
Query, Analysis, and Visualization of
Hierarchically Structured Data using Polaris

Chris Stolte
Gates Building, Room 354 3A

Stanford, CA 94305
cstolte@graphics.stanford.edu

Diane Tang
Gates Building, Room 354 3A

Stanford, CA 94305
dtang @ g raphics.stanford.edu

Pat Hanrahan
Gates Building, Room 370 3B

Stanford, CA 94305
hanrahan@graphics.stanford.edu

ABSTRACT
In the last several years, large OLAP databases have become
common in a variety of applications such as corporate data
warehouses and scientific computing. To support interac-
tive analysis, many of these databases are augmented with
hierarchical structures tha t provide meaningful levels of ab-
straction tha t can be leveraged by bo th the computer and
analyst. This hierarchical s tructure generates many chal-
lenges and opportunities in the design of systems for the
query~ analysis, and visualization of these databases.

In this paper, we present an interactive visual exploration
tool tha t facilitates exploratory analysis of da ta warehouses
with rich hierarchical structure, such as might be stored in
da ta cubes. We base this tool on Polaris, a system for rapidly
constructing table-based graphical displays of multidimen-
sional databases. Polaris builds visualizations using an alge-
braic formalism derived from the interface and interpreted
as a set of queries to a database. We extend the user inter-
face, algebraic formalism, and generation of data queries in
Polaris to expose and take advantage of hierarchical struc-
ture. In the resulting system, analysts can navigate through
the hierarchical projections of a database, rapidly and incre-
mentally generating visualizations for each projection.

1. INTRODUCTION
In the last several years, large OLAP databases have be-

come common in a variety of applications. Corporations
are creating large da ta warehouses of historical da ta on key
aspects of their operations. International research projects
such as the Human Genome Project [11] and the Sloan Dig-
ital Sky Survey [19] are generating massive scientific data-
bases.

A major challenge with these da ta warehouses is to extract
meaning from the data they contain: to discover structure,
find patterns, and derive causal relationships. The sheer size
of these data sets complicates this task: Interactive calcula-
tions tha t require visiting each record are not plausible, nor
is it feasible for an analyst to reason about or view the en-
tire da ta set at its finest level of detail. Imposing meaningful
hierarchical structure on the data warehouse provides levels
of abstraction tha t can be leveraged by bo th the computer
and the analyst.

These hierarchies can come from several different sources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD '02 Edmonton, Alberta, Canada
Copyright 2002 ACM 1-58113-567-X/02/0007 ...$5.00.

Some hierarchies are known a p r i o r i and provide semantic
meaning for the data. Examples of these hierarchies are
Time (day, month, quarter, year) or Location (city, state,
country). However, hierarchies can also be automatically
derived via da ta mining algorithms tha t classify the data,
such as decision trees or clustering techniques. Par t of the
analysis task when dealing with automatically generated hi-
erarchies is in understanding and t rust ing the results [23].

Visualization is a powerful tool for exploring these large
data warehouses, both by itself and coupled with da ta min-
ing algorithms. However, the task of effectively visualizing
large databases imposes significant demands on the human-
computer interface to the visualization system. The ex-
ploratory process is one of hypothesis, experiment, and dis-
covery. The path of exploration is unpredictable, and ana-
lysts need to be able to easily change bo th the da ta being
displayed and its visual representation. Furthermore, the
analyst must be able to first reason about the da ta at a high
level of abstraction, and then rapidly drill down to explore
data of interest at a greater level of detail. Thus, the in-
terface must expose the underlying hierarchical s tructure of
the data and support rapid refinement of the visualization.

This paper presents an interactive visual exploration tool
tha t facilitate:s exploratory analysis of da ta warehouses with
rich hierarchical structure, such as would be stored in data
cubes. We base this tool on Polaris [21], a system for the ex-
ploration of multidimensional relational databases. Polaris
is built upon an algebraic formalism for constructing table-
based visualizations. The state of the user interface is a
visual specification. This specification is interpreted accord-
ing to the formalism to determine both the series of queries
necessary to retrieve the requested data, as well as the maw
ping and layout of the resulting tuples into graphical marks.
Because every intermediate specification is valid and can be
interpreted to create a visualization, analysts can rapidly
and incrementally construct complex queries, receiving vi-
sual feedback as they assemble and alter the specifications.

The originM version of Polaris did not directly support
or expose hierarchically structured dimensions, instead pre-
senting each level of the hierarchy as a separate, independent
dimension. In this paper, we extend the algebraic formal-
ism (Section 4), user interface (Section 5), and generation of
da ta queries {'.Section 6) to take advantage of hierarchically
structured data cubes. We then illustrate the ease and effec-
tiveness of using Polaris to explore hierarchically s tructured
data via three case studies (Section 7).

2. RELATED WORK
We consider two areas of related work: the visual explo-

ration of databases and the use of da ta visualization in con-
junction with data mining algorithms.

112

~ l ~" rOOt

: Qtrl] ~ ~"~r3~ [~Q~4-1 ~ Q ~ i ~ Q ~ i ~ 'FQ-~4 . level

[~an [Feb t Ma~i[Xpr [Mayi[Zunl ,Jul [IAugi[scplloct I Nov [~ci [,J= IFeb [M~]lapr IMay [dun.ildul llAugl[Sela, ilOct iNoviiDeel i I node

Figure 1: A hierarchical Time dimension. A hierarchical dimension is structured as a tree with multiple levels. In this case, there are
four levels: AlL Year, Quarter, and Month. Each level corresponds to a different semantic level of detail The parent-child relationships
in the tree are the basis for aggregation within the dimension.

2.1 Visual Exploration of Databases
One area of related work is the field of visual query tools.

Projects such as VQE [5], Visage [17], DEVise [15], and
Tioga-2 [27] have focused on building visualization tools tha t
directly support interactive database exploration through vi-
sual queries. Users can construct queries and visualizations
directly through their interactions with the interface. These
systems have flexible mechanisms for mapping query results
to graphs and support mapping database tuples to retinal
properties of the marks in the graphs. Of these systems, only
Tioga-2 provides built-in support for interactively navigat-
ing through and exploring data at different levels of detail.
However, the underlying hierarchical structure must be cre-
ated by the analyst during the visualization process; Polaris
leverages the hierarchical s tructure tha t is already encoded
in the data warehouse.

XmdvTool [25], Spotfire [20], and Xgobi [4] provide the
analyst with a set of predefined visualizations such as scat-
terplots and parallel coordinates. These systems are aug-
mented with extensive interaction techniques (e.g., brushing
and zooming) tha t can be used to refine the queries. In con-
trast, we provide the analyst with a set of building blocks
tha t can be used to interactively construct and refine a wide
range of displays to suit the analysis process. Of these sys-
tems, only XmdvTool supports the exploration of hierarchi-
cally structured data. XmdvTool has been augmented with
structure-based brushes [7] tha t allow the user to control the
display's global level of detail (based on a hierarchical clus-
tering of the data) and to brush records based on their prox-
imity within the hierarchical structure. Again, this approach
limits the user, in this case to viewing a single hierarchical
structuring of the data and a single ordering of tha t hier-
archy to make proximity meaningful. Polaris supports both
the simultaneous exploration of multiple hierarchies (derived
from semantic meaning or algorithmic analysis) and the abil-
ity to reorder the hierarchy as needed.

