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ABSTRACT 
In the last several years, large OLAP databases have become 
common in a variety of applications such as corporate data  
warehouses and scientific computing. To support  interac- 
tive analysis, many of these databases are augmented with 
hierarchical structures tha t  provide meaningful levels of ab- 
straction tha t  can be leveraged by bo th  the computer and 
analyst. This hierarchical s tructure generates many chal- 
lenges and opportunities in the design of systems for the 
query~ analysis, and visualization of these databases. 

In this paper, we present an interactive visual exploration 
tool tha t  facilitates exploratory analysis of da ta  warehouses 
with rich hierarchical structure, such as might be stored in 
da ta  cubes. We base this tool on Polaris, a system for rapidly 
constructing table-based graphical displays of multidimen- 
sional databases. Polaris builds visualizations using an alge- 
braic formalism derived from the interface and interpreted 
as a set of queries to a database. We extend the user inter- 
face, algebraic formalism, and generation of data  queries in 
Polaris to expose and take advantage of hierarchical struc- 
ture. In the resulting system, analysts can navigate through 
the hierarchical projections of a database, rapidly and incre- 
mentally generating visualizations for each projection. 

1. INTRODUCTION 
In the last several years, large OLAP databases have be- 

come common in a variety of applications. Corporations 
are creating large da ta  warehouses of historical da ta  on key 
aspects of their operations. International research projects 
such as the Human Genome Project [11] and the Sloan Dig- 
ital Sky Survey [19] are generating massive scientific data- 
bases. 

A major challenge with these da ta  warehouses is to extract 
meaning from the data  they contain: to discover structure, 
find patterns, and derive causal relationships. The sheer size 
of these data  sets complicates this task: Interactive calcula- 
tions tha t  require visiting each record are not plausible, nor 
is it feasible for an analyst to reason about  or view the en- 
tire da ta  set at its finest level of detail. Imposing meaningful 
hierarchical structure on the data  warehouse provides levels 
of abstraction tha t  can be leveraged by bo th  the computer 
and the analyst. 

These hierarchies can come from several different sources. 
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Some hierarchies are known a p r i o r i  and provide semantic 
meaning for the data. Examples of these hierarchies are 
Time (day, month, quarter,  year) or Location (city, state, 
country). However, hierarchies can also be automatically 
derived via da ta  mining algorithms tha t  classify the data,  
such as decision trees or clustering techniques. Par t  of the 
analysis task when dealing with automatically generated hi- 
erarchies is in understanding and t rust ing the results [23]. 

Visualization is a powerful tool for exploring these large 
data  warehouses, both  by itself and coupled with da ta  min- 
ing algorithms. However, the task of effectively visualizing 
large databases imposes significant demands on the human- 
computer interface to the visualization system. The ex- 
ploratory process is one of hypothesis, experiment, and dis- 
covery. The path  of exploration is unpredictable, and ana- 
lysts need to be able to easily change bo th  the da ta  being 
displayed and its visual representation. Furthermore, the 
analyst must be able to first reason about  the da ta  at a high 
level of abstraction, and then rapidly drill down to explore 
data  of interest at  a greater level of detail. Thus, the in- 
terface must expose the underlying hierarchical s tructure of 
the data  and support  rapid refinement of the visualization. 

This paper presents an interactive visual exploration tool 
tha t  facilitate:s exploratory analysis of da ta  warehouses with 
rich hierarchical structure, such as would be stored in data  
cubes. We base this tool on Polaris [21], a system for the ex- 
ploration of multidimensional relational databases. Polaris 
is built upon an algebraic formalism for constructing table- 
based visualizations. The state of the user interface is a 
visual specification. This specification is interpreted accord- 
ing to the formalism to determine both  the  series of queries 
necessary to retrieve the requested data, as well as the maw 
ping and layout of the resulting tuples into graphical marks. 
Because every intermediate specification is valid and can be 
interpreted to create a visualization, analysts can rapidly 
and incrementally construct complex queries, receiving vi- 
sual feedback as they assemble and alter the specifications. 

The originM version of Polaris did not directly support  
or expose hierarchically structured dimensions, instead pre- 
senting each level of the hierarchy as a separate, independent 
dimension. In this paper, we extend the  algebraic formal- 
ism (Section 4), user interface (Section 5), and generation of 
da ta  queries {'.Section 6) to take advantage of hierarchically 
structured data  cubes. We then illustrate the ease and effec- 
tiveness of using Polaris to explore hierarchically s tructured 
data  via three case studies (Section 7). 

2. RELATED WORK 
We consider two areas of related work: the visual explo- 

ration of databases and the use of da ta  visualization in con- 
junction with data  mining algorithms. 
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Figure 1: A hierarchical Time dimension. A hierarchical dimension is structured as a tree with multiple levels. In this case, there are 
four levels: AlL Year, Quarter, and Month. Each level corresponds to a different semantic level of detail  The parent-child relationships 
in the tree are the basis for aggregation within the dimension. 

2.1 Visual Exploration of Databases 
One area of related work is the field of visual query tools. 

Projects such as VQE [5], Visage [17], DEVise [15], and 
Tioga-2 [27] have focused on building visualization tools tha t  
directly support  interactive database exploration through vi- 
sual queries. Users can construct queries and visualizations 
directly through their interactions with the interface. These 
systems have flexible mechanisms for mapping query results 
to graphs and support  mapping database tuples to retinal 
properties of the marks in the graphs. Of these systems, only 
Tioga-2 provides built-in support  for interactively navigat- 
ing through and exploring data  at different levels of detail. 
However, the underlying hierarchical structure must be cre- 
ated by the analyst during the visualization process; Polaris 
leverages the hierarchical s tructure tha t  is already encoded 
in the data  warehouse. 

