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Missing information, imprecision, inconsistency, vagueness, uncertainty, and ignorance abound
in information systems. Such imperfection is a fact of life in database systems. Although these
problems are widely studied in relational database systems, this is not the case in conceptual
query systems. And yet, concept-based query languages have been proposed and some are already
commercial products. It is therefore imperative to study these problems in concept-based query
languages, with a view to prescribing formal approaches to dealing with the problems. In this article,
we have done just that for a concept-based natural language query system that we developed.
A methodology for handling and resolving each type of imperfection is developed. The proposed
approaches are automated as much as possible, with the user mainly serving an assistive function.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—query lan-
guages; H.5.2 [Information Interfaces and Presentation]: User Interfaces—natural language,
interaction styles, prototyping; I.2.7 [Artificial Intelligence]: Natural Language Processing—lan-
guage generation, language parsing and understanding
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based query, conceptual query language, imperfect queries, missing information, incomplete infor-
mation, inconsistency, semantically mismatched query, inexplicit query, elliptical query, anaphoric
query, ambiguous query

1. INTRODUCTION

“Imperfect information is ubiquitous—almost all the information that we have
about the real world is not certain, complete and precise. Thus to insist on study-
ing just certain information, as has been the case in most work in databases,
is to concentrate upon a small part of the whole problem” [Parsons 1996]. An
extensive survey of the work done in the database and artificial intelligence
communities on imperfect information is given in Parsons [1996]. Surely in an
era where there is an increase in the use of databases (DBs) by DB experts and
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nonexperts, it is only to be expected that ill-formulated queries would become
a very common occurrence. It is therefore imperative that query languages de-
signed to support a broad range of users are functionally powerful enough to
aid users in avoiding or resolving queries having imperfect information.

The problem with imperfect queries is that, depending on the nature of the
imperfection, they may either not retrieve any data, because they cannot be
processed, or retrieve erroneous data without the user realizing it. And where
this happens in business applications, it could mean the use of erroneous data
for business decisions or the introduction of severe inefficiencies in business
processes. In either case, the effect could be disastrous for organizations. In
this article, therefore, approaches are developed for handling imperfection in
concept-based natural language queries. The approaches are specifically ap-
plied to the Conceptual Query Language with Natural Language (CQL/NL)
that is presented in Owei [2000]. We examine what imperfection means in the
context of concept-based query languages, and then determine and define the
types of possible imperfect queries in CQL/NL. We then develop a methodology
for handling and resolving each type of imperfection. The proposed approaches
are automated wherever and as much as possible, with the user mainly playing
an assistive role to the system.

Although techniques for dealing with imperfect information in queries and
DBs have been primarily studied in the context of relational database systems,
as we discuss in the next section on related research, this is not the case with
other DB systems, especially concept-based DB systems, which are introduced
and defined in Section 3. The claim that imperfect information in concept-
based DB systems is not widely studied is made clearer in Section 4, where
we introduce and define the types of query imperfections that are addressed in
this article. Section 5 deals with semantically mismatched conceptual queries.
Section 6 examines missing information in conceptual queries. Inexplicit con-
ceptual queries are addressed in Section 7. Section 8 deals with ambiguity
in concept-based queries. Additional discussion on imperfect information in
database systems is given in Section 9. The article concludes in Section 9.

2. LITERATURE REVIEW

Early studies of handling imperfect information in information systems deal
with trying to define and classify imperfect information. This is perhaps to be
expected, since the nature and ramifications of the problem must be understood
and clearly delineated before it can be solved.

Bonnissone and Tong [1985] argue that imperfect information is of three
types, namely, uncertainty, incompleteness, and imprecision. In their taxonomy,
incompleteness is seen as arising from the absence of a value and imprecision
from the existence of a value that cannot be measured with suitable precision.
Uncertainty ensues from constructing a subjective opinion about the truth of a
fact, the certainty of which is not known. The studies in Bosc and Prade [1993]
and Dubois and Prade [1988] go even further by making a finer distinction that
includes vagueness and inconsistency as additional categories. Information is
considered to be vague if it is fuzzily imprecise. For example, the predicate “tall”
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is both fuzzy and imprecise, and thus viewed as vague. Inconsistency results
from conflicting values. For example, the propositions “Joe weighs 100 lbs” and
“Joe weighs 150 lbs” impart inconsistent information, if the term “Joe” refers
to the same real world object.

The taxonomic categories are not disjoint. As discussed in Bosc and Prade
[1993], information can be both uncertain and imprecise. The imprecise state-
ment “Joe’s weight is between 100 lbs and 150 lbs” may be uncertain, depending
on the knowledge of the one making the statement. Information can also exhibit
vagueness and inconsistency simultaneously. An example is the claim, “Joe is
tall and short.”

Much of the work on handling imperfect information in DBs has focused
on dealing with incomplete information. The primary concern in this has been
devoted to dealing with missing attribute values [Parsons 1996]. Grahne [1991]
identifies a set of theoretical problems that must be addressed in resolving the
issue of incomplete information in the context of relational DBs. These include:

—the meaning of incomplete information,
—the processing of incomplete information during query processing, and
—the extent to which incomplete information can be tolerated and yet make

query processing possible.

Two types of incomplete information are identified in Grahne [1991]: un-
known values, and values not applicable in the particular context. Codd [1975]
and [1979], on the other hand, proposes a three-level logic (“true,” “false,” and
“unknown”) to deal with missing information in relations. This is the null sub-
stitution principle in Codd [1979]. Both Grahne and Codd argue that an incom-
plete relation represents a set of complete relations, since the null, that is, the
unknown, can be removed by different substitutions.

A rather elegant solution approach to the problem of querying relations with
nulls is discussed in [Imielinski and Lipski [1981] and [1984]: nulls are assumed
marked, and nulls with the same mark represent the same unknown value. An
entirely different approach is taken in Nijssen and Halpin [1989] by enforcing
complete knowledge. In this approach, full information is recorded through
the use of frequency constraints that ensure that all possibilities are known
to the system. Derivation rules for unstored facts are not allowed. A detailed
discussion of the various studies dealing with the treatment of null values in
databases is given in Parsons [1996].

Some work has also been done to address the problem of imprecise informa-
tion in relational DBs. Most of the work in this area uses fuzzy sets [Zadeh
1965] and fuzzy logic [Zadeh 1983a, b]. Different approaches are taken in the
literature to applying fuzzy notions to this problem. One approach associates
a fuzzy degree of membership with each tuple of a relation [Baldwin and Zhou
1984; and Dubois and Prade 1991]. Such a degree is viewed variously as the
degree to which a tuple satisfies the relation to which it belongs [Baldwin and
Zhou 1984] or as the degree of association between the elements of a tuple
[Dubois and Prade 1991]. In a second approach, fuzzy similarity relations are
used to measure the extent to which the elements of an attribute domain are
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interchangeable [Parsons 1996; Buckles and Petry 1987, 1982]. Basically, this
approach extends relational operations to produce fuzzy answers. The use of
fuzzy inference mechanisms is a third approach [Leung et al. 1989]. In this
approach, fuzzy production rules are coupled with a relational DB. In the re-
sulting deductive expert DB system, the expert system component uses fuzzy
production rules to answer queries. The DB is called only when it is required.

There has been relatively little work done on imperfect information in
concept-based query languages. The reason for this may well lie in the fact
that the development of concept-based query languages has essentially re-
mained within the confines of research laboratories. Only a small number of
them appear to be making an inroad into the commercial arena [Bloesch and
Halpin 1997]. Others are still at the prototype level [Owei and Navathe 2001b;
Owei 2000; Chan 1989; Berztiss 1993]. We next examine some of these existing
concept-based query languages.

ConQuer-II [Bloesch and Halpin 1997] is a commercial concept-based query
language based on the object-role modeling (ORM) paradigm [Halpin 1995,
1996; Halpin and orlowska 1992; Halpin and Proper 1995a, b]. ORM models
applications in terms of the semantic roles played by objects and entities in
relationships. ConQuer-II allows queries to be formulated via paths through
the conceptual schema. Query paths are constructed from the semantic roles of
objects and entities.