Another relevant visualization system, VisDB [13], focuses
on displaying as many tuples as possible to provide feedback
as users refine their queries. This system even displays tuples
tha t do not satisfy the query, indicating their "distance"
from the query criteria using spatial encodings and color.
This approach helps the user avoid missing important data
points tha t fall just outside of the selected query parameters.
In contrast, Polaris, by taking advantage of the hierarchical
structure of the warehouse, provides extefisive ability to drill
down and roll up data, allowing the analyst to get a complete
overview of the data set before focusing on detailed portions
of the database.

2.2 Visualization and Data Mining
Many research and commercial systems use visualization

in conjunction with automated da ta mining algorithms. One

common application of visualization together with data min-
ing is in helping analysts understand models generated by
the data mining process. For example, several researchers
have developed techniques specifically for displaying decision
trees, Bayesian classifiers, and decision table classifiers [1],
and these visualization techniques have been incorporated
into products such as SGI's MineSet [3].

Other approaches to coupling visualization and data min-
ing have traditionally been employed within focused domains.
One approach is to use visualization to gain an initial under-
standing of a warehouse and then apply algorithmic analysis
to the identified areas of interest [14][23]. The other major
approach is to use data mining to compress the size and d i -
mensionality of the da ta and then use focused visualization
tools to explore the results [10][26].

Unlike these examples, Polaris is not focused on a partic-
ular algorithm, a single phase of the discovery process, or
a narrow application domain. Instead, Polaris is a general
tool tha t can be used to gain an initial understanding of a
warehouse, to visually mine the warehouse, to understand al-
gorithm output, and to interactively explore a mining model.
The ability to encode a large number of dimensions in a table
layout in Polaris helps an analyst gain an initial understand-
ing of how different dimensions relate as a precursor to auto-
mated discovery. Similarly, Polaris can be used directly as a
visual mining tool. Finally, by integrating the decision trees
and classification networks into the da ta warehouse as di-
mension hierarchies, Polaris can be used by analysts to gain
an understanding of how these models classify the data.

3. BACKGROUND
Polaris [21] was originally designed to support the inter-

active exploration of multidimensional relational data ware-
houses rather than da ta sets with rich hierarchical structure.
In this section, we explain the difference between the two
types of data sources as well as give a brief overview of Po-
laris before discussing our extensions to Polaris in the rest
of the paper.

3.1 Relational Databases vs. Data Cubes
Relational databases organize data into relations, where

each row in a relation corresponds to a basic entity or fact
and each column represents a property of tha t entity [24].
For example, a relation may represent transactions in a bank,
where each row corresponds to a single transaction, and each
transact ion has multiple properties, such as the transaction
amount, the account balance, the bank branch, and the cus-
tomer.

We refer to a row in a relation as a tuple or record, and a
column in the relation as a field. A single relational database
will contain many heterogeneous but interrelated relations.

The fields within a relation can be parti t ioned into two

113

Orill Down/Roii Up:
~[Idown n~.m~ on each dimensio~ l e v e !
'~ Ovi~.le the ~tbih~y tO qul~X{}' ~,ll'i|i dO~rI
or rotl up the data.

~)ata Cube Schema: ~ .

;TiI?~SI.ir(!~ fff.llTi t[l(~ ~:~lelT~ [0 ~ l e ~ v ~ s
[e, define thai, v i . ~ a l ~pecificaticn,

I &":'~i t h

L e ' ~ e l of Detail Shelf: a
The di,T;e~sioll I~.'VelS ~laC~ I~ere de?.ermine
(along w!th the 3.x~ ~heives) the revel of
detail in e~,Ch i ~ r ~ e ,

Mark Pul ldown:I
Relations In each pane are mapped to
marks of the selected type.

Retinal Property Shelves: •
The fields placed here determine how
data is encoded In the retinal properties
of the marks.

Lce~ends enable the user to see and modify
the mappings from data to retlnel
propactles.

iliiiiiii!il i li ii ill ii/! il ?il i

Axis Shelves: Context Menu:
The fietds placed here determine the The context n'~nu provides access to the data
structure of the table and tee types of transformation and interaction capabilities of Polaris
~raphs in each tabla pane. as wel.I as dimension lever qualification,

o o

÷

÷

o

%* I D *~ O 0 0 ^ 0

0 ~ o

i ~ ~i ~ ~ ~ ~i ~ ~i~! ~{i~;{!ii~!F~i ~i i i~ii!ii~ii~iiii!ii~i~!i!~iiii~ ~ i ~ ~iii~iSi~i~i~i

Figure 2: The Polaris user interface with enhancements (shown in blue) to expose and support hierarchical dimensions. Analysts
construct table-based displays of relational and cube data by dragging dimension levels and measures from the data cube schema
onto shelves throughout the display. A given configuration of levels and measure.,; on shelves is called a visual specification. The
specification unambiguously defines the analysis and visualization operations to be performed by the system to generate the display.

types: dimensions and measures. Dimensions and measures
are similar to independent and dependent variables in tra-
ditional analysis. For example, the bank branch and the
customer would be dimensions, while the account balance
would be a measure.

In many data warehouses, these multidimensional data-
bases are structured as n-dimensional data cubes. Each di-
mension in the data cube corresponds to one dimension in
the relational schema. Each cell in the data cube contains
all the measures in the relational schema corresponding to a
unique combination of values for each dimension.

The dimensions within a data cube are often augmented
with a hierarchical structure. This hierarchical structure
may be derived from the semantic levels of detail within the
dimension or generated from classification algorithms. Us-
ing these hierarchies, the analyst can explore and analyze the
data cube at multiple meaningful levels of aggregation cal-
culated from a base fact table (i.e., a relation in the database
with the raw data). Each cell in the data cube now corre-
sponds to the measures of the base fact table aggregated to
the proper level of detail.

The aggregation levels are determined from the hierarchi-
cal dimensions; each dimension is structured as a tree with
multiple levels. Each level corresponds to a different seman-
tic level of detail for that dimension. Within each level of the
tree there are many nodes, with each node corresponding to
a value within the domain of that level of detail of that di-
mension. The tree forms a set of parent-child relationships
between the domain values at each level of detail. These
relationships are the basis for aggregation, drill down, and
roll up operations within the dimension hierarchy. Figure 1

illustrates the hierarchy for a Time dimension.
Simple hierarchies, like the one shown in Figure 1, are

commonly modeled using a star schema. The entire dimen-
sion hierarchy is represented by a single dimension table (also
stored as a relation) joined to the base fact table. In this type
of hierarchy, there is only one path of aggregation. However,
there are more complex dimension hierarchies where the ag-
gregation path can branch. For example, a Time dimen-
sion might aggregate from Day to both Week and Month.
These complex hierarchies are typically represented using a
snowflake schema that uses multiple relations to represent
the diverging hierarchies.