XmdvTool [25], Spotfire [20], and Xgobi [4] provide the 
analyst with a set of predefined visualizations such as scat- 
terplots and parallel coordinates. These systems are aug- 
mented with extensive interaction techniques (e.g., brushing 
and zooming) tha t  can be used to refine the queries. In con- 
trast,  we provide the analyst with a set of building blocks 
tha t  can be used to interactively construct and refine a wide 
range of displays to suit the analysis process. Of these sys- 
tems, only XmdvTool supports the exploration of hierarchi- 
cally structured data. XmdvTool has been augmented with 
structure-based brushes [7] tha t  allow the user to control the 
display's global level of detail (based on a hierarchical clus- 
tering of the data)  and to brush records based on their prox- 
imity within the hierarchical structure. Again, this approach 
limits the user, in this case to viewing a single hierarchical 
structuring of the data  and a single ordering of tha t  hier- 
archy to make proximity meaningful. Polaris supports both  
the simultaneous exploration of multiple hierarchies (derived 
from semantic meaning or algorithmic analysis) and the abil- 
ity to reorder the hierarchy as needed. 

Another relevant visualization system, VisDB [13], focuses 
on displaying as many tuples as possible to provide feedback 
as users refine their queries. This system even displays tuples 
tha t  do not satisfy the query, indicating their "distance" 
from the query criteria using spatial encodings and color. 
This approach helps the user avoid missing important  data  
points tha t  fall just  outside of the selected query parameters. 
In contrast, Polaris, by taking advantage of the hierarchical 
structure of the warehouse, provides extefisive ability to drill 
down and roll up data, allowing the analyst to get a complete 
overview of the data  set before focusing on detailed portions 
of the database. 

2.2 Visualization and Data Mining 
Many research and commercial systems use visualization 

in conjunction with automated da ta  mining algorithms. One 

common application of visualization together with data  min- 
ing is in helping analysts understand models generated by 
the data  mining process. For example, several researchers 
have developed techniques specifically for displaying decision 
trees, Bayesian classifiers, and decision table classifiers [1], 
and these visualization techniques have been incorporated 
into products such as SGI's MineSet [3]. 

Other approaches to coupling visualization and data  min- 
ing have traditionally been employed within focused domains. 
One approach is to use visualization to gain an initial under- 
standing of a warehouse and then apply algorithmic analysis 
to the identified areas of interest [14][23]. The other major 
approach is to use data  mining to compress the size and d i -  
mensionality of the da ta  and then use focused visualization 
tools to explore the results [10][26]. 

Unlike these examples, Polaris is not focused on a partic- 
ular algorithm, a single phase of the discovery process, or 
a narrow application domain. Instead, Polaris is a general 
tool tha t  can be used to gain an initial understanding of a 
warehouse, to visually mine the warehouse, to understand al- 
gorithm output,  and to interactively explore a mining model. 
The ability to encode a large number of dimensions in a table 
layout in Polaris helps an analyst gain an initial understand- 
ing of how different dimensions relate as a precursor to auto- 
mated discovery. Similarly, Polaris can be used directly as a 
visual mining tool. Finally, by integrating the decision trees 
and classification networks into the da ta  warehouse as di- 
mension hierarchies, Polaris can be used by analysts to gain 
an understanding of how these models classify the data. 

3. BACKGROUND 
Polaris [21] was originally designed to support  the inter- 

active exploration of multidimensional relational data  ware- 
houses rather  than  da ta  sets with rich hierarchical structure. 
In this section, we explain the  difference between the two 
types of data  sources as well as give a brief overview of Po- 
laris before discussing our extensions to Polaris in the rest 
of the paper. 

3.1 Relational Databases vs. Data Cubes 
Relational databases organize data  into relations, where 

each row in a relation corresponds to a basic entity or fact 
and each column represents a property of tha t  entity [24]. 
For example, a relation may represent transactions in a bank, 
where each row corresponds to a single transaction, and each 
transact ion has multiple properties, such as the transaction 
amount, the account balance, the bank branch, and the cus- 
tomer. 

We refer to a row in a relation as a tuple or record, and a 
column in the relation as a field. A single relational database 
will contain many heterogeneous but  interrelated relations. 

The fields within a relation can be parti t ioned into two 
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Figure 2: The Polaris user interface with enhancements (shown in blue) to expose and support hierarchical dimensions. Analysts 
construct table-based displays of relational and cube data by dragging dimension levels and measures from the data cube schema 
onto shelves throughout the display. A given configuration of levels and measure.,; on shelves is called a visual specification. The 
specification unambiguously defines the analysis and visualization operations to be performed by the system to generate the display. 

types: dimensions and measures. Dimensions and measures 
are similar to independent and dependent variables in tra- 
ditional analysis. For example, the bank branch and the 
customer would be dimensions, while the account balance 
would be a measure. 

In many data warehouses, these multidimensional data- 
bases are structured as n-dimensional data cubes. Each di- 
mension in the data cube corresponds to one dimension in 
the relational schema. Each cell in the data cube contains 
all the measures in the relational schema corresponding to a 
unique combination of values for each dimension. 

The dimensions within a data cube are often augmented 
with a hierarchical structure. This hierarchical structure 
may be derived from the semantic levels of detail within the 
dimension or generated from classification algorithms. Us- 
ing these hierarchies, the analyst can explore and analyze the 
data cube at multiple meaningful levels of aggregation cal- 
culated from a base fact table (i.e., a relation in the database 
with the raw data). Each cell in the data cube now corre- 
sponds to the measures of the base fact table aggregated to 
the proper level of detail. 

