the different names of their partitions.
The CASCADEDMAPoperator is extended so that it con-
tains the name of the partition in order to specify the correct
relationship betweencable andend of cable .

Up to now, we have discussed in detail the mapping
between one target and one source schema, both written
as relational, object-oriented, or EXPRESS schemas. The
concept of mapping partitions can also be used to integrate
multiple DBs into one federated schema. A DB partition
(having the same syntax as partitions) must be specified
for all entities of the same source schema to be mapped to
one target entity. The mapping of overlapping information
among the source DBs can be associated to additional par-

titions identified by the names of the corresponding DBs, e.
g., ‘PARTITION db1 AND db2: ... ’. These partitions
consist of aKEY EQUIVALENCEstatement which relates
the potentially heterogeneous primary keys of the various
source DBs.

5.6 Additional integrity constraints

The language BRIITY allows the specification of constraints
to address the problem of check-in dependencies described in
Sect. 3. Dependent entities can be specified by documenting
the links (cf. Example 9, line 4) between them.

ECA rules are supported to have more powerful means
for the specification of integrity constraints. Actions will be
documented as ASSIGN statements, and it will be distin-
guished between the eventsON RETRIEVE, ON UPDATE,
etc., described above.

6 Brief overview of the execution model

Due to space limitations, we only briefly introduce the con-
cepts of the execution model realizing an integrated view
over heterogeneous DBSs. The following explanations refer
to Fig. 8.

Data establishing heterogeneous views is cached in an
object buffer which can be accessed by applications using a
navigational interface (C++). In order to make such a view
available, the data has to be fetched from the sources and
mapped according to the given specifications. For this pur-
pose, a mapping layer provides a set-oriented interface to
the object buffer (operations similar to SQL3) and currently
an SQL interface to the DBs (sources). The translation of
user queries into DB accesses is performed in the mapping
layer.

T. Härder et al.: Problems and solution approaches to structural heterogeneity 41

1: INTEGRITY_CONSTRAINTS
2: DEPENDENCIES
3: GROUP cable, end_of_cable
4: WHERE (cable.end_1 = OID(end_of_cable)) AND (cable.end_2 = OID(end_of_cable))
5: END_DEPENDENCIES;
6: END_INTEGRITY_CONSTRAINTS;

Example 9. Check-in dependencies

mapping layer

mapping definition
(specified in BRIITY and
stored in an ASCII file)

parser
BRIITY→algebra

pool of algebra graphse. g.,
MAP item

...ACCESS ITEM
e. g.,

object buffer
ACCESS item
e. g.,

graph
assembly➊

➋

➌ ➍

DBs

Fig. 8. Execution model

The power of the mapping language or its individual ele-
ments and the expressiveness of the target interface (schema
together with the query language) determine the power of
the algebra needed to suitably implement the mapping op-
erations. We have chosen an algebra similar to NF2.

To derive a particular heterogeneous view, the corre-
sponding mapping specification is translated by a parser into
a directed algebra graph, the so-called mapping graph (cf.
Fig. 8 ❶)14. The leaves of this operator graph embody DB
access operations for the integrated DBSs (e. g.,ACCESS
ITEM in Fig. 8), its internal nodes are formed by algebra
operators, whereas its root represents an operator to create
target instances (e. g.,MAP item in Fig. 8).

Loading data into the object buffer is requested by send-
ing a set-oriented query to the mapping layer. There the
query is also transformed into an algebra graph, the so-
called query graph (cf. Fig. 8❷). The corresponding map-
ping graph is selected from the pool of algebra graphs (cf.
Fig. 8 ❸), i. e., the graph with the respective root operator.
Both the query and the mapping graphs are then assembled
by removing the root operator of the mapping graph and the
access operator of the query graph (cf. Fig. 8❹). This is
necessary in order to make the pool graphs independent of
the application scenarios in which they are to be employed.
The resulting graph builds the basis for further optimizations
and for the generation of executable code to be sent to the
DBs. The retrieved data is kept in (nested) relations within
the mapping layer and processed according to the operators
of the algebra graph.

Data from different DBs are integrated by join operators.
In addition to relating data items, those operators also check
the sources for inconsistent and conflicting data. For exam-
ple, instances of different sources having the same logical

14 Currently, the complete mapping specification is parsed at compile
time, translated, and stored in a pool of algebra graphs.

ID and different attribute values are rejected. As described
in Sect. 5, we are extending the integrity section of the lan-
guage to provide more powerful constraint mechanisms.