When referring to values within a dimension hierarchy, we
will use a dotted notation to specify a specific path from the
root level (All) of the hierarchy down to the specified value.
Specifically, to refer to a value on level m of a hierarchy,
we first optionally list the dimension name, then zero or
more of the (m - 1) intermediate ancestor values, and then
finally the value on the m th level, all separated by periods.
For example, the Jan node on the Month level in the Time
hierarchy that corresponds to January, 1998, can be referred
to as 1998.Qtrl.Jan. When this notation is used, we will
call the reference a qualified value. When a value is simply
described by :its node value (without any path to the root
node) we call the reference an unqualified value.

The hierarchical data model we have outlined in this sec-
tion is only one of many possible models. Other models,
such as that proposed by Jagadish et al. [12], include advan-
tages such as structural and schematic heterogeneity. We
have chosen to focus on the model commonly found in com-
mercial data warehouse and data cube products.

114

Ordinal fields/Dimension levels: Quarter, Months, Product Quantitative fields/Measures: Profit, Sales

O - Quarter - {Qtrl, Qtr2, Qtr3, Qtr4} - Qtrl + Qtr2 + Qtr3 + Qtr4:

iii iiiiiiiii ii!i:i:i :iiiii iiii!iiiiii:ii:i:!! I:ii:':TiiiiiiiT i i :: ::i
0 ÷ 0 = (Jarter + Product = [Qtr l , Qtr2, Qtr3, Qtr4, Coffee, Espresso, Herbal Tea, Teal:

O x O - I Jarter× Product - {(Qtrl ,Coffee}, (Qtrl ,Espresso), (Qtrl,Herbal Teal, (Qtr% "lea}, {Qtr2, Coffee) ... (Qtr4, "leal}:

O / O - C uarter / Month - {(Qtrl,Jan), (Qtrl,Feb), (Qtrl,Mar), (Qtr2, Apr), (Qtr2, May) ... (Qtr4, Dec)]:

3an~'7-F Feb i ' I - Jun / JUl. Aug • ~ i .~ep: / N . ~ . ~ T D e c .] missing
I

O. 0 - Quarter. Month = {(Qtrl,Jan), (Qtrl,Feb), (Qtrl,Nkar}, (Qtr2, Apr), {Qtr2, Niay} ... (Qtr4, Dec)}: T ___]

i ~ - - :-~ ,Qtr~ : : , : :~1:!~':: ?.: at~z . i :] ,::i?::: i : - : : ~ : : " ---~
.......... F";"":":"~ 7" ~"~ :-~" ~ " T " ~' ' :~ ~'?~:ii :~' ""~~::~G '~ ' !~"~";:~ ~ ~'~" '~; ~ ~!" :~ " ~ ' ";:'" '~:~'~'~ ~:' '~ ~"'~"";":';';";~r~"~"~':~'"~

Q - Profit - {Profitl: . t
/

The set entry {Qtr4,Nov)
Q * Q - Profit + Sales = lproflt, 5alesl: ~orresponds to this column

' Profit (In Vhousa~s~ I :, -.~i~ : ~'~,'"T ~:~::~':']

~Lt~t~u..t̀ ~LLt~t~d.Lt~Ltj̀ ~t~.J~J.~t~t~-u..tj.d~J .̀t.~A`~A-t.t.L~9"~iu-t.L~..t~.~"tJ-L~ |̀~* ~ 1 ~ £ j - t j ; i 2 t . ~ t 1 - ~ a i t & . t ± L t ~ t ~ L ~ . J ~ . ~ - t a . . ~ t J . - ~ - ~ - ~ x J ~ t ~ £ b - ~ . 4 ~ d . ` ~ . ~ t . t . ~ A - ~ j

O x Q- Quarte~ x Woflt- [(Qtrl,Proflt), (Qtr2, Profit), (Qtr], Profit), (Qtr4, ~oflt)]:

Ordinal fields partition an '~ Quantitative fields are spatially encoded along the axis of the column (or low)
axis into columns (or rows)

Figure 3: Example of the set interpretations and table structures resulting from simple applications of the table algebra operators.
Ordinal fields (e.g., dimension levels) partition the table into columns (or rows) and quantitative fields (e.g., measures) are spatially
encoded as axes within the colnmn.~. Note the difference between the application of the nest and dot operator to the same operands
when the fact table does not contain data for October.

3.2 Polaris Overview
Before explaining the extensions to Polaris needed for sup-

por t ing interactive visual explorat ion of hierarchically struc-
tured da t a sets, we first give a brief overview of the original
Polaris system.

The goal of Polaris was to provide an interface for rapidly
and incremental ly generat ing table-based displays (note tha t
from here on out, unless otherwise specified as a fact table or
dimension table, the t e rm table refers to a table-based visu-
alization and not a relation in a database) . Users const ruct
these table-based visualizations via a drag-and-drop inter-
face, dragging field names from the Schema box to various
blue shelves th roughout the interface, as shown in Figure 2.
Any configuration of field names on shelves is valid.

The Polaris interface is simple and expressive because it
is buil t upon a formalism for precisely describing graphi-
cal table-based visualizations. The configuration of fields on
shelves forms a visual specification. Each visual specification
is an expression of the Polaris formalism tha t can be inter-
p re ted to de termine the exact analysis, query, and drawing
operat ions to be performed by the system:

The specification consists of two main port ions. The first
por t ion, built on top of an algebra, describes the s t ruc ture of
the table-based visualization (i.e., how the table is divided
into panes). We can think of a table as having three axes:
the x-axis divides the table into columns, the y-axis divides
the table into rows, and the z-axis layers x-y tables t ha t are
composi ted on top of one another . Each intersection of an

x-, y-, and z-axis results in a table pane. Thus, the first
por t ion of the specification consists of table algebra expres-
sions, with one expression per axis. Each pane contains a
set of records (obtained by querying the da t a cube) t ha t are
visually encoded as a set of marks to create a graphic.

While the first por t ion of the specification determines the
"outer table layout," the remaining por t ion de termines the
layout wi thin a pane, such as how the d a t a within a pane
is t ransformed for analysis and how it is encoded visually.
Specifically, it describes:

1. The sort ing and filtering of fields.
2. The mapp ing of d a t a sources to layers.
3. The grouping of da t a within a pane and the compu-

ta t ion of s tat is t ical propert ies , aggregates, and other
derived fields.

4. The type of graphic displayed in each pane of the table.
Each graphic consists of a set of marks (e.g., circles,
bars, glyphs, etc.) wi th one mark per record in tha t
pane.

5. The mapp ing of d a t a fields to retinal proper t ies of the
marks in the graphics (for example, mapp ing Profit to
the size of a mark or Quarter to t he color).