Vizla [Berztiss 1993] is a visual query language interface for the informa-
tion control prototyping language SF [Berztiss 1986]. In Vizla, a database is
abstracted as a collection of sets (entities) and functions that map from this
collection of sets to auxiliary sets (attributes). Queries are formulated in Vizla
by pointing to representations of functions, their domains and codomains, or
subsets of the domains and codomains, and to various operators in a conceptual
model of a database. The items selected in this way are displayed and assembled
graphically in a workspace, or window, which is used in Vizla to reduce the cog-
nitive burden query formulation imposes on end-users. It achieves this by allow-
ing users to separate querying into sequences of small steps, save intermediate
results of such sequences, and combine the intermediate results into final re-
sults. Ad hoc queries can therefore be formulated and processed in this manner.

A number of studies have been conducted either to motivate the development
of concept-based query languages or to demonstrate their superiority over other
query paradigms. A discussion of comparative studies arguing for concept-based
query languages can be found in Chan et al. [1993] and Siau et al. [1995]. Both
studies compare SQL and the concept-based DBQL Knowledge Query Language
(KQL) [Chan 1989]. They show that users of concept-based query languages out-
perform SQL users: irrespective of time, the KQL users performed better than
their SQL counterparts, with respect to query accuracy, query formulation time,
and user confidence. Additional empirical studies suggesting the superiority of
concept-based data retrieval approaches over other query approaches can be
found in Batra [1993], Batra et al. [1990], Batra and Sein [1994], Jarvenpaa
and Machesky [1989], and Owei et al. [2002]. All of these studies clearly point
to the need for alternative query paradigms. Concept-based approaches are a
viable option.
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However, none of the concept-based languages cited above addresses imper-
fect information. An effort along this line is made by Wu and Ichikawa [1992].
They propose a system whereby incomplete query specifications are resolved
at the conceptual schema level. A query graph (termed query net) of the spec-
ified query is formed and the missing information is handled by complement-
ing the query net with semantic paths generated by a path-finding program.
This approach is based on the argument that ill-formed queries and missing
information queries at the conceptual level result from end-users’ misconcep-
tions about domain concepts. In the cooperative approach taken, the system
in Wu and Ichikawa [1992] returns to the end-user all the instantiations of
ill-formed subnets of the query graph, that is, the portions that are in need of
complementing and correcting. This gives the user a precise view of the domain
concepts.

Wald and Sorenson [1990] also deal with ambiguous conceptual queries posed
on an entity-relationship involvement data model. In their study, ambiguity is
viewed in terms of multiple underlying query paths at the logical level. There-
fore, in their case, a query is considered to be ambiguous if it can be mapped
to more than one logical query. They address the problem of inferring an un-
ambiguous logical query from a given conceptual query. The approach taken
is to use the ER schema to explain in English-like sentences the meaning of
the paths of the resulting logical queries. The user is then required to choose
which one, if any, is correct. In this article we define the ambiguity of concep-
tual queries in a broader sense, or more appropriately at a higher level, than
is done in Wald and Sorenson [1990], namely, in the conceptual statement of
the query itself, thus in the concept-based natural language expression of the
query.

From the foregoing, it is clear that the work on imperfect information has
been done almost exclusively in the context of relational DB systems. This
is quite understandable, given the pervasiveness of relational DBs in society
and the strong backing by commercial vendors. But as discussed above, more
recently concept-based DB query languages have begun to emerge. Given the
significance of imperfect information in information systems, we consider it
imperative that this issue be examined in the context of concept-based DB query
languages. The important question in this respect is therefore, “What does
imperfect information mean in concept-based DBs and conceptual queries?” We
examine this question in this article and discuss how we deal with imperfect
information in the concept-based controlled natural language query system
discussed in Owei [2000] and Owei et al. [1997].

3. PRELIMINARY ON CONCEPT-BASED QUERY LANGUAGES AND CQL/NL

Concept-based or conceptual query interfaces reduce the cognitive load in
querying DBs by allowing users to directly use constructs from conceptual
schemas [Batra 1993; Batra et al. 1990; Batra and Sein 1994; Chan et al. 1993;
Owei 1994; Siau et al. 1995]. As exemplified in Chan et al. [1993], instead of
specifying the relational condition, “Where s.sno= sp.sno and sp.pno=p.pno,”
concept-based interfaces would allow for a more natural specification like
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Fig. 1. Semantically constrained E-R diagram of a university department schema.

“Where Supplier supplies Parts.” Conceptual query formulation can be
illustrated with the Conceptual Query Language (CQL) [Owei et al., 2001b,
and Navathe 2001a].

Figure 1 is a semantically constrained entity-relationship diagram1

(SCERD) of a university department. In SCERD, entity types in the schema
bear explicitly named relationships, or associations, among themselves. Each
relationship has a semantic meaning. Double-headed arrows are used in
SCERD to indicate that the entities at both heads of the arrows have a direct
semantic relationship, and the arrowheads are labeled with the roles played, for
example, consists-of and advises, by the entities in specific relationships. The
association semantics of the relationships involving entities are constrained by
the roles the entities play in the particular relationship. In SCERD, the se-
mantics of the links between entities, therefore, lie in the form of roles. CQL
supports the direct use of SCERD constructs in query formulation.

Given the schema in Figure 1, suppose that Query 1 below is posed.

Query1: What course(s) is the student named Marshall taking from asso-
ciate professor Jones?

An abbreviated CQL formulation of this query requires the user to specify
only the stated entities: Student, Teacher, and Course, along with a set of selec-
tion predicates on these entities. The system then charts one or more paths from

1SCERD contains other constructs that are used for updates. These have been left out of Figure 1,
since they are not pertinent to the discussion here.
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Fig. 2. CQL query input form.

Student and Teacher to Course. Unlike other concept-based query languages
which require users to specify each query-path in its entirety, CQL requires
users to specify only the endpoints, that is, the starting and terminating en-
tities and relationship roles, of query-paths. The CQL system automatically
deduces the correct intermediate entities to use on a given query-path. In ad-
dition, the system performs needed logical operations such as conjunction or
disjunction on the derived paths.

Figure 2 shows the formulation of this query on an experimental CQL query
input form. The help window on the left of the figure aids the user in formulating
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Fig. 3. Overall methodology of the CQL/NL approach.

queries by providing information on the schema to the user, and is part of
CQL’s computer-supported query formulation system [Owei 2000]. The user can
request as many target and source blocks as desired by clicking the appropriate
button on the right of the window.

With a natural language frontend to CQL, the input form in Figure 2 is
overlaid with an NL interactive interface and is hidden from the user. Clearly,
all that is required of the NL frontend is the ability to extract the terms Stu-
dent, enrolled-in, Course-Registration, Teacher, teaches, Section, Course, and
the other search terms from the NL query statement and write them to the
semantically correct fields of the CQL input form. A form of controlled natural
language (CNL) [Lewis and Jones 1996] is developed and used in this study.
The use of CNL obviates the need for full syntactic parsing, and is not as re-
strictive as pseudonatural language. CNL is therefore able to support a wide
range of linguistic styles and preferences.

The CNL query is submitted to an information extraction (IE) system. IE
systems find and link relevant information while ignoring what is extraneous
and irrelevant. Our goal in IE is to transform CNL queries into semantic gram-
matical patterns from which predefined templates of a concept-based query lan-
guage, in our case CQL, can be filled with relevant information. The CQL/NL
system combines natural language interface methods with the CQL querying
approach into the single approach that we refer to as the semantic grammar
(SG) approach. In the SG approach, the only relevant pieces of information to be
extracted are the targets, sources, selection conditions, and semantic role condi-
tions. The development of the SG approach is aimed at combining the ease of use
of natural language systems with the power of the Conceptual Query Language.