The aggregation levels are determined from the hierarchi- 
cal dimensions; each dimension is structured as a tree with 
multiple levels. Each level corresponds to a different seman- 
tic level of detail for that  dimension. Within each level of the 
tree there are many nodes, with each node corresponding to 
a value within the domain of that  level of detail of that  di- 
mension. The tree forms a set of parent-child relationships 
between the domain values at each level of detail. These 
relationships are the basis for aggregation, drill down, and 
roll up operations within the dimension hierarchy. Figure 1 

illustrates the hierarchy for a Time dimension. 
Simple hierarchies, like the one shown in Figure 1, are 

commonly modeled using a star schema. The entire dimen- 
sion hierarchy is represented by a single dimension table (also 
stored as a relation) joined to the base fact table. In this type 
of hierarchy, there is only one path of aggregation. However, 
there are more complex dimension hierarchies where the ag- 
gregation path can branch. For example, a Time dimen- 
sion might aggregate from Day to both Week and Month. 
These complex hierarchies are typically represented using a 
snowflake schema that  uses multiple relations to represent 
the diverging hierarchies. 

When referring to values within a dimension hierarchy, we 
will use a dotted notation to specify a specific path from the 
root level (All) of the hierarchy down to the specified value. 
Specifically, to refer to a value on level m of a hierarchy, 
we first optionally list the dimension name, then zero or 
more of the (m - 1) intermediate ancestor values, and then 
finally the value on the m th level, all separated by periods. 
For example, the Jan node on the Month level in the Time 
hierarchy that  corresponds to January, 1998, can be referred 
to as 1998.Qtrl.Jan. When this notation is used, we will 
call the reference a qualified value. When a value is simply 
described by :its node value (without any path to the root 
node) we call the reference an unqualified value. 

The hierarchical data model we have outlined in this sec- 
tion is only one of many possible models. Other models, 
such as that  proposed by Jagadish et al. [12], include advan- 
tages such as structural and schematic heterogeneity. We 
have chosen to focus on the model commonly found in com- 
mercial data warehouse and data cube products. 
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3.2 Polaris Overview 
Before explaining the  extensions to Polaris needed for sup- 

por t ing  interactive visual explorat ion of hierarchically struc- 
tured da t a  sets, we first give a brief overview of the  original 
Polaris system. 

The  goal of Polaris was to provide an interface for rapidly 
and incremental ly generat ing table-based displays (note tha t  
from here on out,  unless otherwise specified as a fact table or 
dimension table,  the  t e rm table refers to a table-based visu- 
alization and not  a relation in a database) .  Users const ruct  
these table-based visualizations via a drag-and-drop  inter- 
face, dragging field names  from the  Schema box to  various 
blue shelves th roughout  the  interface, as shown in Figure 2. 
Any configuration of field names  on shelves is valid. 

The  Polaris interface is simple and expressive because it 
is buil t  upon a formalism for precisely describing graphi-  
cal table-based visualizations. The  configuration of fields on 
shelves forms a visual specification. Each visual specification 
is an expression of  the  Polaris formalism tha t  can be inter- 
p re ted  to de termine  the  exact  analysis, query, and drawing 
operat ions  to  be performed by the  system: 

The  specification consists of two main port ions.  The first 
por t ion,  built  on top  of an algebra, describes the  s t ruc ture  of 
the  table-based visualization (i.e., how the  table  is divided 
into panes).  We can think of a table  as having three  axes: 
the  x-axis divides the  table  into columns,  the  y-axis divides 
the  table  into rows, and the  z-axis layers x-y tables t ha t  are 
composi ted  on top  of  one another .  Each intersection of an 

x-, y-, and z-axis results in a table  pane.  Thus,  the  first 
por t ion  of the  specification consists of table algebra expres- 
sions, with one expression per  axis. Each pane contains a 
set of  records (obtained by querying the  da t a  cube) t ha t  are 
visually encoded as a set of  marks  to create a graphic. 

While the  first por t ion  of the  specification determines  the  
"outer table  layout," the  remaining por t ion  de termines  the  
layout wi thin  a pane,  such as how the  d a t a  within a pane 
is t ransformed for analysis and how it is encoded visually. 
Specifically, it describes: 

1. The  sort ing and  filtering of fields. 
2. The  mapp ing  of d a t a  sources to  layers. 
3. The  grouping of  da t a  within a pane and the  compu- 

ta t ion of s tat is t ical  propert ies ,  aggregates,  and other  
derived fields. 

4. The  type  of  graphic displayed in each pane of the  table. 
Each graphic consists of a set of marks  (e.g., circles, 
bars, glyphs, etc.) wi th  one mark per  record in tha t  
pane.  

5. The  mapp ing  of  d a t a  fields to  retinal  proper t ies  of the  
marks in the  graphics (for example,  mapp ing  Profit to 
the  size of a mark  or Quarter to  t he  color). 

We only need to  ex tend  the  table  algebra and the  specifica- 
t ion of  the  filtering and sorting. The  rest  of the  formalism, 
including how we de termine  the  type  of graphic and the  vi- 
sual encodings,  has not  changed and so we do not  discuss 
t hem further  here. See StoRe et  al. [21] for a detai led dis- 
cussion. 
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Thus, in order to extend Polaris to support  hierarchical 
dimensions, we need to modify: 

• the formalism and table algebra (Section 4), 
• the user interface (Section 5), 
• and the interpretation of the visual specification as a 

set of queries in a multidimensional query language 
(Section 6). 

4. EXTENDING THE FORMALISM 
In order to support  bo th  relational databases and hierar- 

chically structured data  cubes, we need to extend two as- 
pects of the Polaris formalism: the specification of the  table 
configurations, and the filtering and sorting of fields. Before 
we discuss these two extensions, however, we first give a brief 
review of the table algebra. 