We only need to ex tend the table algebra and the specifica-
t ion of the filtering and sorting. The rest of the formalism,
including how we de termine the type of graphic and the vi-
sual encodings, has not changed and so we do not discuss
t hem further here. See StoRe et al. [21] for a detai led dis-
cussion.

115

Thus, in order to extend Polaris to support hierarchical
dimensions, we need to modify:

• the formalism and table algebra (Section 4),
• the user interface (Section 5),
• and the interpretation of the visual specification as a

set of queries in a multidimensional query language
(Section 6).

4. EXTENDING THE FORMALISM
In order to support bo th relational databases and hierar-

chically structured data cubes, we need to extend two as-
pects of the Polaris formalism: the specification of the table
configurations, and the filtering and sorting of fields. Before
we discuss these two extensions, however, we first give a brief
review of the table algebra.

4.1 Table Algebra Review
A key component of this formalism is the table algebra,

which is used to specify the table configurations. When an-
alysts place fields on the axis shelves (shown in Figure 2)
they are implicitly creating expressions in this algebra. A
complete table configuration consists of three separate ex-
pressions. Two of the expressions define the configuration
of the table 's x- and y-axis, part i t ioning the table into rows
and columns. The third expression defines the z-axis of the
table, which parti t ions the display into layers.

Each expression is composed of operands connected by
operators. Each operand is evaluated to a set form, and
the operators define how to combine two sets. Thus, each
expression can be interpreted as a single set (the normalized
set form), where each element in the set corresponds to a
single row, column, or layer.

To be more specific, each operand of the table algebra
is the name of a field. There are two types of operands:
ordinal and quantitative. Whether an operand is ordinal or
quantitat ive depends on the type of the corresponding field
in the database.

The set interpretation of an ordinal operand consists of
the members of the ordered domain of the field. For ex-
ample, the set interpretation of the Month operand would
be {Jan, Feb, . . . , Dec}. The set interpretat ion of a quan-
t i tative operand is a single-element set containing the field
name. For example, the set interpretat ion of the Profit oper-
and would be {Profit}.

The assignment of sets to the different types of operands
reflects the difference in how the two types of fields are en-
coded into the structure of the table. Ordinal fields parti t ion
the table into rows and columns, whereas quanti tat ive fields
are spatially encoded as axes within the table panes. Exam-
ples of the set interpretations and resulting table structures
for both ordinal and quanti tat ive operands are shown in Fig-
ure 3.

As stated above, a valid expression in the algebra is an
ordered sequence of one or more operands with operators
between each pair of adjacent operands. The operators in
this algebra, in order of precedence, are cross (x) , nest (/) ,
and concatenation (+); parentheses can be used to alter the
precedence. Because each operand is interpreted as an or-
dered set, the precise semantics of each operator are defined
in terms of how they combine two sets (one each from the
left and right operands) into a single set. Some examples
are shown in Figure 3.

Thus, every expression in the algebra can be reduced to a
single set, with each entry in the set being an ordered con-
catenation of zero or more ordinal values followed by zero or
more quanti tat ive field names. For example, the normalized

set form of the expression Month x Profit is { (Jan, Profit),
(Feb, Profit) , (Dec, Profit) }. The normalized set form
of an expression determines one axis of the table: the table
axis is parti t ioned into columns (or rows or layers) so tha t
there is a one-to-one correspondence between columns and
entries in the normalized set.

4.2 Redefining the Algebra Operands
In order to fully support and expose the hierarchical struc-

ture in data cube dimensions, we must redefine the algebra so
tha t the operands are measures and dimension levels rather
than independent database fields. In this redefinition, mea-
sure operands are trivially t reated the same as quanti tat ive
fields: we assign to each measure operand a single element
set containing the measure name. Like quanti tat ive fields in
the original algebra, measures will be spatially encoded as
axes within the panes.

Similarly, we would like to t reat dimension levels in the
same way we t reated ordinal fields and assign to each the
ordered domain of the dimension level. The resulting sets
would then parti t ion the table into rows, columns, and lay-
ers. There are, however, complications. The domain of a
dimension level is not a single ordered list. Instead, it is
composed of the node values at a particular level in the di-
mension hierarchy, and each node value is uniquely defined
by its pa th to the root of the hierarchy. To illustrate the
resulting complications, we consider the Time hierarchy il-
lustrated in Figure 1.

First, consider the Month level of the hierarchy. One pos-
sible set interpretation of this symbol would be to list each
node value, including its pa th to the root for uniqueness,
ordered by a depth-first traversal of the dimension hierar-
chy; e.g., {1998.Qtrl.Jan, . . . , 1999.Qtr4.Dec}. Although
this approach provides a unique set interpretat ion for each
dimension level, it limits the expressiveness of the algebra.
Any table constructed to include Month must also include
Year; it is not possible to create displays tha t summarize
monthly values across years, a useful view tha t we would like
to support. Interestingly, however, summarizing monthly
values across years is not a s tandard projection of a data
cube, as it requires aggregating across a hierarchical level.
We discuss how we compute this type of aggregation in Sec-
t ion 6.

A second approach would be to list only the node values,
ignoring the path to the root of the hierarchy and excluding
repeated values. Again, we order the node values by a depth-
first traversal of the dimension hierarchy. For Month, this
approach would yield {Jan, Feb, . . . , Nov, Dec}. Clearly,
using this set interpretat ion we can generate displays tha t
summarize monthly values across years. Furthermore, we
can generate displays tha t drill down into a hierarchy by
using our nest (/) operator, e.g., Year / Month.

The use of the nest for drilling down into a hierarchy,
however, would be flawed. The nest operator is unaware of
the defined hierarchical relationship between the dimension
levels but instead works by deriving a relationship based
on the tuples in the fact table. Not only is this approach
inefficient, as fact tables are often quite large, but it can also
yield incorrect results. For example, consider the situation
where no data was logged for October. Application of the
nest operator would result in an incorrectly derived Time
hierarchy tha t did not include October as a child of Qtr4 or
either year (see Figure 3).

Our solution is to introduce another operator, the dot (.)
operator, that; is similar to the nest operator but "hierarchy-
aware." We review the definition of nest and then define dot.
If we define FT to be the fact table being analyzed, r to be a

116

Qtmrter =
{ (Time.Qtrl), (Time.Qtr2), (Time.Qtr3), (Time.Qtr4) }

y: Producttype +
Market =
{ (Products.Coffee),
(Products.Espresso
(Products.Herbal Tq
(Products.Tea},
(Market.Central},
(Market. East},
(Market. South},
(Market.West) }

Is are from
ction of the
the two
e and Products.

ts are from
ctlon of the
the two

le and Market.