Figure 3 shows the overall approach to query formulation and processing in
the CQL/NL approach. First, specified queries in a controlled form of natural
language are preprocessed to extract system-recognized lexical terms. These
terms are then mapped into CQL. The resulting CQL query is in turn trans-
formed into a logical query. Finally, the constructed logical query is specified
against the underlying database management system. The outward form of
CQL/NL is therefore seen to be CNL, which in turn uses the underlying formal
basis of the semantic grammar. In the rest of this section, the controlled natural
language and the semantic grammar are discussed.

3.1 Controlled Natural Language

Noun phrases (NPs) talk about some set of real-world objects (called referents).
Therefore, NP interpretation in linguistics deals with determining the referents
a given NP is investigating [Mellish 1985]. There is an implied NP to every
query. This realization allows us to rephrase queries into CNL queries, which
are simpler in lexical structure and, therefore, facilitate query formulation and
the incremental evaluation and processing of the meaning of queries.
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Listing 1. Sample CNL Queries

Towards this end, in Owei [2000] we therefore adopted the way suggested in
Chang and Sciore [1992] for addressing the difficulty users experience with NL
database query languages (DBQLs), namely, to combine concept-based DBQL
paradigms with NL approaches to enhance the overall ease of use of query inter-
faces. We used information extraction approaches to extract only the relevant
search terms in queries expressed in controlled NL. The extracted terms re-
ferred to semantic constructs on a conceptual DB schema.

CNL is flexible enough to accommodate a wide range of linguistic styles and
preferences, but structured so simply as to render IE easy. Transforming free,
unrestricted NL queries into CNL queries eliminates the need for both full
semantic and syntactic parsing. Our approach to developing CNL queries is
described as follows. From a corpus of free, unrestricted NL queries posed by
users, we decided on a set of simple but semantically equivalent wh-forms (i.e.,
the forms who, what, where, when, how, etc.), list-forms, find-forms, and get-
forms into which users’ unrestricted questions were translated. The resulting
forms are used as our CNL forms. A sample of CNL queries is shown in Listing 1.

3.1.1 Controlled Natural Language Filter in CQL/NL. Figure 4 shows the
query-processing stages in CQL/NL. The user enters a CNL query; for example,
the user specifies the query, “What course is the student named Marshall taking
from associate-professor Jones?” as already explained. As seen from this figure,
the NL filter in our IE approach accepts CNL queries as input, and filters them
only for the search parameters of the CQL template. The filtration process
consists of verbiage suppression. For this, we adopt an approach similar to that
used in many IE systems where noncontent terms, that is, texts that are not
relevant to the semantics of the application, are considered to be excess verbiage
and eliminated without loss of meaning [Andersen et al. 1986; DARPA 1992;
Jacobs and Rau 1990]. The suppressed terms consist mainly of verb terms such
as “is,” and function words and articles such as “the,” “a,” and so on. Verbiage
suppression produces a leaner restatement of the query, which is thereby cast
in a form that is close to the semantic categories of the application domain. For
example, “What course is the student named Marshall taking from associate-
professor Jones?” is suppressed to “What course student named Marshall taking
associate-professor Jones?” Notice that the resulting statement may be difficult
for humans to comprehend, and can therefore be hidden from the user. The
structure of the suppressed CNL query statement bears a lexical resemblance
to a semantic but primitive grammar. We use this primitive grammar as our
semantic grammar.
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Fig. 4. CNL query processing.

Fig. 5. Semantic graph of Query 1.

3.1.2 The Semantic Grammar. Semantic grammars are generally simpler
to process for information extraction and are domain-specific. Therefore they
can be lexically tailored to the application. This means that each word posi-
tion can have an unambiguous meaning with respect to the domain. The SG
framework is developed by first drawing the semantic graph for the verbiage-
suppressed versions of an initial set of CNL queries, and then defining the graph
with a set of formal constructs. The approach is illustrated with our example
Query 1: What course(s) is the student named Marshall taking from associate-
professor Jones? As already explained, verbiage suppression to eliminate the
underlined words in this CNL query results in query Q1*: “What course student
named Marshall taking associate-professor Jones?”

We refer to queries transformed into this configuration as semantic gram-
matical (SG) queries, since they conform to the suppositions for our semantic
grammars. The semantic graph for query Q1* is shown in Figure 5. In a simi-
lar fashion, a wide range of these semantic grammatical forms can be defined
to accommodate a variety of user linguistic styles and preferences. Each SG
form consists of a unique ordering of semantic predicates; it is therefore equiv-
alent to a single semantic proposition specified by instantiating, or filling, the
arguments of semantic predicates.
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3.2 Specification of SG Forms

Formalizing the semantic grammar allows us to generate, define and process
different SG forms. The semantic grammar is formally specified with a set of
symbolic constructs.

Brackets “[ ]” specify an optional terms, braces “{}” represent possible rep-
etition of terms, and diamonds “〈〉” separate logical units. The symbols are
used to define our SG constructs as follows.

Semantic Role := Relationship#1 [IntermediateEntity
Relationship#2]

EntitySelected := EntityName { EntityAttributeName Entity
AttributeValue }

EntityValuesOnly := { EntityAttributeName EntityAttributeValue }
Entity := EntityName.

The constructs are explained as follows.

—Semantic Role: is a path between two entities with either one or two linking
relationships. In case of two relationships, at least one must be given in the
query, preferably the first one.

—Entity: is just an entity name. It must be given in the query. In certain cases,
the semantic role between two entities is not given explicitly, but implied and
must be deduced. Implied semantic roles that are part of a query-path are
automatically determined by the system. An implied role may be different
from the one implied by the most direct relationship between two entities.
For example, “I take a course from teacher Jones” implies that Jones is not
just capable of teaching this course in general, but is actually teaching this
course now. The implied path between “teacher” and “course” must, therefore,
be “teacher teaches section is-section-of course,” and not “teacher can-teach
course,” which is semantically incorrect, although it is a shorter path with
only one relationship.

—EntitySelected: denotes an entity name and a list of specific attributes and
their values that are used in selection expressions. The attribute names or
even the entity name may be omitted in the query, but all values must be
given explicitly.

—EntityValuesOnly: is a list of attribute names and their values but with-
out the entity name. Attribute names may be omitted but values are given
explicitly.

The SG forms are formally defined using these constructs, as illustrated next
with the SG form of sample query 1.

SG-1 Query Form

Wh-Form <> {[TargetAttributeName]}TargetEntity <> Source1Selected <>
SourceSemanticRole <> Source2Selected <> (ImpliedSemanticRole).
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Semantically, SG-1 is interpreted as follows.

Find Target (or its attributes) such that a particular Source1 has Source
SemanticRole with Target and also a particular Source2 is related to Target
(via ImpliedSemanticRole).

SG-1 Example: What are the Ids and names of courses that student Mar-
shall is taking from Jones?

After verbiage suppression the SG query is:

what <> ids names courses <> student marshall <> taking <> jones

After reconstruction of the full mapping with synonyms “ids = c-id,” “names =
c-name,” “courses = course,” “taking = enrolled-in,” we obtain:

what <> c-id c-name course <> student s-name marshall <> enrolled-in
course-registration is-enrollment-for <> teacher t-name jones

The implied relationship relating “teacher” and “course” via the “teaches” se-
mantic role is deduced by the system and incorporated into the SG query. The
query is therefore finally interpreted as

what <> c-id c-name course <> student s-name marshall <> enrolled-in
course-registration is-enrollment-for <> teacher t-name jones <> (teaches
section is-section-of)

Semantically, this means:

Find c-id, c-name of each course such that student with s-name marshall
enrolled-in course-registration that in turn is-enrollment-for this course
and also teacher with t-name jones teaches section that in turn is-section-
of this course.

The SG forms for the other sample queries can be formally defined similarly.
For example, queries Q2 and Q3 are formally defined as follows.