4.1 Table Algebra Review 
A key component of this formalism is the table algebra, 

which is used to specify the table  configurations. When an- 
alysts place fields on the axis shelves (shown in Figure 2) 
they are implicitly creating expressions in this algebra. A 
complete table configuration consists of three separate ex- 
pressions. Two of the expressions define the  configuration 
of the table 's x- and y-axis, part i t ioning the table into rows 
and columns. The third expression defines the z-axis of the 
table, which parti t ions the display into layers. 

Each expression is composed of operands connected by 
operators. Each operand is evaluated to a set form, and 
the operators define how to combine two sets. Thus, each 
expression can be interpreted as a single set (the normalized 
set form), where each element in the  set corresponds to a 
single row, column, or layer. 

To be more specific, each operand of the table algebra 
is the name of a field. There are two types of operands: 
ordinal and quantitative. Whether  an operand is ordinal or 
quantitat ive depends on the type of the  corresponding field 
in the database. 

The set interpretation of an ordinal operand consists of 
the members of the ordered domain of the field. For ex- 
ample, the set interpretation of the Month operand would 
be {Jan, Feb, . . . ,  Dec}. The set interpretat ion of a quan- 
t i tative operand is a single-element set containing the field 
name. For example, the set interpretat ion of the Profit oper- 
and would be {Profit}. 

The assignment of sets to the different types of operands 
reflects the difference in how the two types of fields are en- 
coded into the structure of the table. Ordinal fields parti t ion 
the table into rows and columns, whereas quanti tat ive fields 
are spatially encoded as axes within the table panes. Exam- 
ples of the set interpretations and resulting table structures 
for both  ordinal and quanti tat ive operands are shown in Fig- 
ure 3. 

As stated above, a valid expression in the algebra is an 
ordered sequence of one or more operands with operators 
between each pair of adjacent operands. The operators in 
this algebra, in order of precedence, are cross (x) ,  nest (/) ,  
and concatenation (+);  parentheses can be used to alter the 
precedence. Because each operand is interpreted as an or- 
dered set, the precise semantics of each operator are defined 
in terms of how they combine two sets (one each from the 
left and right operands) into a single set. Some examples 
are shown in Figure 3. 

Thus, every expression in the algebra can be reduced to a 
single set, with each entry in the set being an ordered con- 
catenation of zero or more ordinal values followed by zero or 
more quanti tat ive field names. For example, the normalized 

set form of the expression Month x Profit is { (Jan, Profit), 
(Feb, Profit) . . . .  , (Dec, Profit) }. The normalized set form 
of an expression determines one axis of the table: the table 
axis is parti t ioned into columns (or rows or layers) so tha t  
there is a one-to-one correspondence between columns and 
entries in the normalized set. 

4.2 Redefining the Algebra Operands 
In order to fully support  and expose the hierarchical struc- 

ture in data  cube dimensions, we must redefine the algebra so 
tha t  the operands are measures and dimension levels rather  
than  independent database fields. In this redefinition, mea- 
sure operands are trivially t reated the same as quanti tat ive 
fields: we assign to each measure operand a single element 
set containing the measure name. Like quanti tat ive fields in 
the original algebra, measures will be spatially encoded as 
axes within the panes. 

Similarly, we would like to t reat  dimension levels in the 
same way we t reated ordinal fields and assign to each the 
ordered domain of the  dimension level. The resulting sets 
would then parti t ion the table into rows, columns, and lay- 
ers. There are, however, complications. The domain of a 
dimension level is not a single ordered list. Instead, it is 
composed of the node values at  a particular level in the di- 
mension hierarchy, and each node value is uniquely defined 
by its pa th  to the root of the hierarchy. To illustrate the 
resulting complications, we consider the Time hierarchy il- 
lustrated in Figure 1. 

First, consider the Month level of the hierarchy. One pos- 
sible set interpretation of this symbol would be to list each 
node value, including its pa th  to the root for uniqueness, 
ordered by a depth-first traversal of the dimension hierar- 
chy; e.g., {1998.Qtrl.Jan, . . . ,  1999.Qtr4.Dec}. Although 
this approach provides a unique set interpretat ion for each 
dimension level, it limits the  expressiveness of the algebra. 
Any table constructed to include Month must also include 
Year; it is not possible to create displays tha t  summarize 
monthly values across years, a useful view tha t  we would like 
to support. Interestingly, however, summarizing monthly 
values across years is not a s tandard projection of a data  
cube, as it requires aggregating across a hierarchical level. 
We discuss how we compute this type of aggregation in Sec- 
t ion 6. 

A second approach would be to list only the node values, 
ignoring the path  to the root of the hierarchy and excluding 
repeated values. Again, we order the node values by a depth- 
first traversal of the dimension hierarchy. For Month, this 
approach would yield {Jan, Feb, . . . ,  Nov, Dec}. Clearly, 
using this set interpretat ion we can generate displays tha t  
summarize monthly values across years. Furthermore, we 
can generate displays tha t  drill down into a hierarchy by 
using our nest ( / )  operator, e.g., Year / Month. 

The use of the nest for drilling down into a hierarchy, 
however, would be flawed. The nest operator is unaware of 
the defined hierarchical relationship between the dimension 
levels but  instead works by deriving a relationship based 
on the tuples in the fact table. Not only is this  approach 
inefficient, as fact tables are often quite large, but  it can also 
yield incorrect results. For example, consider the  situation 
where no data  was logged for October. Application of the 
nest operator would result in an incorrectly derived Time 
hierarchy tha t  did not include October as a child of Qtr4 or 
either year (see Figure 3). 