Figure 4: Each pane in a Polaris visualization corresponds to a slice of a projection of a data cube. The projection in each pane
is determined by the contents of the "Level of Detail" shelf and by the normalized set form of the table expressions. The table is
partitioned into rows, colpmng, and layers corresponding to the entries in these sets. The underlying data cube must be projected
to include only the dimensions that occur in these entries. This figure shows a simple text-based table that requires two separate
projections of the data cube because of the concatenation in the y-axis expression.

record, and A (r) to be the value of the field A for the record
r, then the definition of nest, as presented in [21], is:

A / B = {(a,b) [3r E F T st A(r) = a & B(r) = b}

The dot operator is defined similarly. If we define D T to
be the relational dimension table defining the hierarchy tha t
contains the levels A and B, and A precedes B in the schema
of DT, then:

A.B = {(a.b) [3r E D T st a(r) = a & B(r) = b}

Note tha t whereas nest produces a set of two-valued tu-
ples, dot produces a set of single-valued tuples, each contain-
ing a qualified value. If the two operands are not levels of
the same dimension hierarchy (or set interpretations of oper-
ations on levels of the same hierarchy), or A does not precede
B in the schema of D T (e.g., A must be an ancestor level
in the tree defined by DT), then the dot operator evaluates
to the empty set. With this definition, the two expressions
Month and Year.Month are not equivalent: Month is inter-
preted as {Jan, Feb, . . . , Dec} whereas Year.Month would be
interpreted as {1998.Jan, 1998.Feb, . . . , 1999.Dec}. With a
fully populated fact table, Year.Month is equivalent to Year
/ Month.

Given these set interpretations for dimension and measure
operands, we can apply the set semantics for each operator to
reduce expressions in this new algebra to their normalized set
form, with each entry in the normalized set being an ordered
concatenation of zero or more domain values followed by zero
or more measure names. As before, the normalized set form
determines one axis of the table.

4.3 Filtering and Sorting within the Algebra
In our original formalism, a table configuration was speci-

fied by three expressions in the table algebra, and then filter-
ing and sorting was specified separately by listing the sorted
and filtered domain for each database field tha t was to be fil-
tered or sorted. When the set interpretation was generated
for field operands in the algebra, these specified domains
would be used. It is possible, however, to generate a more
succinct and general formalism if we incorporate the filtering
and sorting directly into the table algebra.

In our revised formalism, if a dimension or measure is to
be filtered (or sorted), then the filtered and sorted domain
is listed directly after the instance of the level or measure
operand in the expression, in effect directly specifying a set
interpretation for the operand. For example, if we wished to

filter the expression Month + Product Type to include only
the first three months of the year, sorted in reverse order,
we would specify the filtered domain by including it in the
expression as follows: Month{Mar, Feb, Jan} -t- Product-
Type. The advantage provided by this revision of the table
algebra is the ability to specify separate filters and orderings
for different instances of the same operand in an expression.
Similarly, we can filter a measure by specifying a range of
values, e.g., Profit{O, 500}.

We also need to allow the use of qualified values in the
specification of filtering or sorting of dimension levels. As
we discussed in Section 3.1, a value in a dimension hierarchy
can either be described by simply stat ing the value in the
node (an unqualified value) or by describing a path from tha t
node to the root node in the hierarchy (a qualified value).
When filtering or sorting a dimension level, it is necessary to
be able to use bo th types of values in the specification, as the
unqualified node values are often not unique. For example, if
the user wishes to exclude 1998.Jan but not 1999.Jan, then
qualified values must be used.

5. REDEFINING THE USER INTERFACE
Having redefined the formalism underlying the Polaris in-

terface, we must now alter the interface to support hierarchi-
cally structured data. Five major changes need to be made:

1. the Schema list must display dimension hierarchies and
measures, not simply database fields;

2. the analyst must be able to distinguish between Month
and Year.Month when including Month in a specifica-
tion;

3. the analyst must be able to filter a dimension level
using qualified values;

4. the analyst must be able to quickly drill down and roll
up a dimension hierarchy using the interface;

5. the analyst needs to be able to change the number of
marks within each pane to reflect different levels of
detail.

Figure 2 illustrates the revised interface. We now discuss
each interface extension in detail.

5.1 The Schema
In the original interface, the analyst was presented with a

list box containing the ordinal and quanti tat ive fields in the
database. The analysts included these fields in a specifica-
tion simply by dragging and dropping the field's name onto

117

Specification
x: C*(A + B)
y: D+E "
z: F
lod: G

I Compute
I normalized set
[form of each
I table expression

y: { (dl) (d~, lel) (eml }
z: ~(f,) (q) j

I ,
Construct table

Cross all expressions and convert to sum-of-terms.

Generate an MO× query for each term (projection)

::!':::: : : : :

I

1 1 \ \
i
i

I

!
i f
i i

$ort lnto panes.

• Partition into sets
: correspondlnR to

f ~ panes.

Figure 5: The overall data flow in Polaris when generating a visual representation of a data cube.

Data Cube Servers

Query Results

the appropriate shelf in the interface. To support hierar-
chical da ta cubes, we have extended this list box to display
the dimensions of the da ta cube with an ordered list of the
dimension's levels beneath each dimension. The analysts
can drag and drop any dimension level to the interface as
they did with the ordinal fields of the database. The dimen-
sion's 'name, however, cannot be dragged to the interface;
the analyst can only manipulate the individual levels within
a dimension.

5.2 Qualifying Dimension Levels
When an analyst drops a dimension level, such as Month,

on a shelf, there are several potential intentions. He may
intend to include the operand Month in an expression, but
he may also mean Year.Month or Year.Quarter.Month; the
analyst needs to be able to specify the exact qualification
desired. Our solution is the make full qualification (e.g.,
Year.Quarter.Month) the default. To generate a different
qualification, the user can right-click the dimension level in
the shelf and select the "Qualif ication. . ." menu item. He is
then presented with a dialog box tha t allows him to explicitly
specify which of the intermediate levels to include in the
qualification of the operand, thus generating the applicable
expression.

5.3 Qualifying Dimension Level Filters
When applying filters to a dimension level, an analyst may

want to specify the filter using either qualified or unquali-
fied values. We have extended the Polaris interface to allow
both options. For example, if the user wishes to exclude
1998.Jan but not 1999.Jan, he can choose to filter using
qualified values. Similarly, it is possible to specify a filtering
using unqualified values: each qualified value tha t matches
the unqualified value will be included in the filter. Currently,
Polaris requires the filter be specified using either qualified
or unqualified values, but not both. As a future extension,
we intend to support heterogeneous filtering.

5.4 Drilling down and Rolling up
When analyzing and exploring large data cubes, a com-

mon operation is to drill down or roll up within a dimension
hierarchy. Therefore, it is impor tant to include a simple
mechanism for performing these operations. One option is
for the analyst to remove the current level from the appro-
priate shelf (by dragging it off the shelf) and then drag the
new level to tha t same shelf. Although the desired effect is
achieved, it is more complicated than we would like.

We provide an alternate mechanism for drilling down and

rolling up a dimension. With in the box representing each
dimension level on a shelf, there is an "V" icon, as can be
seen in Figure '.2. When the user clicks on the "V" icon, he is
presented with a listing of all the levels of the dimension (in-
cluding diverging levels in complex dimension hierarchies).
Selecting a new level is interpreted as a drill down (or roll
up) operation along tha t dimension and the current level
is automatically replaced with the selected level (with the
same qualification). Thus, the user can rapidly move be-
tween different; levels of detail along a dimension, refining
the visualization as he navigates.