SG-2 (Long Query) Form

WhForm <> {[TargetAttributeName]}TargetEntity <> TargetSemanticRole
<> Source1Entity <> SourceSemanticRole <> Source2Selected.

The semantic meaning of SG-2-long form is:

Find Target (or its attributes) that has TargetSemanticRole with Source1
that in turn has SourceSemanticRole with a particular Source2.

SG-2 (Short Query) Form

WhForm <> {[TargetAttributeName]}TargetEntity <> TargetSemanticRole
<> Source2Selected.

This query form is interpreted as meaning

Find Target (or its attributes) that has TargetSemanticRole with a partic-
ular Source2.
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SG-3 (Long Query) Form

WhForm <> {[TargetAttributeName]}TargetEntity <> TargetSemanticRole
<> Source1ValuesOnly <> (ImpliedSemanticRole) <> Source2Entity.

The semantic meaning of SG-3-Long is taken as

Find Target (or its attributes) that has TargetSemanticRole with Source2
so that a particular Source1 has ImpliedSemanticRole with a Source2.

SG-3-Short Query Form

Wh-Form <> {[TargetAttributeName]} TargetEntity <> TargetSemantic-
Role <> Source1ValuesOnly <> Source1Entity

The semantic meaning of this short form is:

Find Target (or its attributes) that has TargetSemanticRole with Source1.

Designers can follow a similar approach to define other forms as desired.
Furthermore, already defined and existing SG forms can be logically combined
to compose additional and more complex forms. This aspect of the study is
currently under development.

4. IMPERFECT INFORMATION IN CONCEPT-BASED QUERIES

Imperfect information in DB systems can be classified into five types: un-
certainty, incompleteness, imprecision, vagueness, and inconsistency. Parsons
[1996] performs a trawl of the literature to provide a detailed discussion of the
different types. A definition of each type is given in Table I. Also identified are
some studies that address the different categories. As seen from Table I, imper-
fect information has been studied extensively in relational systems, to a lesser
degree in object-oriented DB systems, and even less so in concept-based query
systems. For example, Wald and Sorenson [1990] and Wu and Ichikawa [1992]
deal with the issue in concept-based queries. In these two studies, however, the
treatment is limited to ambiguous concept-based queries (in Wald and Sorenson
[1990]) and incomplete concept-based queries (in Wu and Ichikawa [1992]). In
this article, we address all the types of interpretations, and in this section,
we examine what imperfect information means in the context of concept-based
query languages.

4.1 Types of Imperfect Concept-Based Queries

As already discussed, in concept-based query languages, query specification is
done against DB conceptual schemas. Direct use is made of semantic abstrac-
tions, such as entities, attributes, relationships, or roles in query formulations.
Imperfection in concept-based queries can therefore be attributed to one or more
of these semantic abstractions. In the remainder of this section, the different
types of imperfection in concept-based queries are briefly described. They are
considered in detail in subsequent sections, where techniques of how they are
resolved in CQL/NL, our CNL system are also discussed.
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Table I. General Classification of Imperfect Information in DB Systems

Type of Imperfect Type of DB
Information Definition Studies System

Uncertainty A data value is
not known for
certain.

[Motro 1993, 1990], [Lee 1992a],
[Prade and Testamale 1984,
1987b], [Barbara et al. 1990],
[Wong 1982], [Cavallo and
Pittarelli 1987], [Pittarelli 1994],
[Lee 1992b]

Relational

[Kiessling et al. 1994], [Kornatzky
and Shimony 1994]

OODB

Incompleteness A pertinent piece
of information is
missing.

[Codd 1979], [Lien 1979], [Zaniolo
1982], [Williams and Kong 1988],
[Demolombe and Farinas del Cerro
1988], [Zicari 1993], [Codd 1975],
[Grant 1974, 1977, 1979, 1980],
[Grant and Minker 1986],
[Vassilliou 1979, 1981], [Goldstein
1981], [Biskup 1983], [Lipski
1979], [Winslett 1988]

Relational

[Zicari 1990], [George et al. 1991] OODB
Imprecision A situation in

which the value of
data does not
meet the
necessary degree
of precision.

[Baldwin and Zhou 1984], [Dubois
and Prade 1991], [Zivelli 1986],
[Buckles and Petry 1987, 1982],
[Prade and Testamale 1987a],
[Shenoi and Melton 1989], [Buckles
and Petry 1983], [Morrissey 1992],
[Lee 1992a], [Leung et al. 1989]

Relational

[Anwar et al. 1992] OODB
Vagueness The value of data

is given as a
vague predicate,
e.g., “age = old.”

[Bosc and Prade 1993], [Prade and
Testamale 1984], [Motro 1988]

Relational

Inconsistency A variable is
assigned two or
more conflicting
values.

[Wald and Sorenson 1990],
[Markowitz and Shoshani 1989],
[Czejdo and Embley 1987]

Relational

Semantically Mismatched Queries (Query Modification Problem). This in-
volves slightly changing one correct query to another correct query. In terms
of the taxonomy in Table I, queries in this group are either imprecise or
inconsistent.

Example: “Find the students who are taking algebra” can be modified to
“Find the students taking algebra courses taught by Professor Jones.”

Missing Information. Queries having this type of imperfection are par-
tially complete. An incomplete query is syntactically valid, but semantically
incomplete. The formulation of missing information queries is such that the
underlying target DBMS is unable (due to some unspecified information) to
process it to return data. In terms of the classification discussed above, concept-
based queries with missing information suffer from incomplete information on
one or more semantic abstractions.
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Example: How many students are taught by teacher?

Inexplicit Queries. A concept-based query can be imperfect because it is
not a syntactically complete sentence or it contains noun phrases that corefer to
other noun phrases. The former results in elliptical statements. The latter gives
rise to anaphoric expressions. Both have the same effect of being semantically
vague. Therefore, in terms of the general classification in Table I, inexplicit
conceptual queries exhibit vagueness.

Example: What courses is the student named Marshall taking from Pro-
fessor Jones, and Ford from Professor Smith?

Example: Find each student that is taking algebra. Also display the grade
he or she got in it.

Ambiguous Queries. The wording of concept-based queries could be such
that they can have multiple different meanings. Such queries are considered to
be ambiguous. We can identify two classes of ambiguous queries. In one class
are queries, the formulation of which is such that there is semantic conflict or
mismatch between the set of query graphs generated.

Example: Find the teachers that each secretary works for; also list their
titles.

Ambiguity in this case results from and is indicated by the presence of multiple
query paths with differing meaning for the given query formulation. Queries
of this kind suffer from inconsistency, in the sense of Table I.

In the second class are queries whose formulations result in unambiguous
query paths, but the use of some nonschema term or expression renders their
meaning ambiguous.

Example: Find the teachers that every secretary works for.
The obvious difficulty here is that of deciding the interpretation with the desired
meaning. The best fit for queries of this kind, in terms of the classification in
Table I, is vagueness.

5. SEMANTICALLY MISMATCHED QUERIES
(QUERY MODIFICATION PROBLEM)

From the perspective of a query processor, a query represents a precise for-
mulation of the search intended by the user. In this respect, there are two
important factors that affect the precision of a formulated query: the terms,
words, codes, or values used to describe what the user wants to retrieve; and
the logic relating different sets of values [Meadow 1992]. The clear meaning
of a query can, therefore, be corrupted by either of these two factors. Query
rectification becomes necessary when either a semantic or a syntactic gap ex-
ists between the formulated query and the intention of the user. The purpose
of rectification is to bring about semantic and syntactic convergence between
the formulated and the intended queries. Rectification is, therefore, needed to
resolve an imperfection in a query. We view query rectification as consisting
of two aspects: modification and refinement. Query modification is taken up in
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this section. In subsequent sections, the other types of imperfection and their
rectification methods are addressed.

5.1 Query Modification

Query modification is done to remedy a fully formulated, syntactically valid
query that is erroneous in that it lacks either semantic or syntactic convergence.
A CQL/NL query can be modified by the following.