7 Conclusions

In this paper, we have primarily focused on two issues: the
classification of mapping conflicts occurring in real-world
applications, as well as the concepts and specification of
a mapping language coping with these conflicts. We have
identified the types of structural heterogeneity appearing
in our industrial-strength environment, where heterogeneous
views must be established on top of bill-of-material struc-
tures stored in different DBs. We ordered the conflict cat-
egories into a tier architecture which illustrates their par-
ticular influence on the mapping complexity when deriving
heterogeneous views. One of the major results of this anal-
ysis is that all the identified structural problems may occur
when a mapping between two object-oriented or EXPRESS
schemas is specified. The additional difficulty of mapping
schemas written in heterogeneous data models is to define
the correspondence in a semantics-preserving way.

Based on these explorations, a language was needed to
bridge the identified types of heterogeneity and to provide
operational flexibility over the target schema that conforms
to the semantics of the underlying sources. Related work
concerning the development of such languages was found
to be insufficient (cf. Sect. 4). We have presented the map-
ping language BRIITY which is more powerful with respect
to the number of problems being solved than the previous
approaches. It was shown that the integration of multiple
schemas written in heterogeneous data models can be sup-
ported. Further characteristics of the language are its de-
scriptiveness, its technological independence, and its appli-
cability to define transient views and mappings between DB

42 T. Härder et al.: Problems and solution approaches to structural heterogeneity

schemas, i. e., to support data migration. Due to space lim-
itations, the concatenation of mapping specifications (e. g.,
view↔ DB1 and DB1↔ DB2), which permits to migrate
applications to other DBs, was not considered in this pa-
per. Another key feature of the language is its support of
user-defined update statements having the same power and
descriptiveness as retrieve statements. We have only men-
tioned that the language can also be used to define updat-
able views solving the well-known view-update problems.
However, for reasons of brevity, we have refrained from
comparing view-update problems and solutions provided by
BRIITY. Finally, it is worth mentioning that our work is one
of the major contributions to the ongoing standardization ef-
fort of EXPRESS-X [IS98b], which is a language to support
the mapping between EXPRESS schemas.

Acknowledgements.We thank the referees for their helpful comments
which led to essential clarifications and improvements of this paper.

References

[AB91] Abiteboul S, Bonner AJ (1991) Objects and Views. In: Clif-
ford J, King R (eds) Proc. ACM SIGMOD, 1991, Denver,
Colo. SIGMOD Record 20(2), 1991, pp 238–247

[An94] Andersson M (1994) Extracting an Entity-Relationship
Schema from a Relational Database Through Reverse Engi-
neering. In: Loucopoulos P (ed) Proc. 13th Int. Conf. on the
Entity Relationship Approach (In: LNCS 881), 1994, Manch-
ester, UK. LNCS 881, Springer, Heidelberg, 1994, pp 403–
419

[At+89] Atkinson M, et al. (1989) The Object-Oriented Database Sys-
tem Manifesto. In: Kim W, Nicolas JM, Nishio S (eds) Proc.
1st Int. Conf. on Deductive and Object-Oriented Databases,
1989, Kyoto, Japan, 1989. North-Holland, Elsevier 1990, pp
223–240

[AR90] Ahmed R, Rafii A (1990) Relational Schema Mapping and
Query Translation in Pegasus. Technical Report HPL-DTD-
90-12. Hewlett-Packard Laboratories, 1990, Palo Alto, Calif.

[Ba95] Bailey I (1995) EXPRESS-M Reference Manual. ISO Doc-
ument TC 184/SC4/WG5 N243. International Organization
for Standardization, Geneva, Switzerland

[BE96] Bukhres OA, Elmagarmid AK (1996) Object-Oriented Mul-
tidatabase Systems. Prentice Hall, Englewood Cliffs, N.J.