Our solution is to introduce another  operator, the dot (.) 
operator, that; is similar to the nest operator but  "hierarchy- 
aware." We review the definition of nest and then define dot. 
If we define FT to be the fact table being analyzed, r to be a 
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Figure 4: Each pane in a Polaris visualization corresponds to a slice of a projection of a data cube. The projection in each pane 
is determined by the contents of the "Level of Detail" shelf and by the normalized set form of the table expressions. The table is 
partitioned into rows, colpmng, and layers corresponding to the entries in these sets. The underlying data cube must be projected 
to include only the dimensions that occur in these entries. This figure shows a simple text-based table that requires two separate 
projections of the data cube because of the concatenation in the y-axis expression. 

record, and A (r) to be the value of the field A for the record 
r, then the definition of nest, as presented in [21], is: 

A / B  = {(a,b) [ 3r E F T  st A(r) = a & B(r) = b} 

The dot operator is defined similarly. If we define D T  to 
be the relational dimension table defining the hierarchy tha t  
contains the levels A and B, and A precedes B in the schema 
of DT, then: 

A.B  = {(a.b) [ 3r E D T  st a(r)  = a & B(r) = b} 

Note tha t  whereas nest produces a set of two-valued tu- 
ples, dot produces a set of single-valued tuples, each contain- 
ing a qualified value. If the two operands are not levels of 
the same dimension hierarchy (or set interpretations of oper- 
ations on levels of the same hierarchy), or A does not precede 
B in the schema of D T  (e.g., A must be an ancestor level 
in the tree defined by DT),  then the dot operator evaluates 
to the empty set. With  this definition, the two expressions 
Month and Year.Month are not equivalent: Month is inter- 
preted as {Jan, Feb, . . . ,  Dec} whereas Year.Month would be 
interpreted as {1998.Jan, 1998.Feb, . . . ,  1999.Dec}. With a 
fully populated fact table, Year.Month is equivalent to Year 
/ Month. 

Given these set interpretations for dimension and measure 
operands, we can apply the set semantics for each operator to 
reduce expressions in this new algebra to their normalized set 
form, with each entry in the normalized set being an ordered 
concatenation of zero or more domain values followed by zero 
or more measure names. As before, the normalized set form 
determines one axis of the table. 

4.3 Filtering and Sorting within the Algebra 
In our original formalism, a table configuration was speci- 

fied by three expressions in the table algebra, and then filter- 
ing and sorting was specified separately by listing the sorted 
and filtered domain for each database field tha t  was to be fil- 
tered or sorted. When the  set interpretation was generated 
for field operands in the algebra, these specified domains 
would be used. It is possible, however, to generate a more 
succinct and general formalism if we incorporate the filtering 
and sorting directly into the table algebra. 

In our revised formalism, if a dimension or measure is to 
be filtered (or sorted), then the filtered and sorted domain 
is listed directly after the instance of the level or measure 
operand in the expression, in effect directly specifying a set 
interpretation for the operand. For example, if we wished to 

filter the expression Month + Product Type to include only 
the first three months of the year, sorted in reverse order, 
we would specify the filtered domain by including it in the 
expression as follows: Month{Mar, Feb, Jan} -t- Product- 
Type. The advantage provided by this revision of the table 
algebra is the ability to specify separate filters and orderings 
for different instances of the  same operand in an expression. 
Similarly, we can filter a measure by specifying a range of 
values, e.g., Profit{O, 500}. 

We also need to allow the use of qualified values in the 
specification of filtering or sorting of dimension levels. As 
we discussed in Section 3.1, a value in a dimension hierarchy 
can either be described by simply stat ing the value in the 
node (an unqualified value) or by describing a path from tha t  
node to the root node in the hierarchy (a qualified value). 
When filtering or sorting a dimension level, it is necessary to 
be able to use bo th  types of values in the specification, as the 
unqualified node values are often not unique. For example, if 
the user wishes to exclude 1998.Jan but not 1999.Jan, then 
qualified values must be used. 

5. REDEFINING THE USER INTERFACE 
Having redefined the  formalism underlying the Polaris in- 

terface, we must now alter the interface to support  hierarchi- 
cally structured data. Five major changes need to be made: 

1. the Schema list must display dimension hierarchies and 
measures, not simply database fields; 

2. the analyst must be able to distinguish between Month 
and Year.Month when including Month in a specifica- 
tion; 

3. the analyst must be able to filter a dimension level 
using qualified values; 

4. the analyst must be able to quickly drill down and roll 
up a dimension hierarchy using the interface; 

5. the analyst needs to be able to change the number of 
marks within each pane to reflect different levels of 
detail. 

Figure 2 illustrates the revised interface. We now discuss 
each interface extension in detail. 

5.1 The Schema 
In the original interface, the analyst was presented with a 

list box containing the ordinal and quanti tat ive fields in the 
database. The analysts included these fields in a specifica- 
tion simply by dragging and dropping the  field's name onto 
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Figure 5: The  overall  data flow in Polaris when generating a visual representation of a data cube. 
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the appropriate shelf in the interface. To support  hierar- 
chical da ta  cubes, we have extended this list box to display 
the dimensions of the da ta  cube with an ordered list of the 
dimension's levels beneath  each dimension. The analysts 
can drag and drop any dimension level to the  interface as 
they did with the ordinal fields of the database. The dimen- 
sion's 'name, however, cannot  be dragged to the interface; 
the analyst can only manipulate  the individual levels within 
a dimension. 

5.2 Qualifying Dimension Levels 
When an analyst drops a dimension level, such as Month, 

on a shelf, there are several potential  intentions. He may 
intend to include the operand Month in an expression, but  
he may also mean Year.Month or Year.Quarter.Month; the 
analyst needs to be able to specify the exact qualification 
desired. Our solution is the make full qualification (e.g., 
Year.Quarter.Month) the default. To generate a different 
qualification, the user can right-click the dimension level in 
the shelf and select the  "Qualif ication. . ."  menu item. He is 
then presented with a dialog box tha t  allows him to explicitly 
specify which of the  intermediate levels to include in the 
qualification of the operand, thus generating the applicable 
expression. 