1. Selecting a new query. In this case, another query that conforms with the
user’s intended query is specified and processed as already discussed for a
new query.

2. Tinkering with a query. This involves slightly altering the current query
to change the semantic proposition expressed by the query. The two cases
below illustrate what we mean by “tinkering” with a query.

Case 1: Query 2, “Find the students who are taking algebra” can be modified
to Query 2-1: “Who are the students enrolled in mathematics?” Notice that the
new query maintains the same SG form as the old one.

Case 2: Query 2 can also be changed to Query 2-2: “Find the students taking
algebra courses taught by Professor Jones.” In this case, the resulting query has
an SG form that is different from, but related to, that of the changed query. By
“related” we mean that both SG forms share some common segments on the SG
graph.

To modify a query in CNL form, the user simply clicks the “modify” button
on the input form. A new query formulation workspace is then presented to the
user to input the new query. Figure 6 illustrates the modification of Query 2.

Clearly, in query modification, the user is changing one correct query to an-
other correct query. For this reason, the system does not provide any enhanced
support for this task beyond what is provided for the formulation of a new query.

6. MISSING INFORMATION

Query refinement in the context of missing information deals with queries that
are incomplete. We, therefore, use query refinement in this sense to refer to the
process of improving the semantic gap in partially complete queries. Based on
our SG framework, refinement in this sense can be viewed as belonging to one
of the following: unrecognized term, dangling SG pattern, or fragmented SG
pattern.

Unrecognized Term. This type of refinement involves resolving a lexical
term that is not recognized by the system and, therefore, cannot be automat-
ically hooked to a database content term. Handling this type of refinement
problem is discussed in detail in Owei [2000] and, therefore, not dealt with
here.

6.1 Dangling Query (Missing Tail Problem)

Queries in this class have SG patterns that have their trailing ends missing, as
shown in Figure 7. The problem here is that, due to the missing tail, the system
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Fig. 6. Use of “Modify” button to change Query 2.
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Fig. 7. Dangling SG pattern of an ill-stated query.

Fig. 8. Dangling SG pattern of Query 3.

is unable to process the query. To refine the query, the problem is detected first,
by matching it with any of the SG forms. Thereafter, the system returns an error
message to the user. In Owei [2000] missing elements are hooked manually by
the user. In this section, an interactive approach based on Skolemization of the
missing elements is used. The approach uses a Skolem variable to compute the
missing elements. The process is algorithmically described as follows.

Step 1: Assign Skolem variable k(a1, a2, . . . ) to the missing segment of the SG
query, where k is a schema entity and {ai} the set of attributes of k.

Step 2: Starting with the SG query, as the initial SG query, construct a simple
SG path to each semantic neighbor from the tail entity by assigning the
entities that are semantically adjacent to the tail entity to the Skolem
variable one at a time.

Step 3: Return the set of computed paths plus the initial SG query to the user
and ask the user to select the desired path(s).

Step 4: With the selected path as the new SG query, repeat Steps 2 and 3.
Step 5: Repeat Step 4 until the desired query path is attained.
Step 6: Stop.

As an example, suppose that the user specifies Query 3 against the schema.
The SG pattern of this query is that of a truncated SG form 4, where the trun-
cation occurs at the end of the pattern. The pattern is shown in Figure 8.

Query 3: What is the number of students?

If Psg represents the known part of the SG query and rsk the semantic role
connecting Psg to the assigned Skolem variable k(a1, a2, . . . ), then Step 1 gives
the parametric SG paths Psgrskk(a1, a2, . . . ). For this example, Psg is “What num-
ber Students.” Therefore, the Skolemized SG query is, “What number Students
rskk(a1, a2, . . . ).”

In Step 2, the parametric variable k(a1, a2, . . .) is assigned the members of
the set {Course, Teacher}. The corresponding set of semantic roles for rsk is
{enrolled-in (for Course), advised-by (for teacher)}. The computed SG paths
are:

“What number Students enrolled-in Course having c-id (?), c-name(?),
c-advisor(?)”
“What number students advised-by Teacher having t-id(?), t-name(?),
t-age(?), adviser-code(?)

Step 3 therefore returns the following paths to the user.
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1. “What number Students”
2. “What number Students enrolled-in Course having c-id (?), c-name(?),

c-advisor(?)”
3. “What number students advised-by Teacher having t-id(?), t-name(?),

t-age(?), adviser-code(?)

Assuming that the user is interested in finding the number of students that
are registered for the course whose c-id is ids 410, then Path 2, “What number
Students enrolled-in Course having c-id (?), c-name(?), c-advisor(?),” is picked
by the user.

With Path 2 now as the new initial SG query, Step 2 computes the new paths:

“What number Students enrolled-in Course consisting-of Section having
c-id(?), sec-no(?), t-name(?)”
“What number Students enrolled-in Course can-be-taught-by Teacher hav-
ing t-id(?), t-name(?), t-age(?), advisor-code(?).”

The new set of paths now returned to the user is:

4. “What number Students enrolled-in Course having c-id (?),
c-name(?), c-advisor(?)”

5. “What number Students enrolled-in Course consisting-of Section having
c-id(?), sec-no(?), t-name(?)”

6. “What number Students enrolled-in Course can-be-taught-by Teacher hav-
ing t-id(?), t-name(?), t-age(?), advisor-code(?).”

The user now picks Path 4. Since this is the same as the new initial SG query,
this tells the system that this is the SG query of the query desired by the
user. This terminating query is referred to as the “terminal query,” or more
appropriately the “terminal SG query.”

Once the terminal SG query is attained, the user is prompted to instantiate
the attributes of the Skolem entity, in this case c-id (?), c-name(?), c-advisor(?),
whichever applies. For this example, the instantiation c-id = “ids 410” is made.
Listing 2 shows the user–system interaction to resolve this query.

Suppose instead that the user is interested in finding the number of students
that are registered for section A of ids 410. In this case, Path 5 in Step 3 is chosen:
“What number Students enrolled-in Course consisting-of Section having c-id(?),
sec-no(?), t-name(?).” The attribute-value instantiations c-id = ids 410 and sec-
no = A are made to give the instantiated terminal SG query, “What number
Students enrolled-in Course consisting-of Section having c-id 410, sec-no A.”

6.2 Fragmented Query (Disconnected Segment Problem)

The SG patterns of queries in this group consist of disconnected segments of
the form shown in Figure 9. The problem here is that the system cannot assign
values to the missing segment. The task in refining this query is to compute the
intermediate schema elements needed to connect the two segments. Here too,
to correct this problem, the problem is detected by first matching the statement
with the SG forms. The system then returns an error message to the user. Here
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Listing 2. CQL/NL Output for Dangling Query 3

Fig. 9. Fragmented SG pattern of an ill-stated query.

too, a Skolem variable is used to compute the missing elements. Algorithmically,
the process is as follows.

Step 1: Pick one segment of the disconnected SG query.
Step 2: Assign Skolem variable k(a1, a2, . . .) to the missing elements of the se-

lected SG query.
Step 3: If no semantic role on the SG query can be used to compute the missing

semantic neighbor of the tail entity, then
Step 3.1: Starting with this Skolemized SG query, as the initial SG

query, construct a simple SG path to each semantic neighbor
from the tail entity by assigning the entities that are seman-
tically adjacent to it to the Skolem variable one at a time.

Step 3.2: Return the set of computed paths plus the initial SG query
to the user.

Step 3.3: Repeat Steps 1 to 3.2 with the second segment of the discon-
nected SG query.

Step 3.4: Ask the user to select the desired path(s) from each computed
segment.

Step 3.5: Compute the intermediate schema elements connecting the
two segments, as shown in Figure 10. (Where the user picks
two or more subpaths from one or more of the segments in
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Fig. 10. Computed paths with no initial semantic role on SG query.

Fig. 11. Fragmented SG pattern of Query 4.