5.5 Grouping within Panes
In the original version of Polaris, the analyst specified the

grouping of tuples within each pane by placing fields on the
shelf ti t led "Group By." Each field in this shelf was included
in the GROUP BY clause in the SQL query tha t aggregated
the data in each pane into tuples to be mapped to marks.

The situation when visualizing da ta cubes is slightly differ-
ent. The query for each pane does not produce a relational
da ta set tha t is then grouped and aggregated. Instead, each
pane corresponds to a projection of the da ta cube, with the
projection determined by the dimension levels included in
the table expressions. To produce additional marks within
a pane, the analyst must specify additional dimensions to
be included in these projections, done by including the de-
sired dimension levels in the "Level of Detail" shelf (shown
in Figure 2), the hierarchical analog of the "Group by" shelf.

As was the case with the original version of Polaris, this
"Level of Detail" shelf gives the analyst the ability to rapidly
drill down into their da ta without changing the table con-
figuration. Changing the level of detail without changing
the table configuration only changes the da ta density within
each pane.

6. GENEILATING QUERIES
The final step in extending Polaris to fully support hier-

archical da ta cubes is to show how to construct an efficient
set of multidimensional queries from a specification in our
formalism.

Each pane in a Polaris visualization corresponds to either
a slice of a projection of the data cube or an aggregation
of such a projection. The specific projection corresponding
to each pane is determined by the contents of the "Level
of Detail" shelf (discussed in Section 5.5) and by the nor-
malized set form of the table axis expressions (discussed in
Section 4). The table is part i t ioned into rows, columns, and
layers corresponding to the entries in these sets. Therefore,

118

(e) v~tt e ~ t o
th@ res~arc, h areas ~: , . . . : :~: ~ , : ~ ~',,~* ~:

Figure 6: Analysis of network usage data using Polaris.

each pane in the table is associated with three set entries
corresponding to its row, column, and layer, respectively.

The underlying data cube must be projected to include
only the dimension levels tha t occur in the three set entries
(and in the Level of Detail shelf) and it must be sliced to
include only the specific dimension members tha t occur in
these entries. This process is illustrated in Figure 4. When
multiple set entries defining a pane refer to different levels of
the same dimension, the correct projection to retrieve is the
one corresponding to the most detailed level of tha t dimen-
sion. Before determining how the projections are efficiently
retrieved from the server, we must carefully consider the sit-
uation where set entries contain values whose qualification

skips levels in the hierarchy.
Set entries containing values whose qualification skips lev-

els (e.g., Time.Jan) are interpreted to imply tha t nodes in
the hierarchy whose values are not unique (when we consider
only the included levels) should be aggregated in tha t pro-
jection. In the Time.Jan example, the aggregation for the
pane must be computed by aggregating across years, and
thus, across a hierarchy level ra ther than up the hierarchy.
This type of aggregation is not natively supported in most
hierarchical query languages. Thus, we request the cube pro-
jection from the remote server and compute the aggregation
within Polaris before sorting tuples into panes, as shown in
Figure 5. If all node values are unique across the entire level,
then no aggregation needs to be performed.

Although it is possible for each pane to correspond to a
different projection of the cube, the common situation is for
a large number of panes to correspond to the same projec-
t ion and differ only by how tha t projection is sliced. For
efficiency, we would like to consider these panes as a group
and send a single query to the OLAP server requesting the
appropriate projection (and then, if necessary, perform a sin-
gle aggregation of the projection). The projection can then
be sorted into panes locally.

One key to efficiently utilizing the OLAP server is this
grouping of queries. By algebraically manipulating our table
expressions, we can quickly determine all projections corre-
sponding to a given table configuration. The key observation
is tha t of our four algebraic operators (nest, cross, concate-
nate, and dot), the only operator tha t can produce adjacent
panes with differing projections is the concatenate operator.
Nest, cross, and dot include all input dimension levels in
each output set entry; concatenate does not. Thus, if we
compute a single expression as the cross of the three table
expressions and then reduce to a sum-of-terms form, the re-
sulting terms will correspond to the set of projections tha t
need to be generated. This process is illustrated in Figure 5.

Most typical multidimensional query languages provide a
mechanism for generating projections of the da ta cube. Our
current implementation generates a single MDX query to a
remote Microsoft Analysis Server for each projection. The
resulting cells are then sorted into panes using transforma-
tion capabilities built into Polaris. In addition, any explicitly
specified filtering of dimension members is included in the
MDX queries sent to the remote server. The overall da ta
flow in Polaris is depicted in Figure 5.

7. RESULTS
In this section, we illustrate how Polaris can be used to ef-

fectively navigate and analyze three hierarchically structured
data sets: (1) a 12-week trace of mobile network usage, (2)
results from the 2000 presidential election, and (3) historical
business metrics for a hypothetical coffee chain.

7.1 Mobile Network Usage Data
Figure 6 shows an analysis of a 12-week trace of every

packet tha t entered or exited the mobile network in the
Gates building at Stanford University [22]. Over the 12
weeks, 78 million packet headers were collected. The anal-
ysis goal is to understand usage pat terns of the mobile net-
work. This da ta is stored in a data cube with many differ-
ent dimensions (User, Time, Remote host, Traffic direction,
and Application), each with multiple levels of detail. In this
analysis, the queries generated when the user dropped a field
on a shelf took one to two seconds to execute and returned
several hundred to tens of thousands of tuples.

To start the analysis, the analyst first sees if she can spot

119

.,o,L~ ~

(1~) Z ~ In m ~ t~ twu m~ tnt~amlt ~ t t~g t s , now ~ ~ ~arl~t

Figure 7: Analysis of ~ e results of the 2000 presidential election.

any patterns in time, so she creates a series of line charts in
Figure 6(a) showing packet count and size versus time for
~he most common appl}cations, broken down and colored by
the direction of the traffic. In these charts, the analyst can
see that the web is the most consistently used application,
while session is almost as consistent. File transfer is the least
consistent, but also has some of the highest peaks in both
incoming and outgoing ftp traffic. Note the log scale on the
y-axes.

Given this broad understanding of traffic patterns, the
next question posed by the analyst is how the applicatior~
mix varies depending on the research area. The analyst piv-
ots the display to generate a single line c h a r t of packet count

Figure 8: Analysis of sales data for a hypothetical coffee chain.

per research area over time, broken down and colored by ap-
plication class (Figure 6(b)). From this breakdown, the an-
alyst can see that the graphics group was responsible for the
large incoming and outgoing file transfers. She can also see
that the systems group had atypically high session traffic.

Curious, the analyst then drills down further to see the
individual project groups (Figure 6(c)), discovering that the
large file transfers were due to the rendering group within
the graphics lab, while the robotics lab had vastly different
behavior depending on the particular group (the mob group
dominated by session traffic, while the learning group had
more web traffic, for example).