5.3 Qualifying Dimension Level Filters 
When applying filters to a dimension level, an analyst may 

want to specify the filter using either qualified or unquali- 
fied values. We have extended the Polaris interface to allow 
both  options. For example, if the user wishes to exclude 
1998.Jan but not 1999.Jan, he can choose to filter using 
qualified values. Similarly, it is possible to specify a filtering 
using unqualified values: each qualified value tha t  matches 
the unqualified value will be included in the filter. Currently, 
Polaris requires the filter be specified using either qualified 
or unqualified values, but  not both. As a future extension, 
we intend to support  heterogeneous filtering. 

5.4 Drilling down and Rolling up 
When analyzing and exploring large data  cubes, a com- 

mon operation is to drill down or roll up within a dimension 
hierarchy. Therefore, it is impor tant  to include a simple 
mechanism for performing these operations. One option is 
for the analyst to remove the current level from the appro- 
priate shelf (by dragging it off the shelf) and then drag the 
new level to tha t  same shelf. Although the desired effect is 
achieved, it is more complicated than  we would like. 

We provide an alternate mechanism for drilling down and 

rolling up a dimension. With in  the  box representing each 
dimension level on a shelf, there is an "V" icon, as can be 
seen in Figure '.2. When the  user clicks on the "V" icon, he is 
presented with a listing of all the levels of the dimension (in- 
cluding diverging levels in complex dimension hierarchies). 
Selecting a new level is interpreted as a drill down (or roll 
up) operation along tha t  dimension and the current level 
is automatically replaced with the  selected level (with the 
same qualification). Thus, the  user can rapidly move be- 
tween different; levels of detail  along a dimension, refining 
the visualization as he navigates. 

5.5 Grouping within Panes 
In the original version of Polaris, the analyst specified the 

grouping of tuples within each pane by placing fields on the 
shelf ti t led "Group By." Each field in this shelf was included 
in the GROUP BY clause in the SQL query tha t  aggregated 
the data  in each pane into tuples to be mapped to marks. 

The situation when visualizing da ta  cubes is slightly differ- 
ent. The query for each pane does not produce a relational 
da ta  set tha t  is then grouped and aggregated. Instead, each 
pane corresponds to a projection of the da ta  cube, with the 
projection determined by the  dimension levels included in 
the table expressions. To produce additional marks within 
a pane, the analyst must specify additional dimensions to 
be included in these projections, done by including the de- 
sired dimension levels in the "Level of Detail" shelf (shown 
in Figure 2), the hierarchical analog of the "Group by" shelf. 

As was the case with the original version of Polaris, this 
"Level of Detail" shelf gives the analyst the ability to rapidly 
drill down into their da ta  without  changing the table con- 
figuration. Changing the level of detail without changing 
the table configuration only changes the da ta  density within 
each pane. 

6. GENEILATING QUERIES 
The final step in extending Polaris to fully support  hier- 

archical da ta  cubes is to show how to construct an efficient 
set of multidimensional queries from a specification in our 
formalism. 

Each pane in a Polaris visualization corresponds to either 
a slice of a projection of the data  cube or an aggregation 
of such a projection. The specific projection corresponding 
to each pane is determined by the  contents of the "Level 
of Detail" shelf (discussed in Section 5.5) and by the nor- 
malized set form of the table axis expressions (discussed in 
Section 4). The table is part i t ioned into rows, columns, and 
layers corresponding to the entries in these sets. Therefore, 
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Figure 6: Analysis of network usage data using Polaris. 

each pane in the table is associated with three set entries 
corresponding to its row, column, and layer, respectively. 

The underlying data  cube must be projected to include 
only the dimension levels tha t  occur in the three set entries 
(and in the Level of Detail shelf) and it must be sliced to 
include only the specific dimension members tha t  occur in 
these entries. This process is illustrated in Figure 4. When 
multiple set entries defining a pane refer to different levels of 
the same dimension, the correct projection to retrieve is the 
one corresponding to the most detailed level of tha t  dimen- 
sion. Before determining how the projections are efficiently 
retrieved from the server, we must carefully consider the sit- 
uation where set entries contain values whose qualification 

skips levels in the hierarchy. 
Set entries containing values whose qualification skips lev- 

els (e.g., Time.Jan) are interpreted to imply tha t  nodes in 
the hierarchy whose values are not unique (when we consider 
only the included levels) should be aggregated in tha t  pro- 
jection. In the Time.Jan example, the aggregation for the 
pane must be computed by aggregating across years, and 
thus, across a hierarchy level ra ther  than  up the hierarchy. 
This type of aggregation is not natively supported in most 
hierarchical query languages. Thus, we request the cube pro- 
jection from the remote server and compute the aggregation 
within Polaris before sorting tuples into panes, as shown in 
Figure 5. If all node values are unique across the entire level, 
then no aggregation needs to be performed. 

Although it is possible for each pane to correspond to a 
different projection of the cube, the common situation is for 
a large number  of panes to correspond to the same projec- 
t ion and differ only by how tha t  projection is sliced. For 
efficiency, we would like to consider these panes as a group 
and send a single query to the OLAP server requesting the 
appropriate projection (and then, if necessary, perform a sin- 
gle aggregation of the projection). The projection can then 
be sorted into panes locally. 

One key to efficiently utilizing the OLAP server is this 
grouping of queries. By algebraically manipulating our table 
expressions, we can quickly determine all projections corre- 
sponding to a given table configuration. The key observation 
is tha t  of our four algebraic operators (nest, cross, concate- 
nate, and dot), the only operator tha t  can produce adjacent 
panes with differing projections is the concatenate operator. 
Nest, cross, and dot include all input dimension levels in 
each output  set entry; concatenate does not. Thus, if we 
compute a single expression as the cross of the three table 
expressions and then reduce to a sum-of-terms form, the re- 
sulting terms will correspond to the set of projections tha t  
need to be generated. This process is illustrated in Figure 5. 