Step 3.4, Step 3.5 is repeated for each subpath. The result-
ing separate full paths are then logically combined, either
conjunctively or disjunctively, into a complex path.)

Step 4: If a semantic role on the SG query can be used to compute the missing
semantic neighbor of the tail entity, then

Step 4.1: Add the edge from the known semantic role to the neighbor-
ing entity to the SG query.

Step 4.2: Taking the new SG query as the original SG query, repeat
Steps 1 to 4.

Step 5: Execute the query.

Step 6: Stop.

Suppose, for example, that Query 4 is specified against the schema. This
query has the fragmented SG pattern shown in Figure 11. The pattern is that
of a disconnected SG form 4.

Query 4: How many of the students from Professor Jones?

The SG query for this example is “How many students Professor Jones.” A
disconnection exists between students and professor, and there is no semantic
role either from student or from professor that can be used to compute the
missing semantic neighbor of student or professor. The applicable algorithmic
step here is Step 3. The result of Step 3.1 to Step 3.3 is shown in Figure 10.
In Step 3.4, assume that the user picks the Student — enrolled-in — Course
edge from segment 1 and the Teacher – teaches — Section edge in segment 2.
Then Step 3.5 gives the path shown in Figure 12. Listing 3 shows the output
for Query 4.
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Fig. 12. Computed final path with no initial semantic role.

Listing 3. Output for Fragmented Query 4

Now, suppose instead that Query 5-1 is specified.

Query 5-1: How many students are enrolled in section with c-id ids 410 and
sec-no A?

The SG query here is, “How many students enrolled section c-id ids 410, sec-
no A.” The disconnection in this case occurs at the semantic role “enrolled.” Since
“enrolled” is a synonym for “enrolled-in” in the application domain, algorith-
mic Step 4 is applicable. Step 4.1 adds the edge “enrolled-in—Course” to the SG
query, as shown in Figure 13. Step 4.2 then computes the rest of Figure 13. If the
user selects the Student–enrolled-in–Course–Course– is-section-of – Section(c-
id, sec-no) path, then the query finds all the students that are enrolled in the
course which has section with c-id ids 410 and section number A. The num-
ber of students that qualify is returned. Listing 4 shows an output for this
interpretation of the query.

If instead the user selects the Student – enrolled-in – Course —- Teacher – is-
taught-by — Section(c-id, sec-no) path, the query requires finding the students
that are enrolled in all the courses that can be taught by the teacher who
teaches the section having c-id ids 410 and sec-no A. The number of qualifying
students is returned. If this interpretation of the query is taken as Query 5-2,
then Listing 5 shows an output for the query.

6.3 Queries with Disconnected Segment and Missing Tail

Queries with both a missing segment and a missing tail are first processed
to bridge the missing segment. The missing tail information is then resolved
thereafter. As an example, suppose that the user specifies Query 6: How many
students are enrolled in section?
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Fig. 13. Computed paths with an initial semantic role on SG query.

Listing 4. Output for Fragmented Query 5-1

Listing 5. Output for Fragmented Query 5-2

The paths computed in this case are the same as Figure 13 without the
attributes c-id and sec-no of Section. The missing segment is filled as already
described, so that the two interpretations corresponding to the selections in
Query 5-1 and Query 5-2 are:

Query 6-1: Student–enrolled-in–Course–Course–consists-of–Section
Query 6-2: Student–enrolled-in–Course—-Teacher–teaches–Section

In trying to process these paths further, as required by Step 5 of the algorithm
for queries with fragmented segments, the missing tails are encountered. At
this stage, the problem is solely that of a missing tail and is resolved as such.
What is missing are instantiated attribute values for the source entity Section.
The problem is therefore resolved as already described by Skolemization of the
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Listing 6. Output for Query 6-1

missing tail (see example for Query 3). The paths computed and returned to
the user by the system are:

1. Student–enrolled-in–Course–Course–consists-of–Section having c-id(?),
sec-no(?), t-name(?)”

2. Student–enrolled-in–Course–Course–consists-of – Section–is-taught-by–
Teacher for Query 6-1, and

3. Student–enrolled-in–Course —- Teacher–teaches–Section having c-id(?),
sec-no(?), t-name(?)” for Query 6-2.

If the values ids 410 and A are assigned, respectively, to c-id and sec-no in 1
and 3, the resolved queries become:

Query 6-1: Student–enrolled-in–Course–Course–consists-of–Section hav-
ing c-id ids 410, sec-no A

Query 6-2: Student–enrolled-in–Course —- Teacher–teaches–Section hav-
ing c-id 410, sec-no A

Listings 6 and 7 show the outputs for these queries.

7. INEXPLICIT QUERIES

Inexplicitness and ambiguity usually characterize human expressions. The ex-
pressive power of a natural language system like CQL/NL is therefore enhanced
by an ability to handle such expressions. CQL/NL uses semantic knowledge,
contextual information, hooking of unrecognized and unhookable terms, and
query rectification to resolve inexplicit and ambiguous expressions. We view
inexplicit expressions as elliptical or anaphoric and handle them accordingly.
Inexplicit queries are discussed in the current section, and ambiguous queries
in the next.
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Listing 7. Output for Query 6-1

Fig. 14. Decomposition of elliptical query into contextual and elliptical clauses.

7.1 Elliptical Queries

An elliptical expression is a clause that is not a syntactically complete sentence.
The query, “What courses is the student named Marshall taking from Professor
Jones, and Ford from Professor Smith?” is elliptical. The verbiage suppressed
CNL counterpart is, “What courses student named Marshall taking Professor
Jones, and Ford Professor Smith?” Figure 14 shows that this expression can be
decomposed into the contextual clause, “What courses student named Marshall
taking Professor Jones?” and the elliptical clause, “. . .Ford . . .Professor Smith?”
This suggests that elliptical queries can be processed in two main steps: the
contextual clause, which is a complete sentence, and the elliptical clause, which
is not a syntactically complete sentence but whose structure depends on the
structure of the contextual clause. Therefore, the contextual clause is processed
further without difficulty as any other query. The elliptical clause can be made
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syntactically complete by assigning Skolem variables x and y to the missing
terms as follows: “ y Ford x from Professor Smith?”

In Owei [2000], elliptical clauses are resolved manually by requiring the user
to assign values to the Skolem variables x and y . In this article, the process is
automated, with the user only serving an assistive function in an interactive
approach involving the user and the system. The approach here adopts an as-
sumption that is common to most analyses of ellipses: that the completed phrase
structure of the elliptical clause is the same as that of the contextual clause.
The problem then reduces to finding the structural correspondence between the
two clauses. This requires that the break between the two clauses first be iden-
tified. Thereafter, the Skolem variables can be instantiated. A logical operator
provides the connection, and hence the breakpoint, between the two clauses.

At the SG level, the contextual clause is either an SG query with a complete,
that is, recognizable, SG form, or one with missing information that can be
resolved, as discussed. For the example query, for the structure of the elliptical
clause to correspond to that of the contextual clause at the SG query level, the
following instantiation of the Skolem variables is required: x = “taking ” and
y = “what course student named.” This results in the SG query, “What courses
student named Marshall taking Professor Jones AND what courses student
named Ford taking Professor Smith?”

The process of resolving elliptical queries can therefore be described algo-
rithmically as follows.

Step 1: Compute the path of the SG query.
Step 2: Tag the SG query segment corresponding to the portion of the path

that is a complete target to source path. Mark this query segment as
the contextual clause.

Step 3: Repeat Step 1 and Step 2 until only a subpath is left which is not a
complete target to source path. Tag the SG query corresponding to this
subpath as the elliptical clause.

Step 4: Return to the user the SG queries for the tagged elliptical clause and
the tagged contextual clause that is antecedent to the elliptical clause.
Request user to validate the two clauses and to mark the corresponding
objects in the two clauses.
Step 4.1: If the user is unable to validate the clauses, then ask the user

to manually correct them.

Step 5: Using the information on the corresponding objects, assign Skolem
variables to the missing terms in the elliptical clause.