120

7.2 2000 Presidential Election Results
Figure 7 shows Polaris being used to explore and analyze

the results of the 2000 presidential election. This da ta is
particularly interesting because the visualizations used to
explore it are created from two separate data sets. The first
da ta set is a relational database of approximately 500,000
tuples (stored in Microsoft's SQLServer) describing detailed
polygonal outlines of the states and counties in the USA.
Additional levels of detail have been constructed by poly-
gon simplification, and the resulting levels of detail form a
Location hierarchy. The second data set is stored as a data
cube (in Microsoft's Analysis Server) and contains detailed
county-by-county vote results (also with a Location dimen-
sion). In the first two visualizations, these data sets are
explicitly joined before being imported into Polaris. In the
final visualization, we use the ability in Polaris to visually
join data sets using layers. In this analysis, the execution
t ime for the queries varied from less than one second for
the overview visualizations to two seconds for the detailed
visualizations, where the retrieved relation included tens of
thousands of tuples.

In Figure 7(a), the analyst has generated an overview of
the entire country at the State level in the Location hierar-
chy, coloring each state by which candidate won tha t state.
The analyst is interested in more detailed results for the
state of Florida, so she filters on the Latitude and Longi-
tude measures to focus on Florida and changes the level of
detail to County, generating Figure 7(b). In the final visual-
ization, shown in Figure 7(c), the analyst further focuses on
the southern t ip of Florida (by again filtering the Latitude
and Longitude measures). Furthermore, she adds two addi-
tional layers to the visualization (read directly from the data
cube) and displays bo th the name and the total number of
votes counted in each county.

7.3 Historical Profit/Sales for a Coffee Chain
The final analysis is shown in Figure 8. The data being

analyzed is two years of business metrics for a hypothetical
nationwide coffee chain, comprising approximately 5,000 tu-
pies stored in a data cube. The data is characterized by three
main dimensions (Time, Products, and Location), each with
multiple levels of detail. We consider a scenario where the
analyst is concerned with reducing marketing expenses a n d

is trying to identify products tha t are not generating profit
and sales proportional to their marketing costs. The typical
query time for the visualizations created in this scenario was
between 0.1 and 0.2 seconds.

The first visualization created, Figure 8(a), is an overview
of three key measures (Profit, Sales, and Marketing) as a
scatterplot matrix. The analyst has drilled down using the
Level of Detail shelf to the Product and State level. The two
charts circled in orange show tha t several of the distribu-
tions do not reflect the positive correlations tha t the analyst
was expecting. To further investigate, the analyst reduces
the scatterplot matr ix to two graphs and colors the records
by Market and Product type (Figure 8(b)), thus identifying
espresso products in the East region and tea products in
the West region as having the worst marketing cost to profit
ratios.

In the final visualization, Figure 8(c), the analyst drills
down into the data to get a more detailed understanding of
the correlations: She creates a small multiple set of stacked
bar charts, one for each Market and Producttype. Within
each chart, the da ta is further drilled down by individual
Product and State. Finally, each bar is colored by the Mar-
keting cost. As can be seen in the visualization, several prod-
ucts such as Caffe Mocha in the East have negative profit

(a descending bar) with high marketing cost (a bright red
bar). Having identified such poorly performing products, the
analyst can modify the marketing costs allocated to them.

7.4 Summary
Each of these case studies demonstrates how analysis pro-

gresses from a high level of abstract ion to detailed views of
the data. Furthermore, each example shows the importance
of being able to easily change the data being viewed, pivot
dimensions, and drill down during the analy§is process.

8. DISCUSSION
In this section, we focus on two points of discussion. First,

we discuss the different roles Polaris can play in the knowl-
edge discovery process, and second, we discuss how our for-
malism can be applied to the development of generalized
visualization systems, particularly level of detail systems.

In this paper, we have demonstrated the effectiveness of
Polaris as a stand-alone tool for visual mining of large, hi-
erarchical databases. Equally important is how Polaris c a n

be coupled with automated da ta mining systems to help an-
alysts bet ter understand not only their data, but also the
models generated by the algorithms. First, Polaris can be
used as a precursor to da ta mining: The analyst benefits
from an understanding of the overall structure of the data
tha t helps her steer the discovery process and provides con-
text for "hidden information" discovered by the algorithms.
Second, Polaris can also be used to validate and compre-
hend the models and results generated by algorithmic anal-
ysis. Analysts do not want to t reat an algorithm as a black
box and blindly t rust its output. One technique for using
Polaris for validation is to construct hierarchical dimensions
from the output generated by classification algorithms. The
analyst can then drill down and roll up the data, travers-
ing the classification hierarchy and inspecting the records
sorted into each bucket, further developing understanding
and trust.

A second point of discussion is the application of our for-
malism to the development of general visualization systems.
Although we have only demonstrated our formal language as
a n underlying technology for the Polaris interface, we believe
it is a promising basis for the development of a wide-range of
visualization systems. One example is in the development of
interactive "semantic-zooming" visualization systems. Pro-
grammers developing such systems need a mechanism for
describing a wide range of visual displays, with each dis-
play being associated with a different level of detail view
of the data. Using our formalism, these programmers could
simply describe each visual display with a succinct specifica-
tion. When the user interacts with the interface to move to
a different level of detail, the system need only feed the ap-
propriate specification into our interpreter. The interpreter
would generate all of the drawing operations and queries nec-
essary to generate the display. In addition to simplifying the
development of such systems, the presence of an underlying
formalism also serves to help clearly define the semantics of
the interface, as demonstrated by Polaris.

9. CONCLUSIONS AND FUTURE WORK
We have extended Polaris, an interface for the exploration

and analysis of large multidimensional databases, to fully
support and expose the hierarchical structure of da ta cubes.
These dimension hierarchies play an indispensable role in the
analysis of large databases where, in order for the analysis
task to be manageable, it is necessary to perform the anal-
ysis at multiple levels of aggregation, moving from visual

121

overviews to detai ls on d e m a n d . In ex tend ing Polaris, we
have ex tended not only the interface, bu t also t he under ly-
ing algebraic formal ism. Fur the rmore , we have developed an
efficient m e c h a n i s m for in te rpre t ing the formal specif icat ions
as a collection of mul t id imens iona l queries.

We have m a n y p lans for fu tu re work in ex tend ing th i s
sys tem. As d a t a b a s e s cont inue to grow in size, developing
tools and techniques for t he in teract ive explora t ion of d a t a
a t mul t ip le levels of detai l is crucial. As we discussed in Sec-
t ion 8, we believe our algebraic fo rmal i sm provides a solid
founda t ion upon which to bui ld v isual iza t ion sys tems . We
are cur ren t ly bui ld ing s y s t e m s t ha t , a la P a d + + [18], au to-
mat ica l ly and interact ively change t he visual represen ta t ion
as the ana lys t changes level of detail . T h i s research has m a n y
in teres t ing chal lenges, inc luding t r ans i t i ons be tween differ-
ent v isual representa t ions , m a p p i n g rep resen ta t ions to levels
of detail , and ma i n t a i n i ng in te rac t iv i ty while explor ing large
d a t a warehouses .