Most typical multidimensional query languages provide a 
mechanism for generating projections of the da ta  cube. Our 
current implementation generates a single MDX query to a 
remote Microsoft Analysis Server for each projection. The 
resulting cells are then sorted into panes using transforma- 
tion capabilities built into Polaris. In addition, any explicitly 
specified filtering of dimension members is included in the 
MDX queries sent to the remote server. The overall da ta  
flow in Polaris is depicted in Figure 5. 

7. RESULTS 
In this section, we illustrate how Polaris can be used to ef- 

fectively navigate and analyze three hierarchically structured 
data  sets: (1) a 12-week trace of mobile network usage, (2) 
results from the 2000 presidential election, and (3) historical 
business metrics for a hypothetical coffee chain. 

7.1 Mobile Network Usage Data 
Figure 6 shows an analysis of a 12-week trace of every 

packet tha t  entered or exited the mobile network in the 
Gates building at Stanford University [22]. Over the 12 
weeks, 78 million packet headers were collected. The anal- 
ysis goal is to understand usage pat terns of the mobile net- 
work. This da ta  is stored in a data  cube with many differ- 
ent dimensions (User, Time, Remote host, Traffic direction, 
and Application), each with multiple levels of detail. In this 
analysis, the  queries generated when the user dropped a field 
on a shelf took one to two seconds to execute and returned 
several hundred to tens of thousands of tuples. 

To start  the analysis, the analyst first sees if she can spot 
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Figure 7: Analysis of ~ e  results of the 2000 presidential election. 

any patterns in time, so she creates a series of line charts in 
Figure 6(a) showing packet count and size versus time for 
~he most common appl}cations, broken down and colored by 
the direction of the traffic. In these charts, the analyst can 
see that the web is the most consistently used application, 
while session is almost as consistent. File transfer is the least 
consistent, but also has some of the highest peaks in both 
incoming and outgoing ftp traffic. Note the log scale on the 
y-axes. 

Given this broad understanding of traffic patterns, the 
next question posed by the analyst is how the applicatior~ 
mix varies depending on the research area. The analyst piv- 
ots the display to generate a single line c h a r t  of packet count 

Figure 8: Analysis of sales data for a hypothetical coffee chain. 

per research area over time, broken down and colored by ap- 
plication class (Figure 6(b)). From this breakdown, the an- 
alyst can see that the graphics group was responsible for the 
large incoming and outgoing file transfers. She can also see 
that  the systems group had atypically high session traffic. 

Curious, the analyst then drills down further to see the 
individual project groups (Figure 6(c)), discovering that the 
large file transfers were due to the rendering group within 
the graphics lab, while the robotics lab had vastly different 
behavior depending on the particular group (the mob group 
dominated by session traffic, while the learning group had 
more web traffic, for example). 
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7.2 2000 Presidential Election Results 
Figure 7 shows Polaris being used to explore and analyze 

the results of the 2000 presidential election. This da ta  is 
particularly interesting because the visualizations used to 
explore it are created from two separate data  sets. The first 
da ta  set is a relational database of approximately 500,000 
tuples (stored in Microsoft's SQLServer) describing detailed 
polygonal outlines of the states and counties in the USA. 
Additional levels of detail have been constructed by poly- 
gon simplification, and the resulting levels of detail form a 
Location hierarchy. The second data  set is stored as a data  
cube (in Microsoft's Analysis Server) and contains detailed 
county-by-county vote results (also with a Location dimen- 
sion). In the first two visualizations, these data  sets are 
explicitly joined before being imported into Polaris. In the 
final visualization, we use the ability in Polaris to visually 
join data  sets using layers. In this analysis, the execution 
t ime for the queries varied from less than  one second for 
the overview visualizations to two seconds for the detailed 
visualizations, where the retrieved relation included tens of 
thousands of tuples. 

In Figure 7(a), the analyst has generated an overview of 
the entire country at  the State level in the Location hierar- 
chy, coloring each state by which candidate won tha t  state. 
The analyst is interested in more detailed results for the 
state of Florida, so she filters on the Latitude and Longi- 
tude measures to focus on Florida and changes the level of 
detail to County, generating Figure 7(b). In the final visual- 
ization, shown in Figure 7(c), the analyst further focuses on 
the southern t ip of Florida (by again filtering the Latitude 
and Longitude measures). Furthermore, she adds two addi- 
tional layers to the visualization (read directly from the data  
cube) and displays bo th  the name and the total  number of 
votes counted in each county. 

7.3 Historical Profit/Sales for a Coffee Chain 
The final analysis is shown in Figure 8. The data  being 

analyzed is two years of business metrics for a hypothetical 
nationwide coffee chain, comprising approximately 5,000 tu- 
pies stored in a data  cube. The data  is characterized by three 
main dimensions (Time, Products,  and Location), each with 
multiple levels of detail. We consider a scenario where the 
analyst is concerned with reducing marketing expenses a n d  

is trying to identify products tha t  are not generating profit 
and sales proportional to their marketing costs. The typical 
query time for the  visualizations created in this scenario was 
between 0.1 and 0.2 seconds. 

The first visualization created, Figure 8(a), is an overview 
of three key measures (Profit, Sales, and Marketing) as a 
scatterplot matrix. The analyst has drilled down using the 
Level of Detail shelf to the Product  and State level. The two 
charts circled in orange show tha t  several of the distribu- 
tions do not reflect the positive correlations tha t  the analyst 
was expecting. To further investigate, the analyst reduces 
the scatterplot matr ix to two graphs and colors the records 
by Market and Product type (Figure 8(b)), thus identifying 
espresso products in the East region and tea products in 
the West region as having the worst marketing cost to profit 
ratios. 