Step 6: Set the Skolem variables in the elliptical clause to their counterparts
in the contextual clause.

Step 7: Process the resulting SG query.
Step 8: Stop.

Listing 8 shows the result for the example query (Query 7): What courses is the
student named Marshall taking from Professor Jones and Ford from Professor
Smith?
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Listing 8. Output for Query 7

Fig. 15. Decomposition of an anaphoric query.

7.2 Anaphoric Queries

Queries in which noun phrases (NPs) corefer to other noun phrases are referred
to as anaphoric. For example, the query, “Find each student that is taking
algebra. Also display the grade he or she got in it,” is an anaphoric query. In
conceptual queries, NPs refer to entities, which are therefore considered to be
first-class objects here.

Figure 15 shows the decomposition of the query into “Find the students that
are taking algebra” (Statement (a-1)), and “Also display the grade he or she
got in it” (Statement (b-1)). Statement (a-1) is processed as a query with a
missing tail, as already discussed. This statement becomes, “Find students
taking course having c-name algebra.” In Statement (b-2), “Display” is hooked
through its lexical synonym “Find.” Based on the application database context,
“grade” is also hooked. The phrase “he or she got in it” is unrecognized and
therefore needs to be resolved.

The disjunctive terms “he” and “she” are replaced with the Skolem variables
k1 and k2. Working backwards progressively, the coreferent of k1 and k2 can be
determined. Since grade is a relationship attribute and k1 and k2 are in the local
proximity of grade, the anaphora is first viewed as an intrasentential anaphora.
An attempt is therefore first made to bind the anaphora within the local context
of the sentence. First, k1 and k2 cannot refer to grade for two reasons: grade
is not a first-class object in this sentence, and taking grade as the referent
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will result in the SG tautology, “Display grade grade got it.” There is no other
possible coreferent within the sentence. Therefore the antecedent sentence is
now considered, thereby making the anaphora a discourse, or intersentential,
anaphora. The sentence, “Find students taking course having c-name algebra”
now comes into view. The only first-class objects in this sentence are “Course”
and “Student.” The system therefore returns these two objects to the user to
bind. Assume that “Student” is picked. The updated consequent sentence is
now, “Display grade Student got it.”

The anaphora “it” remains to be bound. The same process used to bind “he
or she” to student is repeated. The Skolem variable k3 now replaces “it.” The
relationship attribute grade together with the entity Student now defines a
local intrasentential domain within which the binding of the anaphora can be
initially attempted. This domain defined by the semantic relationship “Student
enrolled-in Course” contains “Student” and “Course” as the only first-class ob-
jects, and hence the only candidates for binding. The user is therefore presented
with these two objects to choose from again. Suppose that “Course” is picked this
time. The sentence now becomes, “Display grade Student got Course,” which
determines the semantically correct path.

Note that if the user had picked “Student” instead, the statement would then
read, “Display grade Student got Student.” This defines a recursive path that
is semantically inconsistent with the local intrasentential domain determined
by grade and Student. If the attempt to resolve the anaphora within the local
context of the sentence in which it occurred had failed, then, as before, the
antecedent sentence will have been considered. Listing 9 shows the result for
this query (Query 8).

8. AMBIGUOUS QUERIES

By ambiguous queries we mean queries that are syntactically correct, but se-
mantically ambiguous in that their senses can be mapped to different meanings.
Unlike elliptical and anaphoric queries, ambiguous queries can be remedied
either through the process of refinement or through the process of resolving
inexplicit queries, depending on the nature of the ambiguity.

8.1 Handling Ambiguity as an Anaphora

Supposed that the user poses Query 9: Find the teachers that each secretary
works for; also list their titles. This query is ambiguous because it can be validly
mapped to the two meanings shown in Figure 16. The source of the ambiguity
is seen to lie in the anaphora “their” of Statement (c-2), which can reference
“secretaries,” as in Statement (c-2-1) or “teachers,” as in Statement (c-2-2). Two
different meanings are thereby imparted by “their” to the query. The query is
handled in the same way as an anaphoric query to remove the ambiguity. In this
case, “their” is Skolemized to transform the subsequent query into the queries
(1) list secretaries titles and (2) list teachers titles. The resulting subsequent
queries are returned to the user to pick the intended query. Listing 10 shows
the interaction for this example.
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Listing 9. Output for Query 8

8.2 Handling Ambiguity as a Refinement Problem

Now assume that the query posed is Query 10: Find the teachers that every
secretary works for. The ambiguous meanings of this query are portrayed in
Figure 17. It is seen that the lack of clarity derives from the multiple references
of the scoping term “every.” To resolve the ambiguity, “every” is replaced with
the Skolem variable c, which is then bound in turn to “each” and “all,” that is, the
set of possible unambiguous system-synonyms for “every.” The set of synonyms
is returned to the user to select the intended meaning. After selection, the
query is reconstructed and processed using the chosen term. Listing 11 shows
the interaction.
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Fig. 16. Resolving ambiguity as an anaphora.

Listing 10. Output for Query 9

8.3 Special Case of Ambiguity: Dealing
with Queries with Subtle Semantic Differences

As the discussion above indicates, query ambiguity arises from poorly worded
statements. One other manifest effect of ambiguity is that, although two queries
may sound almost the same, they may be semantically different: that is, the
meaning of one may be different from the meaning of the other. Consider the
following two classes of queries.

AQ 1.1: How many courses is student Marshall taking from (Professor) Jones?
AQ 1.2: How many courses is student Marshall taking with (student) Smith?
AQ 1.3: How many courses is student Marshall taking with (Professor) Smith?
AQ 2.1: What courses is student Marshall taking with (student) Smith?
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Fig. 17. Resolving ambiguity through query refinement.

Listing 11. Output for Query 10

AQ 2.2: What courses is student Marshall taking with (Professor) Smith?
AQ 2.3: What courses is student Marshall taking from (Professor) Jones?

Clearly, these are valid queries, the meaning of which humans would readily
understand. This, however, may not be the case with machines. In the CNL
system, differentiating the queries in each group is difficult because of their
identical verbiage suppressed equivalents:

AQ 1.1*: How many courses student Marshall taking Professor Jones?
AQ 1.2*: How many courses student Marshall taking student Smith?
AQ 1.3*: How many courses student Marshall taking Professor Smith?
AQ 2.1*: What courses student Marshall taking student Smith?
AQ 2.2*: What courses student Marshall taking Professor Smith?
AQ 2.3*: What courses student Marshall taking Professor Jones?

The interpretation of “from” in AQ1.1 and AQ2.3 poses no problems. However,
on examining AQ1.2 and AQ2.1, it is seen that the source of the problem lies
in the interpretation of “with.” In standard language parsing techniques, the
meaning of AQ1.2 and AQ2.1 can be resolved only by resolving the meaning
of “with.” Consider AQ1.2. Is the question dealing with courses in which both
of them are enrolled? Is Smith another student enrolled in, that is, taking, the
same courses as Marshall? If that is the intent, then the query can be stated less
ambiguously as, “Find the number of courses in which both Marshall and Smith
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Listing 12. Resolving Queries with Subtle Semantic Differences

are enrolled,” or, “How many courses are Marshall and Smith taking together?”
If, however, the question deals with courses taken by Marshall that are taught
by Smith, then the query is the same as AQ 1.1, and this has already been
solved. In this case, Smith is a student playing the role of a teacher teaching
Marshall (as in graduate teaching assistant). Deciphering the intent of these
queries depends on the contextual meaning of “from” and “with.” This is a
difficult task with sentence parsing approaches.