A second a rea of fu ture research is t h e visual p resen ta t ion
of me t ada t a . Hierarchical ly s t r uc t u r ed d imens ions are one
ins tance of an increasingly popu la r t rend: t he a u g m e n t a -
t ion of d a t a wi th rich domain-speci f ic m e t a d a t a . Th i s me ta -
d a t a is as i m p o r t a n t to t he analys is process as t he under -
lying da t abase itself. A n i m p o r t a n t a rea of fu tu re research
is t he deve lopment of v isua l iza t ion t echn iques t h a t display
th i s m e t a d a t a and leverage it in t he display of t he descr ibed
data .

10. ACKNOWLEDGMENTS
T h e au tho r s especially t h a n k Robe r t Bosch and Chr is Ol-

s ton for thei r reviews of m a n u s c r i p t d ra f t s and m a n y useful
discussions. T h e coffee cha in d a t a is cour t e sy of S tephen
Eick and Visual Insights . T h i s work was suppo r t ed by the
US D e p a r t m e n t of E ne rgy t h r o u g h the ASCI Level 1 All iance
wi th Stanford Universi ty.

11. REFERENCES
[1] B. Becker. Visualizing Decision Table Classifiers. In Proc. of

Information Visualization, October, 1998, pp. 102-105.
[2] B. Becker, R. Kohavi, and D. Sommerfield. Visualizing the Simple

Bayesian Classifier. In KDD Workshop on Issues in the Integration of
Data Mining and Data Visualization, 1997.

[3] C. Brunk, J. Kelly, and R. Kohavi. MineSet: an integrated system for
data mining. In Proc. of the 3rrd International Conference on
Knowledge Discovery and Data Mining, 1997, pp. 135-138.

[4] A. Buja, D. Cook, and D. F. Swayne. Interactive High-Dimensional
Data Visualization. hi Journal of Computational and Graphical
Statistics, 5(1), 1996, pp. 78-99.

[5] M. Derthick, J. Kolojejchick and S. E Roth. An Interactive
Visualization Environment for Data Exploration. In Proc. of
Knowledge Discovery in Databases, August, 1997, pp. 2-9.

[6] S. Eick. Visualizing Multi-Dimensional Data. In Computer Graphics,
February 2000, pp. 61-67.

[7] Y. Fua, M. O. Ward, and E. Rundensteiner. Navigating Hierarchies
with Structure-Based Brushes. In Proc. of Information Visualization,
October 1999, pp. 58-64.

[8] J. Goldstein, S. E Roth, J. Kelojejchick, and J. Mattis. A Framework
for Knowledge-based Interactive Data Exploration. In Journal of
Visual Languages and Computing, December 1994, pp. 339-363.

[9] J. Gray, S. Chandhuri, A. Bnsworth, A. Layman: D. Re[chart, M.
Venkatrao, H. Pirabesh, and F. Pellow. Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab, and
Sub-Totals. In Proc. of the 12th International Conference on Data
Engineering, February 1996, pp. 152-159.

[10] C.G. Healey. On the Use of Perceptual Cues and Data Mining For

Effective Visualization of Scientific Datasets. In Proc. Graphics
Interface, 1998, pp. 177-184.

[11] HumanGenome Project. [online] Available:
hitp://www.ornl.gnv/hgmis/about.himl, cited February 2002.

[12] H. Jagadish, L. Lakshmanan, and D. Srivastava. What can Hierarchies
do for Data Warehouses? In Proceedings of the International
Conference on Very Large Databases (VLDB), 1999, pp. 530-541.

[13] D. Keim and H.P. Kriegel. VisDB: Database Exploration using
Multidimensional Visualization. In IEEE Computer Graphics and
Applications, 14(5), 1994, pp. 40-49.

[14] R. Kohavi. Data Mining and Visualization. Invited talk at the
National Academy of Engineering US Frontiers of Engineers, Sept
2000. Available in Frontiers of Engineering: Reports on
Leading-Edge Engineering From the 2000 NAE Symposium on
Frontiers of Engineering, National Academy Press, 2001.

[15] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S.
Lawande, J. MyUymaki and K. Wenger. DEVise: Integrated
Querying and Visual Exploration of Large Data.sets. In Proc. of ACM
SIGMOD, May, 1997.

[16] S.E Roth, J. Kolojejchick, J. Mattis and J. Goldstein. Interactive
Graphic Design Using Automatic Presentation Knowledge. In Proc.
of SIGCHI '94, April 1994, pp. 112-117.

[17] S.F. Roth, P. Lucas, J.A. Senn, C.C. Gomberg, M.B. Burks, P.J.
Stroffolino, J. Kolojejchick and C. Dunmire. Visage: A User
Interface Environment for Exploring Information. In Proc. of
Information Visualization, October 1996, pp. 3-12.

[18] K. Perlin and D. Fox. Pad: An Alternative Approach to the Computer
Interface. Proc. of the 20th International Conference on Computer
Graphics and Interactive Techniques, August 1993, pp. 57-64.

[19] Sloan Digital Sky Survey. [online] Available: http://www.sdss.org/,
cited February 2002.

[20] Spotfire Inc. [online] Available: http://www.spotfire.com, cited
February 2002.

[21] C. Stolte, D. Tang, andP. Hanrahan. Polaris: A System for Query,
Analysis, artd Visualization of Multi-dimensional Relational
Databases. In IEEE Transactions on Visualization and Computer
Graphics, Vol. 8, No. 1, January 2002, pp. 52-65.

[22] D.Tang and M. Baker. Analysis of a Local-Area Wireless Network.
hi Proc. of the 6th International Conference on Mobile Computing
and Networking, August 2000, pp. 1-10.

[23] K. Thearl~, B. Becket, D. DeCoste, B. Mawby, M. Pilote, and D.
Sommerfield. Visualizing Data Mining Models. In Information
Visualization in Data Mining and Knowledge Discovery. Edited by
U. Fayyad, G. Grinstein, and A. Wierse. Morgan Kaufman, 2001.

[24] E. Thomsen. OLAP Solutions: Building Multidimensional
Information Systems. Wiley Computer Publishing, New York, 1997.

[25] M.O. Ward. XmdvTool: Integrating multiple methods for visualizing
multi-vat[ate data. In Proceedings of IEEE Visualization, 1994, pp.
326-336.

[26] J. Welling and M. Derthick. Visualization of Large Multi-dimeusional
Datasets. In Proc. of Virtual Observatories of the Future 2000.

[27] A. Woodruff, C. Olston, A. Aiken, M. Chu, V. Ereegovac, M. Lin, M.
Spalding and M. Stonebraker. DataSplash: A Direct Manipulation
Environment for Programming Semantic Zoom Visualizations of
Tabular Data. Journal of Visual Languages and Computing, 12(5),
October 2001, pp. 551-571.

122