[BCL89] Blakeley JA, Coburn N, Larson R-A (1989) Updating De-
rived Relations: Detecting Irrelevant and Autonomously
Computable Updates. ACM Trans Database Syst 14(3): 369–
400

[BCN91] Batini C, Ceri S, Navathe S (1991) Conceptual Database
Design: An Entity-Relationship Approach. Benjamin Cum-
mings, New York

[BHP92] Bright MW, Hurson AR, Pakzad SH (1992) A Taxonomy
and Current Issues in Multidatabase Systems. IEEE Comput
25(3): 50–60

[BHP94] Bright MW, Hurson AR, Pakzad S (1994) Automated Res-
olution of Semantic Heterogeneity in Multidatabases. ACM
Trans Database Syst 19(2): 212–253

[Bl97] Blakeley JA (1997) Universal Data Access with OLE DB.
Proc. IEEE Compcon ’97, San Jose, IEEE Computer Society
Press, 1997, Los Alamitos, Calif., pp 2–7

[BLN86] Batini C, Lenzerini M, Navathe SB (1986) A Comparative
Analysis of Methodologies for Database Schema Integration.
ACM Comput Surv 18(4): 323–364

[BSKW91] Barsalou T, Siambela N, Keller AM, Wiederhold G (1991)
Updating Relational Databases through Object-based Views.
In: Clifford J, King R (eds) Proc. ACM SIGMOD, 1991,
Denver, Colo., 1991, SIGMOD Record 20(2), pp 248–257

[Ca96] Cattell R (1996) The Object Database Standard: ODMG-93
(Release 1.2). Morgan Kaufmann, San Mateo, Calif.

[Ca+95] Carey M, et al. (1995) Towards Heterogeneous Multimedia
Information Systems: The Garlic Approach. In: Buhkhres
OAk Özsu MT, Shan MC (eds) Proc. 5th Int. Workshop
on Research Issues in Data Engineering: Distributed Object
Management, 1995, Taipei, Taiwan, 1991, IEEE Computer
Society Press, Los Alamitos, Calif., pp 124–131

[CL92] Chomicki J, Litwin W (1992) Declarative Definition of
Object-Oriented Multidatabase Mappings. In:Özsu MT,
Dayal U, Valduriez P (eds) Distributed Object Management.
Morgan Kaufmann, San Mateo, Calif., pp 375–392

[CMS94] Chiang RHL, Barron TM, Storey VC (1994) Reverse Engi-
neering of Relational Databases: Extraction of an EER Model
form a Relational Database. IEEE Trans Data Knowl Eng
10(12): 107–142

[CS91] Chatterjee A, Segev A (1991) Data Manipulation in Hetero-
geneous Databases. SIGMOD Rec 20(4): 64–68

[DKMRS93] Drew R, King R, McLeod D, Rusinkiewicz M, Silberschatz
A (1993) Report of the Workshop on Semantic Heterogeneity
and Interoperation in Multidatabase Systems. SIGMOD Rec
22(3): 47–56

[Da83] Dayal U (1983) Processing Queries Over Generalization
Hierarchies in a Multidatabase System. In: Schkolnick M,
Thanos C (eds) Proc. 9th VLDB Conf, 1983, Florence, Italy,
1982, Morgan Kaufmann, San Mateo, Calif., pp 342–353

[Du94] Dupont Y (1994) Resolving Fragmentation Conflicts in
Schema Integration. In: Loucopoulos P (ed) Proc. 13th Int.
Conf. on the Entity-Relationship Approach, 1994, Manch-
ester, UK. LNCS 881, Springer, Berlin Heidelberg New York,
pp 513–532

[GLN92] Gotthard W, Lockemann PC, Neufeld A (1992) System-
guided View Integration for Object-oriented Databases. IEEE
Trans Knowl Data Eng 4(1): 1–22

[GSC96] Garcia-Solaco M, Saltor F, Castellanos M (1996) Semantic
Heterogeneity in Multidatabase Systems. In: Bukhres OA,
Elmagarmid AK (eds) Object-Oriented Multidatabase Sys-
tems – A Solution for Advanced Applications. Prentice Hall,
Englewood Cliffs, N.J., pp 129–202

[Ha95] Hardwick M (1995) EXPRESS-V Language. Technical Re-
port. Rensselaer Polytechnic Institute, Laboratory for Indus-
trial Information Infrastructure, Troy, NY

[HTJC93] Hainaut J-L, Tonneau C, Joris M, Chandelon M (1993)
Transformation-based Database Reverse Engineering. In: El-
masri R, Kouramajian V, Thalheim B (eds) Proc. 12th Int.
Conf. on Entity-Relationship Approach, 1993, Dallas, Tex.,
1993, LNCS 823, Springer, Berlin Heidelberg New York,
pp 364–374

[IBM95] IBM Corp. (1995) DataJoiner: A Multidatabase Server
– Version 1. White Paper. IBM Corp., Armonk, N.J.;
http://www.software.ibm.com/data/pubs/papers/