In the SG approach, this difficulty is addressed with the use of the semantic
roles of entities: if student Smith is teaching the classes, then Smith is playing
the role of a teacher, and the query is not well formulated. Instead of “student
Smith,” the appropriate phrase to use is “teacher Smith.” As before, this reduces
to AQ 1.1, which is already solved. Conversely, if, as in AQ 1.3 and AQ 2.2, Smith
is a teacher enrolled in the same classes as Marshall, then Smith is playing
the role of a student. The appropriate phrase in this case is “student Smith.”
AQ1.3 and AQ 2.2, respectively, then reduce to AQ 1.2 and AQ 2.1, and their
corresponding suppressed forms to AQ 1.2* and AQ 2.1*. In the CNL system
the underlying query paths constructed for these two queries lead from the
student entity back to the student entity; that is, it has the form Student -→
Student. This is seen by the CNL system, and thus by CQL, as a recursion on
the student entity. The result of processing these two queries in CNL is given
in Listing 12.

9. DISCUSSION AND CONCLUSION

According to the proof-theoretic view of databases, a DB is seen as a certain
logical theory, that is, as a set of axioms. As discussed in Reiter [1984], a DB is
then the collection of all true statements that can be deduced from the axioms
using those axioms in all possible combinations. It is therefore the set of theo-
rems that can be proved from those axioms. A query on a DB can then be seen as
a particular combination of axioms on the DB. It follows, then, that evaluating a
query reduces to proving a theorem [Date 2000]. It also follows that a query that
cannot be answered by a set of DB axioms is equivalent to a theorem that cannot
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be proved. Stated differently, such a query represents a statement or a set of
statements that cannot be deduced to be true from the existing set of DB axioms.
The inability to deduce the truth about a statement is a phenomenon arising
from imperfect information with respect to the universe of discourse (UoD).

The issue of imperfect information is extensively, but not fully, researched in
the relational DB context. For example, in dealing with missing information,
Date [2000] extends the types of nulls are include “does not apply,” “does not
exist,” and “undefined,” and then argues that theoretically, the types of nulls are
infinite. It seems that an (n+ 2)-valued logic is needed to deal with n types of
nulls. Where n is greater than 1, this logic approach to null resolution is known
to entail too many difficulties [Date 2000]. Researchers therefore question the
wisdom of allowing for more than two types of nulls. Another difficulty in dealing
with multiple types of nulls is in the interpretation: what does a result with
a combination of different types of nulls, or even the same type of null, mean?
These questions are yet to be resolved.

Even less research has been done in the area of imperfect information in
conceptual, that is, semantic, data models. To address this issue, the ques-
tion, “What is an incomplete DB?” needs to be examined in the context of DBs
based on semantic data models. On the conceptual level, it is a set of possible
(complete) DBs, one of which corresponds to the true state of the UoD. Stated
formally, what is the answer to the query qR applied to an imperfect seman-
tic DB? If D is a semantic DB, then {qr : r ∈ D} is the set representation of
the knowledge of the answer to q. It is the possible answer qD, which may be
expressed as qD = {qr : r ∈ D}. This gives a set of possible answers, each com-
puted from and corresponding to one possible state of the real world. Therefore,
the answer is another imperfect DB. The inherent ambiguity in qD cannot be
resolved without additional information. Indeed, it is this need for additional
information that renders the DB imperfect.

In the query processing approach underlying CQL/NL [Owei 2000] and CQL
[Owei and Navathe 2001b, a], every query is equivalent to a subgraph induced
from the conceptual schema against which the query is specified. Imperfection
in these systems can, therefore, be defined as follows. If due to some flaw in
the query formulation, the system is unable to navigate the induced query-
graph from source to target or, where this is possible, it is unable to extract
semantically correct data, the query formulation is said to be imperfect.

It may be argued that it is meaningless to talk of imperfect information at
the conceptual schema level, that it cannot be ascertained that there is im-
perfect information at this level. Therefore it does not have the same signifi-
cance or meaning that it has at the logical and implementation levels. Consider
the following. To assert that there is imperfect information at a level, it must
be possible to verify the assertion against another level that is exogenous to
the level with the purported imperfect information. At the logical level it is the
relational schema. To say that there is imperfect information on a conceptual
schema is to say that it is known that this information exists, and that this infor-
mation is known (this is not true for the logical level), since the conceptual level
represents the UoD. But if this is already known, then no imperfection exists.
Therefore, at the exact moment when this is known, the “imperfect” information
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is no longer imperfect. In a concept-based query language like CQL/NL, the con-
cepts in the modeled real-world are known, or assumed to be known (since it
uses this real-world concept captured in the conceptual data model).

An area in which the concept-based approach can benefit is in the incorpo-
ration of intelligent tools and techniques into query systems. In intelligent
query answering the intent of a query is analyzed to provide generalized,
neighborhood, or associated information relevant to the query. An approach
adopted in the more recent studies is to exploit the rich semantic information of
knowledge-rich DBs to determine the intent of queries. Query intent analysis
can be performed on query statements that are not well formulated or are dif-
ficult to interpret, in order to clarify the intent of the user. Once the intent is
determined, the query can be restated either automatically or cooperatively,
with the help of the user, in a form that is easily interpreted.

Intelligent approaches can also be used to provide computer-aided query
formulation systems (CAQFSs) to facilitate user formulation of concept-based
queries. Support for computer-aided query formulation is the more common
application of intelligent query-answering tools in natural language query sys-
tems. In those systems where it is provided, the approach is usually assistive,
with the user interacting with the system to incrementally formulate the query.
This usually takes the form of the user responding to prompts and cues from
the system.

These advances in the area of intelligent tools and techniques can therefore
be applied to facilitate the formulation of abbreviated concept-based queries. We
have attempted to apply this to resolving queries with imperfect information in
this article. To the best of our knowledge, no other concept-based query language
provides this extended level of assistance for query formulation.

Finally, to test the suitability of conceptual approaches to query formula-
tion, in Owei et al. [2002] a statistical experiment was conducted to probe end-
users’ reaction to using CQL, vis-à-vis SQL, as a database query language.
The comparison focused on the effect of the two different database query lan-
guage interfaces on user performance (as measured by query formulation time,
query correctness, and users’ perception) in a query-writing task with vary-
ing difficulty levels. Statistically significant differences between the two query
languages were found.

The results indicate that end-users perform better with CQL and have a
better perception of it than of SQL. There were significantly more accurate
formulations with CQL than with SQL. Also, the groups with CQL took sig-
nificantly less time than the groups with SQL. The CQL subjects perceived
their query language to be easier to use than their SQL counterparts felt about
SQL; they also felt more satisfied with CQL than the SQL subjects were with
SQL. These differences were more pronounced when query-difficulty level was
considered. The statistical significance of the differences increased with the
complexity of the query. The scores indicate that users are more likely to per-
form better with CQL than with SQL, and that they are more likely to harbor
a more favorable perception of it than of SQL. The abbreviated concept-based
approach in CQL, therefore, clearly offers an alternative approach to end-users
for querying databases.
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In summary, this article examined the notion of imperfect information as it
applies to concept-based query languages. Although imperfect information is
extensively studied in the context of relational database systems and to a far
less degree in object-oriented database systems, it is relatively almost entirely
uninvestigated in concept-based query language systems. Since concept-based
query languages are beginning to find their way into the commercial arena (e.g.,
Conquer-II [Bloesch and Halpin 1997] and QBD* [Angelaccio et al. 1990]), and
since imperfect information is an inevitability in “real life” information sys-
tems, it is therefore imperative that research be conducted on handling im-
perfection in concept-based query languages. That is what we have done here.
However, we consider the work reported in this article only as an initial effort.
We limited this article to dealing with the more common types of imperfection.
Uncertainty and fuzziness in concept-based queries were not considered. In the
future, therefore, we plan to study these issues. We would also like to study how
to deal with concept-based queries that contain two or more types of imperfec-
tion. Lastly, we would also like to study the possibility of using the rich semantic
information contained in conceptual database schemas to repair imperfect an-
swers retrieved by imperfect queries or imperfections such as gaps or nulls in
the extensions of databases. Finally, in the future, we would like to extend the
study to addressing imperfect information in abbreviated concept-based query
languages, such as CQL.
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