In the final visualization, Figure 8(c), the analyst drills 
down into the data  to get a more detailed understanding of 
the correlations: She creates a small multiple set of stacked 
bar charts, one for each Market and Producttype.  Within 
each chart, the da ta  is further drilled down by individual 
Product  and State. Finally, each bar is colored by the Mar- 
keting cost. As can be seen in the visualization, several prod- 
ucts such as Caffe Mocha in the East have negative profit 

(a descending bar) with high marketing cost (a bright red 
bar). Having identified such poorly performing products, the 
analyst can modify the marketing costs allocated to them. 

7.4 Summary 
Each of these case studies demonstrates how analysis pro- 

gresses from a high level of abstract ion to detailed views of 
the data. Furthermore, each example shows the importance 
of being able to easily change the data  being viewed, pivot 
dimensions, and drill down during the analy§is process. 

8. DISCUSSION 
In this section, we focus on two points of discussion. First, 

we discuss the different roles Polaris can play in the knowl- 
edge discovery process, and second, we discuss how our for- 
malism can be applied to the development of generalized 
visualization systems, particularly level of detail systems. 

In this paper, we have demonstrated the effectiveness of 
Polaris as a stand-alone tool for visual mining of large, hi- 
erarchical databases. Equally important  is how Polaris c a n  

be coupled with automated da ta  mining systems to help an- 
alysts bet ter  understand not only their data, but  also the 
models generated by the algorithms. First, Polaris can be 
used as a precursor to da ta  mining: The analyst benefits 
from an understanding of the overall structure of the data  
tha t  helps her steer the discovery process and provides con- 
text for "hidden information" discovered by the algorithms. 
Second, Polaris can also be used to validate and compre- 
hend the models and results generated by algorithmic anal- 
ysis. Analysts do not want to t reat  an algorithm as a black 
box and blindly t rust  its output.  One technique for using 
Polaris for validation is to construct hierarchical dimensions 
from the output  generated by classification algorithms. The 
analyst can then drill down and roll up the data, travers- 
ing the classification hierarchy and inspecting the records 
sorted into each bucket, further developing understanding 
and trust.  

A second point of discussion is the application of our for- 
malism to the development of general visualization systems. 
Although we have only demonstrated our formal language as 
a n  underlying technology for the Polaris interface, we believe 
it is a promising basis for the development of a wide-range of 
visualization systems. One example is in the development of 
interactive "semantic-zooming" visualization systems. Pro- 
grammers developing such systems need a mechanism for 
describing a wide range of visual displays, with each dis- 
play being associated with a different level of detail view 
of the data. Using our formalism, these programmers could 
simply describe each visual display with a succinct specifica- 
tion. When the user interacts with the interface to move to 
a different level of detail, the system need only feed the ap- 
propriate specification into our interpreter. The interpreter 
would generate all of the drawing operations and queries nec- 
essary to generate the display. In addition to simplifying the 
development of such systems, the  presence of an underlying 
formalism also serves to help clearly define the semantics of 
the interface, as demonstrated by Polaris. 

9. CONCLUSIONS AND FUTURE WORK 
We have extended Polaris, an interface for the exploration 

and analysis of large multidimensional databases, to fully 
support  and expose the hierarchical structure of da ta  cubes. 
These dimension hierarchies play an indispensable role in the 
analysis of large databases where, in order for the analysis 
task to be manageable, it is necessary to perform the anal- 
ysis at multiple levels of aggregation, moving from visual 
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overviews to detai ls  on d e m a n d .  In ex tend ing  Polaris,  we 
have ex tended  not  only  the  interface,  bu t  also t he  under ly-  
ing algebraic formal ism.  Fur the rmore ,  we have developed an  
efficient m e c h a n i s m  for in te rpre t ing  the  formal  specif icat ions 
as a collection of mul t id imens iona l  queries.  

We have m a n y  p lans  for fu tu re  work in ex tend ing  th i s  
sys tem.  As d a t a b a s e s  cont inue  to  grow in size, developing 
tools and  techniques  for t he  in teract ive  explora t ion  of d a t a  
a t  mul t ip le  levels of  detai l  is crucial.  As  we discussed in Sec- 
t ion 8, we believe our  algebraic fo rmal i sm provides a solid 
founda t ion  upon  which  to  bui ld  v isual iza t ion  sys tems .  We 
are cur ren t ly  bui ld ing  s y s t e m s  t ha t ,  a la P a d + +  [18], au to-  
mat ica l ly  and  interact ively  change  t he  visual  represen ta t ion  
as the  ana lys t  changes  level of  detail .  T h i s  research has  m a n y  
in teres t ing  chal lenges,  inc luding t r ans i t i ons  be tween differ- 
ent  v isual  representa t ions ,  m a p p i n g  rep resen ta t ions  to levels 
of detail ,  and  ma i n t a i n i ng  in te rac t iv i ty  while explor ing  large 
d a t a  warehouses .  

A second a rea  of fu ture  research is t h e  visual  p resen ta t ion  
of me t ada t a .  Hierarchical ly s t r uc t u r ed  d imens ions  are one 
ins tance  of an  increasingly  popu la r  t rend:  t he  a u g m e n t a -  
t ion of d a t a  wi th  rich domain-speci f ic  m e t a d a t a .  Th i s  me ta -  
d a t a  is as i m p o r t a n t  to t he  analys is  process  as t he  under -  
lying da t abase  itself. A n  i m p o r t a n t  a rea  of fu tu re  research 
is t he  deve lopment  of  v isua l iza t ion  t echn iques  t h a t  display 
th i s  m e t a d a t a  and  leverage it in t he  display of t he  descr ibed 
data .  
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