[IS94a] International Organization for Standardization (1994) Indus-
trial automation systems and integration – Product data repre-
sentation and exchange – Part 1: Overview and fundamental
principles. Int. Standard, 1st edition. ISO 10303. International
Organization for Standardization, Geneva, Switzerland

[IS94b] International Organization for Standardization (1994) Indus-
trial automation systems and integration – Product data rep-
resentation and exchange – Part 11: Description methods:
The EXPRESS language reference manual. Int. Standard, 1st
edition. ISO 10303. International Organization for Standard-
ization, Geneva, Switzerland

[IS96a] International Organization for Standardization (1996) ISO
10303 – Industrial automation systems and integration –
Product data representation and exchange – Part 22: Standard
Data Access Interface. ISO Document TC 184/SC4/WG7.
International Organization for Standardization, Geneva,
Switzerland

[IS98a] International Organization for Standardization (1998) ISO
10303 – Industrial automation systems and integration –
Product data representation and exchange – Part 214: Appli-

T. Härder et al.: Problems and solution approaches to structural heterogeneity 43

cation Protocol: Core Data for Automotive Mechanical De-
sign Processes. ISO Document TC 184/SC4/WG3. Interna-
tional Organization for Standardization, Geneva, Switzerland

[IS98b] International Organization for Standardization (1998)
EXPRESS-X Language Reference Manual.
ISO Document TC 184/SC4/WG11 N052. International
Organization for Standardization, Geneva, Switzerland;
http://www.nist.gov/sc4/wgqc/wg11/

[KC95] Koh J-L, Chen ALP (1995) A Mapping Strategy for Querying
Multiple Object Databases with a Global Object Schema.
In: Buhkhres OA,Özsu MT, Shan MC (eds) Proc. IEEE
Int. Workshop on Research Issues on Data Engineering –
Distributed Data Management, 1995, IEEE Computer Society
Press, Los Alamitos, Calif., pp 50–57

[KCGS95] Kim W, Choi I, Gala S, Scheevel M (1995) On Resolving
Schematic Heterogeneity in Multidatabase Systems. In: Kim
W (ed) Modern Database Systems – The Object Model, In-
teroperability, and Beyond. Addison-Wesley, Reading, Mass.,
pp 521–550

[KDN90] Kaul M, Drostern K, Neuhold E (1990) ViewSystem: Inte-
grating Heterogeneous Information Bases by Object-Oriented
Views. Proc. 6th Int. Conf. on Data Engineering, 1990, Los
Angeles, Calif., 1990, IEEE Computer Society Press, Los
Alamitos, Calif., pp 2–10

[Ke91] Kent W (1991) Solving Domain Mismatch and Schema Mis-
match Problems with an Object-Oriented Database Program-
ming Language. In: Lohman GM, Sernadas A, Camps R (eds)
Proc. 17th VLDB Conf, 1991, Barcelona, Spain, 1991, Mor-
gan Kaufmann, San Mateo, Calif., pp 147–158

[KFMRN96] Klas W, Fankhauser P, Muth P, Rakow TC, Neuhold EJ
(1996) Database Integration Using the Open Object-Oriented
Database System VODAK. In: Bukhres O, Elmagarmid AK
(eds) Object-oriented Multidatabase Systems: A Solution for
Advanced Applications. Prentice Hall, Englewood Cliffs,
N.J., 1996, Chapter 14

[KLK91] Krishnamurthy R, Litwin W, Kent W (1991) Language Fea-
tures for Interoperability of Databases with Schematic Dis-
crepancies. In: Clifford J, King R (eds) Proc. ACM SIGMOD,
1991, Denver, Colo. ACM Press, New York, pp 40–49

[KS91] Kim W, Seo J (1991) Classifying Schematic and Data Het-
erogeneity in Multidatabase Systems. IEEE Comput 24(12):
12–18

[KS96] Kashyap V, Sheth AP (1996) Semantic and Schematic Sim-
ilarities Between Database Objects: A Context-Based Ap-
proach. VLDB J 5(4): 276–304

[La90] Langerak R (1990) View Updates in Relational Databases
with an Independent Scheme. ACM Trans Database Syst
15(1): 40–66

[LS91] Larson LA, Sheth AP (1991) Updating relational views using
knowledge at view definition and view update time. Inf Syst
16(2): 145–168

[Ma91] Mattos NM (1991) An Approach to Knowledge Base Man-
agement (LNAI 513). Springer, Heidelberg

[MR93] Missier P, Rusinkiewicz M (1993) Extending a Multidatabase
Manipulation Language to Resolve Schema and Data Con-
flicts. Technical Report UH-CS-93-10. University Houston,
Tex.

[PB94] Premerlani WJ, Blaha MR (1994) An Approach for Reverse
Engineering of Relational Databases. Commun ACM 37(5):
42–49

[PBE95] Pitoura E, Bukhres O, Elmagarmid A (1995) Object Orienta-
tion in Multidatabase Systems. Comput Surv 27(2): 141–195

[PGU96] Papakonstantinou Y, Garcia-Molina H, Ullman J (1996)
MedMaker: A Mediation System Based on Declarative Spec-
ifications. In: Su SYW (ed) Proc. 12th Int. Conf. on Data
Engineering, 1996, New Orleans, La., 1996, IEEE Computer
Society Press, Los Alamitos, Calif., pp 132–141

[RS97] Roth MT, Schwarz P (1997) Don’t Scrap It, Wrap It! A
Wrapper Architecture for Legacy Data Sources. In: Jarke M,
Carey MJ et al (eds) Proc. 23rd VLDB; Conf, 1997, Athens,
Greece, 1997, Morgan Kaufmann, San Mateo, Calif., pp 266–
275

[RMKDP95] Roussopoulos N, Melvin Chen C, Kelley S, Delis A, Pa-
pakonstantinou Y (1995) The ADMS Project: View R Us.
Data Eng Bull 18(2): 19–28

[Sa96a] Sauter G (1996) The Mapping Language BRUTY – Refer-
ence Manual. Technical Report 173-96-007. Daimler-Benz
AG, Research & Technology, Ulm, Germany

[Sa96b] Sauter G (1996) Impacts of Heterogeneity on Interoperability.
Technical Report 173-96-021. Daimler- Benz AG, Research
& Technology, Ulm, Germany

[Sa98] Sauter G (1998) Interoperability of Database Systems with
Structural Heterogeneity. (in German), Doctoral Thesis.
Computer Science Dept., University of Kaiserslautern, St,
Augustin, Germany

[SGN93] Sheth AP, Gala SK, Navathe SB (1993) On Automatic Rea-
soning for Schema Integration. Int J Intelligent Coop Inf Syst
2(1): 23–50

[SL90] Sheth A, Larson JA (1990) Federated Database Systems
for Managing Distributed, Heterogeneous, and Autonomous
Databases. Comput Surv 22(3): 183–236

[SPD92] Spaccapietra S, Parent C, Dupont Y (1992) Model-
Independent Assertions for Integration of Heterogeneous
Schemas. VLDB J 1: 81–126

[SSR94] Sciore E, Siegel M, Rosenthal A (1994) Using Semantic Val-
ues to Facilitate Interoperability Among Heterogeneous In-
formation Systems. ACM Trans Database Syst 19(2): 254–
290

[SST92] Scholl MH, Schek HJ, Tresch M (1992) Object Algebra
and Views for Multi-Objectbases. In:̈Ozsu MT, Dayal U,
Valduriez P (eds) Distributed Object Management. Morgan
Kaufmann, San Mateo, Calif., pp 353–374

[TC94] Tsai PSM, Chen ALP (1994) Concept Hierarchies for
Database Integration in a Multidatabase System. Proc. 6th
Int. COMAD, 1994, Bangalore, India

[VA95] Vermeer MWW, Apers PAG (1995) Reverse Engineering
of Relational Database Applications. In: Papazoglou MP
(eds) Proc. Int. 14th Int. Conf. Object-Oriented and Entity-
Relationship Modelling, 1995, Gold Coast, Australia, 1995,
LNCS 1021, Springer, Berlin Heidelberg New York, pp 89–
100

[Wi95] Widom J (1995) Research Problems in Data Warehousing.
Proc. 4th Int. Conf. on Information and Knowledge Manage-
ment, 1995, Baltimore, Md., 1995, pp 25–30

[ZHKF95] Zhou G, Hull R, King R, Franchitti J-C (1995) Using Ob-
ject Matching and Materialization to Integrate Heterogeneous
Databases. In: Laufmann S, Spaccapietra S, Yokoi T (eds)
Proc. 3rd Int. Conf. on Cooperative Information Systems,
Vienna, Austria, 1995, pp 4–18

